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Classi�cation of in�nite-dimensional simplelinearly compact Lie superalgebrasVictor G. Kac�Dedicated to the memory of my friendBoris Weisfeilera remarkable man and mathematician.IntroductionThe present paper was motivated by the problem of classi�cation of opera-tor product expansions (OPE) in conformal �eld theory. This problem wassolved in [DK] in the case when the chiral algebra is generated by �nitelymany bosonic �elds such that in their OPE only linear combinations of these�elds and their derivatives occur. An axiomatic description of such a sys-tem of �elds is called a �nite conformal algebra [K6]. The classi�cation of�nite conformal algebras uses in an essential way Cartan's classi�cation ofpseudogroups of transformations of a �nite-dimensional manifold, which, inthe modern language, is equivalent to the classi�cation, up to formal equiv-alence, of Lie algebras of vector �elds on a �nite-dimensional manifold. Theproblem of classi�cation of OPE when fermionic �elds are allowed as well,or, equivalently, of �nite conformal superalgebras, requires an extension ofCartan's theory to the case of supermanifolds. Below I explain the problemin more detail.Elie Cartan published a solution to the problem (posed by Sophus Lie)of classi�cation of simple in�nite-dimensional Lie algebras of vector �eldson a �nite-dimensional manifold in 1909 [C]. This work had been virtually�Department of Mathematics, M.I.T., Cambridge, MA 02139, <kac@math.mit.edu>Supported in part by NSF grant DMS-9622870.1



forgotten until the sixties. A resurgence of interest in this area began withthe work of Singer and Sternberg [SS] and of Guillemin and Sternberg [GS],which developed an adequate language and machinery of �ltered and gradedLie algebras.The basic problem of the theory is to classify, up to formal equivalence,in�nite-dimensional Lie algebras of vector �elds acting transitively in a neigh-borhood of a point x of a complex manifold X. Let L be such a Lie algebraand let Lk (k 2Z+) denote the subalgebra of L consisting of vector �elds thatvanish at x up to k-th order. This de�nes a �ltration of L by subspaces of�nite codimension, which is transitive in the sense that dimL=L0 = dimX,or, equivalently, that L0 contains no non-zero ideals of L. One de�nes atopology on L by taking fLkgk2Z+ to be a fundamental system of neighbor-hoods of 0. Let L be the completion of L in this topology. Two transitiveLie algebras, L and L0, of vector �elds are called formally equivalent if theircompletions L and L0 are isomorphic topological Lie algebras.One thus arrives at a problem of classi�cation, up to a continuous isomor-phism, of in�nite-dimensional linearly compact Lie algebras L, i.e., completetopological Lie algebras that admit a fundamental system of neighborhoodsof zero consisting of subspaces of �nite codimension, which possess a funda-mental subalgebra L0, i.e., an open subalgebra (of �nite codimension) thathas no non-zero ideals of L, cf. [G1].In [C], Cartan purports to give a classi�cation of simple in�nite-dimen-sional linearly compact Lie algebras. His main idea is the notion of a primitiveLie algebra. This is a linearly compact Lie algebra L with a maximal fun-damental subalgebra L0. (Geometrically primitivity means that L does notleave invariant a non-trivial completely integrable di�erential system.) Everysimple L can be made primitive by taking any maximal subalgebra contain-ing a fundamental subalgebra. Cartan's list of primitive linearly compactLie algebras consists of (a) four well-known series: Wm, Sm, Hm and Km ofsimple ones, which are respectively the Lie algebra of all formal vector �eldsin m indeterminates (= all continuous derivations of the algebra of formalpower series C [[x1; : : : ; xm]]) and its subalgebras consisting of divergence zerovector �elds, of vector �elds annihilating a symplectic form (for m even), andof vector �elds multiplying a contact form by a function (for m odd), and(b) two series of non-simple ones which contain Sm and Hm as ideals ofcodimension 1.Here and further the overbar stands for the formal completion of the cor-2



responding Lie (super)algebra of polynomial vector �elds, e.g., Wm denotesthe Lie algebra of all derivations of the polynomial algebra C [x1; : : : ; xm].The �rst step of Cartan's paper is the classi�cation of irreducible L,i.e., those for which the representation of L0=L1 on L=L0 is irreducible. (Geo-metrically irreducibilitymeans that L does not leave invariant any non-trivialdi�erential system, integrable or not.) This result was veri�ed in [SS]. InCartan's application of this classi�cation to the classi�cation of primitive L,there seems to be a serious gap (cf. [GS]). In [GQS] the problem was solvedby making use of a rather complicated result from analysis.The �rst purely algebraic (and very elegant) solution to the problem wasfound by Weisfeiler [W]. His idea is to choose a minimal adL0-invariantsubspace L�1 of L such that L�1 % L0 and construct a new �ltrationL = L�d � L�d+1 � : : : � L�1 � L0 � L1 � : : : (with new L1; : : : ).(Geometrically this corresponds to a choice of an invariant irreducible non-integrable di�erential system.) By considering this Weisfeiler �ltration onerestores the irreducibility of the representation of L0=L1 on L�1=L0 at theexpense of the possibility of having the depth d of the �ltration greater than1. The associated Z-graded Lie algebra is of the form g = �j��dgj, and hasthe following properties:(G0) dimgj <1,(G1) g�j = gj�1, for j � 1,(G2) if a 2 gj with j � 0 and [a; g�1] = 0, then a = 0,(G3) the representation of g0 on g�1 is irreducible.Weisfeiler's classi�cation of theseZ-graded Lie algebras remained unpub-lished. In his paper [W] he refers to the paper [K1] where a more generalresult had been obtained.Of course, the concluding step after that is to verify that the Lie algebraL is uniquely determined by g, i.e., that the formal completion g of g hasno �ltered deformations. This can be done by several di�erent techniquesdeveloped, in particular, in [SS], [KN], [W] and [K3].In [G2] Guillemin found a very beautiful new approach to the problem.Using the notion of a characteristic variety, he proved (without the use ofclassi�cation) that an in�nite-dimensional primitive linearly compact Lie al-gebra has a unique maximal fundamental subalgebra. After that a simple3



\normalizer trick" almost immediately gives the classi�cation of theZ-gradedLie algebras in question.At this point it is appropriate to mention an earlier paper, [G1], ofGuillemin where he proves Cartan's conjecture on existence in an arbitrarylinearly compact Lie algebra with a fundamental subalgebra a �nite chainof nested closed ideals such that each of the consecutive quotients is eitherabelian or of the form S
̂C [[x1; : : : ; xn]] where S is a simple linearly compactLie algebra.Let us now turn to superalgebra. At the very end of my paper on clas-si�cation of �nite-dimensional Lie superalgebras [K4], I brie
y discussed theproblem of classi�cation of simple in�nite-dimensional linearly compact Liesuperalgebras. This problem has the same geometric origin as in the Lie al-gebra case with X being a supermanifold. Of course, the �rst basic exampleis the Lie superalgebra W (m;n) (see Example 4.1 in Section 4) of continu-ous derivations of the algebra C [[x1; : : : ; xm]]
�(n), where �(n) stands forthe Grassmann algebra in n indeterminates (in other words, W (m;n) is theLie superalgebra of all formal vector �elds in m commuting and n anticom-muting indeterminates). The remaining three series, Sm, Hm and Km have\super"generalizations as well. They are subalgebras ofW (m;n), denoted byS(m;n), H(m;n) (m even) and K(m;n) (m odd), which consist respectivelyof \super"divergence zero vector �elds, of vector �elds annihilating a \su-per"symplectic form and of vector �elds multiplying a \super"contact formby a function (see Examples 4.2, 4.3 and 4.4 in Section 4). Incidentally, theLie superalgebras W (0; n), S(0; n) and H(0; n) are �nite-dimensional; theyform the \non-classical" part of the list of simple �nite-dimensional Lie su-peralgebras (along with a �ltered deformation of S(0; n)). I proposed that,in analogy with Cartan's classi�cation, these four series should give a com-plete list of simple in�nite-dimensional linearly compact Lie superalgebras.Remarkably, the situation turned out to be much more exciting.It was pointed out by Buttin, Kirillov, Leites and Tulcziev among others(see [L] and references there) that the Schouten bracket makes the space ofpolyvector �elds into a Lie superalgebra. This gives the series, denoted in thepresent paper by HO(n; n) (see Example 4.6), which consists of vector �eldsfrom W (n; n), annihilating an odd super symplectic form (HO stands forHamiltonian odd). The next series is SHO(n; n) = HO(n; n) \ S(n; n) (seeExample 4.7). Furthermore, one has the series KO(n; n + 1) which consistsof vector �elds fromW (n; n+1) multiplying an odd super contact form by afunction (see Example 4.8). One can take KO(n; n+1)\S (n; n+1) as well,4



but the situation again is more interesting, as was discovered by Kochetko�[Ko]. It turns out that for each � 2 C one can de�ne the deformed divergencediv� such that SKO(n; n + 1;�) = �D 2 KO(n; n+ 1)j div� D = 0	 is asimple superalgebra (see Example 4.9). (One should mention that some ofthe above Lie superalgebras are not simple, but, apart from small m and n,listed in Examples 4.1-4.4, 4.6-4.9, their derived algebras are simple and havecodimension at most 1.)However, the most surprising discovery was made by Shchepochkina whoannounced in [S1], the existence of three exceptional simple in�nite-dimen-sional Lie superalgebras. The place of these examples in my classi�cationis discussed in Section 5 (see Remark 5.1). Subsequently she found onemore exceptional example (cf. [S2] and Example 4.10 from Section 4 of thepresent paper). Next, Cheng and I in our work on conformal superalgebras[CK1] and independently Shchepochkina [S2], found another exception (seeExample 5.2 in Section 5). Finally, during the work on the present paperone more exception was found (see Example 4.11).The main result of the present paper is the following theorem (cf. Theo-rem 6.3 in Section 6).Theorem 0.1 Any simple in�nite-dimensional linearly compact Lie super-algebra is isomorphic to one of the Lie superalgebras of the following list orits derived subalgebra:(a) eight series of completed graded superalgebras: W (m;n), S(m;n),H(m;n), K(m;n), HO(n; n), SHO(n; n), KO(n; n + 1),SKO(n; n + 1;�),(b) two series of �ltered deformations: SHO(n; n)� (n even),SKO(n; n + 1)� (n odd),(c) six exceptional Lie superalgebras: E(1; 6), E(2; 2), E(3; 6), E(3; 8),E(4; 4), E(5; 10).The major di�culty in the Lie superalgebra case is that, unlike in the Liealgebra case, L may contain a lot of maximal fundamental subalgebras. Inorder to circumvent this di�culty, I introduce the notion of an even prim-itive Lie superalgebra. It is a primitive Lie superalgebra L whose maximalfundamental subalgebra L0 contains all even ad-exponentiable elements ofL; such a subalgebra is called maximally even. Using Guillemin's argument5



from [G2] I prove that any simple in�nite-dimensional linearly compact Liesuperalgebra contains a maximally even subalgebra (Corollary 1.1 of Theo-rem 1.1). (Such a subalgebra is unique in most of the examples, and thereare at most two such subalgebras in the remaining examples.) Incidentally,in the �nite-dimensional case \maximally even" simply means that L0 is amaximal subalgebra containing the even part of L; the �nite-dimensionaleven primitive Lie superalgebras were classi�ed in [K4].Another useful notion is that of a quasiprimitive Lie superalgebra: it is alinearly compact Lie superalgebra L with a given fundamental subalgebra L0and an adL0-invariant minimal subspace L�1 containing L0 and generatingL (as an algebra). This weaker property than primitivity, as well as evenness,still remain when one passes to the completion of the associated graded withthe Weisfeiler �ltration Lie superalgebra (Propositions 2.1 and 2.2).The main problem which is addressed in the paper is the classi�cation ofZ-graded Lie superalgebras g = �j��dgj which occur as associated gradedto the Weisfeiler �ltration of an even quasiprimitive in�nite-dimensional Liesuperalgebra. I use the \normalizer trick" of Guillemin to show that the g0-module g�1 is strongly transitive (Proposition 2.3), meaning that apart frombeing �nite-dimensional (which is (G0) for j = �1), faithful (which is (G2)for j = 0) and irreducible (which is (G3)), it satis�es the property: (G4) if ais a non-zero even element of g�1, then [g0; a] = g�1.It turns out that, in spite of the fact that, unlike in the Lie algebra case,the classi�cation of all faithful irreducible �nite-dimensional Lie superalgebramodules is unknown (and probably is impossible), one can give a completeclassi�cation of strongly transitive modules V over a �nite-dimensional Liesuperalgebra p (Theorem 3.1). The list consists of two parts:1. V has a non-zero even element: this part of the list comprises a dozen\classical series" (cases (a)-(j) and (r) of Theorem 3.1) and seven ex-ceptional cases (cases (k)-(q) of Theorem 3.1),2. all elements of V are odd: then p is a Lie algebra, hence a direct sumof simple Lie algebras plus at most 1-dimensional center and V is anarbitrary faithful �nite-dimensional irreducible p-module.Correspondingly, the classi�cation of the above mentioned Z-graded Lie su-peralgebras is divided in two parts. The �rst part, when the Z-gradation ofg is inconsistent with the Z=2Zgradation, is given by Theorem 4.1. The list6



consists of the above mentioned eight series of Lie superalgebras of polyno-mial vector �elds, excluding K(1; n), with the \principal" or \subprincipal"Z-gradation, two exceptional superalgebras E(2; 2) and E(4; 4), four \de-generate" series (which are far from being simple) and the extensions byderivations and central elements of these. It more or less corresponds to thelist given by Theorem 3.1 (�ve of the \exceptional" cases of Theorem 3.1actually correspond to the �rst members of some series, and the series (r) ofTheorem 3.1 do not correspond to any even Z-graded Lie superalgebra).The second part, when the Z-gradation of g is consistent with the Z=2Z-gradation, is given by Theorem 5.3. The list consists of K(1; n), four excep-tional simple superalgebras E(1; 6), E(3; 6), E(3; 8) and E(5; 10), nonsimplesubalgebras E 0(3; 6) and E 0(3; 8), and their extensions by derivations. Inthis case I use the methods developed in [K4] in order to show that the onlypossibilities for the [g0; g0]-module g�1 are son(n 6= 2), s`3 � s`2 and �2s`5.The �nal step of the classi�cation of in�nite-dimensional simple linearlycompact Lie superalgebras is the reconstruction of complete �ltered Lie su-peralgebras from the Z-graded Lie superalgebras g = �j gj listed by Theo-rems 4.1 and 5.3. First, there are the superalgebras g = Qj gj obtained bycompletion of g when g is simple. Next, one has to �nd all simple �ltereddeformations of g where g is one of the superalgebras listed by Theorems 4.1and 5.3. For this one can use methods developed in [KN], [K3], [K4] and[CK3]. It turns out (Section 6 and [CK3]) that all non-trivial simple �ltereddeformations are listed in Theorem 0.1(b) (the �rst of these deformationswas found in [CK3] and the second much earlier in [Ko]).The notation X(m;n) used here, where X = W;S;H;K, etc. means thatthis is a Lie superalgebra of vector �elds on the superspace of dimension(m;n), where the dimension m of the even part is minimal possible anddimension n of the odd part is minimal possible for this m. Note also that inall cases m is equal to the growth (= Gelfand-Kirillov dimension) of X(m;n).The paper is organized as follows. In the �rst section I explain the basicproperties of linearly compact Lie superalgebras and prove the existence ofa maximally even fundamental subalgebra in a simple linearly compact Liesuperalgebra (Theorem 1.1 and Corollary 1.1).In Section 2 the properties (G0)-(G5) of the associated graded of aneven quasiprimitive Lie superalgebra are established. In Section 3 I classifystrongly transitive �nite-dimensional modules (Theorem 3.1).In Sections 4 and 5 the graded Lie superalgebras with inconsistent andconsistent gradation respectively associated to even quasiprimitive Lie su-7



peralgebras are classi�ed.In the last Section 6 �ltered deformations of the completions of the above-mentioned graded Lie superalgebras are discussed and the classi�cation ofin�nite-dimensional simple linearly compact Lie superalgebras is completed(Theorem 6.3). One of the consequences of this result is the classi�cation ofsimple �nite conformal superalgebras announced in [K6], [K7].Unless otherwise speci�ed, all vector spaces, linear maps and tensor prod-ucts are considered over the �eld C of complex numbers.I would like to thank Irina Shchepochkina and Yuri Kochetkov for veryuseful correspondence. I am especially indebted to Shun-Jen Cheng for col-laboration on [CK2] and [CK3] and invaluable help with the present paper.1 Basic properties of primitive Lie superalgebrasIn this paper we shall use the superalgebra terminology adapted in [K4]. Inparticular, a vector superspace is a vector space V decomposed in a directsum of subspaces V0 and V1, called the even and odd subspaces respectively.Here and furtherZ=2Z= �0; 1	; if a 2 V�, we write p(a) = �. By a subspaceof a superspace V we mean a subspace U such that U = (U\V0)+(U\V1). Asuperalgebra is a vector superspace V endowed with a structure of an algebrasuch that V�V� � V�+� , �; � 2 �0; 1	. A Lie superalgebra is a superalgebrasatisfying the super Jacobi and super anti-commutativity axioms, etc.A topological vector superspace L = L0 + L1 is called linearly compactif it admits a fundamental system of neighborhoods of zero consisting ofsubspaces of �nite codimension of L such that L is complete in this topology.Here are some useful properties of a linearly compact superspace L(cf. [G1]). A subspace of L is open i� it is closed and of �nite codimen-sion. Another important fact is Chevalley's principle: if F1 � F2 � : : : is asequence of closed subspaces such that \jFj = 0 and if U is a neighborhoodof zero, then Fj � U for j � 0.A topological Lie superalgebra L is called linearly compact if, as a topo-logical vector superspace, L is linearly compact.Given subspaces U and V of L, letNU (V ) = fa 2 U j [a; V ] � V g ;NU (V ) = fa 2 V j [a; U ] � V g :8



The subspace NU(V ) is the usual normalizer of V in U , whereas NU(V ) isan \inner" normalizer. The proof of the following lemma is straightforward.Lemma 1.1 (a) NU (V ) is a subalgebra of the Lie superalgebra L, providedthat U is a subalgebra of L.(b) NU (V ) is a subalgebra provided that V � U .(c) If U and V are open subspaces of L, then NU (V ) and NU (V ) are openas well.A subalgebra L0 of L is called fundamental if it is proper (i.e., L0 6= L),open and contains no closed ideals of L.Fix a fundamental subalgebra L0 of the linearly compact Lie superalgebraL and choose a subspace L�1 of L which generates L as a Lie superalgebraand such that [L0; L�1] � L�1. One associates to the triple L � L�1 � L0the Weisfeiler �ltration of L [W] by letting inductively for s � 1:L�(s+1) = [L�1; L�s] + L�s; Ls = NL�1(Ls�1) :It is straightforward to check that this is indeed a �ltration of the form:L = L�d % L�d+1 � : : : � L�1 � L0 � L1 � : : :by open subspaces Lj, in other words:[Li; Lj] � Li+j ; \jLj = 0 ; dimL=Lj <1 :The number d � 1 is called the depth of this �ltration. By Chevalley'sprinciple, the Lj form a fundamental system of neighborhoods of 0.An element a of L is called exponentiable if the series exp(ad a) de�nes acontinuous automorphism of L.Lemma 1.2 If L0 is a fundamental subalgebra of a linearly compact Liesuperalgebra  L, then any even element a from L0 is exponentiable.Proof Consider the Weisfeiler �ltration for the triple L � L � L0. Sincea 2 L0, we have [a; Lj] � Lj for all j. Since dimL=Lj < 1, the seriesexp(ad a) converges on L=Lj for each j, hence converges on L to a continuousautomorphism. 9



Lemma 1.3 (Super Nullstellensatz) If A is a �nitely generated commu-tative associative superalgebra which contains only one maximal ideal m, thendimA <1.Proof Let A be generated by even elements x1; : : : ; xm and odd elements�1; : : : ; �n, and denote by J the ideal generated by �1; : : : ; �n. Since A=mis a �eld, J � m. Let A = A=J , then m = m=J is an ideal of A. If nis another ideal of A and n its preimage in A, then n � m, hence n � m.Therefore, m is a unique maximal ideal of A and hence, by the ordinaryHilbert's Nullstellensatz, dimA <1. It follows that dimA � dimA � 2n.Proposition 1.1 Let L be a linearly compact Lie superalgebra which admitsa fundamental subalgebra. Then there exists a proper open subspace H of Lwhich is mapped into itself by every continuous automorphism of L.Proof is the same as that of Proposition 3.2 from [G2] using Lemma 1.3instead of the ordinary Nullstellensatz.Theorem 1.1 (a) Let L be a linearly compact Lie superalgebra with a fun-damental subalgebra. Suppose that L has no proper open ideals with a�nite-dimensional Lie algebra quotient. Then L admits a proper opensubalgebra L0 which contains all exponentiable elements of L.(b) Let L be a simple (i.e., without non-trivial closed ideals) linearly com-pact Lie superalgebra which is not a �nite-dimensional Lie algebra.Then L admits a maximal fundamental subalgebra which contains allexponentiable elements of L.Proof We may assume that dimL =1. Let H be the subspace of L givenby Proposition 1.1 and let L0 = NL(H). Then L0 is an open subalgebra ofL. If L0 = L, then H is a proper open ideal of L, a contradiction with thehypothesis of (a). If a is an exponentiable element of L, then by Proposi-tion 1.1, exp(t ad a)H � H for any t 2 C , hence [a;H] � H and a 2 L0. Thisproves (a). Statement (b) follows from (a) by taking any maximal subalgebracontaining L0.A pair (L;L0) consisting of a linearly compact Lie superalgebra L andits fundamental subalgebra L0 is called a primitive Lie superalgebra if L0 is10



a maximal subalgebra. This primitive Lie superalgebra is called even if L0contains all exponentiable elements of L.We have the following corollary of Theorem 1.1.Corollary 1.1 If L is a simple linearly compact Lie superalgebra which isnot a �nite-dimensional Lie algebra, then there exists a subalgebra L0 of Lsuch that (L;L0) is an even primitive Lie superalgebra.Proposition 1.2 If L00 is a proper open subalgebra of L and (L;L0) is aprimitive Lie superalgebra, then either L00 is a fundamental subalgebra of L,or L00 + L0 = L. Furthermore any non-zero closed ideal of L is open.Proof If L00 is not a fundamental subalgebra of L, then it contains a non-zeroideal I of L. Since I 6� L0, the subalgebra I + L0 must be the whole L dueto maximality of L0. The second claim is proved in the same way as in [G1],Proposition 4.1.The following notion is technically more convenient than that of primitiv-ity. A triple (L;L�1; L0) consisting of a linearly compact superalgebra L, itsfundamental subalgebra L0 and a minimal subspace L�1 such that L�1 % L0and [L0; L�1] � L�1 is called a quasiprimitive Lie superalgebra if L�1 gen-erates L (as an algebra). A quasiprimitive Lie superalgebra (L;L�1; L0) iscalled even if L0 contains all exponentiable elements of L.Of course, if (L;L0) is a primitive Lie superalgebra, choosing a mini-mal subspace L�1 such that L�1 % L0 and [L0; L�1] � L�1, we obtain aquasiprimitive Lie superalgebra (L;L�1; L0).Example 1.1 Any �nite-dimensional Lie superalgebra with discrete topol-ogy is linearly compact.Example 1.2 Let Fm = C [[x1; : : : ; xm]] be the algebra of formal power se-ries in the indeterminates x1; : : : ; xm and let �(n) be the Grassmann super-algebra in the indeterminates �1; : : : ; �n, Denote by �(m;n) the associative(commutative) superalgebra Fm
�(n) and by J the ideal of �(m;n) gener-ated by x1; : : : ; xm; �1; : : : ; �n. Then �(m;n) is a linearly compact associativesuperalgebra with topology for which nJ kok�1 form a fundamental systemof neighborhoods of 0. LetW (m;n) = der�(m;n)11



denote the Lie superalgebra of all continuous derivations of the superalgebra�(m;n). It consists of linear operators of the form:mXi=1 Pi @@xi + nXj=1 Qj @@�j ; where Pi; Qj 2 �(m;n) :Note thatW (m;n) is a left �(m;n)-module and letW (m;n)k = J kW (m;n).Then W (m;n) is a linearly compact simple Lie superalgebra with a funda-mental system of neighborhoods of 0 consisting of the subalgebras W (m;n)k,which form a (Weisfeiler) �ltration ofW (m;n). The pair (W (m;n);W (m;n)0)is an even primitiveLie superalgebra (since @@xi 's are not exponentiable). Notethat, letting J i = (x1; : : : ; xm; �1; : : : ; �i) for 0 � i < n, we obtain primitiveLie superalgebras (W (m;n);J iW (m;n)). All of them are not even, exceptfor the case n = 1; i = 0.Example 1.3 Any closed subalgebra L of W (m;n) is a linearly compactLie superalgebra. If no non-trivial closed ideals of �(m;n) are L-invariant,then L0 := L \W (m;n)0 is a fundamental subalgebra of L. Conversely, anylinearly compact Lie superalgebra with a fundamental subalgebra L0 suchthat dimL=L0 = (m;n) is obtained in this way (cf. [B1] and [GS]).2 Associated graded of even quasiprimitive Lie super-algebrasLet (L;L�1; L0) be a quasiprimitive Lie superalgebra. As in Section 1, wemay associate to this triple the Weisfeiler �ltration L = L�d � : : : � L�1 �L0 � L1 � : : : . Let GrL = �j��dgj ; gj = Lj=Lj+1 ;be the associated Z-graded Lie superalgebra. It is easy to check that it hasthe following properties [W]:(G0) dimgj <1 for all j,(G1) g�j = gj�1 for j � 1,(G2) if a 2 gj with j � 0 and [a; g�1] = 0, then a = 0,12



(G3) the adjoint representation of g0 on g�1 is irreducible.A Z-graded Lie superalgebra g = �j��dgj satisfying (G0)-(G3) is calleda transitive irreducible graded Lie superalgebra. Properties (G0)-(G2) (resp.(G3)) are usually called the transitivity (resp. irreducibility) properties re-spectively. If g�d 6= 0, the positive integer d is called the depth of g.In what follows we shall assume, when talking about a Z-graded Liesuperalgebra g = �jgj, that (G0) holds. We also shall use the followingnotation: g� = �j<0gj ; g+ = �j>0gj :The following assertion is clear (cf. [W] and [G2], Lemma 4.1).Proposition 2.1 The triple (L;L�1; L0) is a quasiprimitive Lie superalgebrai� GrL is a transitive irreducible graded Lie superalgebra.Lemma 2.1 If g = �jgj is a transitive irreducible Z-graded Lie superalgebraand I is a Z-graded ideal of g, then either I � g� or I � g�. If, in addition,g1 6= 0, then I \ g�1 = 0 in the latter case.Proof Let Ij = I \gj . If Ij 6= 0 for some j � 0, then, by (G2), I�1 6= 0, and,by (G3), I�1 � g�1, hence, by (G1), I � g�. If I \ g�1 6= 0, then I � g�1 by(G3), hence I \ g0 6= 0 if g1 6= 0, by (G2).Given a Z-graded Lie superalgebra g = �j��dgj of depth d � 1, considerthe associated �ltration by subspaces g(k) := �j�kgj and topology of g forwhich these subspaces form a fundamental system of neighborhoods of zero;let g (resp. g(k)) be the completion of g (resp. g(k)) in this topology. Thenwe get a �ltered linearly compact Lie superalgebra g = g(�d) � g(�d+1) �: : : � g(0) � : : : . The following lemma follows from Proposition 2.1.Lemma 2.2 A Z-graded Lie superalgebra g = �j��dgj is transitive irre-ducible i� the triple (g; g(�1); g(0)) is a quasiprimitive Lie superalgebra.Lemma 2.3 Let L be a linearly compact Lie superalgebra with a fundamentalsubalgebra L0 and let g = GrL be a graded Lie superalgebra associated to a�ltration of L with L0 as one of its members. Then an even element a 2 Lis exponentiable i� its image a in g is exponentiable in g (where a stands forthe image of a in Lj=Lj+1, j being the minimal index such that a =2 Lj+1).13



Proof We may assume that L is a subalgebra of W (m;n) (cf. Example 1.3)and that a =2 L0 (see Lemma 1.2). Then we may assume that a is of theform: a = @@x1 +Xi Pi @@xi +Xj Qj @@�j + higher degree terms,where degPi = degQj = k > 0. Making the change of indeterminatesx0i = xi � ePi, �0j = �j � eQj, where ePi and eQj are homogeneous polynomialsof degree k + 1 such that @ ePi@x1 = Pi ; @ eQj@x1 = Qj, we increase k by 1. Thus, wemay assume that a = @@x1 . But then exp�(ada) (if it converges) acts on L bysubstitution x1 ! x1 + �, � 2 C , and all other indeterminates unchanged.Hence a is exponentiable in L i� for each monomial p in x2; : : : ; xm; �1; : : : ; �nthe linear span of all coe�cients of p in all coe�cients of derivations from Lis a �nite-dimensional subspace of C [x1]. This property holds i� it holds inthe associated graded of L.A Z-graded Lie superalgebra g = �jgj is called even if any even homo-geneous exponentiable in g element of g is contained in g(0). Lemma 2.3impliesProposition 2.2 A quasiprimitive Lie superalgebra (L;L�1; L0) is even i�GrL is an even transitive irreducible graded Lie superalgebra.Lemma 2.4 Let g = �j��dgj be an even Z-graded Lie superalgebra and letb be the maximal graded ideal of g contained in g�. Then b0 = 0.Proof An even element from b is exponentiable.The following is a key lemma. The main idea of its proof is borrowedfrom [G2].Lemma 2.5 Let g = �j��dgj be an even transitive irreducible Z-graded Liesuperalgebra. Then g has the following property(G4) if a is an even element of g�1, then [g0; a] = g�1.Proof We may assume that g1 6= 0 (since otherwise a is exponentiable).Then b is contained in �j��2gj . Due to Lemma 2.4, we may assume withoutloss of generality that b = 0 (by replacing g by g=b; this does not a�ectexponentiability since dimb <1). 14



Consider the subspace h = �jhj of g de�ned by:hj = gj if j 6= �1; h�1 = [g0; a] ;and let `0 = Ng(h). Note that `0 is a graded subalgebra of g containing aand all gj for j � 0.Suppose that [g0; a] 6= g�1. Then g�1 6� `0 (since [g0; g�1] = g�1), hence,by Lemma 2.1, any ideal of g contained in `0 must lie in �j��2gj, hence iszero. Thus, `0 is a fundamental subalgebra of g and therefore, by Lemma 1.2,any even element of `0, in particular the element a, is exponentiable. Thiscontradicts the hypothesis of the lemma.We shall call a �nite-dimensional module V over a Lie superalgebra gstrongly transitive if it is faithful, irreducible and for any non-zero even el-ement v of V one has: g � v = V . Combining Lemmas 2.3 and 2.5, weobtain the following severe restriction on the associated graded of an evenquasiprimitive Lie superalgebra.Proposition 2.3 Let (L1; L�1; L0) be an even quasiprimitive Lie superalge-bra, and let g = �j��dgj be the associated graded Lie superalgebra. Then theg0-module g�1 is strongly transitive.The next lemma provides further restrictions.Lemma 2.6 Let g = �j��dgj be an even transitive irreducible Z-graded Liesuperalgebra. Let b = �jbj be the maximal graded ideal of g contained in g�.Then(G5) if r � 0, s < 0 and a is a non-zero even element of gs, then[gr; a] + br+s = gr+s.Proof We argue in the same way as in the proof of Lemma 2.5. Replace gby g=b. Let h = �jhj, be a subspace of g de�ned by:hj = gj if j 6= r + s and hr+s = [gr; a] ;and let `0 = Ng(h). Then a 2 `0. Suppose that [gr; a] 6= gr+s. Then g� 6� `0,hence, by Lemma 2.1, any ideal of g contained in `0 must lie in g� andtherefore is zero. It follows that `0 is a fundamental subalgebra of g, hencea is exponentiable in g, a contradiction.15



The following simple proposition is useful for checking primitivity andsimplicity.Proposition 2.4 Let g = �j��dgj be a Z-graded Lie superalgebra satisfyingconditions (G0)-(G3) and, in addition, the following two conditions:(G6) g1 generates g+,(G7) g� contains no non-zero graded ideals of g.Then(a) (g ; g(0)) is a primitive Lie superalgebra.(b) The Lie superalgebra g (hence g) is simple i� the following two condi-tions hold: [g�1; g1] = g0 ; [g0; g1] = g1 :Proof is straightforward. (See [K1] or [G2].)3 Classi�cation of strongly transitive modulesLet V = V0 + V1 be a superspace of dimension (m;n), i.e., dimV0 = mand dimV1 = n. Sometimes m + n will also be called the dimension of V .We assume that m + n > 0. Let g`(m;n) be the Lie superalgebra of allendomorphisms of the superspace V [K4]. If V is a faithful module over aLie superalgebra g, we may identify g with a subalgebra of g`(m;n). We shalldescribe below examples of strongly transitive modules on V as subalgebrasof g`(m;n). These subalgebras will be called strongly transitive.Example 3.1 Any subalgebra g of g`(0; n), n � 1, acting irreducibly on Vis strongly transitive (since V contains no non-zero even elements). Notethat g is an ordinary Lie algebra, hence, by the so called Cartan-Jacobsontheorem (see e.g., [S] or [OV]) is isomorphic to a direct sum of simple Liealgebras and at most 1-dimensional abelian Lie algebra.16



Example 3.2 The Lie superalgebra g`(m;n) is strongly transitive for allm;n � 0;m+ n > 0. Its subalgebra [K4]s`(m;n) = fa 2 g`(m;n)jstra = 0gis strongly transitive i� (m;n) 6= (1; 0).Example 3.3 Consider a non-degenerate skew-supersymmetric bilinear formf : V � V ! C 1j0, where C 1j0 is the (1; 0)-dimensional superspace (f is aneven element of �2V �). We have: f(V0; V1) = 0 ; f jV0�V0 is non-degenerateskew-symmetric, so that m is even, and f jV1�V1 is non-degenerative symmet-ric. Let (cf. [K4] where a supersymmetric f was considered instead, hencethe notation osp there)spo(m;n) = �a 2 g`(m;n)jf(au; v) + (�1)p(a)p(u)f(u; av) = 0 ; u; v 2 V 	 :This is a strongly transitive subalgebra of g`(m;n). The subalgebracspo(m;n) = C I + spo(m;n) ;where I is the identity operator on V , is strongly transitive as well.Example 3.4 Let p be the subalgebra s`m or spm (m even) of the Lie algebrag`(m; 0), m � 2. It acts strongly transitively on the space U of dimension(m; 0). Denote by p[�] the Lie superalgebra p+p�, where � is an odd element,�2 = 0. This Lie superalgebra can be included in g`(m;m) by letting it acton U [�] = U + U� in the obvious way. Consider the following realization ofg`(1; 1): g`(1; 1) = C dd� + C � + C � dd� + C Iand introduce the following subalgebra of g`(m;m) containing p[�]:ep[�] = p[�] + g`(1; 1) :Let a be a subalgebra of the Lie superalgebra g`(1; 1). The subalgebra g =p[�]+a of ep[�] is strongly transitive (on U [�]) i� the projection of g on C dd� isnon-zero. It is easy to see that, up to rescaling of �, there are the followingpossibilities for a: 17



(a) C dd� ,(b) C ( dd� + �) + C I,(c) C dd� + C (�� dd� + �I) where �; � 2 C and one of them is non-zero,(d) C dd� + C � dd� + C I,(e) C dd� + C � + C I,(f) C dd� + C � + C I + C � dd� .Example 3.5 Let V be a superspace of dimension (n; n) and let V � beits dual. Let f be an odd non-degenerate element of �2V � (= odd skew-supersymmetric bilinear form). Let (cf. [K4])ep(n) = fa 2 g`(n; n)ja � f = 0g ;cep(n) = C I + ep(n) ;p(n) = fa 2 ep(n)jstr a = 0g :These are strongly transitive subalgebras of g`(n; n) i� n � 2. Recall thatin some basis of V , ep(n) consists of matrices of the form � a bc �a �, wherea; b; c are n � n matrices, c = tc, b = �tb, and for p(n), tr a = 0 (the Liesuperalgebra p(n) is denoted by P (n � 1) in [K4]). Let F be the operatorthat is identity on V0 and �(identity) on V1. Given a complex number �, letep(n ; �) = C (I + �F ) + p(n) :This is again a strongly transitive subalgebra of g`(n; n) provided that n � 2.Note that for n = 2 these are some of the subalgebras of es`2[�] described inExample 3.4.Example 3.6 Denote by p̂(4) the subalgebra of s`(4; 4) consisting of matri-ces of the form [S2] � a bc � b� �ta �+ �I ;where � 2 C , c = tc, b = �tb and b� stands for the Hodge dual of theskewsymmetric matrix b. This is a strongly transitive subalgebra.18



Example 3.7 It is well known that the standard representation of the Liesuperalgebra W (0; n) on the Grassmann algebra �(n) can be deformed (torepresentation in �-densities) by letting for a �xed � 2 C :a 7! a+ �div a ; a 2 W (0; n)(the de�nition of div and S(0; n) are given in Example 4.2 below). ThisW (0; n)-module is irreducible i� � 6= 0; 1. For n = 2, � 6= 0; 1, it de�nes astrongly transitive subalgebra of g`(2; 2), denoted by w(0; 2;�) if we reversethe parity of �(2). (Note that w(0; 2; 12) = spo(2; 2) and that w(0; 2;�) isisomorphic to s`(2; 1) as an abstract superalgebra.) Of course, cw(0; 2;�) :=w(0; 2;�) + C I is strongly transitive as well.The standard W (0; 2)-module �(2) with reversed parity, extended inan obvious way to the semidirect sum W (0; 2) + �(2), is again a stronglytransitive subalgebra of g`(2; 2), which we denote by ew(0; 2). Furthermore,S(0; 2) +�(2) and S(0; 2) + (C + C �1 + C �2) are still strongly transitive. Wedenote them by es(0; 2) and es�(0; 2) respectively.Example 3.8 Let m = n and let J be an operator on V such that J2 = Iand J(V0) = V1. Let eq(n) = fa 2 g`(n; n)j aJ = Jag :This is a strongly transitive subalgebra of g`(n; n) for n � 1. It contains asubalgebra q(n) = �� a bb a � 2 eq(n)j trb = 0� :This is a strongly transitive subalgebra (denoted by eQ(n � 1) in [K4]), pro-vided that n � 2.Example 3.9 Let H be an odd superspace of dimension n with a non-degenerate symmetric bilinear form ( , ). The Heisenberg superalgebraHn is the superspace Hn = C c + H, where c is an even central element,with the bracket [p; q] = (p; q)c, p; q 2 H. Note that U(Hn)=(c � 1) is theusual Cli�ord superalgebra associated to H. (As usual, U(g) stands for theuniversal enveloping superalgebra of a Lie superalgebra g.) Hence Hn has aunique irreducible module, denoted by S (= spinor module), for which c = I.19



Its dimension is (2[n�12 ] ; 2[n�12 ]). The representation of Hn in S extends to arepresentation, which we denote by �n, of the semidirect sum son +Hn bythe following well known formulas, where feig is an orthonormal basis of H:�n((aij)) = nXi;j=1 aij�n(ei)�n(ej) ; where aji = �aij :This representation of son+Hn gives rise to a subalgebra of g`(2[n�12 ] ; 2[n�12 ])which we denote by gspinn. Note that gspin1 = eq(1), gspin2 = g`(1; 1) andgspin3 = q(2) are strongly transitive subalgebras of g`(1; 1). It is easy to seethat gspin4 is a strongly transitive subalgebra of g`(2; 2) but gspinn for n � 5is not strongly transitive. (Note that p̂(4) contains gspin6.)Furthermore, we have: so4 ' a1 � a2, where ai ' s`2 and �4(a1) (resp.�4(a2)) acts via the standard (resp. trivial) representation of s`2 on S0 anda trivial (resp. standard) representation of s`2 on S1. Then a1 + H4 stillacts strongly transitively on S. We denote the corresponding subalgebra ofg`(2; 2) by spin�4. Adding to it an arbitrary subalgebra a of a2 again gives astrongly transitive subalgebra of g`(2; 2), which we denote by spin�4+a.Theorem 3.1 All strongly transitive subalgebras of g`(m;n) where m � 1,n � 0, are listed in Examples 3.2{3.9. Namely, they are:(a) g`(m;n),(b) s`(m;n) for m+ n � 2,(c) spo(m;n) for m � 2, m even,(d) cspo(m;n) for m � 2, m even,(e) one of the subalgebras of sèm[�] � g`(m;m), m > 2, containing s`m[�]and having a non-zero projection on C dd� ,(f) one of the subalgebras of espm[�] � g`(m;m), m � 2, m even, containingspm[�] and having a non-zero projection on C dd� ,(g) ep(n) for n � 2,(h) ep(n ; �) for n � 2, � 2 C , 20



(i) cep(n) for n � 2,(j) p(n) for n � 2,(k) w(0; 2 ; �) for � 6= 0; 1,(l) cw(0; 2 ; �) for � 6= 0; 1,(m) ew(0; 2),(n) es(0; 2),(o) es�(0; 2),(p) spin�4+a ; a � s`2,(q) bp(4),(r) eq(n) for n � 1, q(n) for n � 2.The proof of this theorem is based on several lemmas.Lemma 3.1 Let g � g`n be a strongly transitive subalgebra. Then eitherg = g`n, n � 1, or g = s`n, n � 2, or g = cspn, n � 2, or g = spn, n � 2.Proof (cf. [G2]). If v� is the highest weight vector and vM is the lowestweight vector of the representation of g in C n , then, by strong transitivity,av� = vM for some a 2 g. We may assume that a is a root vector e��,where � is a positive root. Hence � + (�M) = � and [g; g] is simple (byfaithfulness). But both summands on the left are non-zero dominant, hence� is a dominant root withPi �(Hi) � 2, where Hi are all simple coroots. Itfollows from the well-known list of dominant roots, that [g; g] is either s`n orspn, with � the highest root.Corollary 3.1 If V = V0 + V1 is a strongly transitive module over a Liesuperalgebra g = g0 + g1, then the g0-module V0 is irreducible; moreover, theimage of g0 in EndV0 is one of the linear Lie algebras listed by Lemma 3.1.Lemma 3.2 Let V be a strongly transitive module over a Lie superalgebra gand let a be a non-zero abelian ideal of g. Then there are two possibilities:21



(a) g is one of the following subalgebras of g`(2; 2): ew(0; 2), es�(0; 2), es(0; 2),(b) a is an even central subalgebra acting on V by scalar operators.Proof There exists � 2 a� such that the associated weight space V � =fv 2 V ja(v) = �(a)v; a 2 ag is non-zero. Let g� = fg 2 gj�([g; a]) = 0g bethe stabilizer of �, and let U = U(g�)v�, where v� 2 V � is a non-zero(even or odd) vector. Then U is a direct sum of isomorphic 1-dimensionalg�-modules, hence by Blattner's theorem ([B1], [Ch]) we obtain:V = Indgg� U : (3.1)Since dimV <1, we conclude thatg� � g0 : (3.2)Going over to the Zariski closure, we may assume that g0 is an algebraicLie algebra; let s be a maximal reductive subalgebra of g0. Due to Corol-lary 3.1, s acts irreducibly on V0 (since the nil-radical of g0 acts trivially).With respect to the adjoint representation of s on g, we have a decompositionas s-modules: g = g0 � g� ; (3.3)where, due to (3.2), we have: g0 � g1 ; s � g� : (3.4)Due to (3.1)-(3.4), we conclude that, as an s-module, V0 is a direct sum ofat least [12(1 + dimg0)] modules. It follows from Corollary 3.1 thatdimg0 � 2 : (3.5)If dimg0 = 2, we see that, as an s-module:V = U + g0 
 U + �2g0 
 U :It follows from Corollary 3.1 that dimU = (0; 1) (otherwise V0 is not irre-ducible as an s-module), hence dimV = (2; 2) and the s-module V0 is eithers`2 or g`2, while the [s; s]-module V1 is trivial. It is easy to see now that g22



lies in the subalgebra ew(0; 2) of g`(2; 2) (de�ned in Example 3.7). It followsthat g is one of the strongly transitive subalgebras listed in Example 3.7.If g = g�, then V � is a g-submodule of V , hence V = V � and lemma isproved.Thus, the following situation remains:g = C b + g� ;where b is a non-zero odd element such that [s; b] � C b, andV = U � bU :Again, by Corollary 3.1, it follows that U = V0, hence g� = g0 and a0 actsby scalar operators on V0. If a 6= a0, then b 2 a, hence [b; a] = 0 andtherefore a0 acts by scalar operators on V and is a central subalgebra of g;then [g0; b] � C b and since bV � = 0 we conclude that gV � � V �, henceV = V � and lemma is proved.Thus, a is a subalgebra of g0 acting by scalar operators on V0. Since a isan ideal of g, we have [b; a] � a, and since b is an odd element, we concludethat [b; a] = 0. Hence a acts by scalar operators on V .Lemma 3.3 Let V be a strongly transitive module over a Lie superalgebrag and let r be the radical of g. Then provided that r 6= 0, there are threepossibilities:(a) g is one of the following subalgebras of g`(1; 1): g`(1; 1), s`(1; 1), eq(1)(and g = r),(b) g is one of the following subalgebras of g`(2; 2): ew(0; 2), gspin4, es(0; 2),es�(0; 2), q(2), eq(2), spin�4+a (where 0 � a $ s`2) (and (g=r) ' s`(2; 1),so4, s`2 in the remaining cases, respectively),(c) r is an even 1-dimensional central subalgebra of g acting on V by scalaroperators.Proof Let r = r(0) � r(1) � : : : � r(k�1) � r(k) � 0 be the derived series ofr with r(k) 6= 0. By Lemma 3.2, we may assume that: r(k) = C c, where cis a central element of g acting as identity on V . We may also assume that23



dimV 6= (1; 1) and that k � 1; let p = r(k�1) for short. We have: [x; p] = C cfor any non=zero x 2 p, since otherwise x generates an abelian ideal of g,which contradicts Lemma 3.2. Since dimV < 1, the superspace p=C c ispurely odd. Therefore p = H + C c, where H is a non-zero odd subspace ofg, c is an even central element represented in V by I and [p; q] = (p; q)c forp; q 2 H, where ( , ) is a non-degenerate symmetric bilinear form on H,which is invariant under the adjoint action of g0; we also have: [g1;H] � C c.Note that p is the Heisenberg superalgebra considered in Example 3.9.Recall (see Example 3.9) that p has a unique irreducible representation� in a vector space S such that �(c) = I. Let p� be a maximal isotropicsubspace ofH and let U be the subspace of V consisting of vectors annihilatedby p� (vacuum subspace). Then, as a p-module, V is isomorphic to U 
 S,where p acts via 1
�. We shall identify V with U
S. The representation � inS extends from p to the whole g by the following formulas (cf. Example 3.9):�(a) =Xi;j aij�(ei)�(ej) if a 2 g0 ; [a; ei] =Xj aijej ;�(b) =Xi bi�(ei) if b 2 g�1 ; [b; ei] = bic :This representation of g in S extends to V = U 
 S via 1 
 �.We let �(g) = g� (1
�)g ; g 2 g. It is clear that �(p) = 0 and hence �is a representation of g in V commuting with p. Therefore, the subspace Uof V is �(g)-invariant and is a g=p-module via �. Thus, the action of g 2 gin the g-module V = U 
 S looks as follows:g = (�
 1)g + (1
 �)g :Since V is irreducible, the g-module U must be irreducible too.Let s be a maximal reductive subalgebra of g0 (cf. Lemma 3.2). If sis abelian, then g0 is solvable, hence g is solvable ([K4], Proposition 1.3.3),hence either dimV = 1 or dimV0 = dimV1 ([K4], Proposition 5.2.3); byCorollary 3.1, it follows that in the latter case dimV0 = dimV1 = 1.Thus, we may assume that s is not abelian and, as an [s; s]- module,V0 = U0
S0+U1
S1. It follows that dimU = 1 and hence g is a subalgebraof gspinn if n is even and of gspinn + C d if n is odd, where n = dimH and d isan odd endomorphism of the p-module S (cf. Example 3.9). It follows thatn = 3 or 4. Then it is straightforward to see that g is q(2) or eq(2) if n = 3and g is one of the subalgebras of gspin4 containing spin�4 if n = 4.24



Let g be a �nite-dimensional Lie superalgebra of type X = A;B;C;D;F;G; P or Q, and let Der g denote the Lie superalgebra of derivations of g (itis described by [K4], Proposition 5.1.2). A central extension by even centerof a subalgebra of Der g containing g will be called an almost simple Liesuperalgebra of classical type X.Lemma 3.4 Let g be an almost simple Lie superalgebra of classical typeand let V be a strongly transitive module over g of dimension (m;n), wherem;n � 1. Then the corresponding strongly transitive subalgebra of g`(m;n)is one of the following:(a) g`(m;n) and s`(m;n) for m+ n � 3 or (m;n) = (2; 0),(b) spo(m;n) and cspo(m;n) for m � 2,(c) w(0; 2;�) and cw(0; 2;�) for � 6= 0; 1,(d) ep(n;�); cep(n); p(n) and ep(n) for n � 3 and p̂(4),(e) eq(n) and q(n) for n � 3.Proof is similar to that of Lemma 3.1. Let � be the highest weight of theg0-module V0 and M the lowest weight of an irreducible component of theg0-module V1. By strong transitivity, e��v� = vM for an odd positive root� of g, hence � = � + (�M) is a dominant odd root of g. Moreover, dueto Corollary 3.1, if [g0; g0] has at least 2 simple components, we may assumethat the restriction of M to at least one simple component of g0 is non-zero.Hence Xi �(Hi) � 2 (3.6)if [g0; g0] has at least 2 simple components, where Hi are the simple corootsof g0. If [g0; g0] has only one simple component and (3.6) does not hold, thenby the above remarks, [g0; g0] must act trivially on V1.A quick inspection of cases shows that � must be the highest weight ofan irreducible submodule of the adjoint representation of g0 on g1.It easily follows from the above discussion that if g is of a type A, B, Cor D, then only the possibilities (a), (b) and (c) of the lemma occur. Sincein our situation the number k of [K4], Theorem 8 is always 1, the threeexceptional superalgebras are ruled out. Finally, if g is of type P (resp. Q),only (c) (resp. (d)) are possible. 25



Lemma 3.5 Let g be an almost simple Lie superalgebra of Cartan type (butnot of classical type). Then g has no strongly transitive modules.Proof Recall [K4] that g admits a �ltration by subalgebras g � g(0) �g(1) � : : : where g(1) is the radical of g(0) and s := g(0)=g(1) is one of theLie algebras g`n, s`n, son, cson. Let V be a strongly transitive g-module.Then, by Corollary 3.1, V is a quotient of the module induced from theeven irreducible g(0)-module U on which g(1) acts trivially and s acts via thestandard representation of g`n, s`n, spn or cspn.If g is of type W (n), n � 3, eS(n), n � 4, or S(n), n � 4, then Vis isomorphic to �(n)=C 1 (resp. a submodule of codimension 1 in it) withreversed parity if g is of type W (n) or eS(n) (resp. S(n)). In all these cases,however, V0 is spanned by �i; �i�j�k; : : : , hence is not an irreducible s-module.The case of g of type H(n) with n > 6 is ruled out since then s is notof type An or Cn. If n = 5 (resp. n = 6), then the only possibility forthe s-module V0 is sp4 (resp. s`4). One checks directly that V0 cannot beirreducible in these cases, which rules out types H(5) and H(6) as well.Recall that a semisimple �nite-dimensional Lie superalgebra g containsan ideal of the form S = �ki=1�(ni) 
 Si, called the socle of g, where Si aresimple Lie superalgebras, ni are non-negative integers, and g is contained inthe Lie superalgebra of derivations of S (see [K4], [C]). We shall call thenumber k � 1 the length of g. We let Si(n) = �(n)
 Si for short.Lemma 3.6 Let eg be a central extension of a semisimple Lie superalgebra gby an even center, and let V be a strongly transitive module over eg. Then(a) The length k of g is 1.(b) Either the socle S of g is a simple Lie superalgebra, or S = �(1)
 S1,where S1 is a simple Lie algebra and V = V0 + �1V0 as an S-module.Proof By Corollary 3.1, we may assume that (S1)0 acts irreducibly on V0.Let � be the highest weight of this module. Suppose that k � 2. Then(S2)0V0 = 0. Let M be a non-zero lowest weight of (S2)0 in V1. Arguingas in the proof of Lemma 3.4, we see that � �M is a root of �iSi whoserestriction to S1 and S2 is non-zero, a contradiction proving (a).Thus S = �(m)
S1 where �(m) is a Grassmann algebra in the indeter-minates �1; : : : ; �m and S1 is a simple Lie superalgebra.26



Suppose that S1 is not a Lie algebra. Let U be a non-trivial irreducibleS1-submodule of V . Then, by Corollary 3.1, U0 = V0, (�1(S1)1)V0 = 0, hence(�1(S1)0)V0 = 0 if m � 1. But then (�1(S1)0)V1 is a non-zero submodule ofV0, a contradiction.Hence either S is a simple Lie superalgebra, or S1 is a simple Lie algebra.In the latter case, by Corollary 3.1, the S1-module V0 is isomorphic to s`n orspn, n � 2, and V = V0+Pi �iV0+Pi<j �i�jV0+ : : : . It follows that m = 1,proving (b).Proof of Theorem 3.1. Let g � g`(m;n), m � 1, n � 0, be a stronglytransitive subalgebra. If n = 0, then, by Lemma 3.1, g is one of the linearLie algebras (a)-(d) with n = 0. Thus, we may assume that n � 1. Ifm = n = 1, then it is easy to see that only g`(1; 1), s`(1; 1) and eq(1) arepossible. Hence, by Lemma 3.3, either g is one of the linear Lie superalgebras(m)� (p) listed by the theorem, or we may assume that the radical of g is aneven central subalgebra acting on V by scalars. If g is an almost simple Liesuperalgebra, then, by Lemmas 3.4 and 3.5 we may have only cases (a)-(d),(g)-(l) and (q)-(r) of the theorem. Finally, if g is a central extension of asemisimple Lie superalgebra by an even center and g is not almost simple,by Lemma 3.6 we may have only cases (e) and (f) of the theorem.4 Classi�cation of even transitive irreducible gradedLie superalgebras: the case of inconsistent gradationBefore stating the main theorem of this section, we consider some examples.The basic de�nitions may be found in [K4]. The proofs of the statementsin these examples (that are not entirely obvious) may be found in [S2] and[CK2].Example 4.1 (general superalgebras of vector �elds) Let �(m;n) be theassociative (commutative) superalgebra C [x1; : : : ; xm] 
 �(n), m;n � 0,m+n > 0 (it is a dense subalgebra of the linearly compact algebra �(m;n)).Let W (m;n) denote the Lie superalgebra of all derivations of the superalge-27



bra �(m;n). It consists of linear operators of the form:mXi=1 Pi @@xi + nXj=1 Qj @@�j ; where Pi ; Qj 2 �(m;n) ; (4.1)hence it is a dense subalgebra of W (m;n). It is a simple Lie superalgebra if(m;n) 6= (0; 1).Let (a1; : : : ; amjb1; : : : ; bn) be an (m + n)-tuple of integers such that allthe ai are positive. Then, lettingdeg xi = ai = �deg @@xi ; deg �j = bj = �deg @@�jde�nes a Z-gradation of the Lie superalgebra W (m;n). (All Z-gradationsof W (m;n) satisfying (G0) are obtained, up to automorphism, in this way,cf. [K5].) This is called a Z-gradation of type (a1; : : : ; amjb1; : : : ; bn). TheZ-gradation of type (1; : : : ; 1j1; : : : ; 1) (resp. (1; : : : ; 1j0; : : : ; 0)) is calledprincipal (resp. subprincipal) gradation of W (m;n).The Lie superalgebra W (m;n) with one of the above gradations is aneven graded Lie superalgebra in the following two cases:(a) Arbitrary W (m;n) with the principal gradation. (It is the associatedgraded for the even primitive Lie superalgebra (W (m;n);W (m;n)0).)It is an even irreducible transitive Z-graded Lie superalgebra of depth1.(b) The Lie superalgebras W (m; 1), m � 1, with the subprincipal grada-tion. They are even irreducible transitive Z-graded Lie superalgebrasof depth 1.Remark 4.1 The associated graded to the primitive Lie superalgebra(W (m;n); J iW (m;n)) considered in Example 1.2 isW (m;n) withZ-gradationof type (1; : : : ; 1j1; : : : ; 1; 0; : : : ; 0) with n� i zeros.Example 4.2 (special superalgebras of vector �elds) Denote by S 0(m;n) thesubalgebra of W (m;n) which consists of operators D of the form (4.1) withzero divergence de�ned by:divD =Xi @Pi@xi +Xj (�1)p(Qj)@Qj@�j ;28



and let S(m;n) = [S 0(m;n); S 0(m;n)]. Then S(m;n) coincides with S 0(m;n)if m > 1 or m = 0, n � 3, and then it is simple. One has:S 0(1; n) = S(1; n) + C �1 : : : �n @@x1 ;and S(1; n) is simple i� n � 2.All theZ-gradations ofW (m;n) de�ned in Example 4.1 induceZ-gradationsof S(m;n) and S 0(m;n). The principal and subprincipal gradations of theseLie superalgebras are de�ned as those induced by principal and subprincipalgradations of W (m;n).We have the following two cases of evenZ-graded Lie superalgebras, bothof depth 1:(a) S(m;n) and S 0(1; n) with the principal gradation. They are irreducibletransitive Z-graded Lie superalgebras, except for S(1; 1) which is notirreducible.(b) S(m; 1) with the subprincipal gradation. They are transitive irreducibleZ-graded Lie superalgebras i� m � 2 (for m = 1 transitivity fails).Example 4.3 (Hamiltonian superalgebras) Letm = 2s be even and considerthe following even Hamiltonian di�erential form:hm;n = 2 sXi=1 dxi ^ dxs+i + nXj=1 d�j d�n�j+1 :Denote by H 0(m;n) the subalgebra of W (m;n) consisting of operators thatannihilate hm;n, and let H(m;n) = [H 0(m;n);H 0(m;n)]. The Lie superalge-bra H 0(m;n) consists of operators of the form:Hf = sXi=1 � @f@xi @@xs+i � @f@xs+i @@xi�� (�1)p(f) nXj=1 � @f@�j @@�n�j+1 + @f@�n�j+1 @@�j� ;where f 2 �(m;n). One has: H(m;n) coincides with H 0(m;n) if m � 2, andthen it is simple. Furthermore:H 0(0; n) = H(0; n) + CH�1 :::�n ;and H(0; n) is simple i� n � 5. 29



The gradation of type (a1; : : : j b1; : : : ) of W (m;n) induces a gradationon H 0(m;n) (and H(m;n)) i� the di�erential form hm;n is homogeneous inthis gradation [K5] (if we put deg dxi = ai and deg d�j = bj). In particular,the principal gradation of W (m;n) and the gradation of type (1; : : : ; 1j 2; 0)of W (m; 2) induce gradations on the Hamiltonian superalgebras, called theprincipal and subprincipal gradations respectively of these superalgebras.Again we have two cases of even transitive irreducibleZ-graded Lie superal-gebras:(a) H 0(0; n) ; n � 3 and H(m;n) ; m � 2, with principal gradation, whichhave depth 1,(b) H(m; 2) ; m � 2, with subprincipal gradation, which have depth 2(dimg�2 = (0; 1)).Example 4.4 (contact superalgebras) Let m = 2s+ 1 be odd and considerthe following even contact di�erential form:km;n = dxm + sXi=1 (xi dxs+i � xs+i dxi) + nXj=1 �j d�n�j+1 :Let K(m;n) = fD 2 W (m;n)jDkm;n = fkm;n for some f 2 �(m;n)g. TheLie superalgebra K(m;n) is always simple. Since K(1; 2) is isomorphic toW (1; 1), we shall always assume when talking about K(m;n) that (m;n) 6=(1; 2).As before, a Z-gradation of W (m;n) induces one on K(m;n) if the dif-ferential form km;n is homogeneous. In particular, the Z-gradation of type(1; : : : ; 1; 2j 1; : : : ; 1) (resp. (1; : : : ; 1; 2j2; 0)) of W (m;n) (resp. W (m; 2))induces aZ-gradation of K(m;n) (resp. K(m; 2)), called the principal (resp.subprincipal) gradation of these Lie superalgebras. Again, we have two casesof even transitive irreducibleZ-graded Lie superalgebras:(a) K(m;n) with principal gradation, which have depth 2 (dimg�2 =(1; 0)).(b) K(m; 2) with subprincipal gradation, which have depth 2 (dimg�2 =(1; 1)). 30



Example 4.5 Let P = �jPj be one of the following Lie algebras: W (m; 0),S(m; 0),H(m; 0) orK(m; 0) with the principal gradation. As in Example 3.4,consider the Lie superalgebra P [�] with the gradation, called principal, de-�ned by letting deg � = 0. As in Example 3.4, consider the semi-direct sumeP [�] = P [�] + g`(1; 1) with deg g`(1; 1) = 0. Let a be a subalgebra of g`(1; 1)with a non-zero projection on C dd� . Then P [�] + a is an even transitive irre-ducible Z-graded Lie superalgebra.Example 4.6 (odd Hamiltonian superalgebras) Consider the following oddHamiltonian di�erential form:hon = nXi=1 dxi d�i :Denote by HO(n; n) the subalgebra of W (n; n) consisting of operators thatannihilate hon. This Lie superalgebra consists of operators of the form:HOf = nXi=1 � @f@xi @@�i + (�1)p(f) @f@�i @@xi� ; f 2 �(m;n) :It is simple i� n � 2. The principal gradation of W (m;n) induces a Z-gradation, called again principal, of HO(m;n). This is an even irreducibletransitive Z-graded Lie superalgebra of depth 1 if n � 2 (for n = 1 it is notirreducible).We shall need the following explicit formula:[HOf ;HOg] = HOff;ggho ;whereff; ggho = nXi=1 � @f@xi @g@�i + (�1)p(f) @f@�i @g@xi� :Note that HO(2; 2) with gradation of type (1; 1j 0; 0) is isomorphic toS(2; 1) with the principal gradation (sinceW (0; 2) ' s`(2; 1)). Therefore, weshall always consider HO(n; n) with n � 3.Example 4.7 (special odd Hamiltonian superalgebras). Denote bySHO0(n; n) the subalgebra of divergence zero operators of HO(n; n) andlet SHO(n; n) denote its derived subalgebra. Then one has:SHO0(n; n) = SHO(n; n) + CHO�1 :::�n :31



The Lie superalgebra SHO(n; n) is simple i� n � 3. The principal gradationis de�ned as in Example 4.6. The Z-graded Lie superalgebras SHO0(n; n)with n � 2 and SHO(n; n) with n � 3 are even irreducible transitive ofdepth 1 (SHO(n; n) for n = 1; 2 and SHO0(1; 1) are not irreducible.)Example 4.8 (odd contact superalgebras). Consider the following odd con-tact di�erential form:kon = d�n+1 + nXi=1 (xi d�i + �i dxi) :Let KO(n; n + 1) = fD 2 W (n; n+ 1)jD(kon) = f(kon) for some f 2�(n; n+ 1)g. This Lie superalgebra is simple for all n � 1. Here we havetwo cases of even transitive irreducibleZ-graded Lie superalgebras:(a) The Z-gradation of W (n; n + 1) of type (1; : : : ; 1j1; : : : ; 1; 2) inducesa Z-gradation, called principal, of KO(n; n + 1). This is an even irre-ducible transitiveZ-graded Lie superalgebra of depth 2 (and dimg�2 =(0; 1)), provided that n � 2 (for n = 1 it is not irreducible).(b) The gradation of type (1; : : : ; 1j 0; : : : ; 0; 1) of W (n; n + 1) induces aZ-gradation of KO(n; n + 1), called its subprincipal gradation. TheseZ-graded superalgebras are transitive irreducible of depth 1 for n � 2,but only KO(2; 3) with subprincipal gradation is even.In the description of the next example we shall use that KO(n; n + 1)consists of operators of the form (f 2 �(n; n+ 1)):KOf = HOf + (E(f)� 2f) @@�n+1 + (�1)p(f) @f@�n+1E ;where E = nXi=1 (xi @@xi + �i @@�i ) :One has: [KOf ;KOg] = KOff;ggko, whereff; ggko = ff; ggho + (E � 2)f @g@�n+1 + (�1)p(f) @f@�n+1 (E � 2)g :32



Remark 4.2 Let � =Pni=1 @2@xi@�i be the odd Laplacian. ThendivHOf = 2(�1)p(f)�(f) ;divKOf = 2(�1)p(f)(�(f) + (E � 1) @f@�n+1 ) :Remark 4.3 The Lie superalgebras W (1; 1), K(1; 2) and KO(1; 2) are iso-morphic. However, the principal gradation of W (1; 1) only is irreducible.Example 4.9 (special odd contact superalgebras) Given � 2 C , introducethe deformed divergence (cf. Remark 4.2):div �f = 2(�1)p(f)(�(f) + (E � n�) @f@�n+1 ) ;and de�ne the following subalgebra of KO(n; n + 1) (cf. [Ko]):SKO0(n; n+ 1;�) = fKOf jdiv �f = 0g :As before, we denote by SKO(n; n+1;�) its derived algebra. It is simple i�n � 2. One has: SKO0(n; n+ 1;�) = SKO(n; n+ 1;�) for all n � 2 and all� with the following two exceptions (cf. [Ko]):SKO0(n; n+ 1; 1) = SKO(n; n + 1; 1) + CKO�1 �2:::�n+1 ;SKO0(n; n+ 1; n� 2n ) = SKO(n; n + 1; n� 2n ) + CKO�1 :::�n :Again we have two cases of even transitive irreducible Lie superalgebras:(a) The principal gradation of KO(n; n + 1) induces a Z-gradation, calledprincipal, of all these Lie superalgebras. All of them are even irreducibletransitiveZ-graded Lie superalgebras of depth 2 (and dimg�2 = (0; 1)),provided that n � 2 (for n = 1 irreducibility fails).(b) The subprincipal gradation of KO(n; n + 1) induces a gradation ofSKO0(n; n+1;�) and SKO(n; n+1;�), called their subprincipal gra-dation. These Z-graded Lie superalgebras are transitive irreducible ofdepth 1 for n � 2, but they are even only for n = 2 (and arbitrary �).Example 4.10 (exceptional Lie superalgebra E(4; 4) [S2]) There exists asimple Z-graded Lie superalgebra of depth 1: E(4; 4) = �j��1gj such thatthe g0-module g�1 gives rise to the linear Lie superalgebra p̂(4). It is an evenirreducible transitive Z-graded Lie superalgebra.33



Example 4.11 (exceptional Lie superalgebra E(2; 2) [CK2]). There existsa simpleZ-graded Lie superalgebra of depth 1: E(2; 2) = �j��1gj, such thatthe g0-module g�1 gives rise to the linear Lie superalgebra spin�4. One has:Der E(2; 2) = E(2; 2) + s`2 ;where deg s`2 = 0 and the (g0 + s`2)-module g�1 gives rise to the linearLie superalgebra gspin4. Thus, for any subalgebra a of s`2 we get an evenirreducible transitive Z-graded Lie superalgebra E(2; 2) + a.The gradations in Examples 4.10 and 4.11 are called principal.The following two propositions are used in the sequel. Their proofs arestraightforward (though a bit messy) and may be found in [CK2]. Here andfurther we use the following notations. Let g = �j��dgj be a Z-graded Liesuperalgebra. Then C 0 + g denotes the semidirect sum of C z with g, wherez is a derivation of g such that zjgj = jI and deg z = 0. If g is transitive,then C 0+g is transitive i� g0 contains no non-zero elements acting as scalarson g�1. Also, if g0 = p(m) or cp(m), one can form the semidirect sum ofCF with g; this will be denoted by C 00 + g. Furthermore, if d = 1 and g�1has an even (resp. odd) skew-supersymmetric bilinear form ( ; ) whichis invariant with respect to [g0; g0], then g has a central extension, denotedby C �2 + g, constructed by adding to g the even (resp. odd) central 1-dimensional subspace C c in degree �2 and de�ning a new bracket on g�1by: [x; y]b= [x; y] + (x; y)c; x; y 2 g�1 :Proposition 4.1 All even transitive irreducible Z-graded Lie superalgebrasg = �j��1gj of depth 1 with the g0-module g�1 giving rise to the indicatedbelow subalgebra of g`(m;n), where m � 1, are as follows (with restrictionson m and n given in Examples 4.1-4.9):I. Superalgebras with the principal gradation:(a) g`(m;n) : W (m;n); C 0 + S(m;n); C 0 + S 0(m;n),(b) s`(m;n) : S(m;n); S 0(m;n),(c) spo(m;n) : H(m;n),(d) cspo(m;n) : C 0 +H(m;n),34



(e) s`m[�] + a : W (m; 0)[�] + a; S(m; 0)[�] + a,(f) spm[�] + a : H(m; 0)[�] + a,(g) ep(m) : HO(m;m), C 00 + SHO0(m;m), C 00 + SHO0(m;m),(h) cep(m) : C 0 + HO(m;m), C 0 + C 00 + SHO(m;m),C 0 + C 00 + SHO0(m;m),(i) p(m) : SHO(m;m) ; SHO0(m;m),(j) cp(m) : C 0 + SHO(m;m); C 0 + SHO0(m;m),(k) p̂(4) : E(4; 4),(l) spin�4+a : E(2; 2) + a.II. Superalgebras with the subprincipal gradation:(a) es`m[�] : W (m; 1), S(m; 1) + C 0 + C �,(b) s`m[�] + C dd� + C ((m � 1)� dd� + I) : S(m; 1),(c) s`m[�] + C � dd� + C I : C 0 + S(m; 1),(d) w(0; 2;�) : SKO(2; 3; 1 � 1�),(e) cw(0; 2;�) : C 0 + SKO(2; 3; 1 � 1�),(f) ew(0; 2) : KO(2; 3),(g) es�(0; 2) : SKO(2; 3; 1),(h) es(0; 2) : SKO0(2; 3; 1).III. (a) eq(n) or q(n) : none.Proposition 4.2 All even transitive irreducible Z-graded Lie superalgebrasg = �j��dgj of depth d � 2 with the g0-module g�1 giving rise to the indicatedbelow subalgebra of g`(m;n), where m � 1, have depth 2 and are as follows:I. Superalgebras with the principal gradation and 1-dimensional even g�2:(a) spo(m;n) : C �2 +H(m;n),(b) cspo(m;n) : C �2 + C 0 +H(m;n); K(m;n).II. Superalgebras with the principal gradation and 1-dimensional odd g�2:35



(a) ep(m) : C �2+HO(m;m), C �2+C 00+SHO(m;m), C �2+C 00+SHO0(m;m),(b) cep(m) : KO(m;m+1); C �2+C 0+HO(m;m), C �2+C 0+C 00+SHO(m;m), C �2+C 0+C 00+SHO0(m;m), C 0+SKO(m;m+1;�),(c) p(m) : C �2 + SHO(m;m); C �2 + SHO0(m;m),(d) cp(m) : C �2+C 0+SHO(m;m+1); C �2+C 0+SHO0(m;m),(e) ep(m;�) : SKO(m;m+ 1;�); SKO0(m;m+ 1;�),(f) spm[�] + C � dd� + C dd� : ((H(m; 0) + C �2)[�] + C � dd� + C dd� )=C �2 .III. Superalgebras with the subprincipal gradation and 1-dimensional oddg�2:(a) spm[�] + C � dd� + C dd� : H(m; 2).IV. Superalgebras with the principal gradation and dimg�2 = (1; 1):(a) cspm[�] + a : K(m+ 1; 0)[�] + a, (C �2 +H(m; 0))[�] + a witha non-trivial projection on C �.V. Superalgebras with the subprincipal gradation and dimg�2 = (1; 1):(a) espm[�] : K(m+ 1; 2),(b) cspm[�] + a : C �2 +H(m; 2) + a.Now we can state and prove the main theorem of this section.Theorem 4.1 Let g = �j��dgj be a Z-graded even transitive irreducible Liesuperalgebra. Suppose that the gradation of g is not consistent (i.e., thatg�1 contains a non-zero even element). Then g is one of the Z-graded Liesuperalgebras listed below.I. The following Lie superalgebras with the principal Z-gradation:(a) W (m;n) with m � 1,(b) S(m;n) with m � 2; S(1; n) and S 0(1; n) with n � 2,(c) H(m;n) with m � 2 even,36



(d) K(m;n) with m � 3 odd,(e) SHO(m;m) with m � 3, and SHO0(m;m) with m � 2,(f) HO(m;m) with m � 2,(g) SKO(m;m+ 1;�) and SKO0(m;m+ 1;�) for m � 2,(h) KO(m;m+ 1) for m � 2,(i) E(4; 4),(j) E(2; 2) + a, where a is a subalgebra of s`2,(k) P [�] + a, where P is one of the Lie algebras W (m; 0), S(m; 0), orH(m; 0) and a � g`(1; 1) has a non-trivial projection on C @@� ,(l) (C �2 +H(m; 0))[�] + a and K(m; 0)[�] + a, where a is as in (k),(m) ((H(m; 0) + C �2)[�] + C � dd� + C dd� )=C �2.II. The following Lie superalgebras with the subprincipal gradation:(a) W (m; 1) with m � 1,(b) S(m; 1) and S(m; 1) + C 0 + C � with m � 2,(c) H(m; 2) with m � 2 even,(d) K(m; 2) with m � 3 odd,(e) KO(2; 3),(f) SKO(2; 3;�) and SKO0(2; 3;�).III. (a) C 00 + g, where g is of type Ie,(b) C �2 + g, where g is of types Ie, If , IIIa,(c) C �2 +H(m; 0)[�] + a, where a = C dd� or a = C dd� + C I.IV. C 0 +g, where g is one of the above Z-graded superalgebras for which g0has a trivial center.Proof By Proposition 2.1, the g0-module g�1 gives rise to a strongly tran-sitive subalgebra of g`(m;n), where (m;n) is the dimension of g�1, m � 1.All such subalgebras are listed by Theorem 3.1.Let b = �j��2bj be the maximal ideal of g contained in g� and letg0 = g=b = �jg0j. Recall that, by Lemma 2.4, b is odd, hence it is abelianand [(g0)1 ; b] = 0. 37



Due to Lemma 2.6, g0�2 = [a; g�1], where a is a non-zero even element ofg�1. Hence dimg0�2 < dimg�1. But in all cases listed in Theorem 3.1 exceptfor (e), (f), (k) and (l), g�1 is the irreducible non 1-dimensional module overg0 of minimal dimension (with the non-zero action of the center of g0 incase (p)); in cases (e) and (f) the only other possibility for an irreducible g0-module of smaller dimension is the (1; 1)-dimensional module which is trivialon p[�]. In cases (k) and (l), the condition g0�2 = [a; g�1] for an even weightvector rules out the possibility dimg0�2 > 1 by looking at s`2-weights.Thus, all irreducible subquotients of the g0-module g0�2 are either (1; 0)-dimensional, or (0; 1)-dimensional, or (1; 1)-dimensional. Since the g0-moduleg0�2 is a quotient of �2g�1, it is easy to see by inspection of the list given byTheorem 3.1 that one has four possibilities:1) dimg0�2 = 0,2) dimg0�2 = (1; 0) and the [g0; g0]-module g�1 has an even invariant skew-supersymmetric bilinear form,3) dimg0�2 = (0; 1) and the [g0; g0]-module g�1 has an odd such form,4) dimg0�2 = (1; 1) and the [g0; g0]-module g�1 has both even and oddsuch forms.In Case 1) depth g0 = 1, then either 10) depth g = 1 or 100) dimg�2 = (0; 1)which is possible if the [g0; g0]-module g�1 has an odd skew-supersymmetricinvariant bilinear form. In Case 10) we use Proposition 4.1 which shows thatonly the following cases of Theorem 4.1 occur: I (a)-(c), (e), (f), (i)-(k),II (a)-(c), (e), (f), III (a) and IV. In Case 100) g�2 is central, hence g�3 = 0and depth g = 2; by Proposition 4.2, we get only Cases III (b) and (c) ofTheorem 4.1.In Cases 2)-4) the depth of g0 = 2 since otherwise, as above, g0�3 = [g0�2; a]for some even a 2 g�1, hence dimg0�3 � dimg0�2. But taking bracket of g�1with an element from g0�2 (resp. g�2) establishes a homomorphism of [g0; g0]-modules g�1 ! g0�3 (resp. g�3). Hence g0�3 = 0 and g�3 = 0 (since b3 is odd).Thus, in Cases 2)-4) the depth of g is 2. Since the g0-module g�2 is a quotientof �2g�1, we see, as above, that the only possibilities for g�2 are: 20)dimg�2 = (1; 0) and 200) dimg�2 = (1; 1) in Case 2); and 3) dimg�2 = (0; 1)(resp. 4) dimg�2 = (1; 1)) in Cases 3) (resp. 4)). Using Proposition 4.2, wesee that in Case 20) we have only Case I (d) of Theorem 4.1, in Case 200) we38



have only Case III (b) of Theorem 4.1, in Case 3) we have only Cases I (g),(h), (m) and IV of Theorem 4.1, and in Case 4) we have only cases I(l) andII(d) of Theorem 4.1.5 Classi�cation of even transitive irreducible gradedLie superalgebras: the case of consistent gradationA Z-graded Lie superalgebra g = �j2Zgj is called consistent if g0 = �j2Zg2jand g1 = �j2Zg2j+1. Note that a consistent transitive Z-graded Lie su-peralgebra of depth 1 is �nite-dimensional (since it can be embedded inW (0;dimg�1)). A consistent Z-graded Lie superalgebra of depth � 2 isin�nite-dimensional (since otherwise all even elements are exponentiable).We shall treat these cases separately in Theorems 5.1 and 5.3.In the statement of the following theorem and further on we shall usethe following notation: s`n, spn and son denote the standard modules ofthese Lie algebras, s`�n denotes the contragredient module, spin7 denotesthe 8-dimensional spinor representation of so7, 1 stands for the trivial 1-dimensional representation. The sign � stands for the outer tensor productof g1-module V1 and g2-module V2, i.e., the g1 � g2-module V1 
 V2, and 
stands for the usual tensor product of g-modules. As usual, SkV and �kVdenote the k-th symmetric and exterior powers of the g-module V (in the\super" sense). The 1-dimensional module over C for which 1 7! a is denotedby C (a). Similar notation is used for Lie superalgebras.Theorem 5.1 ([K4], Theorem 4) The following is a complete list of transi-tive irreducible consistent Z-graded Lie superalgebras g = �kj=�1gj of depth 1and k � 1:I. The g0-modules g1 and g�1 are contragredient and k = 1:(a) s`(m;n) ; m 6= n ; m; n � 1 (g0-module g�1 = g`m � s`n),(b) s`(n; n) ; n � 2 (g0-module g�1 = s`n � s`n),(c) spo(m; 2) ; m even � 2 (g0-module g�1 = cspm),(d) C 0 + g, where g is of type I(b).II. The g0-modules g1 and g�1 are not contragredient and k = 1:39



(a) p(n) ; n � 3 (g0-module g�1 (resp. g�1) = S2s`n (resp. �2s`�n)),(b) p[�] + C dd� , where p is a simple Lie algebra (p0-module p�1 = ad pand p1 = 1),(c) C 0 + g, where g is of types II (a), (b).III. k > 1:(a) W (0; n) ; n � 3, with principal gradation (g0-module g�1 = g`n),(b) S(0; n) ; n � 4, with principal gradation (g0-module g�1 = s`n),(c) H(0; n) ; n � 5, with principal gradation (g0-module g�1 = son),(d) H 0(0; n) ; n � 4, with principal gradation (g0-module g�1 = son),(e) C 0 + g, where g is of types III (b)-(d).A transitiveZ-graded Lie superalgebra is called bitransitive if, in additionto properties (G0), (G1), (G2), it satis�es the following two properties:(G8) if a 2 gj with j < �1 and [a; g1] = 0, then a = 0,(G9) gj = gj1 for each j � 1.Recall (see [K1], [K4]) that for any transitive local Lie superalgebrag�1 + g0 + g1, there exists a unique bitransitive Z-graded Lie superalgebrag = �j2Zgj .Theorem 5.2 The following is a complete list of bitransitive irreducible con-sistent Z-graded Lie superalgebras g = �j��dgj of depth d � 2 (d = 2 unlessotherwise stated), such that the [g0; g0]-modules g1 and g�1 are contragredient(in parenthesis the [g0; g0]-modules gj for �1 � j � �d are described; theg0-modules gj and g�j are contragredient):(a) spo(2m;n), m � 1, n � 1, n 6= 2 (g�1 = s`m�son, g�2 = S2s`m�1),(b) spo(2m; 2n), m � 1, n � 2 (g�1 = s`n � sp2m, g�2 = �2s`n � 1),(c) D(2; 1;�) (g�1 = so4 ; g�2 = 1),(d) F (4) (g�1 = spin7 ; g�2 = 1),(e) F (4) (g�1 = s`2 � sp4 ; g�2 = 1 � so5),40



(f) F (4) (g�1 = s`3 � s`2 ; g�2 = s`�3 � 1; g�3 = 1� s`2 ; g�4 = s`3 � 1),(g) G(3) (g�1 = 7-dimensional irreducible G2-module, g�2 = 1).Proof The Lie algebra g0 is a direct sum of a semisimple Lie algebra [g0; g0]and at most 1-dimensional center C c. Let ei; fi; hi, i = 1; : : : ; r, be theChevalley generators of [g0; g0], let e0 (resp. f0) be the lowest (resp. highest)weight vector of the [g0; g0]-module g1 (resp. g�1), and let h0 = [e0; f0]. Thenthe elements ei; fi; hi, i = 0; 1; : : : ; r, generate a �nite-dimensional contra-gredient Lie superalgebra g0 [K4] such that g = g0 + C c. The contragredientLie superalgebra g0 satis�es the conditions of Theorem 3 of [K4] and also hasa unique odd simple root. Thus, we must select among all diagrams givenby Proposition 2.5.6 of [K4] those with a unique non-white node. A com-plete list of these diagrams, along with the coe�cients of the highest root,is as follows (unfortunately some of the diagrams for F (4) and G(3) wereinadvertently omitted in [K4]); here m;n � 1 and m is even for spo(m;n):s`(m;n) 1 1 1 1 1 1
�
�: : :�
�N�
�: : :�
spo(m; 2);m > 2 1 2 2 2N�
�: : :�
(=
spo(m; 1) 2 2 2 2
�
�: : :�
=)�spo(m;n) ; n > 1 odd 2 2 2 2 2 2 2
�
�: : :�
�N�
�: : :�
=)
spo(m;n) ; n even 2 2 2 2 2 2
�
�: : :�
�N�
�: : :�
�
 1j
1spo(2; n); n even 1 2 2 2 2 1
�
�: : :�
�
 �N�!
spo(m;n);m > 2; n even 1 2 2 2 2 2 2
�
�: : :�
�N�
�: : :�
(=
D(2; 1;�) 1 2 1
 �N�!
 41



F (4) 2 3 2 1N�
(
�
2 4 3 2
 N!
�
2 3 2 1
)
�N�
G(3) 2 4 2N�
W
Here the diagram 
 N!
 corresponds to the matrix 0@ 2 �1 0� 0 �10 �1 2 1A,where � is arbitrary in the case D(2; 1;�); � = �1 in the case spo(2; n) and� = 3=2 in the case F (4).The depth of g is then equal to the label of the non-white node, the Dynkindiagram of [g0; g0] is obtained by removing the non-white node, and non-zerolabels of the highest weight of the [g0; g0]-module g�1 equal 1 for the nodesconnected to the non-white node. The [g0; g0]-modules gj for �d � j � �2are computed directly.Corollary 5.1 Let g = �j��dgj be an even transitive consistent Z-gradedLie superalgebra such that the g0-module g1 contains a submodule g01 con-tragredient to g�1, and denote by g0 = �jg0j the bitransitive Z-graded Liesuperalgebra with local part g�1 + g0 + g01. Then the g0-modules g0j and g0�jare contragredient, dimg0 <1 and there are the following possibilities for g0and the [g0; g0]-modules g�1 and g�2:I. g0 = g0�1 + g0 + g01:(a) g0 = s`(m;n) ; m+ n � 0 ; m+ n > 0; g�1 = s`m � s`n,(b) g0 = spo(m; 2), m even � 2, g�1 = spm.II. g0 = �2j=�2g0j and the center of g0 is 1-dimensional:(a) spo(2; n), n � 1, n 6= 2, g�1 = son, g�2 = 1,(b) spo(2m; 4), m � 2, g�1 = s`2 � sp2m, g�2 = 1,42



(c) spo(2m; 6), m � 1, g�1 = s`3 � sp2m, g�2 = s`�3 � 1,(d) D(2; 1;�), g�1 = so4, g�2 = 1,(e) F (4), g�1 = spin7, g�2 = 1,(f) G(3), g�1 = 7-dimensional irreducible G2-module, g�2 = 1.Proof The local part of the Lie superalgebra g0 admits a Cartan involutionwhich induces the Cartan involution on g0 and exchanges g�1 and g01. Itinduces a Cartan involution of g0 which exchanges g0�j and g0j , hence g0�j andg0j are contragredient and dimg0 <1.In the case when depth g0 = 1 we may apply Theorem 5.1, Case I.In the case when depth g0 � 2 we use Theorem 5.2. We apply Lemma 2.6in order to eliminate some cases of Theorem 5.2. Since S2s`m is stronglytransitive only for m = 1, case (a) is possible only if m = 1, which givescase II(a) of the corollary. Similarly, since �2s`n is strongly transitive only forn = 2 and 3, we get cases II(b), (c) of the corollary. Case (e) of Theorem 5.2is ruled out since so5 is not a strongly transitive module. Finally, case (f) ofTheorem 5.2 is ruled out since g0�4 = [a; g0�2] for some non-zero a 2 g0�2 (byLemma 2.6), hence dimg0�4 < dimg0�2.Before stating the main theorem of this section (Theorem 5.3) we intro-duce some more examples. The proofs of the statements in these examplesmay be found in [CK2].Example 5.1 The contact superalgebra K(1; n) with the principalZ-grada-tion (see Example 4.4) is an even transitive irreducible consistent Lie super-algebra of depth 2 for n = 1 and n � 3 (for n = 2 irreducibility fails).Example 5.2 (exceptional Lie superalgebra E(1; 6) [CK1], [S2]) Considerthe Lie superalgebra K(1; 6) = �j��2gj with the principal gradation. The[g0; g0]-module g�1 gives rise to the linear Lie algebra so6 ' �2s`4 and the[g0; g0]-module g1 is isomorphic to g��1 � g+1 � g�1 , where g+1 and g�1 are[g0; g0]-submodules of g1 isomorphic to S2s`4 and S2s`�4 respectively. Denoteby E(1; 6) the graded subalgebra ofK(1; 6) generated by g�1+g0+(g��1+g+1 ).This is a simple even transitive irreducible consistent Z-graded Lie superal-gebra of depth 2. (Note that taking g�1 in place of g+1 gives an isomorphicsuperalgebra. Also, taking g+1 + g�1 gives C �2 + H(0; n), taking g+1 or g�1gives bp(4) and taking g��1 gives spo(2; 6), all of which are �nite-dimensionalgraded Lie superalgebras of depth � 2, hence not even.)43



Example 5.3 (exceptional Lie superalgebra E(5; 10)) There exists a uniquebitransitive Z-graded Lie superalgebra, denoted by E(5; 10), such that theg0-module g�1 (resp. g1) gives rise to the linear Lie algebra �2s`5 (resp.highest component of s`5 
 �2s`5). It has depth 2 with the g0-module g�2being s`�5 and it is simple. Its explicit construction is very easy (see [CK2]for details). Let E(5; 10)0 be the Lie algebra S(5; 0) of divergence 0 polyno-mial vector �elds on C 5, i.e., polynomial vector �elds annihilating the volumeform v = dx1 ^ : : : ^ dx5. Let E(5; 10)1 be the space of closed polynomialdi�erential 2-forms on C 5 . The bracket of E(5; 10)0 with E(5; 10)�1 is de�nedby the usual action of vector �elds on di�erential forms. In order to de�nebracket of two elements from E(5; 10)1, note that vector �elds may be iden-ti�ed with di�erential 4-forms by contracting a vector �eld with the volumeform v. Hence we may de�ne [w1; w2] = w1 ^ w2 for w1; w2 2 E(5; 10)1.The Z-gradation of E(5; 10) is de�ned by letting deg xi = �deg @=@xi = 2,deg dxi = �12.Example 5.4 (exceptional Lie superalgebras E(3; 6) and E(3; 8)) There ex-ist two bitransitive Z-graded Lie superalgebras, denoted by E(3; 6) andE(3; 8), such that the g0-module g�1 (resp. g1) is isomorphic to s`3 � s`2 �C (�1) (resp. (S2s`3�s`2�C (1))+s`�3�s`2�C (1)). The graded superalgebraE(3; 6) has depth 2 with the g0-module g�2 isomorphic to s`3 � 1 � C (�2).The graded superalgebra E(3; 8) has depth 3 with the g0-module g�2 isomor-phic to s`3�1�C (�2) and the g0-module g�3 isomorphic to 1�s`2�C (�3).Both superalgebras are simple. Their explicit construction is slightly morecomplicated than that of E(5; 10) and may be found in [CK2].Remark 5.1 [CK2] The Lie superalgebras E(3; 6), E(3; 8) and E(5; 10) havea Z-gradation of depth 1, 2 and 2 respectively (with dimg�2 = (1; 0) in thesecond and third cases) such that g0 is isomorphic to W (0; 3), W (0; 3) + Cand S(0; 4)+C respectively, and the g0-module g�1 is the space �(3)=C withreversed parity, the space of half-densities in 3 odd indeterminates and thespace �(4)=(C + C �1�2�3�4) with reversed parity respectively. The existenceof such Z-graded Lie superalgebras was announced in [S1], and a proof wasgiven in [S2], but the proof in the second case is incorrect.Example 5.5 (exceptional Lie superalgebras E 0(3; 6) and E 0(3; 8)) We shalldenote by E 0(3; 6) and E 0(3; 8) the subalgebras of E(3; 6) and E(3; 8) re-spectively generated by the subspaces g�1 + [g0; g0] + g01, where g0 is the44



[g0; g0]-submodule of g1 isomorphic to S2s`3 � s`2. It is easy to see thatE 0(3; 6) is isomorphic to the semidirect sum of s`2 which is put in degree0 and SHO(3; 3) with the gradation of type (2; 2; 2 j 3; 3; 3), and E 0(3; 8) isisomorphic to the semidirect sum of s`2 (put in degree 0) and the centralextension of SHO(3; 3) (with this gradation) by odd 2-dimensional centerput in degree �3.Example 5.6 (s`2+S(1; 2) [P]) The Lie algebra s`2 acts by outer derivationson the Lie superalgebra S(1; 2) preserving the gradation of type (2j1; 1).We denote the resulting Z-graded semi-direct sum by s`2 + S(1; 2). It isisomorphic to DerS(1; 2).Proposition 5.1 ([CK2]) All even transitive irreducible consistent Z-gradedLie superalgebras g = �j��dgj with the non-zero g0-modules gj for �1 � j ��d indicated below are as follows:(a) g�1 = son � C (�1) ; n � 1 ; n 6= 2 ; g�2 = C (�2) : K(1; n), s`2 +S(1; 2) and E(1; 6),(b) g�1 = �2s`5 ; g�2 = s`�5 : E(5; 10),(c) g�1 = �2s`5 � C (�1) ; g�2 = s`�5 � C (�2) : C 0 + E(5; 10),(d) g�1 = s`3 � s`2 � C (�1) ; g�2 = s`�3 � 1 � C (�2) : E(3; 6) and C 0 +E 0(3; 6),(e) g�1 = s`3�s`2�C (�1) ; g�2 = s`�3�1�C (�2) ; g�3 = 1�s`2�C (�3) :E(3; 8) and C 0 + E 0(3; 8),(f) g�1 = s`3 � s`2 ; g�2 = s`�3 � 1 : E 0(3; 6),(g) g�1 = s`3 � s`2 ; g�2 = s`�3 � 1 ; g�3 = 1� s`2 : E 0(3; 8).Now we can state the main theorem of this section.Theorem 5.3 An even transitive irreducible consistent Z-graded Lie super-algebra g = �j��dgj of depth d � 2 is isomorphic to one of the followingZ-graded Lie superalgebras:(a) K(1; n) ; n � 1 ; n 6= 2, 45



(b) E(1; 6) and s`2 + S(1; 2),(c) E(3; 6),(d) E(3; 8),(e) E(5; 10),(f) E 0(3; 6) and E 0(3; 8),(g) C 0 + g, where g is of type (e) or (f).Consider the decomposition of the g0-module g1 in a direct sum of irre-ducible submodules: g1 = �ts=1g[s]1 : (5.1)Let F be a highest weight vector of the g0-module g�1 and EMs be a lowestweight vector of the g0-module g[s]1 . Lemmas that follow put various restric-tions on the decomposition (5.1) and the weights � and Ms.Lemma 5.1 At most one of the modules g[s]1 is contragredient to g�1, unlessthe g0-module g�1 is isomorphic to cso4.Proof Suppose that there are two such modules, say g[1]1 and g[2]1 . Let E 0��and E 00�� be their lowest weight vectors, and let h0 = [E 0�� ; F�] ; h00 =[E 00�� ; F�]. If h0 = ch00 for some c 2 C , then [E 0�� � cE 00�� ; F�] = 0,hence [E 0�� � cE 00�� ; g�1] = 0, which contradicts transitivity of g. Henceg�1 + [g�1; g[i]1 ] + g[i]1 , i = 1; 2, must be local parts of non-isomorphic bi-transitive Z-graded Lie superalgebras, which we shall denote by p0 and p00.Corollary 5.1 shows that this may happen only in two cases:(a) (p0; p00) = (D(2; 1;�) ; D(2; 1;�)) ; �; � 2 C ,(b) (p0; p00) = (s`(3; 2) ; spo(2; 6)).(In case (a), D(2; 1;�) may degenerate in C 0 + s`(2; 2).) Thus, we have torule out case (b).Recall that the diagram of spo(2; 6) at hand is 
�
 
!
 with thehighest root � = �1 + 2�2 + 2�3 + �4, and � � �j is a root i� j = 2(�j denote simple roots). The lowest root vector is e�� = [f1f2f3f4f3f2]. Here46



ei; fi; hi, i = 1; 2; 4, are Chevalley generators of p000 and f3 = F� ; e3 = E 00��;we let e03 = E 0��. Then [e��; e03] = 0 since � � �3 is not a root, hence[[e��; f3]; e03] = �(h0)e�� 6= 0 and [e��; f3] 6= 0. Next, [[e��; f3]; f4] 6= 0 sinceits bracket with e4 is non-zero (because ���4 is not a root and �3(h4) 6= 0).Finally, [[[e��; f3]; f4]; f3] 6= 0 since its bracket with e3 is non-zero (because� � �3 is not a root and �4(h3) 6= 0). Thus, g�4 6= 0. But this contradictsthe following remark (which will be used again later).Remark 5.2 If, under the assumptions of Theorem 5.3, the [g0; g0]-moduleg�1 is isomorphic to s`3 � s`2, and g�2 6= 0, then only the following possi-bilities for the [g0; g0]-modules gj , j � �2, may occur: (a) g�2 = s`�3 � 1,g�3 = 0, (b) g�2 = s`�3 � 1, g�3 = 1 � s`2, g�4 = 0. As above, proof isimmediate by Lemma 2.6.Now let M = Ms be the lowest weight of a g0-module g[s]1 , which is notcontragredient to g�1, i.e., � +M 6= 0. Then we clearly have[F� ; EM ] = e�� ; � +M = �� ; (5.2)where e�� is the root vector of [g0; g0] attached to the root ��. Let g[s]0denote the simple component of [g0; g0] containing e��, let g[s]�1 and g[s]1 be theirreducible g[s]0 -submodules of g�1 and g1 containing F� and EM respectively.Let g[s] be the bitransitive Lie superalgebra with local part g[s]�1 + g[s]0 + g[s]1 .The same argument as in the beginning of the proof of Lemma 5.1 givesthe next lemma.Lemma 5.2 All the g[s]0 -modules g[s]1 for distinct s, such that � +Ms 6= 0,are inequivalent.The following lemma puts severe restrictions on possible � and �. Itfollows from [K4], Lemmas 4.1.4 and 4.1.5 and their proofs.Lemma 5.3 Let g = �kj=�dgj be a consistent Z-graded bitransitive Lie su-peralgebra such that g0 is a simple Lie algebra, g�1 are irreducible g0-modulesand d; k 2 f1; 2; : : : ;1g. Let � (resp. M) be the highest (resp. lowest)weight of the g0-module g�1 (resp. g1), and suppose that � +M = �, where� is a positive root of g0. 47



I. Provided that either d or k is �nite, one has:(a) (�; �) = 0.(b) If � is a positive root of g0 such that �+ � is a root and �� � isnot, then 2(�; �)=(�; �) = 1 and 2(�; �)=(�; �) = �1.II. Provided that d is �nite, one has:If � and 
 are positive roots of g0 such that �+ � is a root, but �� �,�� 
 and �� 
 are not, and if (�; 
) 6= 0, then 2���� 
 is a weightof the g0-module g�2.Lemma 5.4 If g[s] = �jg[s]j has depth at least 2 and � +Ms 6= 0, then theg[s]0 -module g[s]�1 is isomorphic to �2s`5, the g[s]0 -module g[2]�2 is isomorphic tos`�5 and g[s]�3 = 0. Moreover, g[s]1 is isomorphic to the highest component ofs`5 
 �2s`5.Proof We shall skip the superscript [s] when it shall cause no confusion. Ifg�2 is a trivial g0-module, then taking bracket with it establishes an isomor-phism of g0-modules g1 and g�1, and also g�1 is then a selfcontragredientmodule. This is impossible since g�1 and g1 are not contragredient. Thus,due to Lemma 2.6, the g0-module g�2 is s`n or s`�n or spn. But g�2 � S2g�1which rules out spn and s`2n (since the corresponding groups contain �I).�Thus, g0 = s`n with n � 3 odd. The non-zero labels of � break theDynkin diagram of s`n in connected components to which � restricts trivially.By Lemma 3.5 I (a) and (b), � is the sum of all simple roots of one of theseconnected components, all non-zero labels of � equal 1 and their number isat most 2, i.e., either � = !i or � = !i + !j with i < j, where !i denotefundamental weights. In the latter case, � = �i+1+ : : :+�j�1, so that taking� = �i and 
 = �j, we deduce from Lemma 5.3 II that 2!i + 2!j � �i � �jis a weight of s`n (the standard module), a contradiction.Thus, � = !i, and, up to passing to the contragredient module, we mayassume that i � n� 2 and � = �i+1 + : : :+ �n�1. Since s`n is not containedin S2s`n,one has: i � 2. We let � = �i and 
 = �1 + �2 + : : :+ �i+1. ThenLemma 5.3 II gives us that 2!i ��� 
 = !i�1�!1+!i+2 is a weight of s`n.This is possible in the following two cases:�Here and further in this section S2 and �2 mean the ordinary symmetric and exteriorsquare, i.e., we disregard the parity. 48



(a) i = n� 2, � = �n�1,(b) i = 2 , n = 5, � = �3 + �4.In case (a) � = !n�2, M = �!n�2 � �n�1 = �2!n�1, hence g[s] isisomorphic to p(n) which has depth 1. In case (b) the g0-module g�1 is �2s`5and g�2 � S2g�1 can be only s`�5. Also, M = �!2 � �3 � �4 = �!3 � !4. Itremains to show that g�3 = 0.First, g�4 = [a; g�2] for any non-zero a 2 g�2 (by Lemma 2.6), hencedimg�4 < dimg�2 and therefore, since g�4 � g�2
g�2, we see that g�4 = 0.Similarly, g�3 = [a; g�1] for any non-zero a 2 g�2, hence dimg�3 � dimg�1.Since g�3 � g�1 
 g�2 as g0-modules, and g�1 
 g�2, apart from the highestcomponents, whose dimension is greater than that of g�1, contains s`5 withmultiplicity 1 (see [OV]), the only possibility for the g0-module g�3 is s`5.Suppose that this possibility does occur. Then consider the vector F 00 =[f123f2F ; F ]. Here and further we use notation f123 = [[f1; f2]; f3], f2F =[f2; F ], etc. Using (5.2), we see that [F 00; E] 6= 0, hence F 00 is a weight vectorof g�2, and since its weight is !4, it is a highest weight vector. Next, it iseasy to see that F 000 = [f234F ; F 00] is a highest weight vector of g�3 (of weight!1). One checks directly, using (5.2), that [F 000 ; E] = 0, hence [g�3; g1] = 0.But [g�3; g�1] = g�4 = 0 as well, hence [g�3; g0] = [g�3; [g�1; g1]] = 0, acontradiction.The following corollary is immediate by Theorem 5.1 and Lemma 5.4.Corollary 5.2 If the g[s]0 -modules g[s]�1 and g[s]1 are not contragredient, thereare only the following possibilities for the g[s]0 -modules g[s]�1 and g[s]1 :(a) g[s]�1 = S2s`n, g[s]1 = �2s`n, n � 3,(b) g[s]�1 = �2s`n, g[s]1 = S2s`n, n � 3,(c) g[s]�1 = ad p, where p is a simple Lie algebra, g[s]1 = 1,(d) g[s]�1 = s`n, g[s]1 = highest component of s`n 
�2s`�n, n � 4,(e) g[s]�1 = son, g[s]1 = �3son, n � 5, n 6= 6,(f) g[s]�1 = �2s`5, g[s]�2 = s`�5, g[s]1 = highest component of s`5 
 �2s`5.49



In all cases except for (f), g[s]�2 = 0, and in case (f), g[s]�3 = 0.Lemma 5.5 Suppose that, under the assumptions of Theorem 5.3, there areat least two submodules of the g0-module g1 and one of them, say g[s]1 iscontragredient to g�1. Let g = g=b = �j��dgj , where b is the maximal idealof g. Then only the following possibilities for g[s] and the [g0; g0]-modules gj,�1 � j � �d, may occur:(a) spo(2; n), n � 1, n 6= 2, g�1 = son, g�2 = 1,(b) s`n(3; 2), g�1 = s`3 � s`2, g�2 = s`�3 � 1, g�3 = 1� s`2,(c) spo(2; 6), g�1 = s`3 � s`2, g�2 = s`�3 
 1,(d) D(2; 1 ; �), g�1 = so4, g�2 = 1.Proof Due to Lemma 5.1, either we have case (d) or, apart from the g0-submodule of g1 contragredient to g�1, which we denote by g01, there is an-other one, which is not contragredient to g�1, which we denote by g001. Letg0 and g00 denote the corresponding bitransitive Lie superalgebras. We have:[g0; g0] = [g00; g00], and g�1 and g0�1 are isomorphic modules. One of the sim-ple components of g0 must be g000 and the g000-irreducible submodule of g�1containing F� must be isomorphic to the g000-module g00�1.Thus, we need to compare the list of modules given by Corollary 5.1,which gives all possibilities for the [g00; g00]-module g0�1 with the list of modulesgiven by Corollary 5.2, which gives all possibilities for the g000-module g00�1.All possible pairs are given by the following table.[g00; g00]-module g0�1 g0 g000-module g00�1 g00(a) s`3 � s`n s`(3; n) s`3 p(3)(b) s`3 � sp2m spo(2m; 6) s`3 p(3)(c) s`m � s`n s`(m;n) s`n (n � 4) S(0; n)(d) so3 spo(2; 3) so3 so3[�](e) son spo(2; n) son (n � 5) H(0; 5)Recall now, that, due to Lemma 2.6, either the depth of g is 1 or the[g0; g0]-module S2g�1 must give rise to the linear Lie algebra s`n or spn.50



This permits only n = 2 in case (a) and m = 1 in case (b), and we mayapply Remark 5.1.Lemma 5.6 Suppose that, under the assumptions of Theorem 5.3 all theg0-submodules g[s]1 of g1 are not contragredient to g�1. Then (see notationof Lemma 5.5) only the following possibilities for the [g0; g0]-modules gj,�1 � j � �d, and g1 may occur:(a) g�1 = so6, g�2 = 1, g1 = �3so6,(b) g�1 = s`3 � s`2, g�2 = s`�3 � 1, g1 = S2s`3 � s`2,(c) g�1 = s`3 � s`2, g�2 = s`�3 � 1, g�3 = 1� s`2, g1 = S2s`3 � s`2,(d) g�1 = �2s`5, g�2 = s`�5, g1 = highest component of sl5 
 �2s`5.Proof Decompose [g0; g0] in a direct sum of simple Lie algebras and considerthe corresponding decompositions of weights � and M [s]:[g0; g0] = �rj=1 g0j ; � = rXj=1 �j ; M [s] = rXj=1 M [s]j :If �j + M [s]j = 0 (resp. 6= 0) for some s, we shall refer the g0j-modulecorresponding to �j as to the contragredient case (resp. non-contragredientcase). Due to Corollaries 5.1 and 5.2, the following is a complete list ofpossibilities in each case (we list in parenthesis the highest weight of thenon-contragredient partner from g1; p stands for a simple Lie algebra):contragredient non-contragredient(a) s`n, n � 2 (a) s`n, n � 4 (!1 + !n�2)(b) spn, n � 4 (b) son, n > 6 (!3)(c) son, n � 3 ; n 6= 4 (c) so5 (!2)(d) spin7 (d) �2s`n, n � 3 (2!n�1)(e) G2 (e) �2s`4 (2!1 or 2!3)(f) S2s`n, n � 3 (!n�2)(g) ad p (0)(h) �2s`5 (!1 + !2)51



First, let us study the case r = 1, i.e., [g0; g0] simple. If t = 1 (see (5.1)),we have case (d) of the lemma (by Lemma 5.4), so we may assume that t � 2.Then, due to Lemma 5.2, we have to pick out from the right column of thetable those linear Lie algebras which appear at least twice. These are �2s`4and �2s`5. In the �rst case the [g0; g0]-module g�1 (resp. g1) is so6 (resp.�3so6), which gives possibility (a) of the lemma. In the second case, the[g0; g0]-module g�1 is �2s`5, we denote its highest weights vector by F , andthe [g0; g0]-module g1 is a direct sum of the s`5-modules with highest weights!1 + !2 and 2!4, we denote their lowest weight vectors by E and E 0. Wehave: [F;E] = [f3; f4] ; [F;E 0] = f1 : (5.3)Consider the vectors F 00 and F 000 introduced in the proof of Lemma 5.4.Using (5.3), we obtain: [F 00; E 0] = 0, hence [F 000; E 0] = [[f234F;F 00]; E 0] =[f234; f1]F 00 6= 0. This contradicts Lemma 5.4.Note that the condition S2g�1 � g�2 implies that the tensor square of themodules from the right column of the table must contain s`n or spn, n � 1.This immediately excludes cases (a), (e) and (f).Let now r � 2 and assume that case (g) of the right column does notoccur. Then we may assume that �1+M [1]1 = �� where � is a positive rootof g01 (since cases (f) and (g) are excluded) and �j +M [1]j = 0 for j � 2. Weemploy Lemma 5.3. Let � be a positive root of g01 such that (�; �) 6= 0 and� + � is a root but � � � is not (such � exists by Lemma 5.3 I(a)). Let 
be a positive root of g02 such that (�; 
) 6= 0. It follows from Lemma 5.3 IIthat 2���� 
 is a weight of the [g0; g0]-module g�2. Since (by Lemma 2.6)the corresponding linear Lie algebra is s`n or spn, n � 1, we conclude thatthe [g0; g0]-module g�1 is isomorphic to s`3 
 s`2, while the [g0; g0]-moduleg�2 is isomorphic to s`�3 
 C . Due to Remark 5.1, this is case (b) or (c) ofthe lemma.Finally, consider the case (g) when �1 = �, the highest root of p = g01,and M [1] = 0, so that [F;E] = e�. Then r � 2, otherwise dimg <1. Let �be a positive root of g02 such that (�; �) 6= 0. Then we have:[[e��F; e��F ]; E] = [e�; e��]e��F 6= 0 :Hence 2�� � � � is a weight of the g0-module g�2. When, restricted to g01,it is �, which is impossible by Lemma 2.6.52



Lemma 5.7 Let g = �j��dgj, d � 2, be a transitive irreducible consistentLie superalgebra for which g�1+g0+g1 is a local part of one of Z-graded Liesuperalgebras g0 listed in Corollary 5.1 and suppose that dimg�1 > 1. Thengj = gj1, hence dimg <1.Proof We use notation of the proof of Theorem 5.2 and an argument from[K2], Lemma 4.2. Suppose the contrary, and take the minimal j � 2 suchthat gj 6= gj1. Take a weight vector E� of the g0-module gj outside of gj1.Then we have: [E�; f0] = e���0 2 gj�11 ;where � � �0 is a positive root of g0. Taking bracket of both sides with theroot vector e��+�0, we obtain:�[[E�; e��+�0]; f0] + [E�; [f0; e��+�0]] = h�0�� : (5.4)But the �rst summand on the left is a multiple of h�0 = [e0; f0]. If � is not aroot of g0, then the second summand in (5.4) is zero, hence � is a multiple of�0. If � is a root of g0, then adding to E� a root vector e� we can add to theleft-hand side of (5.4) an arbitrary multiple of h�, which again shows that� is a multiple of �0. Since � � �0 is a positive root of g0, we obtain that� = 2�0. Thus, any weight of the g0-module gj=gj1 is 2�0, which is impossibleif dimg�1 > 1.Lemma 5.8 Let g = �j��dgj be an even transitive consistent Z-graded Liesuperalgebra of depth d � 2. Then g� contains no ideals of g and one hasthe following possibilities for the [g0; g0]-module gj, �1 � j � �d:(a) g�1 = son, n � 1, n 6= 2, g�2 = 1,(b) g�1 = s`3 � s`2, g�2 = s`�3 � 1,(c) g�1 = s`3 � s`2, g�2 = s`�3 � 1, g�3 = 1� s`2,(d) g�1 = �2s`5, g�2 = s`�5.Proof Let b = �j��2bj be the graded maximal ideal of g contained in g�.Recall, that, by Lemma 2.4, b�2j = 0, j � 1.53



It follows from Lemmas 5.1, 5.5, 5.6, 5.7 and Remark 5.1 that all possi-bilities for the [g0; g0]-modules g�j , �1 � j � �d, are listed by the lemma.It remains to prove that b = 0.Since b�2 and b�4 are zero, we see that [b�3; g�1] = 0. Hence [b�3; [g0; g0]] =0 since in all cases [g0; g0] � [g�1; g�1]. Hence b�3 is a trivial [g0; g0]-modulescontained in g�1 
 g�2, hence b�3 = 0.End of Proof of Theorem 5.3. It follows from Lemma 5.8 and Proposi-tion 5.1.Remark 5.3 Notation X(m;n), where X = W;S;H;K;HO, etc., for theZ-graded Lie superalgebra �j��dgj carries the following information:dim�j<0gj = (m;n) :In other words, X(m;n) acts transitively on a supermanifold of dimension(m;n). It is easy to show that the growth (= Gelfand{Kirillov dimension) ofX(m;n) is equal to m in all cases.6 Classi�cation of in�nite-dimensional simple linearlycompact Lie superalgebrasAn immediate consequence of Theorems 4.1 and 5.3 is the following theorem.Theorem 6.1 An in�nite-dimensional even transitive irreducible Z-gradedLie superalgebra is isomorphic to one of the Z-graded Lie superalgebras listedby Theorems 4.1 and 5.3.Due to Proposition 2.1 and Lemma 2.3, we get the following corollary.Corollary 6.1 If (L;L�1; L0) is an in�nite-dimensional even quasiprimitivelinearly compact Lie superalgebra, then the Z-graded Lie superalgebra associ-ated with the Weisfeiler �ltration of L is isomorphic to one of the Z-gradedLie superalgebras listed by Theorems 4.1 and 5.3.Remark 6.1 If g = �j��dgj is one of the Z-graded Lie superalgebras listedby Theorems 4.1 and 5.3, then (g; g(�1); g(0)) is an even quasiprimitive Lie su-peralgebra (recall that g is the formal completion of g, g(�1) =Qj��1 gj and54



g(0) =Qj�0 gj). Almost all pairs (g; g(0)) are primitive. The only exceptionsare III(a), (b) from Theorem 4.1 and examples E 0(3; 8) and C 0 + E 0(3; 8)from Theorem 5.3 (when g�d + g(0) is a subalgebra).Remark 6.2 One can show that a primitive Lie superalgebra is semisimple(i.e., has no closed abelian ideals). Semisimple linearly compact Lie super-algebras that admit a fundamental subalgebra can be described in terms ofsimple linearly compact Lie superalgebras in the same way as in the �nite-dimensional case [K4], [Ch]. It is a super analog of a more precise version ofthe Cartan{Guillemin theorem [G1]. Using this, one can describe primitiveLie superalgebras in terms of primitive simple ones.Now we can turn to the discussion of classi�cation of in�nite-dimensionalsimple linearly compact Lie superalgebras. Let L be such a Lie superalgebra.By Theorem 1.1, L has a subalgebra L0 such that (L;L0) is an even primitiveLie superalgebra. Consider an irreducible Weisfeiler �ltration L = L�d �L�d+1 � : : : � L�1 � L0 � L1 � : : : and let g = �j��dgj be the associatedgraded Lie superalgebra. By Corollary 6.1, g is one of the Z-graded Liesuperalgebras listed by Theorems 4.1 and 5.3.A linearly compact �ltered Lie superalgebra L whose associated graded isg is called a �ltered deformation of g. Of course, g is a �ltered deformationof g, called the trivial �ltered deformation; note that g is simple i� g is. If Lis simple, it is called a simple �ltered deformation of g. If g is the only (resp.the only simple) �ltered deformation of g, we shall say that g has no �ltered(resp. simple �ltered) deformations.Thus, the classi�cation of in�nite-dimensional simple linearly compactLie superalgebras is reduced to �nd all (up to isomorphism) simple �ltereddeformations of all Z-graded Lie superalgebras listed by Theorems 4.1 and5.3.Let s be a maximal reductive subalgebra in the even part of g0 = L0=L1.Using Levi theorem, we may �nd linear maps 'k : s ! L0 for each k � 1such that the induced map 'k : s ! L0=Lk is an injective homomorphismand 'k(s) � 'k+1(s) 2 Lk+1 for all s 2 s. Taking limit as k ! 1, we getan injective homomorphism ': s ,! L0 . We shall identify '(s) with s.Note that [s; Ln] � Ln for each n and that s-modules Ln=Ln+1 and gn areisomorphic.By the complete reducibility theorem, the s-modules Ln=Ln+k are com-pletely reducible for all k � 1, so that we may �nd a complementary s-55



submodule gn(k) to Ln+1=Ln+k in Ln=Ln+k . Again, as k ! 1, we get ans-module decomposition Ln = mn � Ln+1 where mn = gn(1) and gn areisomorphic s-modules.Thus, we have obtained a decompositionL = Yj��dmj (6.1)as s-modules, where s � m0 and Ln = mn � Ln+1 for each n.Lemma 6.1 (a) If s contains a non-zero central element c then g has no�ltered deformations.(b) If g is one of the types I(j), (k) or II(a), (b),or IV of Theorem 4.1 or(f) and (g) of Theorem 5.3, then L cannot be simple, hence g has nosimple �ltered deformations.Proof In case (a), if c is normalized such that cjm�1 = �1, then cjmj = j,hence [mi;mj] � mi+j in (6.1) and L ' g. In case (b) it is easy to showthat m0 6� [L;L]. For example, if d = 1 and m0 � [L;L], then b = m�1 +m0 is a semisimple subalgebra of L but there are no such semisimple Liesuperalgebras.Lemma 6.2 Suppose that decomposition (6.1) has the following properties:mk�1 � m�k for all k � 2(hence mk�1 = m�k) ; (6.2)m0 is a subalgebra of L ; (6.3)[m0;m�1] � m�1 ; (6.4)[m1;m�1] � m0 : (6.5)Then, provided that g satis�es (G6) (from Section 2), g has no �ltered de-formations.Proof First, we prove that [m0;m1] � m1 : (6.6)Indeed, for any x 2 g�1 we have:[x; [m0;m1]] = [[x;m0];m1] + [m0; [x;m1]] � m056



by (6.3), (6.4) and (6.5), hence (6.6) follows by transitivity of g. Next weprove mn1 � mn ( hence mn1 = mn) for n � 1 : (6.7)Using (6.5) and (6.6), we have by induction on n: [x;mn+11 ] � mn1 , and weagain use transitivity of g. Next:[m�1;mn] � mn�1 (6.8)since [m�1;mn1 ] � mn�11 by (6.5) and (6.6). By (6.2)-(6.4), (6.6) and (6.7) wehave: [m0;mn] � mn for all n :This along with (6.2), (6.7) and (6.8) shows that [mi;mj] � mi+j .Remark 6.3 If g satis�es the property:[x; g1] = 0 for x 2 gj ; j � �d ; implies x = 0 ;then (6.2) follows from [m�1;m�1] � m�2. Indeed for x 2 m1 we have byinduction on k � 2: [x;mk�1] � mk�1�1 , hence mk�1 � m�k for all k � 2.Lemma 6.3 E(5; 10) has no �ltered deformations.Proof In this case s = m0, hence (6.3) and (6.4) hold automatically, andthe m0-module m2j (resp. m2j+1) is isomorphic to the highest component ofSj+1(s`�5)
s`5 (resp. Sj+1(s`5)
�2s`5), see Example 5.3. Hence, S2m�1 doesnot contain a submodule isomorphic to mj for j 6= �2, hence [m�1;m�1] =m�2 and, by Remark 6.3, (6.2) holds. Finally, in order to check (6.5) we haveto show that m�1 
m1 does not contain a submodule isomorphic to m2j forj � 1, which is straightforward (see [OV]). Hence, by Lemma 6.2, E(5; 10)has no �ltered deformations.Lemma 6.4 S(m;n) and S 0(m;n) with principal gradation have no �ltereddeformations if m;n � 1. 57



Proof Let L be a �ltered deformation of S(m;n) or S 0(m;n) and let s � L bethe reductive subalgebra constructed above. Let us embed L in W (m;n) =Qj��1W (m;n)j (principal gradation), see Example 1.3. By Levi-Maltsevtheorem (see [OV] or [S]), we may assume that s � W (m;n)0 = g`(m;n).Hence s = s`(m;n)0. In particular, s contains all operators hij = xi @@xi +�j @@�j , which span a Cartan subalgebra h of s. It is easy to see that theweights of h that occur in W (m;n)�1 (= linear span of @@xi 's and @@�j 's.) donot occur in W (m;n)j with j � 0. It follows that m�1 from decomposition(6.1) coincides with W (m;n)�1. Hence, by transitivity, mj � W (m;n)j forall j, proving the claim.Remark 6.4 It is well-known (and easy to show using Lemma 6.2) thatS(m; 0) has no �ltered deformations. On the other hand, S(0; n) for n evendoes have them [K4].Lemma 6.5 S(m; 1) with subprincipal gradation has no �ltered deforma-tions if m � 2.Proof Let L be a �ltered deformation. Then s is isomorphic to s`m �C c, where ad c acts as a scalar k on (mk)0. It follows that S(m; 1)0 =Qk��1(mk)0 is a completed graded Lie algebra isomorphic to W (m; 0) withprincipal gradation. Furthermore, (m�1)1 is the standard s`m-module withthe eigenvalue of c equal m � 1 and (mk)1 for k � 0 is a direct sum of s-modules: (mk)1 = Vk + V 0k , where Vk ' highest component of s`m 
Sk+1s`�mwith eigenvalue of c equal m+ k and V 0k = Sks`m with eigenvalue of c equal�m+k. Moreover, V 00 = C b, where ad b maps L0 to 0 and is an isomorphismL1 ! L0 as s`m-modules. This implies that the conditions of Lemma 6.2 aresatis�ed, hence decomposition (6.1) is a Z-gradation.The growth of a linearly compact Lie superalgebra L is de�ned as thegrowth (see [K1]) of the graded Lie algebra GrL for any decreasing �ltrationof L (by Chevalley's principle, it is independent of the choice of �ltration). Itis clear that growth L = 0 i� dimL <1, and that growth L � 1 otherwise.Theorem 6.2 A simple linearly compact Lie superalgebra L of growth 1 isisomorphic to one of the following Lie superalgebras: W (1; n) for n � 0,S(1; n) for n � 2, K(1; n) for n � 1 or E(1; 6).58



Proof Due to Corollary 6.1, L has a �ltration for which the associated gradedLie superalgebra g is one of those listed by Theorems 4.1 and 5.3. Due to thegrowth condition, we must select those with m = 1 (see Remark 5.2). Hereis the list:I. (inconsistent principal gradation)(a) W (1; n) with n � 0,(b) S(1; n) and S 0(1; n) with n � 2,(c) P [�] + a with P =W (1; 0),II. (inconsistent subprincipal gradation) W (1; 1),III. (consistent gradation)(a) K(1; n) with n � 1, n 6= 2,(b) E(1; 6),(c) s`2 + S(1; 2).IV. C 0 + g, where g is one of the examples I-III for which g0 has a trivialcenter.As has been shown above, the cases I(c), III(c) and IV are ruled out sinceL is simple. Also, we have just shown that in the remaining cases g has no�ltered deformations. This proves the theorem.Remark 6.5 Using methods developed in [DK], it is easy to derive fromTheorem 6.2 the classi�cation of �nite simple conformal superalgebras (andhence the �nite simple formal distribution Lie superalgebras) announced in[K6], [K7].A more systematic way of describing �ltered deformation is developed in[CK3] based on [KN]. It gives the description of simple �ltered deformationin all the remaining cases. 59



Example 6.1 (�ltered deformation of C �2+SHO(n; n); n even [CK3]). TheLie superalgebra C �2 + SHO0(n; n) can be identi�ed with the subspace�(n; n)� of �(n; n) consisting of elements f such that �(f) = 0 (see Re-mark 4.2) and the bracket f : ; : gho de�ned in Example 4.6. Its derivedalgebra is the subspace �(n; n)�0 of �(n; n)� of codimension 1, which con-sists of elements with zero projection on the monomial C �1 : : : �n. We denoteby CSHO(n; n)�, n even, the space �(n; n)�0 with the following deformedbracket (f; g 2 �(n; n)�0 ):[f; g] = ff; ggho + �(fg) ;where �(b) = f�1; : : : �n; bgho if b is a monomial in the xi, and �(b) = 0 forall other monomials. The superalgebra CSHO(n; n)� is simple for n � 2(n even). Note that C �2 + SHO0(n; n) has a similar deformation, which wedenote by CSHO0(n; n)�, but it is not simple since its derived algebra hascodimension 1 (and coincides with CSHO(n; n)�).Example 6.2 (�ltered deformation of SHO0(n; n), n even [CK3]). Denoteby SHO(n; n)�, n even, the space �(n; n)�=C (see Examples 6.1) with thefollowing deformed bracket:[f; g] = ff; ggho + �1(fg) ;where �1(b) = f�1 : : : �n; bgho if b is a monomial in the xi or b = xi�i, and�(b) = 0 for all other monomials. The superalgebra SHO(n; n)� is simplefor n � 2 (n even).Example 6.3 (�ltered deformation of SKO(n; n+1; n+2n ), n odd, cf. [Ko]).Let �0 = �+(E� (n+2)) @@�n+1 . The Lie superalgebra SKO(n; n+1; n+2n ) isidenti�ed with the subspace �(n; n+1)�0 of �(n; n+1) consisting of elementsf such that �0(f) = 0, with the bracket f : ; : gko de�ned in Example 4.8 (seeExample 4.9). We denote by SKO(n; n+1)�, n odd, the space �(n; n+1)�0with the following deformed bracket:[f; g] = ff; ggko + �2(fg) ;where �2(b) = f�1 : : : �n+1; bgko � 2b�1 : : : �n if b is a monomial in the xi and�2(b) = 0 for all other monomials. The superalgebra SKO(n; n + 1)� issimple for n � 3 (n odd). 60



It is shown in [CK3] that the only non-trivial simple deformations in allcases of Theorems 4.1 and 5.3 are those given by Examples 6.1-6.3. However,the Lie superalgebras CSHO(n; n)� and SHO(n; n)� are isomorphic. Thisproves the main theorem of the paper:Theorem 6.3 The following is a complete list of simple in�nite-dimensionallinearly compact Lie superalgebras (m � 1):(a) W (m;n),(b) S(m;n) with (m;n) 6= (1; 0), (1; 1),(c) H(m;n) with m � 2, m even,(d) K(m;n) with m � 1, m odd,(e) HO(m;m) with m � 2,(f) SHO(m;m) with m � 3,(g) SHO(m;m)� with m � 2, m even,(h) KO(m;m+ 1),(i) SKO(m;m+ 1;�) with m � 2, � 2 C ,(j) SKO(m;m+ 1)� with m � 3, m odd,(k) E(1; 6), E(2; 2), E(3; 6), E(3; 8), E(4; 4), E(5; 10).Remark 6.6 Here are all the isomorphisms between the Lie superalgebraslisted in Theorem 6.3:W (1; 1) ' K(1; 2) ' KO(1; 2) ; S(2; 1) ' HO(2; 2) :In conclusion of the paper we describe all derivations:Proposition 6.1 The Lie superalgebra DerL of a simple in�nite-dimensionallinearly compact Lie superalgebra L is as follows (m � 1):(a) If L is one of the Lie superalgebras W (m;n) , SHO(m;m)�, K(m;n),KO(m;m + 1), SKO(m;m + 1; 0) with m � 3, SKO(m;m + 1)�,E(4; 4), E(1; 6), E(3; 6), E(3; 8), then DerL = L.61



(b) If L is one of the Lie superalgebras S(m;n), H(m;n), HO(m;m) withm � 2, SKO(m;m+ 1;�) with m � 2 and � 6= 0, m�2m , SKO(2; 3;�),E(5; 10), then DerL = C 0 + L.(c) If L is one of the Lie superalgebras S(1; n) with n � 3, SHO(m;m) withm � 4, SKO(m;m+ 1; m�2m ) with m � 3, then DerL is C 0 + S 0(1; n),C 0 + SHO0(m;m), and SKO0(m;m+ 1; m�2m ) respectively.(d) If L = SHO(3; 3), E(2; 2) or S(1; 2), then DerL = s`2 + L.Proof is the same as that of Proposition 5.1.2 from [K4].Postscript. This paper (to appear in October 1998 issue of Advancesin Math.) was presented at the ESI in September 1998. In this talk, af-ter giving the list of maximal compact subgroups K of the groups of innerautomorphisms of the six in�nite-dimensional simple Lie superalgebras, Isuggested that one of the exceptional Lie superalgebras E(3; 6) or E(3; 8)might be the algebra of supersymmetries of the Standard Model, since thegroup SU3 � SU2 � U1 is the group of symmetries of this model and it isthe group K for both E(3; 6) and E(3; 8). David Broadhurst commentedthat similarly the exceptional superalgebra E(5; 10) might be the algebra ofsupersymmetries of the hypothetical Grand Uni�ed Model since K = SU5for E(5; 10). He also asked whether E(3; 6) or E(3; 8) can be embeded inE(5; 10). I replied that E(3; 8) cannot be embeded since E(5; 10) has noconsistent gradations of debth 3, but that E(3; 6) can, since its non-positivepart can be embeded in that of E(5; 10).It is thus natural to conjecture that the Standard Model can be extendedto the Grand Uni�ed Model in such a way that the algebra E(3; 6) of su-persymmetries of the Standard Model is embeded in the algebra E(5; 10) ofsupersymmetries of the Grand Uni�ed Model.References[B1] R.J. Blattner, Induced and produced representations of Lie al-gebras, Trans. Amer. Math. Soc., 144 (1969), 457-474.[B2] R.J. Blattner, A theorem of Cartan and Guillemin, J. Di�.Geom. 5 (1970), 295-305.62
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