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Introduction

The present paper was motivated by the problem of classification of opera-
tor product expansions (OPE) in conformal field theory. This problem was
solved in [DK] in the case when the chiral algebra is generated by finitely
many bosonic fields such that in their OPE only linear combinations of these
fields and their derivatives occur. An axiomatic description of such a sys-
tem of fields is called a finite conformal algebra [K6]. The classification of
finite conformal algebras uses in an essential way Cartan’s classification of
pseudogroups of transformations of a finite-dimensional manifold, which, in
the modern language, is equivalent to the classification, up to formal equiv-
alence, of Lie algebras of vector fields on a finite-dimensional manifold. The
problem of classification of OPE when fermionic fields are allowed as well,
or, equivalently, of finite conformal superalgebras, requires an extension of
Cartan’s theory to the case of supermanifolds. Below I explain the problem
in more detail.

Elie Cartan published a solution to the problem (posed by Sophus Lie)
of classification of simple infinite-dimensional Lie algebras of vector fields
on a finite-dimensional manifold in 1909 [C]. This work had been virtually
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forgotten until the sixties. A resurgence of interest in this area began with
the work of Singer and Sternberg [SS] and of Guillemin and Sternberg [GS],
which developed an adequate language and machinery of filtered and graded
Lie algebras.

The basic problem of the theory is to classify, up to formal equivalence,
infinite-dimensional Lie algebras of vector fields acting transitively in a neigh-
borhood of a point = of a complex manifold X. Let L be such a Lie algebra
and let Ly (k € Z ) denote the subalgebra of L consisting of vector fields that
vanish at  up to k-th order. This defines a filtration of L by subspaces of
finite codimension, which is transitive in the sense that dim L/ Lg = dim X,
or, equivalently, that Lo contains no non-zero ideals of L. One defines a
topology on L by taking {Lk}kez+ to be a fundamental system of neighbor-

hoods of 0. Let L be the completion of L in this topology. Two transitive
Lie algebras, L and L', of vector fields are called formally equivalent if their
completions L and T are isomorphic topological Lie algebras.

One thus arrives at a problem of classification, up to a continuous isomor-
phism, of infinite-dimensional linearly compact Lie algebras L, i.e., complete
topological Lie algebras that admit a fundamental system of neighborhoods
of zero consisting of subspaces of finite codimension, which possess a funda-
mental subalgebra Lo, i.e., an open subalgebra (of finite codimension) that
has no non-zero ideals of L, cf. [G1].

In [C], Cartan purports to give a classification of simple infinite-dimen-
sional linearly compact Lie algebras. His main idea is the notion of a primitive
Lie algebra. This is a linearly compact Lie algebra L with a maximal fun-
damental subalgebra Lo. (Geometrically primitivity means that L does not
leave invariant a non-trivial completely integrable differential system.) Every
simple L can be made primitive by taking any maximal subalgebra contain-
ing a fundamental subalgebra. Cartan’s list of primitive linearly compact
Lie algebras consists of (a) four well-known series: Wy Sy Hp, and K, of
simple ones, which are respectively the Lie algebra of all formal vector fields
in m indeterminates (= all continuous derivations of the algebra of formal
power series C[[xy,... ,x,]]) and its subalgebras consisting of divergence zero
vector fields, of vector fields annihilating a symplectic form (for m even), and
of vector fields multiplying a contact form by a function (for m odd), and
(b) two series of non-simple ones which contain S, and H,, as ideals of
codimension 1.

Here and further the overbar stands for the formal completion of the cor-



responding Lie (super)algebra of polynomial vector fields, e.g., W,, denotes
the Lie algebra of all derivations of the polynomial algebra Clxy,... , z,,].

The first step of Cartan’s paper is the classification of irreducible L,
i.e., those for which the representation of Lo/ L; on L/Lg is irreducible. (Geo-
metrically irreducibility means that L does not leave invariant any non-trivial
differential system, integrable or not.) This result was verified in [SS]. In
Cartan’s application of this classification to the classification of primitive L,
there seems to be a serious gap (cf. [GS]). In [GQS] the problem was solved
by making use of a rather complicated result from analysis.

The first purely algebraic (and very elegant) solution to the problem was
found by Weisfeiler [W]. His idea is to choose a minimal ad Le-invariant
subspace L_; of L such that L_; 2 Lo and construct a new filtration
L=142>Lgu D>...0>L DLy DL D... (withnew Ly,...).
(Geometrically this corresponds to a choice of an invariant irreducible non-
integrable differential system.) By considering this Weisfeiler filtration one
restores the irreducibility of the representation of fo/fl on f_l/fo at the
expense of the possibility of having the depth d of the filtration greater than
1. The associated Z-graded Lie algebra is of the form g = @©;>_4g;, and has
the following properties:

(GO) dimg; < oo,

(G1) g =g’y forj>1,

(G2) ifa€g; with 7 >0 and [a,g-1] =0, then « =0,
(G3) the representation of go on g_; is irreducible.

Weisfeiler’s classification of these Z-graded Lie algebras remained unpub-
lished. In his paper [W] he refers to the paper [K1] where a more general
result had been obtained.

Of course, the concluding step after that is to verify that the Lie algebra
L is uniquely determined by g, i.e., that the formal completion g of g has
no filtered deformations. This can be done by several different techniques
developed, in particular, in [SS], [KN], [W] and [K3].

In [G2] Guillemin found a very beautiful new approach to the problem.
Using the notion of a characteristic variety, he proved (without the use of
classification) that an infinite-dimensional primitive linearly compact Lie al-
gebra has a unique maximal fundamental subalgebra. After that a simple



“normalizer trick” almost immediately gives the classification of the Z-graded
Lie algebras in question.

At this point it is appropriate to mention an earlier paper, [G1], of
Guillemin where he proves Cartan’s conjecture on existence in an arbitrary
linearly compact Lie algebra with a fundamental subalgebra a finite chain
of nested closed ideals such that each of the consecutive quotients is either
abelian or of the form S&C[[zy,... ,z,]] where S is a simple linearly compact
Lie algebra.

Let us now turn to superalgebra. At the very end of my paper on clas-
sification of finite-dimensional Lie superalgebras [K4], I briefly discussed the
problem of classification of simple infinite-dimensional linearly compact Lie
superalgebras. This problem has the same geometric origin as in the Lie al-
gebra case with X being a supermanifold. Of course, the first basic example
is the Lie superalgebra W (m,n) (see Example 4.1 in Section 4) of continu-
ous derivations of the algebra C[[z1,...,2,]] @ A(n), where A(n) stands for
the Grassmann algebra in n indeterminates (in other words, W (m,n) is the
Lie superalgebra of all formal vector fields in m commuting and n anticom-
muting indeterminates). The remaining three series, S, H,, and K, have
“super”generalizations as well. They are subalgebras of W (m,n), denoted by
S(m,n), H(m,n) (m even) and K (m,n) (m odd), which consist respectively
of “super”divergence zero vector fields, of vector fields annihilating a “su-
per”’symplectic form and of vector fields multiplying a “super”contact form
by a function (see Examples 4.2, 4.3 and 4.4 in Section 4). Incidentally, the
Lie superalgebras W (0,n), S(0,n) and H(0,n) are finite-dimensional; they
form the “non-classical” part of the list of simple finite-dimensional Lie su-
peralgebras (along with a filtered deformation of S(0,7)). I proposed that,
in analogy with Cartan’s classification, these four series should give a com-
plete list of simple infinite-dimensional linearly compact Lie superalgebras.
Remarkably, the situation turned out to be much more exciting.

It was pointed out by Buttin, Kirillov, Leites and Tulcziev among others
(see [L] and references there) that the Schouten bracket makes the space of
polyvector fields into a Lie superalgebra. This gives the series, denoted in the
present paper by HO(n,n) (see Example 4.6), which consists of vector fields
from W(n,n), annihilating an odd super symplectic form (HO stands for
Hamiltonian odd). The next series is SHO(n,n) = HO(n,n) N S(n,n) (see
Example 4.7). Furthermore, one has the series KO(n,n + 1) which consists
of vector fields from W (n,n + 1) multiplying an odd super contact form by a
function (see Example 4.8). One can take KO(n,n+1)NS(n,n+1) as well,
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but the situation again is more interesting, as was discovered by Kochetkoff
[Ko]. It turns out that for each # € C one can define the deformed divergence
divg such that SKO(n,n + 1;3) = {D € KO(n,n +1)| divy D = 0} is a
simple superalgebra (see Example 4.9). (One should mention that some of
the above Lie superalgebras are not simple, but, apart from small m and n,
listed in Examples 4.1-4.4, 4.6-4.9, their derived algebras are simple and have
codimension at most 1.)

However, the most surprising discovery was made by Shchepochkina who
announced in [S1], the existence of three exceptional simple infinite-dimen-
sional Lie superalgebras. The place of these examples in my classification
is discussed in Section 5 (see Remark 5.1). Subsequently she found one
more exceptional example (cf. [S2] and Example 4.10 from Section 4 of the
present paper). Next, Cheng and I in our work on conformal superalgebras
[CK1] and independently Shchepochkina [S2], found another exception (see
Example 5.2 in Section 5). Finally, during the work on the present paper
one more exception was found (see Example 4.11).

The main result of the present paper is the following theorem (cf. Theo-
rem 6.3 in Section 6).

Theorem 0.1 Any simple infinite-dimensional linearly compact Lie super-
algebra is isomorphic to one of the Lie superalgebras of the following list or
its derived subalgebra:

(a) eight series of completed graded superalgebras: W(m,n), S(m,n),
H(m,n), K(m,n), HO(n,n), SHO(n,n), KOm,n + 1),
SKO(n,n+1;8),

(b) two series of filtered deformations: SHO(n,n)~ (n  even),
SKO(n,n+ 1)~ (n odd),

(¢) siz exceptional Lie superalgebras: E(1,6), F(2,2), F(3,6), E(3,8),

E(4,4), E(5,10).

The major difficulty in the Lie superalgebra case is that, unlike in the Lie
algebra case, I may contain a lot of maximal fundamental subalgebras. In
order to circumvent this difficulty, I introduce the notion of an even prim-
itive Lie superalgebra. It is a primitive Lie superalgebra L whose maximal
fundamental subalgebra Ly contains all even ad-exponentiable elements of
L; such a subalgebra is called maximally even. Using Guillemin’s argument
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from [G2] I prove that any simple infinite-dimensional linearly compact Lie
superalgebra contains a maximally even subalgebra (Corollary 1.1 of Theo-
rem 1.1). (Such a subalgebra is unique in most of the examples, and there
are at most two such subalgebras in the remaining examples.) Incidentally,
in the finite-dimensional case “maximally even” simply means that Lo is a
maximal subalgebra containing the even part of L; the finite-dimensional
even primitive Lie superalgebras were classified in [K4].

Another useful notion is that of a quasiprimitive Lie superalgebra: it is a
linearly compact Lie superalgebra L with a given fundamental subalgebra L
and an ad Lg-invariant minimal subspace L_; containing Ly and generating
L (as an algebra). This weaker property than primitivity, as well as evenness,
still remain when one passes to the completion of the associated graded with
the Weisfeiler filtration Lie superalgebra (Propositions 2.1 and 2.2).

The main problem which is addressed in the paper is the classification of
Z-graded Lie superalgebras g = @;>_48; which occur as associated graded
to the Weisfeiler filtration of an even quasiprimitive infinite-dimensional Lie
superalgebra. I use the “normalizer trick” of Guillemin to show that the go-
module g_; is strongly transitive (Proposition 2.3), meaning that apart from
being finite-dimensional (which is (G0) for j = —1), faithful (which is (G2)
for j = 0) and irreducible (which is (G3)), it satisfies the property: (G4) if a
is a non-zero even element of g_;, then [go,a] = g_1.

It turns out that, in spite of the fact that, unlike in the Lie algebra case,
the classification of all faithful irreducible finite-dimensional Lie superalgebra
modules is unknown (and probably is impossible), one can give a complete
classification of strongly transitive modules V' over a finite-dimensional Lie
superalgebra p (Theorem 3.1). The list consists of two parts:

1. V has a non-zero even element: this part of the list comprises a dozen
“classical series” (cases (a)-(j) and (r) of Theorem 3.1) and seven ex-
ceptional cases (cases (k)-(q) of Theorem 3.1),

2. all elements of V' are odd: then p is a Lie algebra, hence a direct sum
of simple Lie algebras plus at most 1-dimensional center and V' is an
arbitrary faithful finite-dimensional irreducible p-module.

Correspondingly, the classification of the above mentioned Z-graded Lie su-
peralgebras is divided in two parts. The first part, when the Z-gradation of
g is inconsistent with the Z /27 gradation, is given by Theorem 4.1. The list



consists of the above mentioned eight series of Lie superalgebras of polyno-
mial vector fields, excluding K(1,n), with the “principal” or “subprincipal”
Z-gradation, two exceptional superalgebras FE(2,2) and F(4,4), four “de-
generate” series (which are far from being simple) and the extensions by
derivations and central elements of these. It more or less corresponds to the
list given by Theorem 3.1 (five of the “exceptional” cases of Theorem 3.1
actually correspond to the first members of some series, and the series (r) of
Theorem 3.1 do not correspond to any even Z-graded Lie superalgebra).

The second part, when the Z-gradation of g is consistent with the Z /27Z-
gradation, is given by Theorem 5.3. The list consists of K(1,n), four excep-
tional simple superalgebras F(1,6), E(3,6), F(3,8) and £(5,10), nonsimple
subalgebras F’(3,6) and FE'(3,8), and their extensions by derivations. In
this case I use the methods developed in [K4] in order to show that the only
possibilities for the [go, go]-module g_; are so,(n # 2), sl3 K sl and A*sls.

The final step of the classification of infinite-dimensional simple linearly
compact Lie superalgebras is the reconstruction of complete filtered Lie su-
peralgebras from the Z-graded Lie superalgebras g = @, g; listed by Theo-
rems 4.1 and 5.3. First, there are the superalgebras g = H]‘ g, obtained by
completion of g when g is simple. Next, one has to find all simple filtered
deformations of g where g is one of the superalgebras listed by Theorems 4.1
and 5.3. For this one can use methods developed in [KN], [K3], [K4] and
[CK3]. It turns out (Section 6 and [CK3]) that all non-trivial simple filtered
deformations are listed in Theorem 0.1(b) (the first of these deformations
was found in [CK3] and the second much earlier in [Ko]).

The notation X (m,n) used here, where X = W, S, H, K, etc. means that
this is a Lie superalgebra of vector fields on the superspace of dimension
(m,n), where the dimension m of the even part is minimal possible and
dimension n of the odd part is minimal possible for this m. Note also that in
all cases m is equal to the growth (= Gelfand-Kirillov dimension) of X (m,n).

The paper is organized as follows. In the first section I explain the basic
properties of linearly compact Lie superalgebras and prove the existence of
a maximally even fundamental subalgebra in a simple linearly compact Lie
superalgebra (Theorem 1.1 and Corollary 1.1).

In Section 2 the properties (G0)-(G5) of the associated graded of an
even quasiprimitive Lie superalgebra are established. In Section 3 I classify
strongly transitive finite-dimensional modules (Theorem 3.1).

In Sections 4 and 5 the graded Lie superalgebras with inconsistent and
consistent gradation respectively associated to even quasiprimitive Lie su-

7



peralgebras are classified.

In the last Section 6 filtered deformations of the completions of the above-
mentioned graded Lie superalgebras are discussed and the classification of
infinite-dimensional simple linearly compact Lie superalgebras is completed
(Theorem 6.3). One of the consequences of this result is the classification of
simple finite conformal superalgebras announced in [K6], [K7].

Unless otherwise specified, all vector spaces, linear maps and tensor prod-
ucts are considered over the field C of complex numbers.

I would like to thank Irina Shchepochkina and Yuri Kochetkov for very
useful correspondence. I am especially indebted to Shun-Jen Cheng for col-
laboration on [CK2] and [CK3] and invaluable help with the present paper.

1 Basic properties of primitive Lie superalgebras

In this paper we shall use the superalgebra terminology adapted in [K4]. In
particular, a wvector superspace is a vector space V' decomposed in a direct
sum of subspaces V5 and V7, called the even and odd subspaces respectively.
Here and further Z /27 = {6, T}; if a« € V,,, we write p(a) = a. By a subspace
of a superspace V we mean a subspace U such that U = (UNVz)+(UNVg). A
superalgebra is a vector superspace V endowed with a structure of an algebra
such that V,Vs C V45, o, 8 € {6, T}. A Lie superalgebra is a superalgebra
satisfying the super Jacobi and super anti-commutativity axioms, etc.

A topological vector superspace I = L+ Ly is called linearly compact
if it admits a fundamental system of neighborhoods of zero consisting of
subspaces of finite codimension of L such that L is complete in this topology.

Here are some useful properties of a linearly compact superspace L
(cf. [G1]). A subspace of L is open iff it is closed and of finite codimen-
sion. Another important fact is Chevalley’s principle: if F; D Fy, D ... is a
sequence of closed subspaces such that N;F; = 0 and if U is a neighborhood
of zero, then F; C U for j > 0.

A topological Lie superalgebra L is called linearly compact if, as a topo-
logical vector superspace, L is linearly compact.

Given subspaces U and V of L, let

Ng(V) = {aeUlla,V]CV},
NY(V) = {ae V], U CV}.



The subspace Ni7(V) is the usual normalizer of V in U, whereas NY(V) is
an “inner” normalizer. The proof of the following lemma is straightforward.

Lemma 1.1 (a) Ny(V) is a subalgebra of the Lie superalgebra L, provided
that U is a subalgebra of L.

(b) NY(V) is a subalgebra provided that V C U.
(¢c) If U and V are open subspaces of L, then Niy(V') and NY(V') are open

as well.

A subalgebra Lo of L is called fundamental if it is proper (i.e., Lo # L),
open and contains no closed ideals of L.

Fix a fundamental subalgebra Lg of the linearly compact Lie superalgebra
L and choose a subspace L_; of L which generates L as a Lie superalgebra
and such that [Lg, L_1] C L_;. One associates to the triple L D L_; D Lo
the Weisfeiler filtration of L [W] by letting inductively for s > 1:

L_(ey1y=[Lot, Loy]+ Loy, Ly = N (L,_).
It is straightforward to check that this is indeed a filtration of the form:
L=1L_ ;Dé L.gy1D...DL1DLeDLiD...
by open subspaces L;, in other words:
[Li, L;) C Liy;y, NjL; =0, dimL/L; <oo.

The number d > 1 is called the depth of this filtration. By Chevalley’s
principle, the L; form a fundamental system of neighborhoods of 0.

An element a of L is called exponentiable if the series exp(ad a) defines a
continuous automorphism of L.

Lemma 1.2 [f Lg is a fundamental subalgebra of a linearly compact Lie
superalgebra L, then any even element a from Lo is exponentiable.

Proof Consider the Weisfeiler filtration for the triple L. D L D Lg. Since
a € Lo, we have [a,L;] C L; for all j. Since dim L/L; < oo, the series
exp(ad a) converges on L/L; for each j, hence converges on L to a continuous
automorphism. O



Lemma 1.3 (Super Nullstellensatz) If A is a finitely generated commu-
tative associative superalgebra which contains only one mazimal ideal m, then
dim A < oco.

Proof Let A be generated by even elements xy,...,x, and odd elements
£1y... &, and denote by J the ideal generated by &;,...,&,. Since A/m
is a field, 7 ¢ m. Let A = A/T, then m = m/J is an ideal of A Ifn
is another ideal of A and n its preimage in A, then n C m, hence 1 C m.
Therefore, M is a unique maximal ideal of A and hence, by the ordinary
Hilbert’s Nullstellensatz, dim A < oo. It follows that dim A < dim A - 2",

O

Proposition 1.1 Let L be a linearly compact Lie superalgebra which admits
a fundamental subalgebra. Then there exists a proper open subspace H of L
which is mapped into itself by every continuous automorphism of L.

Proof is the same as that of Proposition 3.2 from [G2] using Lemma 1.3
instead of the ordinary Nullstellensatz. O

Theorem 1.1 (a) Let L be a linearly compact Lie superalgebra with a fun-
damental subalgebra. Suppose that L has no proper open ideals with a
finite-dimensional Lie algebra quotient. Then L admits a proper open
subalgebra Lo which contains all exponentiable elements of L.

(b) Let L be a simple (i.e., without non-trivial closed ideals) linearly com-
pact Lie superalgebra which is not a finite-dimensional Lie algebra.
Then L admits a mazimal fundamental subalgebra which contains all
exponentiable elements of L.

Proof We may assume that dim I = co. Let H be the subspace of L given
by Proposition 1.1 and let Ly = Np(H). Then Ly is an open subalgebra of
L. If Lo = L, then H is a proper open ideal of L, a contradiction with the
hypothesis of (a). If a is an exponentiable element of L, then by Proposi-
tion 1.1, exp(tada)H C H for any t € C, hence [a, H] C H and a € Ly. This
proves (a). Statement (b) follows from (a) by taking any maximal subalgebra
containing Ly. 0

A pair (L, Lo) consisting of a linearly compact Lie superalgebra [ and
its fundamental subalgebra L is called a primitive Lie superalgebra if L is
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a maximal subalgebra. This primitive Lie superalgebra is called even if Ly
contains all exponentiable elements of L.
We have the following corollary of Theorem 1.1.

Corollary 1.1 If L is a simple linearly compact Lie superalgebra which is
not a finite-dimensional Lie algebra, then there exists a subalgebra Lo of L
such that (L, Lo) is an even primitive Lie superalgebra.

Proposition 1.2 If Ly is a proper open subalgebra of L and (L, Lo) is a
primitive Lie superalgebra, then either Ly is a fundamental subalgebra of L,
or Ly + Lo = L. Furthermore any non-zero closed ideal of L is open.

Proof 1f L{ is not a fundamental subalgebra of L, then it contains a non-zero
ideal [ of L. Since I ¢ Ly, the subalgebra I + Ly must be the whole L due
to maximality of Lg. The second claim is proved in the same way as in [G1],
Proposition 4.1. O

The following notion is technically more convenient than that of primitiv-
ity. A triple (L, L_1, L) consisting of a linearly compact superalgebra L, its
fundamental subalgebra Ly and a minimal subspace L_; such that L_4 2 Lo
and [Lo, L_1] C L_; is called a quasiprimitive Lie superalgebra if L_; gen-
erates L (as an algebra). A quasiprimitive Lie superalgebra (L, L_1, Lo) is
called even if Ly contains all exponentiable elements of L.

Of course, if (L, Lg) is a primitive Lie superalgebra, choosing a mini-
mal subspace L_; such that L_; 2 Lo and [Lo, L_1] C L_;, we obtain a
quasiprimitive Lie superalgebra (L, L_1, Lo).

Example 1.1 Any finite-dimensional Lie superalgebra with discrete topol-
ogy is linearly compact.

Example 1.2 Let F,, = C[[xy,...,2,]] be the algebra of formal power se-
ries in the indeterminates xq,... , @, and let A(n) be the Grassmann super-
algebra in the indeterminates &, ... ,&,, Denote by A(m,n) the associative
(commutative) superalgebra F,, @ A(n) and by J the ideal of A(m,n) gener-
ated by 21,... ,&m, &1, .., & Then A(m,n) is a linearly compact associative
superalgebra with topology for which 7k} form a fundamental system

k>1
of neighborhoods of 0. Let

W(m,n) = der A(m,n)
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denote the Lie superalgebra of all continuous derivations of the superalgebra

A(m,n). It consists of linear operators of the form:

m

0 - o) T
ZPia—xi + ;Qz‘a—@, where P}, Q; € A(m,n).

=1

Note that W (m,n) is a left A(m, n)-module and let W (m,n); = 7kW(m, n).
Then W(m,n) is a linearly compact simple Lie superalgebra with a funda-
mental system of neighborhoods of 0 consisting of the subalgebras W (m,n)y,
which form a (Weisfeiler) filtration of W (m,n). The pair (W (m,n), W(m,n)o)
is an even primitive Lie superalgebra (since a%i’s are not exponentiable). Note
that, letting J; = (21,... ,&m, &1, ..., &) for 0 <4 < n, we obtain primitive

Lie superalgebras (W (m,n), J;W(m,n)). All of them are not even, except
for the case n = 1,7 = 0.

Example 1.3 Any closed subalgebra L of W(m,n) is a linearly compact
Lie superalgebra. If no non-trivial closed ideals of A(m,n) are L-invariant,
then Lo := LN W(m,n)o is a fundamental subalgebra of L. Conversely, any
linearly compact Lie superalgebra with a fundamental subalgebra Ly such

that dim L/ Lo = (m,n) is obtained in this way (cf. [B1] and [GS]).
2 Associated graded of even quasiprimitive Lie super-
algebras

Let (L, L_1, L) be a quasiprimitive Lie superalgebra. As in Section 1, we
may associate to this triple the Weisfeiler filtration L =L_4; D> ... D L_1 D
LO DLl DR Let

GrL = @5 a9;, 9; = L;j/Ljy1,

be the associated Z-graded Lie superalgebra. It is easy to check that it has
the following properties [W]:

(GO) dimg; < oo for all 7,
(G1) g_j =g, forj>1,

(G2) ifa€g; with 7 >0 and [a,g-1] =0, then « =0,
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(G3) the adjoint representation of go on g_; is irreducible.

A Z-graded Lie superalgebra g = @;>_4g; satisfying (G0)-(G3) is called
a transitive irreducible graded Lie superalgebra. Properties (G0)-(G2) (resp.
(G3)) are usually called the transitivity (resp. irreducibility) properties re-
spectively. If g_4 # 0, the positive integer d is called the depth of g.

In what follows we shall assume, when talking about a Z-graded Lie
superalgebra g = @;g;, that (G0) holds. We also shall use the following

notation:
97 = @jcofj; 7 = 508, -
The following assertion is clear (cf. [W] and [G2], Lemma 4.1).

Proposition 2.1 The triple (L, L_1, Lo) is a quasiprimitive Lie superalgebra
iff GrL is a transitive irreducible graded Lie superalgebra.

Lemma 2.1 Ifg = @,g; is a transitive irreducible Z-graded Lie superalgebra
and [ is a Z-graded ideal of g, then either [ D g~ or I C g~. If, in addition,
g1 #0, then I Ng_y =0 in the latter case.

Proof Let I; = Ing;. If I; # 0 for some j > 0, then, by (G2), I_; # 0, and,
by (G3), I_1 D g1, hence, by (G1), I Dg~. If INg_y # 0, then [ D g_; by
(G3), hence I Ngy # 0 if gy # 0, by (G2). O

Given a Z-graded Lie superalgebra g = @;>_qg; of depth d > 1, consider
the associated filtration by subspaces g) := @;>xg; and topology of g for
which these subspaces form a fundamental system of neighborhoods of zero;
let @ (resp. @) be the completion of g (resp. @) in this topology. Then
we get a filtered linearly compact Lie superalgebra g = g_4) O G_441) O
... D @) D --.. The following lemma follows from Proposition 2.1.

Lemma 2.2 A Z-graded Lie superalgebra g = @;>_q9; is transitive irre-
ducible iff the triple (g, ﬁ(_l),ﬁ(o)) is a quasiprimitive Lie superalgebra.

Lemma 2.3 Let L be a linearly compact Lie superalgebra with a fundamental
subalgebra Ly and let g = GrL be a graded Lie superalgebra associated to a
filtration of L with Lo as one of its members. Then an even element a € L
is exponentiable iff its image @ in g is exponentiable in'g (where @ stands for
the image of a in L;/L;11, j being the minimal index such that a ¢ Ljyq).
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Proof We may assume that L is a subalgebra of W (m,n) (cf. Example 1.3)
and that « ¢ Lo (see Lemma 1.2). Then we may assume that « is of the
form:

a = 8i:1;1 + 22: Piaixi + z]: Q]% + higher degree terms,

where deg P, = deg(); = k > 0. Making the change of indeterminates

v; =, — P, & = § — @, where P; and (); are homogeneous polynomials

of degree k 4 1 such that g—i =P, % = ();, we increase k by 1. Thus, we
may assume that a = %. But then exp A(ada) (if it converges) acts on L by
substitution z; — x; + A\, A € C, and all other indeterminates unchanged.
Hence a is exponentiable in L iff for each monomial p in x5, ..., 2,,,&1,... , &
the linear span of all coefficients of p in all coefficients of derivations from L
is a finite-dimensional subspace of Clz1]. This property holds iff it holds in

the associated graded of L. O

A Z-graded Lie superalgebra g = @;g; is called even if any even homo-
geneous exponentiable in g element of g is contained in g ). Lemma 2.3
implies
Proposition 2.2 A quasiprimitive Lie superalgebra (L, L_1, Lo) is even iff

GrL is an even transitive irreducible graded Lie superalgebra.

Lemma 2.4 Let g = @;>_q9; be an even Z-graded Lie superalgebra and let
b be the maximal graded ideal of g contained in g=. Then by = 0.

Proof An even element from b is exponentiable. 0
The following is a key lemma. The main idea of its proof is borrowed

from [G2].

Lemma 2.5 Let g = @;>_q9; be an even transitive irreducible Z-graded Lie
superalgebra. Then g has the following property

(G4) ifa is an even element of g_1, then [go,a] = g_1.

Proof We may assume that g; # 0 (since otherwise a is exponentiable).
Then b is contained in ©;<_2g;. Due to Lemma 2.4, we may assume without
loss of generality that b = 0 (by replacing g by g/b; this does not affect
exponentiability since dimb < o).
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Consider the subspace h = @;h; of g defined by:

b] =9 lf.] 7£ _17 b—l = [gova]v

and let {y = Ny(h). Note that ¢, is a graded subalgebra of g containing a
and all g; for y > 0.

Suppose that [go,a] # g_1. Then g_1 ¢ ¢y (since [go, g—1] = g-1), hence,
by Lemma 2.1, any ideal of g contained in {y must lie in ©;<_og;, hence is
zero. Thus, {y is a fundamental subalgebra of g and therefore, by Lemma 1.2,
any even element of ¢y, in particular the element a, is exponentiable. This
contradicts the hypothesis of the lemma.

O

We shall call a finite-dimensional module V' over a Lie superalgebra g
strongly transitive if it is faithful, irreducible and for any non-zero even el-
ement v of V one has: g-v = V. Combining Lemmas 2.3 and 2.5, we
obtain the following severe restriction on the associated graded of an even
quasiprimitive Lie superalgebra.

Proposition 2.3 Let (L1, L_1, Lo) be an even quasiprimitive Lie superalge-
bra, and let g = ©;>_q9; be the associated graded Lie superalgebra. Then the
go-module g_q is strongly transitive.

The next lemma provides further restrictions.

Lemma 2.6 Let g = @;>_q9; be an even transitive irreducible Z-graded Lie

superalgebra. Let b = @;b; be the marimal graded ideal of g contained in g~ .
Then

(G5) ifr <0, s < 0 and a is a non-zero even element of gs, then
[gm a] +brts = Grts-

Proof We argue in the same way as in the proof of Lemma 2.5. Replace g

by g/b. Let h = &;b;, be a subspace of g defined by:

bj =9 lf.] 7£ r+ s and bf’-l-s = [gf’va]v
and let £y = Ny(h). Then a € ¢y. Suppose that [g,, a] # g,45. Then g~ ¢ (o,

hence, by Lemma 2.1, any ideal of g contained in {3 must lie in g~ and
therefore is zero. It follows that ¢ is a fundamental subalgebra of g, hence
a is exponentiable in @, a contradiction.

O
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The following simple proposition is useful for checking primitivity and
simplicity.

Proposition 2.4 Let g = ©;>_q9; be a Z-graded Lie superalgebra satisfying
conditions (G0)-(G3) and, in addition, the following two conditions:

(G6) g1 generates g7,

(GT) g~ contains no non-zero graded ideals of g.

Then
(a) (@, B()) is a primitive Lie superalgebra.

(b) The Lie superalgebra g (hence @) is simple iff the following two condi-
tions hold:

lg-1,01] =go, [g0,0]=g1.

Proof is straightforward. (See [K1] or [G2].)

3 Classification of strongly transitive modules

Let V. = V5 + V§ be a superspace of dimension (m,n), i.e., dimV5 = m
and dim V5 = n. Sometimes m 4 n will also be called the dimension of V.
We assume that m + n > 0. Let gf(m,n) be the Lie superalgebra of all
endomorphisms of the superspace V [K4]. If V is a faithful module over a
Lie superalgebra g, we may identify g with a subalgebra of gf(m,n). We shall
describe below examples of strongly transitive modules on V' as subalgebras
of gl(m,n). These subalgebras will be called strongly transitive.

Example 3.1 Any subalgebra g of ¢/(0,n), n > 1, acting irreducibly on V
is strongly transitive (since V' contains no non-zero even elements). Note
that g is an ordinary Lie algebra, hence, by the so called Cartan-Jacobson
theorem (see e.g., [S] or [OV]) is isomorphic to a direct sum of simple Lie
algebras and at most 1-dimensional abelian Lie algebra.
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Example 3.2 The Lie superalgebra gf(m,n) is strongly transitive for all
m,n > 0,m+n > 0. Its subalgebra [K4]

sl(m,n) ={a € gl(m,n)|stra =0}
is strongly transitive iff (m,n) # (1,0).

Example 3.3 Consider a non-degenerate skew-supersymmetric bilinear form
f:V xV — C" where C'I° is the (1,0)-dimensional superspace (f is an
even element of A*V*). We have: f(V5,V5) =0, flvxy: is non-degenerate
skew-symmetric, so that m is even, and f|izxz is non-degenerative symmet-
ric. Let (cf. [K4] where a supersymmetric f was considered instead, hence
the notation osp there)

spo(m,n) = {a € gl(m,n)|f(au,v) + (=P PO f(y,av) =0, wwveV}.

This is a strongly transitive subalgebra of gf(m,n). The subalgebra
espo(m,n) = CI + spo(m,n),

where [ is the identity operator on V', is strongly transitive as well.

Example 3.4 Let p be the subalgebra sl,, or sp,, (m even) of the Lie algebra
gl(m,0), m > 2. It acts strongly transitively on the space U of dimension
(m,0). Denote by p[¢] the Lie superalgebra p+p¢, where € is an odd element,
£* = 0. This Lie superalgebra can be included in gf(m,m) by letting it act
on Ul¢] = U 4+ U¢ in the obvious way. Consider the following realization of

gl(1,1):

d d
9/(1,1) = Cop + C€ + C e + €1

and introduce the following subalgebra of gf(m,m) containing p[¢]:
plé] = ple] + gl(1,1).

Let a be a subalgebra of the Lie superalgebra ¢gf(1,1). The subalgebra g =
p[€] +a of p[¢] is strongly transitive (on U[£]) iff the projection of g on (C% is
non-zero. It is easy to see that, up to rescaling of £, there are the following
possibilities for a:
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(a) C4

de o
(b) C(z + &) +ClI,

(¢) Cat + Clat 4 + 1) where o, 3 € C and one of them is non-zero,
(d) Cj + CEE+CH,

(e) Ci +C¢ +Cl,

(f) Cgs + CE 4+ CI+CE

Example 3.5 Let V be a superspace of dimension (n,n) and let V* be
its dual. Let f be an odd non-degenerate element of A*V* (= odd skew-
supersymmetric bilinear form). Let (cf. [K4])

p(n) = Ha€glin,n)la-f=0},

cp(n) = Cl+p(n),

p(n) = {a € p(n)|stra=0}.
These are strongly transitive subalgebras of gf(n,n) iff n > 2. Recall that
in some basis of V, p(n) consists of matrices of the form Z _2 ), where
a,b,c are n X n matrices, ¢ = ‘¢, b = —'b, and for p(n), tra = 0 (the Lie

superalgebra p(n) is denoted by P(n — 1) in [K4]). Let F' be the operator
that is identity on V5 and —(identity) on V4. Given a complex number 3, let

p(n; B) = C(I + BF) + p(n).

This is again a strongly transitive subalgebra of gf(n,n) provided that n > 2.
Note that for n = 2 these are some of the subalgebras of sl3[€] described in
Example 3.4.

Example 3.6 Denote by p(4) the subalgebra of sf(4,4) consisting of matri-

ces of the form [S2]
a b
(C—b* _ta>+)‘]7

where A € C, ¢ = ‘¢, b = —'b and b* stands for the Hodge dual of the

skewsymmetric matrix b. This is a strongly transitive subalgebra.
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Example 3.7 It is well known that the standard representation of the Lie
superalgebra W(0,n) on the Grassmann algebra A(n) can be deformed (to
representation in A-densities) by letting for a fixed A € C:

a—a+Adiva, aeW(0,n)

(the definition of div and S(0,n) are given in Example 4.2 below). This
W (0,n)-module is irreducible iff A # 0,1. For n = 2, A # 0,1, it defines a
strongly transitive subalgebra of ¢f(2,2), denoted by w(0,2; A) if we reverse
the parity of A(2). (Note that w(0,2;3) = spo(2,2) and that w(0,2; ) is
isomorphic to sf(2,1) as an abstract superalgebra.) Of course, cw(0,2;\) :=
w(0,2; ) + CI is strongly transitive as well.

The standard W (0,2)-module A(2) with reversed parity, extended in
an obvious way to the semidirect sum W (0,2) + A(2), is again a strongly
transitive subalgebra of ¢/(2,2), which we denote by w(0,2). Furthermore,
S(0,2) + A(2) and S(0,2) + (C + C& + C&y) are still strongly transitive. We
denote them by 5(0,2) and $°(0,2) respectively.

Example 3.8 Let m = n and let J be an operator on V such that J? = [
and J(Vg5) = V§. Let

gn)=A{a € glln,n)|al = Ja} .

This is a strongly transitive subalgebra of gf(n,n) for n > 1. It contains a

q(n)z{(Z 2>Eq~(n)|trb:o} |

This is a strongly transitive subalgebra (denoted by @(n — 1) in [K4]), pro-
vided that n > 2.

subalgebra

Example 3.9 Let H be an odd superspace of dimension n with a non-
degenerate symmetric bilinear form ( , ). The Heisenberg superalgebra
‘H, is the superspace H, = Cc 4+ H, where ¢ is an even central element,
with the bracket [p,q] = (p,q)c, p,q € H. Note that U(H,)/(c — 1) is the
usual Clifford superalgebra associated to H. (As usual, U(g) stands for the
universal enveloping superalgebra of a Lie superalgebra g.) Hence H,, has a
unique irreducible module, denoted by S (= spinor module), for which ¢ = 1.
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Its dimension is (Z[nT_l] , ol ). The representation of H,, in S extends to a
representation, which we denote by o, of the semidirect sum so,, + H, by
the following well known formulas, where {¢;} is an orthonormal basis of H:

n
on((aij)) = Z a;jon(€i)on(e;j), where a;; = —a;; .
7,75=1

n—1

This representation of 50, +H,, gives rise toa subalgebra of gﬁ( 2l"3] , 215 ])
which we denote by spin,. Note that spm1 = ¢(1), spin, = ¢l(1,1) and
spm3 = q(2) are strongly transitive subalgebras of gf(1,1). It is easy to see
that spin, is a strongly transitive subalgebra of gE(Z 2) but spm forn >5
is not strongly transitive. (Note that p(4) contains sp1n6.)

Furthermore, we have: soy ~ a; & ay, where a;, ~ sly and o4(ay) (resp.
os(ay)) acts via the standard (resp. trivial) representation of sfy on Sz and
a trivial (resp. standard) representation of sfy on S;. Then a; + Hy still
acts strongly transitively on S. We denote the corresponding subalgebra of
90(2,2) by spinj. Adding to it an arbitrary subalgebra a of as again gives a
strongly transitive subalgebra of ¢f(2,2), which we denote by spinj +a.

Theorem 3.1 All strongly transitive subalgebras of gl(m,n) where m > 1,
n >0, are listed in Framples 3.2-3.9. Namely, they are:

(a) gl(m,n),

(b) st(m,n) form +n > 2,

(¢) spo(m,n) form > 2, m cven,
(d) cspo(m,n) form > 2, m even,

(e) one of the subalgebras of sl [£] C gﬁ(m m), m > 2, containing slp,[¢]

and having a non-zero projection on (Cdg}

(f) one of the subalgebras of spy,[£] C gl(m,m), m > 2, m even, containing
spm[€] and having a non-zero projection on C-%

(9) p(n) forn > 2,
(h) p(n; B) forn >2, g €C,

dg’
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(1) cp(n) forn > 2,
(3) p(n) forn =2,
(k) w(0,2; ) for A #£0,1,
(1) cw(0,2; A) for A#0,1,
(m) w(0,2),
(n) $(0,2),
(0) 5°(0,2),
(p) spin{ +a, aC sly,
(¢) p4),
(r) q(n) forn >1, q(n) forn > 2.
The proof of this theorem is based on several lemmas.

Lemma 3.1 Let g C gl, be a strongly transitive subalgebra. Then either
g=gl,n>1,org=38l,, n>2 org=csp,,n>2, org=38p,, n>2.

Proof (cf. [G2]). If vy is the highest weight vector and vy is the lowest
weight vector of the representation of g in C*, then, by strong transitivity,
avy = vy for some a € g. We may assume that « is a root vector e_,,
where « is a positive root. Hence A + (—=M) = « and [g,g] is simple (by
faithfulness). But both summands on the left are non-zero dominant, hence
a is a dominant root with > . a(H;) > 2, where H; are all simple coroots. It
follows from the well-known list of dominant roots, that [g, g] is either s/, or
$pn, with « the highest root.

O

Corollary 3.1 If V = V5 + V5 is a strongly transitive module over a Lie
superalgebra g = gg + g1, then the gg-module Vg is irreducible; moreover, the
image of gg in EndVy is one of the linear Lie algebras listed by Lemma 3.1.

Lemma 3.2 Let V be a strongly transitive module over a Lie superalgebra g
and let a be a non-zero abelian tdeal of g. Then there are two possibilities:
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(a) g is one of the following subalgebras of gf(2,2): w(0,2), 5°(0,2), s(0,2),
(b) ais an even central subalgebra acting on V' by scalar operators.

Proof There exists A € a* such that the associated weight space V* =
{v € Vl]a(v) = AMa)v,a € a} is non-zero. Let g* = {g € g|\([g,a]) =0} be
the stabilizer of A, and let U = U(g")vy, where vy € V* is a non-zero
(even or odd) vector. Then U is a direct sum of isomorphic 1-dimensional
g"-modules, hence by Blattner’s theorem ([B1], [Ch]) we obtain:

V= [ndﬁkU. (3.1)
Since dim V' < oo, we conclude that
A

8" Dgs- (3.2)

Going over to the Zariski closure, we may assume that gg is an algebraic
Lie algebra; let s be a maximal reductive subalgebra of gz. Due to Corol-
lary 3.1, s acts irreducibly on Vg (since the nil-radical of gz acts trivially).
With respect to the adjoint representation of s on g, we have a decomposition
as s-modules:

g=gadg", (3.3)
where, due to (3.2), we have:
g Cor.sCg. (3:4)

Due to (3.1)-(3.4), we conclude that, as an s-module, V5 is a direct sum of
at least [1(1 4 dim g')] modules. It follows from Corollary 3.1 that

dimg’ < 2. (3.5)
If dimg’ = 2, we see that, as an s-module:
V=U+gdaU+ANgaU.

It follows from Corollary 3.1 that dimU = (0,1) (otherwise V5 is not irre-
ducible as an s-module), hence dim V' = (2,2) and the s-module Vj is either
sly or gly, while the [s, s]-module V5 is trivial. It is easy to see now that g
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lies in the subalgebra w(0,2) of g/(2,2) (defined in Example 3.7). It follows
that g is one of the strongly transitive subalgebras listed in Example 3.7.

If g =g", then V* is a g-submodule of V, hence V = V* and lemma is
proved.

Thus, the following situation remains:

g=Ch+g",
where b is a non-zero odd element such that [s,b] C Cb, and
V=UabU.

Again, by Corollary 3.1, it follows that / = V4, hence g* = g5 and ag acts
by scalar operators on Vg. If a # ag, then b € a, hence [b,a] = 0 and
therefore ag acts by scalar operators on V' and is a central subalgebra of g;
then [gg,b] C Cb and since bV* = 0 we conclude that gV'* C V*, hence
V = V* and lemma is proved.

Thus, a is a subalgebra of gz acting by scalar operators on V5. Since a is
an ideal of g, we have [b,a] C a, and since b is an odd element, we conclude
that [b,a] = 0. Hence a acts by scalar operators on V.

O

Lemma 3.3 Let V be a strongly transitive module over a Lie superalgebra
g and let v be the radical of g. Then provided that v # 0, there are three
possibilities:

(a) g is one of the following subalgebras of gl(1,1): gf(1,1), sl(1,1), ¢(1)
(and g =t),

(b) g is one of the following subalgebras of gf(2,2): w(0,2), sgi/nél, 5(0,2),
$°(0,2), q(2), 4(2), sping +a (where 0 C a ; sly) (and (g/t) ~ sl(2,1),

so4, sly in the remaining cases, respectively),

(¢c) tis an even 1-dimensional central subalgebra of g acting on V' by scalar
operators.

Proof Let v =1t® > 5 >t 5 ¢k 50 be the derived series of

t with ¥ £ 0. By Lemma 3.2, we may assume that: ) = Ce, where ¢
is a central element of g acting as identity on V. We may also assume that
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dimV # (1,1) and that k& > 1; let p = vt~V for short. We have: [z,p] = Ce
for any non=zero = € p, since otherwise = generates an abelian ideal of g,
which contradicts Lemma 3.2. Since dimV < oo, the superspace p/Ce is
purely odd. Therefore p = H + Ce¢, where H is a non-zero odd subspace of
g, ¢ is an even central element represented in V' by [ and [p,q] = (p, ¢)c for
p,q € H, where (, ) is a non-degenerate symmetric bilinear form on H,
which is invariant under the adjoint action of gg; we also have: [gg, H] C Ce.
Note that p is the Heisenberg superalgebra considered in Example 3.9.
Recall (see Example 3.9) that p has a unique irreducible representation
o in a vector space S such that o(¢) = [. Let p~ be a maximal isotropic
subspace of H and let U be the subspace of V' consisting of vectors annihilated
by p~ (vacuum subspace). Then, as a p-module, V' is isomorphic to U @ S,
where p acts via 1®o. We shall identify V with U®S. The representation o in
S extends from p to the whole g by the following formulas (cf. Example 3.9):

o(a) = Zaija(ei)a(ej) ifa € g5, [a,e] = Zaij€j7

] J

o(b) = bio(e)ifbeg, [be] =bie.

This representation of g in S extends to V=U ® S vial ® o.

Welet u(g) =g—(1®0)g, g€ g. Itisclear that u(p) = 0 and hence p
is a representation of g in V commuting with p. Therefore, the subspace U
of V' is p(g)-invariant and is a g/p-module via g. Thus, the action of g € g
in the g-module V = U ® S looks as follows:

g=(polg+1ao)g.

Since V' is irreducible, the g-module U/ must be irreducible too.

Let s be a maximal reductive subalgebra of gz (cf. Lemma 3.2). If s
is abelian, then gg is solvable, hence g is solvable ([K4], Proposition 1.3.3),
hence either dimV = 1 or dim V5 = dim V5 ([K4], Proposition 5.2.3); by
Corollary 3.1, it follows that in the latter case dim V5 = dim V§ = 1.

Thus, we may assume that s is not abelian and, as an [s,s]- module,
V5 = U@ S5+ Uz @ St. It follows that dim U = 1 and hence g is a subalgebra
of sgl/nn if n is even and of sgl/nn + Cd if n is odd, where n = dim H and d is
an odd endomorphism of the p-module S (cf. Example 3.9). It follows that
n = 3 or 4. Then it is straightforward to see that g is ¢(2) or ¢(2) if n = 3
and g is one of the subalgebras of %4 containing spinj if n = 4.

O
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Let g be a finite-dimensional Lie superalgebra of type X = A, B,C. D,
F,G, P or ), and let Der g denote the Lie superalgebra of derivations of g (it
is described by [K4], Proposition 5.1.2). A central extension by even center
of a subalgebra of Derg containing g will be called an almost simple Lie
superalgebra of classical type X.

Lemma 3.4 Let g be an almost simple Lie superalgebra of classical type
and let V' be a strongly transitive module over g of dimension (m,n), where
m,n > 1. Then the corresponding strongly transitive subalgebra of gl(m,n)
is one of the following:

(a) gl(m,n) and st(m,n) form+n >3 or (m,n) = (2,0),
(b) spo(m,n) and cspo(m,n) for m > 2,

(¢) w(0,2;)) and cw(0,2; \) for A £ 0, 1,

(d) B(n: B), cp(n), p(n) and f(n) forn = 3 and p(4),

(e) q(n) and q(n) forn > 3.

Proof is similar to that of Lemma 3.1. Let A be the highest weight of the
gg-module V5 and M the lowest weight of an irreducible component of the
gg-module V5. By strong transitivity, e_,vx = vpr for an odd positive root
a of g, hence &« = A 4+ (—=M) is a dominant odd root of g. Moreover, due
to Corollary 3.1, if [gg, gg] has at least 2 simple components, we may assume
that the restriction of M to at least one simple component of gg is non-zero.
Hence

> a(H;) > 2 (3.6)
if (g5, 95] has at least 2 simple components, where H; are the simple coroots
of gg. If [gg, g5] has only one simple component and (3.6) does not hold, then
by the above remarks, [gg, go] must act trivially on V4.

A quick inspection of cases shows that o must be the highest weight of
an irreducible submodule of the adjoint representation of gz on gy.

It easily follows from the above discussion that if g is of a type A, B, C
or D, then only the possibilities (a), (b) and (c) of the lemma occur. Since
in our situation the number k of [K4], Theorem 8 is always 1, the three
exceptional superalgebras are ruled out. Finally, if g is of type P (resp. Q),
only (c) (resp. (d)) are possible.

O
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Lemma 3.5 Let g be an almost simple Lie superalgebra of Cartan type (but
not of classical type). Then g has no strongly transitive modules.

Proof Recall [K4] that g admits a filtration by subalgebras g O g@) D
ga) D ... where gy is the radical of g and 5 := g(0)/gq) is one of the
Lie algebras ¢/, sl,, so,, cso,. Let V be a strongly transitive g-module.
Then, by Corollary 3.1, V' is a quotient of the module induced from the
even irreducible g(p)-module U on which g acts trivially and s acts via the
standard representation of gf,,, sl,,, sp, or csp,.

If g is of type W(n), n > 3, S(n), n > 4, or S(n), n > 4, then V
is isomorphic to A(n)/Cl (resp. a submodule of codimension 1 in it) with
reversed parity if g is of type W(n) or g(n) (resp. S(n)). In all these cases,
however, V5 is spanned by &, €&, . .., hence is not an irreducible s-module.

The case of g of type H(n) with n > 6 is ruled out since then s is not
of type A, or C,. If n = 5 (resp. n = 6), then the only possibility for
the s-module Vg is spy (resp. sl4). One checks directly that V5 cannot be
irreducible in these cases, which rules out types H(5) and H(6) as well.

O

Recall that a semisimple finite-dimensional Lie superalgebra g contains
an ideal of the form S = G5 A(n;) @ S, called the socle of g, where S; are
simple Lie superalgebras, n; are non-negative integers, and g is contained in
the Lie superalgebra of derivations of S (see [K4], [C]). We shall call the
number k£ > 1 the length of g. We let S;(n) = A(n) @ S; for short.

Lemma 3.6 Let g be a central extension of a semisimple Lie superalgebra g
by an even center, and let V' be a strongly transitive module over g. Then

(a) The length k of g is 1.

(b) Fither the socle S of g is a simple Lie superalgebra, or S = A(1) @ Sy,
where Sy is a simple Lie algebra and V = V5 + &V as an S-module.

Proof By Corollary 3.1, we may assume that (5)7 acts irreducibly on Vj.
Let A be the highest weight of this module. Suppose that £ > 2. Then
(S2)5V5 = 0. Let M be a non-zero lowest weight of (53)7 in V§. Arguing
as in the proof of Lemma 3.4, we see that A — M is a root of &;5; whose
restriction to 57 and Sy is non-zero, a contradiction proving (a).

Thus S = A(m) ® S; where A(m) is a Grassmann algebra in the indeter-
minates &, ... ,§, and Sy is a simple Lie superalgebra.
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Suppose that S is not a Lie algebra. Let U be a non-trivial irreducible
Si-submodule of V. Then, by Corollary 3.1, Us = Vg, (£1(S1)1)Vs = 0, hence
(£1(S1)e)Vg = 0 if m > 1. But then (&(51)5)Vf is a non-zero submodule of
V5, a contradiction.

Hence either S is a simple Lie superalgebra, or Sy is a simple Lie algebra.
In the latter case, by Corollary 3.1, the Si-module Vj is isomorphic to sf,, or
spuy 2 2, and V =V + 3. 6Ve+ 20, &V + ... Tt follows that m = 1,
proving (b).

O

Proof of Theorem 3.1. Let g C gl(m,n), m > 1, n > 0, be a strongly
transitive subalgebra. If n = 0, then, by Lemma 3.1, g is one of the linear
Lie algebras (a)-(d) with n = 0. Thus, we may assume that n > 1. If
m = n = 1, then it is easy to see that only ¢f(1,1), sf(1,1) and ¢(1) are
possible. Hence, by Lemma 3.3, either g is one of the linear Lie superalgebras
(m) — (p) listed by the theorem, or we may assume that the radical of g is an
even central subalgebra acting on V' by scalars. If g is an almost simple Lie
superalgebra, then, by Lemmas 3.4 and 3.5 we may have only cases (a)-(d),
(g)-(1) and (q)-(r) of the theorem. Finally, if g is a central extension of a
semisimple Lie superalgebra by an even center and g is not almost simple,
by Lemma 3.6 we may have only cases (e) and (f) of the theorem.

O

4 Classification of even transitive irreducible graded
Lie superalgebras: the case of inconsistent gradation

Before stating the main theorem of this section, we consider some examples.
The basic definitions may be found in [K4]. The proofs of the statements
in these examples (that are not entirely obvious) may be found in [S2] and

[CK2].

Example 4.1 (general superalgebras of vector fields) Let A(m,n) be the
associative (commutative) superalgebra Clzy,...,2,] @ A(n), m,n > 0,
m +n > 0 (it is a dense subalgebra of the linearly compact algebra A(m,n)).
Let W(m,n) denote the Lie superalgebra of all derivations of the superalge-
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bra A(m,n). It consists of linear operators of the form:

“ 0 “ 0
ZPZa—%—I_ZQ]a—&? where PinjeA(mvn)v (41)

=1 7=1

hence it is a dense subalgebra of W (m,n). It is a simple Lie superalgebra if
(m,n) # (0,1).

Let (ay,...,amlbi,...,b,) be an (m + n)-tuple of integers such that all
the a; are positive. Then, letting

degxi:ai:—deg%,deg@:bj:—degaig
2 J

defines a Z-gradation of the Lie superalgebra W(m,n). (All Z-gradations
of W(m,n) satisfying (G0) are obtained, up to automorphism, in this way,
cf. [K5].) This is called a Z-gradation of type (a1,... ,amn|b1,... b,). The
Z-gradation of type (1,...,1]1,...,1) (resp. (1,...,1]0,...,0)) is called
principal (resp. subprincipal) gradation of W(m,n).

The Lie superalgebra W (m,n) with one of the above gradations is an
even graded Lie superalgebra in the following two cases:

(a) Arbitrary W (m,n) with the principal gradation. (It is the associated
graded for the even primitive Lie superalgebra (W (m,n), W (m,n)o).)
It is an even irreducible transitive Z-graded Lie superalgebra of depth

1.

(b) The Lie superalgebras W(m,1), m > 1, with the subprincipal grada-
tion. They are even irreducible transitive Z-graded Lie superalgebras

of depth 1.

Remark 4.1 The associated graded to the primitive Lie superalgebra
(W(m,n), J;W(m,n)) considered in Example 1.2 is W (m,n) with Z-gradation
of type (1,...,1]1,...,1,0,...,0) with n — 7 zeros.

Example 4.2 (special superalgebras of vector fields) Denote by S’(m,n) the
subalgebra of W (m,n) which consists of operators D of the form (4.1) with
zero divergence defined by:

: oP; 9Q;
divD = Z D, + Z(—l)p(Qﬂ)a—&],

J
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and let S(m,n) = [S"(m,n),S"(m,n)]. Then S(m,n) coincides with S'(m,n)
ifm>1orm=0,n >3, and then it is simple. One has:

0
S/(l,n) = S(l,n) —|—(C§1 577‘677
1

and S(1,n) is simple iff n > 2.

All the Z-gradations of W(m,n) defined in Example 4.1 induce Z-gradations
of S(m,n) and S'(m,n). The principal and subprincipal gradations of these
Lie superalgebras are defined as those induced by principal and subprincipal
gradations of W (m,n).

We have the following two cases of even Z-graded Lie superalgebras, both

of depth 1:
(a) S(m,n)and S’'(1,n) with the principal gradation. They are irreducible
transitive Z-graded Lie superalgebras, except for S(1,1) which is not

irreducible.

(b) S(m,1) with the subprincipal gradation. They are transitive irreducible
Z-graded Lie superalgebras iff m > 2 (for m = 1 transitivity fails).

Example 4.3 (Hamiltonian superalgebras) Let m = 2s be even and consider
the following even Hamiltonian differential form:

hm,n =2 Z dzr; A dl’5+i + Z dg] dfn—]-H :
=1

J=1

Denote by H'(m,n) the subalgebra of W(m,n) consisting of operators that
annihilate h, ,, and let H(m,n) = [H'(m,n), H'(m,n)]. The Lie superalge-
bra H'(m,n) consists of operators of the form:

O (of 0 of o
Hy = Z (8:@ 0Ty N O opi 6:1;2')

=1

VP TIN af o )
— (—1\2H) 4 i
- e (9@‘ O&n—jt1 - Dnejyr1 08 )

where f € A(m,n). One has: H(m,n) coincides with H'(m,n) if m > 2, and
then it is simple. Furthermore:

H/(()? n) = H(()? n) + CHflmfn )
and H(0,n) is simple iff n > 5.
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The gradation of type (ayi,...|bs,...) of W(m,n) induces a gradation
on H'(m,n) (and H(m,n)) iff the differential form h,,,, is homogeneous in
this gradation [K5] (if we put degdx; = a; and deg d{; = b;). In particular,
the principal gradation of W (m,n) and the gradation of type (1,...,1|2,0)
of W(m,2) induce gradations on the Hamiltonian superalgebras, Called the
principal and subprincipal gradations respectively of these superalgebras.
Again we have two cases of even transitive irreducible Z-graded Lie superal-
gebras:

(a) H'(0,n), n >3 and H(m,n), m > 2, with principal gradation, which
have depth 1,

(b) H(m,2), m > 2, with subprincipal gradation, which have depth 2
(dimg—Z = (07 1))

Example 4.4 (contact superalgebras) Let m = 2s + 1 be odd and consider
the following even contact differential form:

km,n =dz,, + Z(Q}Z dl’s_H' — Tt dwz) + Z fj dgn—j-H .

=1 7=1

Let K(m,n) = {D € W(m,n)|Dk,,,, = fky, for some f & A(m,n)}. The
Lie superalgebra K(m,n) is always simple. Since K(1,2) is isomorphic to
W(1,1), we shall always assume when talking about K(m,n) that (m,n) #
(1,2).

As before, a Z-gradation of W(m,n) induces one on K(m,n) if the dif-
ferential form k,, , is homogeneous. In particular, the Z-gradation of type
(L...,1,2|1,...,1) (vesp. (1,...,1,2[2,0)) of W(m,n) (resp. W(m,2))
induces a Z-gradation of K(m,n) (resp. K(m,2)), called the principal (resp.
subprincipal) gradation of these Lie superalgebras. Again, we have two cases
of even transitive irreducible Z-graded Lie superalgebras:

(a) ]&( ,n) with principal gradation, which have depth 2 (dimg_, =
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Example 4.5 Let P = @, P; be one of the following Lie algebras: W (m,0),
S(m,0), H(m,0) or K(m,0) with the principal gradation. Asin Example 3.4,
consider the Lie superalgebra P[¢] with the gradation, called principal, de-
fined by letting deg { = 0. As in Example 3.4, consider the semi-direct sum
P[£] = P[¢]+¢l(1,1) with deg ¢g/(1,1) = 0. Let a be a subalgebra of gf(1,1)
with a non-zero projection on Cd—cé. Then P[£] + a is an even transitive irre-
ducible Z-graded Lie superalgebra.

Example 4.6 (odd Hamiltonian superalgebras) Consider the following odd
Hamiltonian differential form:

hOn = zn: dl‘Z d& .
=1

Denote by HO(n,n) the subalgebra of W (n,n) consisting of operators that
annihilate ho,. This Lie superalgebra consists of operators of the form:

H@:i(af 0 +(—1)p<f>af 0

dx; O P 8:1/'2) . feANmn).

=1

It is simple iff n > 2. The principal gradation of W (m,n) induces a Z-
gradation, called again principal, of HO(m,n). This is an even irreducible
transitive Z-graded Lie superalgebra of depth 1 if n > 2 (for n = 1 it is not
irreducible).

We shall need the following explicit formula:

[HOy, HOy| = HOyy,, ,where

N of 9
{fidhe = (ai ag +(_1)p(f)6£ 852») '

=1

Note that HO(2,2) with gradation of type (1,1]0,0) is isomorphic to
S(2,1) with the principal gradation (since W(0,2) ~ s{(2,1)). Therefore, we
shall always consider HO(n,n) with n > 3.

Example 4.7 (special odd Hamiltonian superalgebras).  Denote by
SHO'(n,n) the subalgebra of divergence zero operators of HO(n,n) and
let SHO(n,n) denote its derived subalgebra. Then one has:

SHO'(n,n) = SHO(n,n) + CHO¢, ¢, -
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The Lie superalgebra SHO(n,n) is simple iff n > 3. The principal gradation
is defined as in Example 4.6. The Z-graded Lie superalgebras SHO'(n,n)
with n > 2 and SHO(n,n) with n > 3 are even irreducible transitive of
depth 1 (SHO(n,n) for n = 1,2 and SHO'(1,1) are not irreducible.)

Example 4.8 (odd contact superalgebras). Consider the following odd con-
tact differential form:

ko, = d&,41 + Z(II/‘Z dé; + & dxy).

=1

Let KO(n,n + 1) = {D e W(n,n+ 1)|D(ko,) = f(ko,) for some f &
A(n,n +1)}. This Lie superalgebra is simple for all n > 1. Here we have
two cases of even transitive irreducible Z-graded Lie superalgebras:

(a) The Z-gradation of W(n,n + 1) of type (1,...,1]1,...,1,2) induces
a Z-gradation, called principal, of KO(n,n + 1). This is an even irre-
ducible transitive Z-graded Lie superalgebra of depth 2 (and dimg_, =
(0,1)), provided that n > 2 (for n = 1 it is not irreducible).

(b) The gradation of type (1,...,1]0,...,0,1) of W(n,n 4+ 1) induces a
Z-gradation of KO(n,n + 1), called its subprincipal gradation. These
Z-graded superalgebras are transitive irreducible of depth 1 for n > 2,
but only KO(2,3) with subprincipal gradation is even.

In the description of the next example we shall use that KO(n,n + 1)
consists of operators of the form (f € A(n,n + 1)):

B af

KO; = HO;+ (E(f) -2 + (=1)P) E,
KOy s+ (E) f)8§n+1 (—1) T
& d d
where I/ = ;(%a—xz—l_&a_&)
One has: [KOy, KO,| = KOy, , where
d d
(Foghe = 1o hp + (E = 2)f o 4 (—1p) / (E—2)g.

afn-l-l afn-l—l
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Remark 4.2 Let A=3%"" 8525, be the odd Laplacian. Then

div HO; = 2(=1)"DA(f),
divKO; = 2(—1)p<f>(A(f)+(E—1)a?f )
n+1

Remark 4.3 The Lie superalgebras W(1,1), K(1,2) and KO(1,2) are iso-
morphic. However, the principal gradation of W(1,1) only is irreducible.

Example 4.9 (special odd contact superalgebras) Given § € C, introduce
the deformed divergence (cf. Remark 4.2):

af )
afn-l-l 7

and define the following subalgebra of KO(n,n + 1) (cf. [Kol):
SKO'(n,n+1;8) = {KO|divsf =0} .

div g f = 2(=1)PD(A(f) + (£ — np)

As before, we denote by SKO(n,n+ 1;3) its derived algebra. It is simple iff
n > 2. One has: SKO'(n,n +1;8) = SKO(n,n + 1; ) for all n > 2 and all
[ with the following two exceptions (cf. [Ko]):

SKO'(n,n+1;1) = SKO(n,n+1;1) + CKO¢¢,. ¢,
n—2

-2
SKO'(n,n+ 1; ) = SKO(n,n+1; n—) + CKO¢, . ¢, -
n

Again we have two cases of even transitive irreducible Lie superalgebras:

(a) The principal gradation of KO(n,n + 1) induces a Z-gradation, called
principal, of all these Lie superalgebras. All of them are even irreducible
transitive Z-graded Lie superalgebras of depth 2 (and dimg_, = (0, 1)),
provided that n > 2 (for n = 1 irreducibility fails).

(b) The subprincipal gradation of KO(n,n + 1) induces a gradation of
SKO'(n,n+1;8) and SKO(n,n + 1;3), called their subprincipal gra-
dation. These Z-graded Lie superalgebras are transitive irreducible of
depth 1 for n > 2, but they are even only for n = 2 (and arbitrary 3).

Example 4.10 (exceptional Lie superalgebra F(4,4) [S2]) There exists a
simple Z-graded Lie superalgebra of depth 1: FE(4,4) = @;>_1g; such that
the go-module g_; gives rise to the linear Lie superalgebra p(4). It is an even
irreducible transitive Z-graded Lie superalgebra.
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Example 4.11 (exceptional Lie superalgebra F(2,2) [CK2]). There exists
a simple Z-graded Lie superalgebra of depth 1: F(2,2) = @;>_1g;, such that
the go-module g_; gives rise to the linear Lie superalgebra spinj. One has:

Der E(2,2) = E(2,2) 4 sl5,

where deg sl = 0 and the (go 4+ sfz)-module g_; gives rise to the linear

Lie superalgebra spin,. Thus, for any subalgebra a of sf; we get an even
irreducible transitive Z-graded Lie superalgebra F(2,2) + a.

The gradations in Examples 4.10 and 4.11 are called principal.

The following two propositions are used in the sequel. Their proofs are
straightforward (though a bit messy) and may be found in [CK2]. Here and
further we use the following notations. Let g = @;>_qg; be a Z-graded Lie
superalgebra. Then Cy + g denotes the semidirect sum of Cz with g, where
z is a derivation of g such that 2|y, = j/ and degz = 0. If g is transitive,
then Cy + g is transitive iff gy contains no non-zero elements acting as scalars
on g_q1. Also, if go = p(m) or ep(m), one can form the semidirect sum of
CF with g; this will be denoted by C, + g. Furthermore, if d = 1 and g_;
has an even (resp. odd) skew-supersymmetric bilinear form ( , ) which
is invariant with respect to [go, go], then g has a central extension, denoted
by C_s + g, constructed by adding to g the even (resp. odd) central 1-
dimensional subspace Ce¢ in degree —2 and defining a new bracket on g_;

by:

[xvy]:[xvy]—l_(xvy)cv $7y€9—1-

Proposition 4.1 All even transitive irreducible Z-graded Lie superalgebras
g = @j>_19; of depth 1 with the go-module g_; giving rise to the indicated
below subalgebra of gl(m,n), where m > 1, are as follows (with restrictions
on m and n given in Eramples 4.1-4.9):

1. Superalgebras with the principal gradation:

(a) gl(m,n) : W(m,n), Co+ S(m,n), Co + 5'(m,n),
(b) st(m,n) : S(m,n), S"(m,n),

(¢) spo(m,n) : H(m,n),

(d) cspo(m,n) : Co+ H(m,n),
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(¢) stulé]+a W(m,0)[f] +a, S(m,0)[{] + a,

(f) spml€] +a H(m,0)[¢] + a,

(g) p(m) : HO(m,m), C, + SHO'(m,m), C, + SHO'(m,m),

(h) cp(m) : Co + HO(m,m), Co + C, + SHO(m,m),
Co+Cy + SHO (m,m),

(i) p(m) : SHO(m,m), SHO (m,m),

(j) ep(m) + Co+ SHO(m,m), Co + SHO'(m,m),

(k) p(4) = E(4,4),

(1) spinj4+a : FE(2,2)+a.

1. Superalgebras with the subprincipal gradation:

(a) 50,,[€] W(m,1), S(m,1)+ Cy 4 C¢,
(8) stulé] + C& +Clm - DEL +1) = S(m,1),
(c) Sﬁm[f]—FCf%—l—Cl o Co 4 Sim, 1),
(d) w(0,2;X) : SKO(2,3;1— %),
(¢) cw(0,2;1) : Co+SKO(2,3;1 1),
(f) w(0,2) : KO(2,3),
(g) $°(0,2) : SKO(2,3;1),
(h) 5(0,2) : SKO'(2,3;1).
Il (a) g(n) org(n) : none.

Proposition 4.2 All even transitive irreducible Z-graded Lie superalgebras
g = Dj>_q9; of depth d > 2 with the go-module g_; giving rise to the indicated
below subalgebra of gl(m,n), where m > 1, have depth 2 and are as follows:

1. Superalgebras with the principal gradation and 1-dimensional even g_o:

(a) spo(m,n) : C_y+ H(m,n),
(b) espo(m,n) : C_y+Cy+ H(m,n), K(m,n).

I1. Superalgebras with the principal gradation and 1-dimensional odd g_5:
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(CL) ﬁ(m) : C—Q —I_HO(mvm); C—Z +C€)‘|‘SHO(m,m), (C_2 —|—C€)—|—

SHO'(m,m),
(b) ep(m) : KO(m,m+1), C.o+Co+HO(m,m), C_o+Co+C +
SHO(m,m), C_o+Co+Cy+SHO (m,m), Co+SKO(m,m+1;3),
(¢c) plm) : C_s+SHO(m,m),C_y + SHO'(m,m),
(d) ecp(im) : Co+Co+SHO(m,m+1),C_34+Co+SHO (m,m),
(e) p(m,3) : SKO(m,m+1;5),SKO'(m,m+ 1;3),

(f) spml€] + CE g + T = ((H(m, 0) + Cp)[€] + CE g + Cg) /Cos.

1. Superalgebras with the subprincipal gradation and 1-dimensional odd
g2

(a) spnl€l + CE5 +Ct = H(m,2).
IV. Superalgebras with the principal gradation and dimg_o = (1,1):

(@) espaldl 40+ K(m+1,0)[€] +a, (Coo + H(m, 0))[¢] + a with

a non-trivial projection on C£.

V. Superalgebras with the subprincipal gradation and dimg_ = (1,1):

(a) sp,l¢] + K(m+1,2),
(b) espmlé]+a:C_y + H(m,2)+ a.

Now we can state and prove the main theorem of this section.

Theorem 4.1 Let g = @;>_q9; be a Z-graded even transitive irreducible Lie
superalgebra. Suppose that the gradation of g is not consistent (i.e., that
g_1 contains a non-zero even element). Then g is one of the Z-graded Lie
superalgebras listed below.

1. The following Lie superalgebras with the principal Z-gradation:

(a) W(m,n) with m > 1,
(b) S(m,n) with m >2,5(1,n) and S’(1,n) with n > 2,
(¢c) H(m,n) with m > 2 even,
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(d) K(m,n) with m >3 odd,
(e) SHO(m,m) with m >3, and SHO'(m, m) with m > 2,
(f) HO(m,m) with m > 2,
(9) SKO(m,m + 1;3) and SKO'(m,m + 1; 3) for m > 2,
(h) KO(m,m+1) form > 2,
(i) (4,4,
(7) E(2,2) + a, where a is a subalgebra of sls,
(k) P[£]+ a, where P is one of the Lie algebras W(m,0), S(m,0), or
H(m,0) and a C gl(1,1) has a non-trivial projection on (Ca—ag,
(1) (C_y + H(m,0))[£] + a and K(m,0)[¢] + a, where a is as in (k),
(m) ((H(m.0) + C_a)[€] + CE £ + C2)/Ca

1. The following Lie superalgebras with the subprincipal gradation:

(a) W(m,1) with m > 1,

(b) S(m,1) and S(m,1) 4+ Cy + C& with m > 2,
(¢c) H(m,2) with m > 2 even,

(d) K(m,2) with m >3 odd,

(e) KO(2,3),

(f) SKO(2,3;8) and SKO'(2,3;3).

Il (a) C) + g, where g is of type e,
(b) C_y + g, where g is of types le, I f, Illa,
(¢c) C_y + H(m,0)[{] + a, where a = (C% ora= (C% + ClI.

IV. Cy+g, where g is one of the above Z-graded superalgebras for which g
has a triwial center.

Proof By Proposition 2.1, the go-module g_; gives rise to a strongly tran-
sitive subalgebra of gf(m,n), where (m,n) is the dimension of g_y, m > 1.
All such subalgebras are listed by Theorem 3.1.

Let b = @;<_2b; be the maximal ideal of g contained in g~ and let
g’ = g/b = @;g’. Recall that, by Lemma 2.4, b is odd, hence it is abelian
and [(go)r, b] = 0.
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Due to Lemma 2.6, g’ , = [a,g_1], where a is a non-zero even element of
g_1. Hence dimg’ , < dimg_;. But in all cases listed in Theorem 3.1 except
for (e), (f), (k) and (1), g_1 is the irreducible non 1-dimensional module over
go of minimal dimension (with the non-zero action of the center of go in
case (p)); in cases (e) and (f) the only other possibility for an irreducible go-
module of smaller dimension is the (1, 1)-dimensional module which is trivial
on p[€]. In cases (k) and (1), the condition g’ , = [a,g_4] for an even weight
vector rules out the possibility dimg’ , > 1 by looking at s{,-weights.

Thus, all irreducible subquotients of the go-module g’ , are either (1,0)-
dimensional, or (0, 1)-dimensional, or (1, 1)-dimensional. Since the go-module
g’ , is a quotient of A%g_y, it is easy to see by inspection of the list given by
Theorem 3.1 that one has four possibilities:

1) dimg’, =0,

2) dimg’, = (1,0) and the [go, go]-module g_; has an even invariant skew-
supersymmetric bilinear form,

3) dimg’, = (0,1) and the [go, go]-module g_; has an odd such form,

4) dimg’, = (1,1) and the [go, go]-module g_; has both even and odd
such forms.

In Case 1) depth g’ = 1, then either 1’) depth g = 1 or 1”)dimg_, = (0, 1)
which is possible if the [go, go]-module g_; has an odd skew-supersymmetric
invariant bilinear form. In Case 1’) we use Proposition 4.1 which shows that
only the following cases of Theorem 4.1 occur: I (a)-(c), (e), (f), (i)-(k),
IT (a)-(c), (e), (f), III (a) and IV. In Case 1”) g_5 is central, hence g_3 =0
and depth g = 2; by Proposition 4.2, we get only Cases III (b) and (c) of
Theorem 4.1.

In Cases 2)-4) the depth of g’ = 2 since otherwise, as above, g’ , = [¢ ,, d]
for some even a € g_y, hence dimg’ ; < dimg’ ,. But taking bracket of g_,
with an element from g’ , (resp. g_») establishes a homomorphism of [go, gol-
modules g1 — g’ 5 (resp. g_3). Henceg’ ; = 0 and g_3 = 0 (since b3 is odd).
Thus, in Cases 2)-4) the depth of g is 2. Since the go-module g_5 is a quotient
of A?g_;, we see, as above, that the only possibilities for g_, are: 2')
dimg_» = (1,0) and 2") dimg_, = (1, 1) in Case 2); and 3) dimg_, = (0, 1)
(resp. 4) dimg_5 = (1,1)) in Cases 3) (resp. 4)). Using Proposition 4.2, we
see that in Case 2') we have only Case I (d) of Theorem 4.1, in Case 2") we
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have only Case III (b) of Theorem 4.1, in Case 3) we have only Cases 1 (g),
(h), (m) and IV of Theorem 4.1, and in Case 4) we have only cases I(1) and
II(d) of Theorem 4.1.

U

5 Classification of even transitive irreducible graded
Lie superalgebras: the case of consistent gradation

A Z-graded Lie superalgebra g = @;ezg; is called consistent if g5 = @jez8z;
and g7 = @jez@2;+1. Note that a consistent transitive Z-graded Lie su-
peralgebra of depth 1 is finite-dimensional (since it can be embedded in
W(0,dimg_1)). A consistent Z-graded Lie superalgebra of depth > 2 is
infinite-dimensional (since otherwise all even elements are exponentiable).
We shall treat these cases separately in Theorems 5.1 and 5.3.

In the statement of the following theorem and further on we shall use
the following notation: sf,, sp, and so, denote the standard modules of
these Lie algebras, s denotes the contragredient module, spin; denotes
the 8-dimensional spinor representation of so;, 1 stands for the trivial 1-
dimensional representation. The sign X stands for the outer tensor product
of gi-module V; and go-module V5, i.e., the g; @ go-module Vi @ V5, and ®
stands for the usual tensor product of g-modules. As usual, S*V and A*V
denote the k-th symmetric and exterior powers of the g-module V (in the
“super” sense). The 1-dimensional module over C for which 1 — « is denoted
by C(a). Similar notation is used for Lie superalgebras.

Theorem 5.1 ([Kj], Theorem 4) The following is a complete list of transi-
tive irreducible consistent Z-graded Lie superalgebras g = @§:_19j of depth 1
and k> 1:

1. The go-modules g1 and g_1 are contragredient and k = 1:

(a) st(m,n), m#n, m,n>1 (go-module g_y = gl,, K sl,,),
(b) sl(n,n), n >2 (go-module g_y = sl,, K sl,),

(¢) spo(m,2), m even > 2 (go-module g_1 = ¢spy, ),

(d) Co + g, where g is of type 1(b).

Il. The go-modules g1 and g_; are not contragredient and k = 1:
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(a) p(n), n >3 (go-module g1 (resp. gi1) = S?sl, (resp. A*sl%)),

(b) pl&] + (C%, where p is a simple Lie algebra (po-module p_1 = adp
and P = 1);

(¢c) Co+ g, where g is of types I (a), (b).

il k> 1:
(a) W(0,n), n> 3, with principal gradation (go-module g_y = g{,,),
(b) S(0,n), n >4, with principal gradation (go-module g_1 = sl,,),
(¢c) H(0,n), n > 5, with principal gradation (go-module g_1 = s0,),

(d) H'(0,n), n >4, with principal gradation (go-module g_; = s0,),
(e) Co+ g, where g is of types I (b)-(d).

A transitive Z-graded Lie superalgebra is called bitransitive if, in addition
to properties (G0), (G1), (G2), it satisfies the following two properties:

(G8) ifa € g; with j < —1 and [a,g:] =0, then a =0,
(G9) g, = gl for each j > 1.

Recall (see [K1], [K4]) that for any transitive local Lie superalgebra
g_1 + go + g1, there exists a unique bitransitive Z-graded Lie superalgebra
9= Djezd;-

Theorem 5.2 The following is a complete list of bitransitive irreducible con-
sistent Z-graded Lie superalgebras g = @j>_q9; of depth d > 2 (d = 2 unless
otherwise stated), such that the [go, go]-modules g1 and g1 are contragredient
(in parenthesis the [go, go]-modules g; for —1 > 5 > —d are described; the
go-modules g; and g_; are contragredient):

(a) spo(2m,n), m>1,n>1,n#2 (g_1 = sl,,Hs0,, g_y = S*s(,,K1),
(b) spo(2m.,2n), m >1,n>2 (g_y = sl,, K spay, g2 = A*s(,, K1),
(c) D(2,1;a)  (g-1 =504, 92 =1),

(d) F(4) (9-1 =spin;, g2 =1),

(¢) F(4)  (9-1=s(NWsps, g2 =1Ks05),
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(f) F(4) (9—1 = 863 X 862 , g9 = Sgir; X 1,9_3 =1K 862 , 04 = 863 X 1),
(9) G(3) (g-1 = T-dimensional irreducible Gy-module, g_o = 1).

Proof The Lie algebra go is a direct sum of a semisimple Lie algebra [go, go]
and at most 1-dimensional center Ce. Let €, fi,h;, @ = 1,...,r, be the
Chevalley generators of [go, gol, let eg (resp. fo) be the lowest (resp. highest)
weight vector of the [go, go]-module gy (resp. g_1), and let hg = [eq, fo]. Then
the elements e, f;, h;, © = 0,1,... . r, generate a finite-dimensional contra-
gredient Lie superalgebra g’ [K4] such that g = g’ + Ce. The contragredient
Lie superalgebra g’ satisfies the conditions of Theorem 3 of [K4] and also has
a unique odd simple root. Thus, we must select among all diagrams given
by Proposition 2.5.6 of [K4] those with a unique non-white node. A com-
plete list of these diagrams, along with the coefficients of the highest root,
is as follows (unfortunately some of the diagrams for F(4) and G(3) were
inadvertently omitted in [K4]); here m,n > 1 and m is even for spo(m,n):

st(m, n) 11 1 1 1 1
1 2 2 2
spo(m,2),m > 2
po(mn.2) RO .. 0=0
spo(m, 1) 2 2 2 2
O-O—..-C—e
spo(m,n), n >1 odd 22 2202 22
T OO 0RO~ O0=0
2 2 2 2 2 2

cpolm.n). n even O-Om+-O-®-0=-0-01
O1

spo(2,n),n even I 2 2 2 2 !
1 2 2 2 2 2 2

spo(m,n),m > 2,n even

1 2 1

D(2,1;a) QO

41



2 3 2 1
®—-0<=0-0
2 4

3 2
F4
W 0r®-0-0
2 3 2 1
O=0-&®-0O
2 4 2
G(3
Y @00
2 —1 0
Here the diagram ()+(&)—() corresponds to the matrix | « 0 —1 |,
0 —1 2
where « is arbitrary in the case D(2,1; ), = —1 in the case spo(2,n) and

a = 3/2 in the case F'(4).

The depth of g is then equal to the label of the non-white node, the Dynkin
diagram of [go, go] is obtained by removing the non-white node, and non-zero
labels of the highest weight of the [go, go]-module g_; equal 1 for the nodes
connected to the non-white node. The [go, go]-modules g; for —d < j < -2
are computed directly.

O

Corollary 5.1 Let g = ©j>_q9; be an even transitive consistent Z-graded
Lie superalgebra such that the go-module g contains a submodule g} con-
tragredient to g_y, and denote by g' = @;g} the bitransitive Z-graded Lie
superalgebra with local part g1 + go + g;. Then the go-modules g and g’ ;
are contragredient, dimg’ < oo and there are the following possibilities for g’
and the [go, go]-modules g_; and g_:

L g=g +g0+g:

(CL) g/:Saman), m‘l‘n 20, m—l—n > 079_1 :nglgsgn}
(b) g = SPO(m,Q), m even > 2, g1 = SPy.

1. g = @3__,g; and the center of gy is 1-dimensional:

(a) spo(2,n), n>1, n#2, g1 =350, @g-2=1,
(b) Sp0(2m74); m > 2; g1 = 3£2 I SP2m, 9-2 = 1;
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(¢) spo(2m,6), m > 1, g1 = sl3 R spy,, g0 = slE K1,

() D(2,1:0), g1 = 500, g2 =1,

(¢) F(4), g—1 =spin;, g»=1,

(f) G(3), g-1 = 7-dimensional irreducible Gy-module, g_o = 1.

Proof The local part of the Lie superalgebra g’ admits a Cartan involution
which induces the Cartan involution on gy and exchanges g_; and gj. It
induces a Cartan involution of g’ which exchanges g’ ; and g, hence g’ ; and
g’ are contragredient and dim g’ < oco.

In the case when depth g’ = 1 we may apply Theorem 5.1, Case 1.

In the case when depth g’ > 2 we use Theorem 5.2. We apply Lemma 2.6
in order to eliminate some cases of Theorem 5.2. Since S%s/,, is strongly
transitive only for m = 1, case (a) is possible only if m = 1, which gives
case [I(a) of the corollary. Similarly, since A®s/,, is strongly transitive only for
n = 2 and 3, we get cases II(b), (¢) of the corollary. Case (e) of Theorem 5.2
is ruled out since sos is not a strongly transitive module. Finally, case (f) of
Theorem 5.2 is ruled out since g’ , = [a, g’ ,] for some non-zero a € g, (by
Lemma 2.6), hence dimg’ , < dimg’,.

O

Before stating the main theorem of this section (Theorem 5.3) we intro-
duce some more examples. The proofs of the statements in these examples

may be found in [CK2].

Example 5.1 The contact superalgebra K(1,n) with the principal Z-grada-
tion (see Example 4.4) is an even transitive irreducible consistent Lie super-
algebra of depth 2 for n = 1 and n > 3 (for n = 2 irreducibility fails).

Example 5.2 (exceptional Lie superalgebra E(1,6) [CK1], [S2]) Consider
the Lie superalgebra K(1,6) = @®;>_og; with the principal gradation. The
[go, go]-module g_; gives rise to the linear Lie algebra sog ~ A?sly and the
[g0, go]-module g; is isomorphic to g*, & gf @ g;, where g and g are
[g0, go]-submodules of g; isomorphic to S?sly and S?s; respectively. Denote
by E(1,6) the graded subalgebra of K(1,6) generated by g_1+go+(g*, +g7).
This is a simple even transitive irreducible consistent Z-graded Lie superal-
gebra of depth 2. (Note that taking g; in place of g gives an isomorphic
superalgebra. Also, taking g + g gives C_, + H(0,n), taking gf or g
gives p(4) and taking g*, gives spo(2,6), all of which are finite-dimensional
graded Lie superalgebras of depth > 2, hence not even.)
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Example 5.3 (exceptional Lie superalgebra £(5,10)) There exists a unique
bitransitive Z-graded Lie superalgebra, denoted by E(5,10), such that the
go-module g_; (resp. @) gives rise to the linear Lie algebra A%sl5 (resp.
highest component of sf5 @ A%sl5). Tt has depth 2 with the go-module g_,
being sfZ and it is simple. Its explicit construction is very easy (see [CK2]
for details). Let F(5,10)g be the Lie algebra S(5,0) of divergence 0 polyno-
mial vector fields on C°, i.e., polynomial vector fields annihilating the volume
form v = day A ... A das. Let FE(5,10)7 be the space of closed polynomial
differential 2-forms on C°. The bracket of E(5,10)g with E(5,10); is defined
by the usual action of vector fields on differential forms. In order to define
bracket of two elements from E(5,10)g, note that vector fields may be iden-
tified with differential 4-forms by contracting a vector field with the volume
form v. Hence we may define [wy,ws] = w1 A wy for wy,wy € FE(5,10)5.
The Z-gradation of F(5,10) is defined by letting degz; = — deg d/dz; = 2,
degdz; = —%.

Example 5.4 (exceptional Lie superalgebras £(3,6) and F(3,8)) There ex-
ist two bitransitive Z-graded Lie superalgebras, denoted by F(3,6) and
FE(3,8), such that the go-module g_; (resp. g1) is isomorphic to sl3 K sy
C(—1) (resp. (5%sl3Ks(,KC(1))+505Ks,iAC(1)). The graded superalgebra
FE(3,6) has depth 2 with the go-module g_, isomorphic to sfs K 1 K C(—2).
The graded superalgebra E(3,8) has depth 3 with the go-module g_5 isomor-
phic to sl3 1K C(—2) and the go-module g_3 isomorphic to 1 K sy KC(—3).
Both superalgebras are simple. Their explicit construction is slightly more
complicated than that of F(5,10) and may be found in [CK2].

Remark 5.1 [CK2] The Lie superalgebras F(3,6), F(3,8) and FE(5, 10) have
a Z-gradation of depth 1, 2 and 2 respectively (with dimg_, = (1,0) in the
second and third cases) such that go is isomorphic to W(0,3), W(0,3) + C
and S(0,4) 4 C respectively, and the go-module g_; is the space A(3)/C with
reversed parity, the space of half-densities in 3 odd indeterminates and the
space A(4)/(C + C&1&26384) with reversed parity respectively. The existence
of such Z-graded Lie superalgebras was announced in [S1], and a proof was
given in [S2], but the proof in the second case is incorrect.

Example 5.5 (exceptional Lie superalgebras £'(3,6) and E’(3,8)) We shall
denote by F'(3,6) and E’(3,8) the subalgebras of F(3,6) and F(3,8) re-
spectively generated by the subspaces g_; + [go, go] + @}, where ¢’ is the
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[g0, go]-submodule of g; isomorphic to S?sl3 X sly. It is easy to see that
FE’(3,6) is isomorphic to the semidirect sum of sl which is put in degree
0 and SHO(3,3) with the gradation of type (2,2,2]3,3,3), and E’(3,8) is
isomorphic to the semidirect sum of sl (put in degree 0) and the central
extension of SHO(3,3) (with this gradation) by odd 2-dimensional center
put in degree —3.

Example 5.6 (s/y+5(1,2) [P]) The Lie algebra sly acts by outer derivations
on the Lie superalgebra S(1,2) preserving the gradation of type (2|1,1).
We denote the resulting Z-graded semi-direct sum by sly + S(1,2). It is
isomorphic to Der S(1,2).

Proposition 5.1 ([CK2]) All even transitive irreducible consistent Z.-graded
Lie superalgebras g = @;>_q9; with the non-zero go-modules g; for —1 > 7 >
—d indicated below are as follows:

(a) g1 = s0, RC(—=1),n > 1,n # 2,92 = C(=2) : K(l,n), sly +
S(1,2) and E(1,6),

(b) g1 = A2S£5 , g9 = 3@ . E(5, 10),
(c) g-1 = N2sls RC(—1), g_o = sl RC(-2) : Cy + F(5,10),

(6) g1 = 863&862&6(—1), g2 = 863&1&(@(—2), g3 = 1&862&@(—3) .
E(3,8) and Cy + E'(3,8),

(f) g1 = 863&86279_2 = Sgglgl . E’(3,6),
(g) g1 = 863&86279_2 = 863&1, g3 = 1 &862 . E’(3,8)

Now we can state the main theorem of this section.

Theorem 5.3 An cven transitive irreducible consistent Z-graded Lie super-
algebra g = Dj>_q9; of depth d > 2 is isomorphic to one of the following
Z-graded Lie superalgebras:

(a) K(1,n),n>1,n# 2,
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(b) E(1,6) and sy + S(1,2),
(¢) E3,6),
(d) E(3,8),
(e) E(5,10),

(f) E'(3,6) and E'(3,8),
(9) Co + g, where g is of type (e) or (f).

Consider the decomposition of the gg-module g; in a direct sum of irre-
ducible submodules:

amo= o, (5.1)

Let F' be a highest weight vector of the go-module g_; and FEj;, be a lowest

weight vector of the go-module g[ls]. Lemmas that follow put various restric-
tions on the decomposition (5.1) and the weights A and M;.

Lemma 5.1 At most one of the modules g[ls] is contragredient to g_1, unless
the go-module g_1 is isomorphic to csoy.

Proof Suppose that there are two such modules, say g[ll] and g[lz]. Let £ ,
and E”, be their lowest weight vectors, and let ' = [E',, Fi], h" =
[E7y, Fa]. If R = ch” for some ¢ € C, then [E', — cE”,, FA] = 0,
hence [E", — ¢E”, ., g_1] = 0, which contradicts transitivity of g. Hence
g1 + [g_l,g[f]] + g[f], i = 1,2, must be local parts of non-isomorphic bi-
transitive Z-graded Lie superalgebras, which we shall denote by p’ and p”.

Corollary 5.1 shows that this may happen only in two cases:

(a) (p,9") = (D(2,1;0), D(2,1;8)), «,B€C,
(b) (p',p") = (s((3,2), spo(2,6)).

(In case (a), D(2,1; ) may degenerate in Cy 4 s£(2,2).) Thus, we have to
rule out case (b).

Recall that the diagram of spo(2,6) at hand is O~O+®@—() with the
highest root 0 = a3 + 202 + 203 + a4, and 0 — «; is a root iff j = 2
(arj denote simpleroots). The lowest root vectoris e_g = [fif2fsfafsfz]. Here
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ei, fi, hi, © = 1,2,4, are Chevalley generators of pj and f3 = Fp, es = E”,;
we let €5 = E’,. Then [e_g,e5] = 0 since § — a3 is not a root, hence
[[e=g, fs], €8] = O(h')e_g # 0 and [e_g, f3] # 0. Next, [[e—g, f5], f1] # 0 since
its bracket with e4 is non-zero (because 6 — ay is not a root and as(hy) # 0).
Finally, [[[e—a, f3], f1], f3] # 0 since its bracket with es is non-zero (because
§ — ag is not a root and ay(hs) # 0). Thus, g_4 # 0. But this contradicts
the following remark (which will be used again later).

Remark 5.2 If; under the assumptions of Theorem 5.3, the [go, go]-module
g_1 is isomorphic to sl3 X sfy, and g_y # 0, then only the following possi-
bilities for the [go, go]-modules g;, 7 < —2, may occur: (a) g_» = sl5 K 1,
g3 =0,(b) gy =slEK1, g5 =1Ksl, gy =0. As above, proof is
immediate by Lemma 2.6.

O

Now let M = M, be the lowest weight of a gg-module g[ls], which is not
contragredient to g_q, i.e., A+ M # 0. Then we clearly have

[FA,EM]:G_Q,A+M:—Q, (52)
where e_, is the root vector of [go, go] attached to the root —a. Let ggs]
denote the simple component of [go, go] containing e_,, let gES]l and g[ls] be the

irreducible ggs]—submodules of g_1 and gy containing F, and Fj; respectively.
Let gl be the bitransitive Lie superalgebra with local part g[_s]l + ggs] + g[ls].
The same argument as in the beginning of the proof of Lemma 5.1 gives

the next lemma.

Lemma 5.2 All the ggs]-modules g[ls] for distinet s, such that A + M, # 0,
are inequivalent.

The following lemma puts severe restrictions on possible A and a. It
follows from [K4], Lemmas 4.1.4 and 4.1.5 and their proofs.

Lemma 5.3 Let g = @?Z_dgj be a consistent Zi-graded bitransitive Lie su-

peralgebra such that go is a simple Lie algebra, g+1 are irreducible go-modules
and d,k € {1,2,...,00}. Let A (resp. M) be the highest (resp. lowest)
weight of the go-module g_y (resp. @1), and suppose that A + M = «, where
a is a positive root of go.
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1. Provided that either d or k is finite, one has:

(a) (A,a) =0.

(b) If B is a positive root of go such that o+ (3 is a root and o — 3 is
not, then 2(A, 3)/(8,8) =1 and 2(a, B)/(8,8) = —1.

11, Provided that d is finite, one has:

If B and ~ are positive roots of go such that o+ 3 is a root, but o — 3,
a—~ and §—~ are not, and if (A,v) # 0, then 2A — 3 —~ is a weight
of the go-module g_,.

Lemma 5.4 If gl = @jggs] has depth at least 2 and A + M # 0, then the
ggs]-module g[_s]l is isomorphic to A%sls, the ggs]-module g[_2]2 is isomorphic to

sl and g[_s]3 = 0. Moreover, g[ls] is tsomorphic to the highest component of

865 & A2865 .

Proof We shall skip the superscript [s] when it shall cause no confusion. If
g_o is a trivial go-module, then taking bracket with it establishes an isomor-
phism of go-modules g; and g_;, and also g_; is then a selfcontragredient
module. This is impossible since g_; and g; are not contragredient. Thus,
due to Lemma 2.6, the go-module g_, is sl,, or s/* or sp,. But g_» C S%g_,
which rules out sp, and sfy, (since the corresponding groups contain —1/).*

Thus, go = sf, with n > 3 odd. The non-zero labels of A break the
Dynkin diagram of sf,, in connected components to which A restricts trivially.
By Lemma 3.5 1 (a) and (b), « is the sum of all simple roots of one of these
connected components, all non-zero labels of A equal 1 and their number is
at most 2, i.e., either A = w; or A = w; + w; with ¢+ < 7, where w; denote
fundamental weights. In the latter case, o = a1 +... 4+ a;_1, so that taking
B = o and v = «;, we deduce from Lemma 5.3 II that 2w; + 2w; — a; — ¢
is a weight of sf,, (the standard module), a contradiction.

Thus, A = w;, and, up to passing to the contragredient module, we may
assume that 1 <n —2 and o = a1 + ...+ @,_1. Since s/, is not contained
in S?s(,,one has: i > 2. Welet 8 =a; and vy = a; + a3+ ...+ a;p1. Then
Lemma 5.3 II gives us that 2w; — f — v = w;_1 —w; + w12 1s a weight of s/,,.
This is possible in the following two cases:

*Here and further in this section S? and A% mean the ordinary symmetric and exterior
square, 1.e., we disregard the parity.
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(a) i=n—2 o=y,
(b) 1=2,n=5, a=as+ o.

In case (a) A = wp9, M = —w,—2 — ay—1 = —2w,_1, hence ghl is
isomorphic to p(n) which has depth 1. In case (b) the go-module g_; is A%s/;
and g_o C S%g_; can be only s/;. Also, M = —wy — a3 — ay = —w3 — wy. It
remains to show that g_; = 0.

First, g_4 = [a,g-2] for any non-zero a € g_» (by Lemma 2.6), hence
dimg_4 < dimg_5 and therefore, since g_y C g_o®g_», we see that g_4 = 0.
Similarly, g_3 = [a,g_1] for any non-zero ¢ € g_,, hence dimg_3 < dimg_;.
Since g_35 C g—1 @ g_o as go-modules, and g_; ® g_o, apart from the highest
components, whose dimension is greater than that of g_;, contains sf5 with
multiplicity 1 (see [OV]), the only possibility for the go-module g_s is sfs.
Suppose that this possibility does occur. Then consider the vector F” =
[f123f2F", F]. Here and further we use notation fia5 = [[f1, f2], f53], foF =
[f2, F], etc. Using (5.2), we see that [F”, E] # 0, hence " is a weight vector
of g_o, and since its weight is wy, it is a highest weight vector. Next, it is
easy to see that F"' = [fys4F", "] is a highest weight vector of g_5 (of weight
wi). One checks directly, using (5.2), that [F”, E] = 0, hence [g_5, @] = 0.
But [g_3,8-1] = g-4 = 0 as well, hence [g_3,¢0] = [g-3,[g9-1,01]] = 0, a
contradiction.

O

The following corollary is immediate by Theorem 5.1 and Lemma 5.4.

Corollary 5.2 If the ggs]-modules g[_s]l and g[ls] are not contragredient, there
are only the following possibilities for the ggs]-modules g[_s]l and g[ls] :

(a) g[_s]l = S%sl,, g[ls] = A%sl,, n >3,

(b) o = A2st,, gl = S2s0,, n > 3,

(c) g[_s]l = adp, where p is a simple Lie algebra, g[ls] =1,

(d) g[_s]l = sl,, g[ls] = highest component of sl,, @ A*sl*, n > 4,

(e) &) = s0,, g = A%so,, n > 5, n £6,

(f) 9[_5]1 = A%sls, g[_S]Q = slf, g[ls] = highest component of sls @ A%sls.
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In all cases except for (f), g[_s]2 =0, and in case (f), g[_s]3 = 0.

Lemma 5.5 Suppose that, under the assumptions of Theorem 5.3, there are
at least two submodules of the go-module g1 and one of them, say g[ls] is
contragredient to g_y. Let @ = g/b = @;>_q9;, where b is the maximal ideal
of g. Then only the following possibilities for gi*l and the [go, go]-modules 9
—1 >3 > —d, may occur:

(a) spo(2,n), n>1,n#2, g1 =350, g_5 =1,

(b) $0,(3,2), g1 = slsWsly, g, =sli K1, g 5 =1Ksly,
(c) $po(2,6), g1 = sls W sly, g, =551,

(d) D(2,1; o), g—1 = s04, §_5 = 1.

Proof Due to Lemma 5.1, either we have case (d) or, apart from the go-
submodule of g; contragredient to g_;, which we denote by g/, there is an-
other one, which is not contragredient to g_;, which we denote by g{. Let
g and g” denote the corresponding bitransitive Lie superalgebras. We have:
(g0, 8o] = [9p, 95], and g_; and g’ | are isomorphic modules. One of the sim-
ple components of go must be gj and the gj-irreducible submodule of g_;
containing Fj must be isomorphic to the gj-module g” ;.

Thus, we need to compare the list of modules given by Corollary 5.1,
which gives all possibilities for the [gf, gi]-module g’ ;| with the list of modules
given by Corollary 5.2, which gives all possibilities for the gi-module g”;.

All possible pairs are given by the following table.

(90, 9oJ-module g’ g gg-module g”, g’
(a) sls X s, sl(3,n) sls p(3)
(b) sl3 X spay, spo(2m, 6) sl3 p(3)
(c) sl,, X st, sl(m,n) sl (n>4) S(0,n)
(d) 503 spo(2,3) 503 sos[¢]
(e) 50, spo(2,n) S0, (n>5) H(0,5)

Recall now, that, due to Lemma 2.6, either the depth of g is 1 or the
[g0, go]-module S?g_; must give rise to the linear Lie algebra sf, or sp,.
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This permits only n = 2 in case (a) and m = 1 in case (b), and we may
apply Remark 5.1.
0

Lemma 5.6 Suga]pose that, under the assumptions of Theorem 5.3 all the
do-submodules g7 of g1 are not contragredient to g_,. Then (see notation
of Lemma 5.5) only the following possibilities for the [go, go]-modules g,
—1 >3 > —d, and g; may occur:

(a) g_1 = 506, 8_o = 1, g1 = A’s0g,

(b) g1 =sl3 W sly, g, =sl;81, g = S%sl3 K sly,

(c) go1 =sl3 W sly, g o =sl5K1,g 5=1Ksly, g, = S?sl3 K sy,
(d) g_1 = N?sls, g_, = sli, g1 = highest component of sls @ A*sls.

Proof Decompose [go, go] in a direct sum of simple Lie algebras and consider
the corresponding decompositions of weights A and Ml

(g0 80] = &1y go, A=Y Ay, M =3 bl
7=1

i=1

If A; + M][S] = 0 (resp. # 0) for some s, we shall refer the go;-module
corresponding to A; as to the contragredient case (resp. non-contragredient
case). Due to Corollaries 5.1 and 5.2, the following is a complete list of
possibilities in each case (we list in parenthesis the highest weight of the
non-contragredient partner from gi; p stands for a simple Lie algebra):

contragredient non-contragredient

(a) sly,n>2 (a) sl,,n>4 (w1 + wp—2)

(b)  spn,n >4 (b) son,,n>6 (ws)

(¢) so,,n>3,n#4 (c) sos (wa)

(d) spin; (d) A*sl,,n>3 (2wn—1)

(e) G (e) A*sly (2w or 2ws)
(f)y S%*sl,,n>3 (Wn-2)
() adp 0
(h)  A%sls (w1 + wa)
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First, let us study the case r = 1, i.e., [go, go] simple. If t =1 (see (5.1)),
we have case (d) of the lemma (by Lemma 5.4), so we may assume that ¢ > 2.
Then, due to Lemma 5.2, we have to pick out from the right column of the
table those linear Lie algebras which appear at least twice. These are A?sl4
and A%sl5. In the first case the [go, go]-module g_; (resp. @) is sog (resp.
A?s0g), which gives possibility (a) of the lemma. In the second case, the
[g0, go]-module g_; is A%sl5, we denote its highest weights vector by F', and
the [go, go]-module g; is a direct sum of the s/s-modules with highest weights
w1 + wy and 2wy, we denote their lowest weight vectors by £ and £'. We
have:

[FvE]: [f37f4]7 [FvEl] :fl- (5-3)

Consider the vectors F” and F" introduced in the proof of Lemma 5.4.
Using (5.3), we obtain: [F”, E'] = 0, hence [F",E'] = [[fasaF, F"], F'] =
[f234, f1]F" # 0. This contradicts Lemma 5.4.

Note that the condition S%g_; D g_, implies that the tensor square of the
modules from the right column of the table must contain s/, or sp,, n > 1.
This immediately excludes cases (a), (e) and (f).

Let now r > 2 and assume that case (g) of the right column does not
occur. Then we may assume that A; + Ml[l] = —a where «a is a positive root
of go1 (since cases (f) and (g) are excluded) and A; + Mj[l] =0for 5 > 2. We
employ Lemma 5.3. Let 3 be a positive root of go; such that (A, 5) # 0 and
a + (3 is a root but a — 3 is not (such [ exists by Lemma 5.3 I(a)). Let v
be a positive root of gz such that (A,+) # 0. It follows from Lemma 5.3 11
that 2A — 3 — v is a weight of the [go, go]-module g_,. Since (by Lemma 2.6)
the corresponding linear Lie algebra is s/, or sp,, n > 1, we conclude that
the [go, go]-module g_; is isomorphic to sf3 @ sly, while the [go, go]-module
g_2 is isomorphic to sf5 @ C. Due to Remark 5.1, this is case (b) or (c) of
the lemma.

Finally, consider the case (g) when A; = 6, the highest root of p = goy,
and MU =0, so that [F, E] = es. Then r > 2, otherwise dimg < co. Let 3
be a positive root of go such that (A, 3) # 0. Then we have:

[[6_9F7 e_ﬁF], E] == [69, e_g]e_ﬁF 7£ 0.

Hence 2A — 6 — 3 is a weight of the go-module g_5. When, restricted to go1,
it is #, which is impossible by Lemma 2.6.
O
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Lemma 5.7 Let g = ©;>_49;, d > 2, be a transitive irreducible consistent
Lie superalgebra for which g_1 4 go + g1 is a local part of one of Zi-graded Lie
superalgebras g’ listed in Corollary 5.1 and suppose that dimg_, > 1. Then
g; = g1, hence dimg < co.

Proof We use notation of the proof of Theorem 5.2 and an argument from
[K2], Lemma 4.2. Suppose the contrary, and take the minimal j > 2 such
that g; # g{. Take a weight vector Fjg of the go-module g; outside of g{.
Then we have:

[Eﬁv fO] = €8-ag € g{_l ’

where 3 — ap is a positive root of g'. Taking bracket of both sides with the
root vector e_gi,, we obtain:

j:[[Eﬁv e—ﬁ-l-ao]v fO] + [Eﬁv [fov e—ﬁ-l-oéo]] = hoéo—ﬁ : (54)

But the first summand on the left is a multiple of §,, = [eq, fo]. If 3 is not a
root of g, then the second summand in (5.4) is zero, hence 3 is a multiple of
ap. If B is a root of @', then adding to K3 a root vector ez we can add to the
left-hand side of (5.4) an arbitrary multiple of hg, which again shows that
B is a multiple of ag. Since 3 — ap is a positive root of g’, we obtain that
3 = 2ag. Thus, any weight of the go-module g; /g7 is 2a9, which is impossible
if dimg_; > 1.

O

Lemma 5.8 Let g = ©;>_49; be an even transitive consistent Z-graded Lie
superalgebra of depth d > 2. Then g~ contains no ideals of g and one has
the following possibilities for the [go, go]-module g;, —1 > j > —d:

(a) g1 =850, n>1,n#2 g.5=1,

(b) g1 = sls W sly, g o =sl3 K1,

(c) go1 = sls W sly, gy =sl5K1, g3 = 1K sly,
(d) g_1 = N*sls, g_y = sl3.

Proof Let b = @j<_4b; be the graded maximal ideal of g contained in g~.
Recall, that, by Lemma 2.4, b_5; =0, 7 > 1.
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It follows from Lemmas 5.1, 5.5, 5.6, 5.7 and Remark 5.1 that all possi-
bilities for the [go, go]-modules g_;, —1 > j > —d, are listed by the lemma.
It remains to prove that b = 0.

Since b_y and b_, are zero, we see that [b_3, g+1] = 0. Hence [b_3, [go, 9o]]
0 since in all cases [go, go] C [g-1,9-1]. Hence b_3 is a trivial [go, go]-modules
contained in g_; @ g_o, hence b_3 = 0.

O

End of Proof of Theorem 5.3. 1t follows from Lemma 5.8 and Proposi-
tion 5.1.

Remark 5.3 Notation X (m,n), where X = W, S, H, K, HO, etc., for the

Z-graded Lie superalgebra @;>_4g; carries the following information:
dim & ;<0g; = (m,n).

In other words, X(m,n) acts transitively on a supermanifold of dimension
(m,n). It is easy to show that the growth (= Gelfand-Kirillov dimension) of
X(m,n) is equal to m in all cases.

6 Classification of infinite-dimensional simple linearly
compact Lie superalgebras

An immediate consequence of Theorems 4.1 and 5.3 is the following theorem.

Theorem 6.1 An infinite-dimensional even transitive irreducible Z-graded
Lie superalgebra is isomorphic to one of the Z-graded Lie superalgebras listed

by Theorems 4.1 and 5.3.

Due to Proposition 2.1 and Lemma 2.3, we get the following corollary.

Corollary 6.1 If(L, L_1, Lo) is an infinite-dimensional even quasiprimitive
linearly compact Lie superalgebra, then the Z-graded Lie superalgebra associ-
ated with the Weisfeiler filtration of L is isomorphic to one of the Z-graded
Lie superalgebras listed by Theorems 4.1 and 5.5.

Remark 6.1 If g = ©;>_4g; is one of the Z-graded Lie superalgebras listed
by Theorems 4.1 and 5.3, then (g, ﬁ(_l),ﬁ(o)) is an even quasiprimitive Lie su-
peralgebra (recall that g is the formal completion of g, g1 = H]‘>_1 g, and
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9(0) = [[,508;)- Almost all pairs (@, (o)) are primitive. The only exceptions
are III(a), (b) from Theorem 4.1 and examples E/(?),S) and Cy + E/(?),S)
from Theorem 5.3 (when g_4 + (o) is a subalgebra).

Remark 6.2 One can show that a primitive Lie superalgebra is semisimple
(i.e., has no closed abelian ideals). Semisimple linearly compact Lie super-
algebras that admit a fundamental subalgebra can be described in terms of
simple linearly compact Lie superalgebras in the same way as in the finite-
dimensional case [K4], [Ch]. It is a super analog of a more precise version of
the Cartan—Guillemin theorem [G1]. Using this, one can describe primitive
Lie superalgebras in terms of primitive simple ones.

Now we can turn to the discussion of classification of infinite-dimensional
simple linearly compact Lie superalgebras. Let L be such a Lie superalgebra.
By Theorem 1.1, L has a subalgebra Lq such that (L, L) is an even primitive
Lie superalgebra. Consider an irreducible Weisfeiler filtration L = L_; D
L_ogy1D...D Ly DLy DLy D...andlet g = @;>_49; be the associated
graded Lie superalgebra. By Corollary 6.1, g is one of the Z-graded Lie
superalgebras listed by Theorems 4.1 and 5.3.

A linearly compact filtered Lie superalgebra [ whose associated graded is
g is called a filtered deformation of g. Of course, g is a filtered deformation
of g, called the trivial filtered deformation; note that g is simple iff g is. If L
is simple, it is called a simple filtered deformation of g. If g is the only (resp.
the only simple) filtered deformation of g, we shall say that g has no filtered
(resp. simple filtered) deformations.

Thus, the classification of infinite-dimensional simple linearly compact
Lie superalgebras is reduced to find all (up to isomorphism) simple filtered
deformations of all Z-graded Lie superalgebras listed by Theorems 4.1 and
5.3.

Let s be a maximal reductive subalgebra in the even part of go = Lo/ L;.
Using Levi theorem, we may find linear maps ¢ : 5§ — Lo for each & > 1
such that the induced map @, : § = Lo/Ly is an injective homomorphism
and ¢(s) — @rt1(s) € Ligq for all s € 5. Taking limit as k& — oo, we get
an injective homomorphism ¢: § — Lo . We shall identify ¢(s) with s.
Note that [s, L,] C L, for each n and that s-modules L,/L,4; and g, are
isomorphic.

By the complete reducibility theorem, the s-modules L, /L, ) are com-
pletely reducible for all & > 1, so that we may find a complementary s-
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submodule g,(k) to Lny1/Lntr in Ly/ Loy, Again, as kB — oo, we get an
s-module decomposition L, = m, & L,4; where m, = g,(c0) and g, are
isomorphic s-modules.

Thus, we have obtained a decomposition

L= (6.1)

7>—d

as s-modules, where s C mg and L, = m, & L,1; for each n.

Lemma 6.1 (a) Ifs contains a non-zero central element ¢ then g has no
filtered deformations.

(b) If g is one of the types 1(j), (k) or Il(a), (b),0r IV of Theorem 4.1 or
(f) and (g) of Theorem 5.3, then L cannot be simple, hence g has no
simple filtered deformations.

Proof In case (a), if ¢ is normalized such that c|n,_, = —1, then ¢|n, = 7,
hence [m;,m;] C m;y; in (6.1) and L ~ g. In case (b) it is easy to show
that mg ¢ [L, L]. For example, if d = 1 and mg C [L, L], then b = m_; +
mp 1s a semisimple subalgebra of L but there are no such semisimple Lie
superalgebras.

O

Lemma 6.2 Suppose that decomposition (6.1) has the following properties:

m* Cm_y for all k > 2(hence m*, =m_;), (6.2)
mg is a subalgebra of L, (6.3)

[mg, m_q] Cm_q, (6.4)

[my, m_4] C mg. (6.5)

Then, provided that g satisfies (G6) (from Section 2), g has no filtered de-

formations.

Proof First, we prove that
hﬂoﬂnl]C:ﬂh. ai6)
Indeed, for any = € g_; we have:

[l‘, [movml]] = [[xvmo]vml] + [mov [xvml]] C mg
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by (6.3), (6.4) and (6.5), hence (6.6) follows by transitivity of g. Next we
prove

m} C m, ( hence mf =m,) forn > 1. (6.7)
n+1

Using (6.5) and (6.6), we have by induction on n: [r, m]
again use transitivity of g. Next:

| € m}, and we

[m_y,m,] Cm,_ (6.8)

since [m_;,m?] C m}~! by (6.5) and (6.6). By (6.2)-(6.4), (6.6) and (6.7) we

have:
[mg, m,] C m, for all n.

This along with (6.2), (6.7) and (6.8) shows that [m;,m;] C m,4;.

Remark 6.3 If g satisfies the property:
[,g1] =0 for z €g;,7 > —d, impliesx =0,

then (6.2) follows from [m_;,m_;] C m_y. Indeed for @ € m; we have by
induction on k > 2: [z, m* ;] C m"" hence m*, C m_; for all k > 2.

Lemma 6.3 F(5,10) has no filtered deformations.

Proof 1In this case 5 = mg, hence (6.3) and (6.4) hold automatically, and
the mg-module my; (resp. my;41) is isomorphic to the highest component of
SitL(sl3)@sls (resp. S7HY(sls)@A%sl5), see Example 5.3. Hence, S?m_; does
not contain a submodule isomorphic to m; for j # —2, hence [m_;,m_;] =
m_y and, by Remark 6.3, (6.2) holds. Finally, in order to check (6.5) we have

to show that m_; @ m; does not contain a submodule isomorphic to my; for

J > 1, which is straightforward (see [OV]). Hence, by Lemma 6.2, F/(5,10)
has no filtered deformations.

O

Lemma 6.4 S(m,n) and gl(m,n) with principal gradation have no filtered
deformations if m,n > 1.
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Proof Let L be a filtered deformation of S(m,n) or gl(m, n)andlets C L be
the reductive subalgebra constructed above. Let us embed L in W(m,n) =
[1,5_, W(m,n); (principal gradation), see Example 1.3. By Levi-Maltsev
theorem (see [OV] or [S]), we may assume that s C W(m,n)y = gl(m,n).
Hence s = sl(m,n)z. In particular, s contains all operators h;; = l’i% +

fj%, which span a Cartan subalgebra § of 5. It is easy to see that the
J

weights of § that occur in W(m,n)_; (= linear span of %’s and %78.) do
N ¢ J

not occur in W(m,n); with 5 > 0. It follows that m_; from decomposition

(6.1) coincides with W(m,n)_;. Hence, by transitivity, m; C W(m,n); for

all 7, proving the claim.

O

Remark 6.4 It is well-known (and easy to show using Lemma 6.2) that
S(m,0) has no filtered deformations. On the other hand, S(0,n) for n even
does have them [K4].

Lemma 6.5 S(m,1) with subprincipal gradation has no filtered deforma-
tions if m > 2.

Proof Let L be a filtered deformation. Then s is isomorphic to sf,, @
Ce, where ad ¢ acts as a scalar k& on (my)z. It follows that S(m,1); =
[Tis_i(mi)g is a completed graded Lie algebra isomorphic to W (m,0) with
principal gradation. Furthermore, (m_y)7 is the standard sf,,-module with
the eigenvalue of ¢ equal m — 1 and (my)y for & > 0 is a direct sum of s-
modules: (my)g = Vi + VY, where V}, ~ highest component of s/, @ S* s
with eigenvalue of ¢ equal m + k and V/ = S*s(,, with eigenvalue of ¢ equal
—m + k. Moreover, V; = Cb, where ad b maps Lz to 0 and is an isomorphism
Ly — Lg as sl,,-modules. This implies that the conditions of Lemma 6.2 are
satisfied, hence decomposition (6.1) is a Z-gradation.

O

The growth of a linearly compact Lie superalgebra L is defined as the
growth (see [K1]) of the graded Lie algebra GrL for any decreasing filtration
of L (by Chevalley’s principle, it is independent of the choice of filtration). It
is clear that growth L =0 iff dim L < oo, and that growth L > 1 otherwise.

Theorem 6.2 A simple linearly compact Lie superalgebra L of growth 1 is

isomorphic to one of the following Lie superalgebras: W(l,n) forn >0,
S(l,n) forn > 2, K(1,n) forn>1 or E(1,6).
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Proof Due to Corollary 6.1, L has a filtration for which the associated graded
Lie superalgebra g is one of those listed by Theorems 4.1 and 5.3. Due to the
growth condition, we must select those with m = 1 (see Remark 5.2). Here
is the list:

I. (inconsistent principal gradation)

(a) W(l,n) with n >0,
(b) S(1,n) and S’(1,n) with n > 2,
(¢) P[] + a with P = W(1,0),

II. (inconsistent subprincipal gradation) W(1,1),

III. (consistent gradation)

(a) K(1,n) withn > 1, n # 2,
(b) E(1,6),
(c) sly + 5(1,2).

IV. Cy + g, where g is one of the examples I-11I for which g has a trivial
center.

As has been shown above, the cases I(¢), III(c) and IV are ruled out since
L is simple. Also, we have just shown that in the remaining cases g has no
filtered deformations. This proves the theorem.

O

Remark 6.5 Using methods developed in [DK], it is easy to derive from
Theorem 6.2 the classification of finite simple conformal superalgebras (and
hence the finite simple formal distribution Lie superalgebras) announced in

[K6], [K7].

A more systematic way of describing filtered deformation is developed in
[CK3] based on [KN]. It gives the description of simple filtered deformation
in all the remaining cases.
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Example 6.1 (filtered deformation of C_y +SHO(n,n),n even [CK3]). The
Lie superalgebra C_, + m/(n,n) can be identified with the subspace
A(n,n)® of A(n,n) consisting of elements f such that A(f) = 0 (see Re-
mark 4.2) and the bracket {.,.}, defined in Example 4.6. Its derived
algebra is the subspace A(n,n)5 of A(n,n)® of codimension 1, which con-
sists of elements with zero projection on the monomial C¢&; ...¢,. We denote
by CSHO(n,n)™, n even, the space A(n,n)5 with the following deformed
bracket (f,g € A(n,n)5):

[fvg] = {f?g}ho—l_a(fg)?

where a(b) = {&,...&,,b},, if bis a monomial in the z;, and a(b) = 0 for
all other monomials. The superalgebra C'SHO(n,n)™ is simple for n > 2
(n even). Note that C_y + SHO/(n, n) has a similar deformation, which we

denote by CSHO/(n, n)~, but it is not simple since its derived algebra has
codimension 1 (and coincides with CSHO(n,n)™).

Example 6.2 (filtered deformation of SHO'(n,n), n even [CK3]). Denote
by SHO(n,n)~, n even, the space A(n,n)*/C (see Examples 6.1) with the
following deformed bracket:

[fvg] = {f?g}ho + al(fg)v

where oy (b) = {&...&,,b},, if bis a monomial in the x; or b = 2§, and
a(b) = 0 for all other monomials. The superalgebra SHO(n,n)™ is simple
for n > 2 (n even).

Example 6.3 (filtered deformation of SKO(n,n+1; 22), n odd, cf. [Ko]).
Let A=A+ (E— (n—I—Z))ﬁ. The Lie superalgebra SKO(n,n+1; ”nﬁ) is
identified with the subspace A(n,n+1)2" of A(n,n+1) consisting of elements
f such that A'(f) = 0, with the bracket { ., .}, defined in Example 4.8 (see
Example 4.9). We denote by SKO(n,n +1)~, n odd, the space A(n,n+ 1)’
with the following deformed bracket:

[fvg] = {f?g}ko + Oég(fg)7

where ay(b) = {& ... €41, b}, — 26& ... &, if bis a monomial in the x; and
a3(b) = 0 for all other monomials. The superalgebra SKO(n,n + 1)~ is
simple for n > 3 (n odd).
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It is shown in [CK3] that the only non-trivial simple deformations in all
cases of Theorems 4.1 and 5.3 are those given by Examples 6.1-6.3. However,
the Lie superalgebras C'SHO(n,n)~ and SHO(n,n)~ are isomorphic. This

proves the main theorem of the paper:

Theorem 6.3 The following is a complete list of simple infinite-dimensional
linearly compact Lie superalgebras (m > 1):

(a) W(m,n),

(b) S(m,n) with (m,n) # (1,0), (1,1),
(¢) H(m,n) with m > 2, m even,

(d) K(m,n) with m > 1, m odd,

(e) HO(m,m) with m > 2,

(f) SHO(m,m) with m > 3,

(g) SHO(m,m)~ with m > 2, m even,
(h) KO(m,m +1),

(i) SKO(m,m +1;3) withm > 2, 3 € C,
(7)) SKO(m,m + 1)~ with m >3, m odd,
(k) E(1,6), E(2,2), E(3,6), E(3,8), E(4,4), E(5,10).

Remark 6.6 Here are all the isomorphisms between the Lie superalgebras
listed in Theorem 6.3:

W(l,1) ~ K(1,2) ~ KO(1,2), S(2,1) ~ HO(2,2).
In conclusion of the paper we describe all derivations:

Proposition 6.1 The Lie superalgebra Der L of a simple infinite-dimensional
linearly compact Lie superalgebra L is as follows (m > 1):

, SHO(m,m)~, K(m,n),
>

(a) If L is one of the Lie superalgebras W(m,n), SH
3, SKO(m,m + 1)~,
L.

KO(m,m + 1), SKO(m,m + 1;0) with m

E(4,4), E(1,6), E(3,6), E(3,8), then Der L =
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(b) If L is one of the Lie superalgebras S(m,n), H(m,n), HO(m,m) with
m > 2, SKO(m,m + 1;8) withm > 2 and 3 # 0, =2 SKO(2,3;3),

m

FE(5,10), then Der L = Cy + L.

(¢) If L is one of the Lie superalgebras S(1,n) withn > 3, SHO(m,m) with
m >4, SKO(m,m + 1; %=2) with m > 3, then Der L is Cy —|—§/(1,n),
Co + SHO/(m, m), and SKO/(m, m + 1; Z=2) respectively.

(d) If L =SHO(3,3), E(2,2) or S(1,2), then Der L = sly + L.

Proof is the same as that of Proposition 5.1.2 from [K4]. O

Postscript. This paper (to appear in October 1998 issue of Advances
in Math.) was presented at the ESI in September 1998. In this talk, af-
ter giving the list of maximal compact subgroups K of the groups of inner
automorphisms of the six infinite-dimensional simple Lie superalgebras, I
suggested that one of the exceptional Lie superalgebras F(3,6) or E(3,8)
might be the algebra of supersymmetries of the Standard Model, since the
group SUs x SU,; x Uy is the group of symmetries of this model and it is
the group K for both E(3,6) and E(3,8). David Broadhurst commented
that similarly the exceptional superalgebra F(5,10) might be the algebra of
supersymmetries of the hypothetical Grand Unified Model since K = SUs
for F(5,10). He also asked whether E(3,6) or E(3,8) can be embeded in
E(5,10). I replied that E(3,8) cannot be embeded since F(5,10) has no
consistent gradations of debth 3, but that £(3,6) can, since its non-positive
part can be embeded in that of E(5,10).

It is thus natural to conjecture that the Standard Model can be extended
to the Grand Unified Model in such a way that the algebra F(3,6) of su-
persymmetries of the Standard Model is embeded in the algebra F(5,10) of
supersymmetries of the Grand Unified Model.
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