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INVARIANT OPERATORS ON MANIFOLDS WITHALMOST HERMITIAN SYMMETRIC STRUCTURES,III. STANDARD OPERATORS.Andreas �Cap, Jan Slov�ak, Vladim�ir Sou�cekThis paper demonstrates the power of the calculus developed in the two previousparts of the series for all real forms of the almost Hermitian symmetric structureson smooth manifolds, including e.g. conformal Riemannian and almost quaternionicgeometries. Exploiting some �nite dimensional representation theory of simple Liealgebras, we give explicit formulae for distinguished invariant curved analogues ofthe standard operators in terms of the linear connections belonging to the structuresin question, so in particular we prove their existence. Moreover, we prove thatthese formulae for kth order standard operators, k = 1; 2; : : : , are universal for allgeometries in question. 1. IntroductionAs generally known, several geometries share surprisingly many properties withthe conformal Riemannian structures and projective structures. For example thealmost quaternionic ones. Following the old ideas by Cartan, and some more re-cent development by Baston, Eastwood, Gindikin, Goncharov, Ochiai, Tanaka, andothers, we have started the project of building a good calculus for all of them. Thispaper presents the �rst major application of the technique developed so far for theso called AHS-structures in the �rst two parts of this series, [CSS1, CSS2].In [F], Fegan described all conformally invariant operators of the �rst order onconformal Riemannian manifolds. We use the invariant di�erentiation with respectto Cartan connections developed in [CSS1], together with some representation the-ory of simple Lie algebras, in order to extend Fegan's methods to operators of allorders. This new technique works for a wide class of geometries and, using theexplicit computations of the canonical Cartan connections in [CSS2], we obtainformulae for all these invariant operators in terms of covariant derivatives with re-spect to the linear connections belonging to the structures and their curvatures.Moreover, a simple recursive procedure for the computation of the correction termsfor standard operators is described.In such a way, the abstract indication of the existence of the standard invariantlinear di�erential operators on manifolds with almost Hermitian symmetric struc-tures given in [B] is replaced by an explicit and transparent construction, whichprovides even formulae in closed forms. Surprisingly enough, these universal for-mulae do not depend on the particular geometry at all.The second and third authors supported by the GA�CR, grant Nr. 201/96/0310Typeset by AMS-TEX1



2 ANDREAS �CAP, JAN SLOV�AK, VLADIM�IR SOU�CEKIn order to make the paper more self-contained, we have included a brief reviewof some background from [CSS1]. This concerns the short section 2 where we also�x the notation used in the sequel. The sections 3 through 5 provide the necessarydevelopment in representation theory. In order to address a wider audience amongdi�erential geometers, we try to be quite detailed here. Section 6 gives the mainexistence result (Theorem 6.5) and the explicit formulae are established in section7 (Theorems 7.4 and 7.9). Some technical points are postponed to two appendices.2. A calculus for Cartan connectionsThe aim of this section is to summarize for convenience of the reader the maindevelopment from [CSS1]. Full details and proofs can be found there.2.1 AHS structures. A basic datum distinguishing a particular AHS structureis a real simple Lie group G with the Lie algebra g, which is j1j-graded, i.e.g = g�1 � g0 � g1with [gi; gj] � gi+j ; gj = f0g; j 6= �1; 0; 1: There is a list of all simple real j1j-graded Lie algebras (see [KN]). Their complexi�cation is a semisimple j1j-gradedcomplex Lie algebra. The classi�cation of complex simple j1j-graded Lie algebrascorresponds to the well known list of Hermitian symmetric spaces. The latter facthas been the origin of the name A(lmost) H(ermitian) S(ymmetric) we use.The subalgebras g�1 are commutative and dual to each other with respect tothe Killing form. The algebra g0 is reductive with one-dimensional center, which isgenerated by the grading element E; which is characterized by the fact that eachof the subalgebras gj, j = �1; 0; 1, ist the eigenspaces for the adjoint action of Ewith eigenvalue j. The semisimple part [g0; g0] of g0 will be denoted by gs0.The subgroups P; resp. P1 of G correspond to the Lie algebra p = g0 � g1, resp.g1. The group P1 is a normal subgroup of P and the group G0 = P=P1 has the Liealgebra g0. Let us mention that we have used the letter B instead of P in [CSS1].The typical and best understood example of AHS structures is a conformal struc-ture on a manifoldM . A standard way to de�ne it is a reduction of the frame bundleof M to the conformal group G0 = CO(n;R). A classical theorem going back toCartan gives a construction of a P -principal bundle G (where P is a semidirectproduct of G0 and Rn) over M and a uniquely de�ned Cartan connection ! onG. Such data were considered by Cartan as a curved analogue of the at modelG=P (an example of his `espaces g�en�eralis�es'). The characteristic properties of theCartan connection ! are a simple generalization of properties of the Maurer-Cartanform ! on G=P .Following previous results by Tanaka, Ochiai, and Baston, a simple and transpar-ent principal bundle approach to a canonical construction of the principal bundleG with structure group P and of the Cartan connection ! on G from the standard�rst order G0-structure on M was described in [CSS2]. We shall not need the con-struction here and we shall start with G and ! as with a given prescribed data,giving to M the structure of an AHS manifold.2.2 The Cartan connection and the invariant di�erential. So we supposethat a P -principal bundle G on M and the Cartan connection ! 2 
1(G; g) is givenon G (for the de�nition and properties of the Cartan connections, see [CSS1]).



INVARIANT OPERATORS ON MANIFOLDS WITH AHS STRUCTURES III. 3Any Cartan connection de�nes an absolute parallelism of G and for any vectorspace V, we can de�ne the invariant di�erentialr! : C1(G;V)! C1(G; g��1 
V)by r!s(u)(X) � r!Xs(u) := [!�1(X)s](u)where !�1(X) is the constant vector �eld on G given by X 2 g�1 and !. Noticealso TM = G �P g�1, T �M = G �P g1 in a canonical way.IfVis a (�nite dimensional) P -module, than the space C1(G;V)P of equivariantmaps is a 'frame form' of the space �(M;V ) of smooth sections of the associatedvector bundle V = G �P V. We would like to use r! for a construction of invari-ant di�erential operators. Unfortunately, the map r!s, s 2 C1(G;V)P , does notusually belong to C1(G; g��1 
V)P , it is not the frame form of a section of a suit-able associated vector bundle over M . So r! does not de�ne directly a di�erentialoperator on M .A very useful procedure how to improve the situation is to introduce a functorialway how to de�ne a structure of a P -module on the spaceJ1(V) :=V� (g��1 
V)in such a way that the maps 2 C1(G;V)P 7! (s;r!s) 2 C1(G; J1(V))Phas again values in the space of equivariant maps. The P -module structure onJ1(V) can be deduced easily from the corresponding homogeneous case (where it isjust the representation inducing the homogeneous bundle J1(V ) of 1-jets of sectionsof V ). Moreover, the Cartan connection ! introduces the natural identi�cations ofthe �rst jet prolongations of the associated bundles V = G �P Vwith G �P J1(V).Consequently, any P -module homomorphism � : J1(V) ! V0 induces a wellde�ned di�erential operator from the space of sections of the bundle V to the spaceof sections of the bundle V 0. Due to the fact that the Cartan connection is uniquelyde�ned by the AHS structure, the corresponding operator is invariant with respectto any of the usual de�nitions of invariant operators (details on relations betweenvarious possible de�nitions of invariant operators can be found in [Slo]).The situation most commonly considered is the case when V and V0 are irre-ducible P -modules. It means that V (resp. V0) are irreducible G0-modules withthe trivial action of the nilpotent part of P . In such a case, natural candidatesfor P -homomorphisms � are projections from the space g��1 
 V (considered asan gs0-module) onto its irreducible factors, extended by zero on the Vpart of themodule J1(V). We shall see below that for any such projection, there is just onespeci�c value for the action of the grading element E for which the correspondingprojection is a P -homomorphism and that any invariant �rst order di�erential op-erator on a manifold with a given AHS structure is obtained by this construction.For conformal structures, this was exactly the content of the classi�cation theoremobtained by Fegan in [F] (see 7.2 below).



4 ANDREAS �CAP, JAN SLOV�AK, VLADIM�IR SOU�CEK2.3 Iterated di�erentiation, semiholonomic jets. Iteratively, we can de�nethe functor �Jk(�) (the k-th semi-holonomic prolongation) mapping any P -moduleVto a submodule �Jk(V) of the P -module J1( �Jk�1(V)). Considered as aG0-module,it looks like �Jk(V) =V� (g��1 
V)� :::� (
k(g��1) 
V):As in the �rst order case, the iterated invariant di�erential (r!)k de�nes the mapjk! : s 2 C1(G;V)P 7! (s;r!s; : : : ; (r!)ks) 2 C1(G; �Jk(V))P :Moreover, if V = G�P Vis the bundle associated toV, then its kth semi-holonomicjet prolongation �Jk(V ) is the bundle associated to the representation �Jk(V). Thusconstruction of a large class of higher order invariant di�erential operators is nowpossible as it was in the �rst order case: It is su�cient to take any P -homomorphismfrom �Jk(V) to a P -moduleV0 and to compose it with the map jk!.The question to be answered is how to construct such P -module homomorphisms.If V is an irreducible P -module, then it is easy to �nd all G0{module homomor-phisms between the corresponding modules using representation theory. An explicitcriterion showing when such a G0{homomorphisms is actually a P{module homo-morphism, was proved in [CSS1] and will be used below to prove existence resultsfor invariant operators (see 5.2 for more details).2.4 Distinguished connections, the deformation tensor. Invariant operatorsare given as a composition of a suitable P -homomorphism and the Cartan connec-tion. To express the result in standard terms (covariant derivatives, curvatureterms) and to �nd explicit formulas for it, we need more information.Let us recall �rst the relation between the original �rst order structure G0 onM (e.g. a conformal one in the best known example) and the P -principal bundleG constructed from it. If P1 is the Lie group corresponding to the Lie algebra g1;then G0 ' G=P1. The value of the Cartan connection ! can be split with respect tothe grading of g as ! = !�1 + !0 + !1. For any G0-equivariant section � : G0 ! G(which always exists), the pullback ��!0 is a principal connection on G0: The spaceof all such connections is an a�ne space modeled on the space of 1-forms on M .We have got in such a way a distinguished class of connections on M which arecompletely characterized by the requirements that they have to belong to G0, andtheir torsion has to coincide with the g�1-component of the curvature of !. In theconformal case, for example, this class consists of all Weyl geometries (thus containsall Levi-Civita connections corresponding to any Riemannian metric chosen insidethe given conformal class, in particular). The associated covariant derivatives arestandard tools used for description of di�erential operators.If ! and ~! are two Cartan connections which di�er only in the g1-component,there exists an equivariant map � 2 C1(G; g��1
g1) such that ~! = !���!�1: Themap � is the P -equivariant representation on G of a tensor on M; which is calledthe deformation tensor. In particular, once we �x the Cartan connection ! and theG0-equivariant section � : G0 ! G, there is the unique Cartan connection ~! whichis �-related to the pullback ��(!�1 + !0). This is the Cartan connection whoseinvariant derivativer~! is as close to the covariant derivativer��!0 as possible. Thecorresponding deformation tensor � then gives the full remaining comparison. Forconformal structures, this is just the well known `rho{tensor' having the following



INVARIANT OPERATORS ON MANIFOLDS WITH AHS STRUCTURES III. 5expression in terms of the Ricci curvature:�ij = �1m� 2�Rij � �ij2(m � 1)R�;where Rij and R are the P -equivariant pull-backs of the Ricci tensor and thescalar curvature to G and m is the dimension of the manifold M . Thus � is ageneralization of the `rho{tensor' to all AHS structures. Similar explicit formulaefor these rho-tensors for most AHS structures have been computed in [CSS2].Now, the value r!s of the invariant di�erential on a section s can be describedin more familiar terms, using r and the deformation tensor � as follows. Thechoice of � de�nes the trivialization of the bundle p : G ! G0 expressed by thesecond coordinate � : G ! g1, which can be characterized by the formula u =�(p(u)) �exp(� (u)). LetVbe an irreducible P -module, V = G�P V' G0�G0Vthecorresponding associated vector bundle. Sections s 2 �(V ) will be represented bymeans of equivariant maps s 2 C1(G0;V)G0 or equivalently as p�s 2 C1(G;V)P .Then we have for all u 2 P , X 2 g�1(r!(p�s)(u)) (X) = (p�(rs))(u)(X) + [X; � (u)] � ((p�s)(u))where the bracket [X; � (u)] 2 g0 acts on the element of the g0-module V.All terms in the formula are G0-equivariant, but only the �rst one is also P1-equivariant (i.e. constant along �bers of p). It is the map � in the second term,which is not P1-equivariant (it varies when u 2 G changes its position in the �ber).This shows again that the invariant di�erential r!s is not P -equivariant even if sitself is. In many cases we can �nd a homomorphism� in such a way that the termcontaining � is killed by � and the resulting composition is an invariant operator.2.5 Correction terms and obstruction terms. To construct higher order in-variant operators, we have to use higher order iterations of the invariant di�erential.To understand what is happening in higher orders, the second order case is a rep-resentative example. It is possible again to express (r!)2s using r and �. Forany section s 2 C1(G0;V)G0; we have�(r!)2(p�s)� = p�((r)2s) +D0(;�) +D1(;�; � ) +D2(;�; � )whereD0(;�)(u)(X;Y ) = [X;�(u):Y ] � (p�s(u));D1(;�; � )(u)(X;Y ) = [X; � (u)] � (p�(rY s))(u) + ([Y; � (u)] � (p�rs)(u)) (X);D2(;�; � )(u)(X;Y ) = ([Y; � (u)] � ([ ; � (u)] � (p�s)(u))) (X)� 12 [X; [� (u); [� (u); Y ]]] � (p�s)(u);and � denotes the appropriate action of an element from g0 on the space in question(either Vor g��1
V). The term D0 is called the correction term and the terms Di,i = 1; 2, which are homogeneous of degree i in � , are called obstruction terms.As for the �rst order case, the map (r!)2(p�s) is only G0-equivariant and, ingeneral, not P -equivariant. To de�ne an invariant second order operator, it isnecessary to kill all obstruction terms by a suitable G0-homomorphism. If it ispossible, then the leading term together with the correction term gives an explicitformula for the corresponding invariant operator (expressed already in standardlanguage).



6 ANDREAS �CAP, JAN SLOV�AK, VLADIM�IR SOU�CEK2.6 The algorithm for higher orders. In fact, it can be shown (see [CSS1]) thatvanishing of D1(;�; � ) implies vanishing of all higher order obstruction terms, sothat existence proofs can be simpli�ed. The algebraic condition discussed above isequivalent to vanishing of the sum of certain terms linear in � , so that it is evenmore simple condition, but it is only su�cient condition, not necessary one.To have an explicit algorithm for computation of the form of the correctionterms, we need to take into account during the inductive procedure all obstructionterms, not only the linear ones. For that, we can use the algorithm for recurrentcomputation of the correction and obstruction terms, which was proved in [CSS1](for more details see 7.4). Using MAPLE, it was easy to implement this algorithmand to compute explicitly the correction and obstruction terms for low orders. Thenumber of terms is growing enormously. For the 6th order, the full formula has7184 terms and the correction part itself has 328 terms. We shall see later on thatfor standard operators studied below, further essential simpli�cation is possible andthe �nal formula will have only 10 summands. To write down on paper an explicitform of invariant operators of higher orders is too awkward. Nevertheless, we shallsee that for a broad class of operators, the algorithm for the explicit form of theoperator can be simpli�ed substantially and that the form of correction terms forstandard operators is remarkably stable and universal, independently of the typeof AHS structure and the representation Vconsidered (see section 7).In the next sections, we shall use representation theory to show how the theoryexplained above can be used for better understanding of properties of standardinvariant operators. 3. G0-homomorphismsTo construct invariant operators, we have to learn how to construct P -homomor-phisms from �Jk(V) to a P -moduleV0. The �rst thing to do is to understand whatare the possibilities for G0-homomorphisms. We shall concentrate on the situationwhenVis an irreducible P -module. This implies thatVis an irreducible G0-moduleand the nilpotent part acts trivially. Representation theory o�ers enough tools toclassify all G0-homomorphisms in this case. Any such homomorphism is equivalentto a projection of �Jk(V) onto one of its irreducible components and a decompositionof the tensor product �Jk(V) = (
ig��1)
Vto irreducible components is a standardproblem studied in representation theory of semi-simple Lie groups. In this section,we shall prove some additional facts needed for a construction of P -homomorphismsand we shall deal with a general complex semi-simple Lie algebra g. Later on weshall use it for the semisimple part gs0 = [g0; g0] of g0.3.1 Notation. Let us consider a complex semi-simple Lie algebra g with a Cartansubalgebra h, a set �+ of positive roots and its subset S = f�1; : : : ; �ng of simpleroots. Using the Killing form (:; :), fundamental weights �1; : : : ; �n are de�ned by(�_i ; �j) = �ij , where �_i = 2�i=(�i; �i).The (closed) dominantWeyl chamber C is given by linear combinations of funda-mental weights with nonnegative coe�cients, let C denote its interior. Finite dimen-sional complex irreducible representations of g are characterized by their highestweights �, which lie in the weight lattice �+ = fP�i�i; �i � 0; �i 2Zg. The cor-responding representation will be denoted by (�;V�) but the action �(X)v, X 2 g,v 2V� will be often written simply as X � v, if the representation is clear from thecontext. The set of all weights of Vwill be denoted by �(V):



INVARIANT OPERATORS ON MANIFOLDS WITH AHS STRUCTURES III. 7Any weight � 2 h� can be characterized by its coe�cients �j = (�; �_j ). Inparticular, the simple roots �i have coe�cients aij = (�i; �_j ), where aij is theCartan matrix of the Lie algebra g, which is encoded into its Dynkin diagram.Consequently, the reection �i(�) = �� (�; �_i )�i with respect to a simple root �ichanges coe�cients �j of � into coe�cients �j � �iaij. Due to properties of theCartan matrix, the coe�cient �i changes to ��i and (if no multiple edges of theDynkin diagram are involved), the coe�cient �i adds to neighboring coe�cients �j(for which aij = �1).The reections �i generate the Weyl group W . For � = Pi �i, we shall denoteby � the a�ne action of W on weights de�ned by w � � = w(� + �) � �.In our applications of the theory, we shall mostly need the case of a simple Liealgebra g. The only exception will be the Grassmannian case, where our Lie algebrag will have two simple parts g1� g2. Note that in this case, the Cartan subalgebrah splits also into h1� h2, all weights can be written as couples � = (�1; �2) and therepresentation V� is the tensor product V�1
V�2. The Killing form splits as well:(�; �) = (�1; �1) + (�2; �2). The Weyl group W is the direct product W1 �W2 ofthe Weyl groups of g1 and g2.3.2 Klimyk's algorithm. There is a useful and explicit algorithm for the de-composition of the tensor product of two irreducible representations of a simpleLie algebra g into irreducible components, based on the Klimyk formula (see [H],Sec.24, Ex.9).For any weight � 2 h�; let f�g denote the dominant weight lying on the orbitof � under the Weyl group. If f�g 2 C; then there is the unique w 2 W such thatf�g = w�. Let t(�) be equal to the sign of w in this case and zero otherwise.Suppose moreover that we know the list �(�) of all weights of the irreduciblerepresentation V� with the highest weight �, including their multiplicities m�(�),for � 2 �(�). Let V� denote the irreducible representation of g with the highestweight �. Then the Klimyk formula implies that it is su�cient to go through thelist �(�), write a formal sumX�2�(�)m�(�)t(�+ � + �)Vf�+�+�g��of irreducible representations and to add together coe�cients at representationswith the same highest weight. The resulting coe�cients are always non-negativeand give the multiplicity of the corresponding representation in the decomposition.Note that some cancelations happen often.3.3 The decomposition of a tensor product of representations. There arecertain facts known for a general case of a tensor product of two irreducible rep-resentations V� and V� with highest weights � and �. For example, the highestweight � of an irreducible piece in the decomposition of the product V�
V� hasalways form � = �+�; � 2 �(�) (see [FH], p.425). But in general, we know nothingabout its multiplicity, it can be zero, one or bigger.In the product V� 
V�; there is always an irreducible piece with the highestweight �+ � and it appears with multiplicity one. This special irreducible compo-nent is standardly denoted by V��V�, and called the Cartan product of V� andV�. If e�, resp. e�, are weight vectors for highest weights �, resp. �, then e� 
 e�is a weight vector with the weight �+ �: Consequently, �kV� �kV:



8 ANDREAS �CAP, JAN SLOV�AK, VLADIM�IR SOU�CEKThe following general fact is much more di�cult to verify. The Parthasarathy{Rao{Varadarajan (PRV) conjecture proved recently (see [Ku]) claims that for anyw 2 W , the module Vf�+w�g with the extremal weight � + w� occurs in V�
V�with multiplicity at least one.In the case that one representation in a tensor product is in a suitable sensesmall, we can say more about the decomposition. In particular, there will be nomultiplicities in the product for such cases. This is a substantial information neededin applications below. The simplest case is the following theorem.Theorem. Let � be such that all weights � 2 �(�) have multiplicity one. Letus suppose moreover that the coe�cients of all weights � 2 �(�) with respect tofundamental weights are � �1. Then for any � 2 �+, we haveV�
V� = X�2AV�where A is the set of all weights of the form � = � + �; � 2 �(�), which belong tothe dominant Weyl chamber C. There are no multiplicities in the decomposition.Proof. The coe�cients in the decomposition of any weight � 2 �+ into fundamentalweights are, by de�nition, all nonnegative. The weight � has all coe�cients equalto 1. Our assumptions above imply that for all weights � 2 �(�), the sum � + �belongs to C, hence �+�+� 2 C as well. So no action of elements w 2W is needed,f� + � + �g � � = � + � for all � 2 �(V�) and no cancelations or multiplicities inthe decomposition of the tensor product can occur. The weight � + � appears inthe decomposition (with nonzero coe�cient) if and only if �+ �+ � belongs to theinterior C i.e. if and only if �+ � 2 C. �The theorem just proved will be su�cient in most cases needed below. In twoof them, we shall however need a case when some of components of weights will beequal to �2. We are going to prove the multiplicity one result for this case under asuitable additional assumption. In some particular cases (e.g. in two cases neededbelow, see Appendix A), it is possible to describe the set A in the decompositionmore precisely, but we shall not need to formulate such results in general.Theorem'. Suppose that � is such that all weights � 2 �(�) have multiplicity one.Let us suppose moreover that for all weights � 2 �(�), � = Pi �i�i; the followingconditions are satis�ed:(1) �i � �2 for all i;(2) there exists at most one index i such that �i = �2 and if it happens, wesuppose moreover that for all j 6= i, �j � 0 and aij � �1 (the last conditionmeans that the ith node of the corresponding Dynkin diagram is not at thefoot point of a double arrow).Then for any � 2 �+; we have V�
V� = X�2A V�where A � (f�+ �j� 2 �(�)g)\ C is some subset and there are no multiplicities inthe decomposition.Proof. For all weights � with the property �j � �1 for all j we get as above that�+ �+ � 2 C, hence no reections are needed and V�+� appears in the formal sumcoming from the Klimyk formula if and only if � + � 2 C.



INVARIANT OPERATORS ON MANIFOLDS WITH AHS STRUCTURES III. 9Let us consider a weight � with the property that �i = �2. The assumptions ofthe theorem imply that (�+� +�)j � 1, j 6= i, and (�+� +�)i = �i�1. If �i > 0;then again � + � + � 2 C and no reection is needed.If, however, �i = 0 then the weight � + � + � is not in C. Let w 2 W isthe simple reection with respect to ith simple root, then (� + � + �)i = �1 and(w (�+ � + �))i = 1. For j 6= i such that aij = 0; the coe�cient (�+ � + �)j is notchanged under the reection, hence is nonnegative. If j 6= i such that aij = �1,then (w (�+ � + �))j = (�+ � + �)j � 1 � �j � 1 = 0, hence also these coe�cientsare nonnegative. Consequently, w (�+�+�) 2 C and the irreducible representationVw(�+�+�)�� will appear in Klimyk's formal sum with coe�cient �1.All terms in the formal sum coming from the weights � with the property � +� + � 2 C are distinct and with multiplicity one. All others are coming with thecoe�cients �1, hence they are necessarily canceled by some of previous ones. Henceall terms in the result have multiplicity one and their highest weights are containedin f� = �+ �; � 2 �(�)g \ C. �3.4 Multipledecompositions. We shall also have to understand irreducible com-ponents of a more complicated tensor product (
kV�) 
V�. For k > 1, there isno hope to get a multiplicity one result as before. As a consequence, only isotypiccomponents of the product will be unambiguously de�ned and the complete split-ting into irreducible components will depend on arbitrary choices. We shall shownow that the results of the previous paragraph can be used for a classi�cation of thepieces in the decomposition and for a construction of a distinguished decompositionuseful for more detailed computations in following sections.Let g is a semi-simple Lie algebra and V� its irreducible representation havingthe following property: For all � 2 �+, there exists a set A� such that V�
V� =P�12A� V�1 and there are no multiplicities in the decomposition.Then the decomposition can be iterated as follows. The product 
2(V�)
V� =V�
 (P�12A�V�1) can be again decomposed in the same way asX�12A� X�22A�1V�2;�1 ;where the double index of V�2;�1 indicates how this particular component was ob-tained in the decomposition. By repeating this process, it is clear that the product
k(V�)
V� can be completely decomposed into irreducible components, each onebeing labeled by a sequence � = (�k; �k�1; : : : ; �1; �) which records the way howthis component was obtained through the process of successive decompositions.The �nal highest weight �k may appear many times and its precise position in theisotypic component is �xed by the whole sequence recording its history. Hence fora �xed �; we shall de�ne the set Ak(�) of all such sequences, i.e.Ak(�) = f� = (�k; �k�1; : : : ; �1; �0) j�0 = �; �j 2 A�j�1 ; j = 1; : : : ; kg:Then 
k(V�) 
V� = X�2Ak(�)V�:Together with the �nal irreducible component V�, we shall use also for computa-tions all intermediate components given by V�j ; �j = (�j ; : : : ; �0) in 
j(V�)
V�,together with the corresponding invariant projections ��j .



10 ANDREAS �CAP, JAN SLOV�AK, VLADIM�IR SOU�CEKThere is one important question connected with such a decomposition, namelyto �nd a position of the above mentioned components with respect to the splittingof 
j(V�) 
V� into a direct sum of �j(V�) 
V� and its invariant complement.Such a knowledge would help to decide whether invariant operators obtained bythe projection to the corresponding components in the decomposition will havenontrivial symbol or not. We shall answer this question in the case we need in thenext paragraph.3.5 Multiplicity one components. There are special pieces in the decompositionof 
j(V�) 
V� which always appear with multiplicity one. Even more, we shallbe able to show that they must be included in �j(V�) 
V�; where � denotes theCartan product of irreducible representations (cf. 3.3), hence their symbol will benontrivial.Theorem. Let �; � 2 �+. Let � be an extremal weight of V� (i.e. it belongs to theWeyl orbit of the highest weight �). Let k be a positive integer such that �+ k� isdominant.Then there is a unique irreducible component in 
k(V�)
V� with highest weight� = � + k�. Moreover, the component V� is contained in �k(V�) 
V�.Proof. The product 
k(V�) 
V� can be decomposed into the sum of V� as de-scribed above. All these chains � can be considered as piecewise linear paths inthe dominant Weyl chamber composed from the straight segment with directionsgiven by weights of V�: If we are going straight on k times in the same direc-tion given by an extremal weight of V�; no other path can reach the same point� = � + k� (extremal weights have extremal lengths). This implies the unicity ofthe component.To prove the existence, note that the weight k� is an extremal weight of �k(V�):Hence we can use the PRV conjecture to show thatV� appears in the decompositionof �k(V�)
V�: �3.6 Partial projections. Let us recall that we always have �k(V)� �k(V) andthat �k(V) coincides with[�2(V)]� [�k�2(V)]� [�2(V)]
 [�k�2(V)]:As a corollary we getLemma. Denote by � the projection of 
k(V) onto �k(V): Suppose that A is theinvariant complement of �2(V) in 
2(V) and �A is the corresponding projection.Then �A
 (
k�2(V)�\ ��k(V)�= ;, or equivalently� � (�A 
 Id k�2) = 0:3.7. The results above will be applied below in the following special case. Letg = g�1 � g � g1 be a complex j1j-graded Lie algebra, cf. 2.1. The space g1 is anirreducible gs0-module which is `small' enough, i.e. it satis�es assumptions of one ofthe Theorems in 3.3. To check it, it is necessary to inspect algebras g case by case.The list of them together with details needed for the veri�cation are collected inAppendix A.Consequently, for any irreducible g0-module V; the tensor product g1 
V de-composes into irreducible components without multiplicities and results of 3.5 and3.6 can be used for decompositions of the product 
k(g1)
V:



INVARIANT OPERATORS ON MANIFOLDS WITH AHS STRUCTURES III. 114. Casimir computations4.1 Notation. For this section, we shall suppose that g = g�1 � g0 � g1 is acomplex j1j-graded simple Lie algebra. In general, a choice of jkj-graded structureon a complex simple Lie algebra g is the same as a choice of its parabolic subalgebra.Any parabolic subalgebra is conjugated to a standard one (i.e. one containing achosen Borel subalgebra b � g). There is one to one correspondence betweenstandard parabolic subalgebras of g and subsets of the set S of simple roots of g.The j1j-graded structures on g exist only for four classical series and for E6 andE7 cases and they are given by certain one-point subsets of S (Dynkin diagramswith the corresponding simple root crossed are often used to denote the chosenparabolic subalgebra). We shall choose numbering of the set S of simple roots sothat the �rst simple root �0 is the crossed one (for more information on jkj-gradedLie algebras see [BasE, Y]).There is a unique grading element E 2 g0 satisfying [E;X] = `X for X 2 g`; ` =�1; 0; 1: A Cartan subalgebra h � g can be chosen in such a way that E 2 h; thenh � g0: The set �+ of positive roots for g can be chosen so that all root spaces forpositive roots are included in g0 � g1.It is often useful to normalize an invariant form (:; :) on g by the requirement(E;E) = 1 (see e.g. [BOO]). For the Killing form, we have B(E;E) = 2 dimg1,hence (X;Y ) = (2 dimg1)�1B(X;Y ). This normalized form (:; :) induces nonde-generate invariant bilinear forms on g0 and g�1 � g1, and it identi�es g1 and g�1as dual spaces. Orthonormal bases and Casimir operators for g0 will be computedusing this normalized form.The algebra g0 splits into 1-dimensional center a and a semisimple part gs0 =[g0; g0] which has hs = h\ gs0 as a Cartan subalgebra. Then h = a� hs. Irreduciblerepresentations of p = g0�g1 are trivial on g1. Every such representation is a tensorproduct of a one-dimensional representation of a and an irreducible representationof gs0, which can be characterized by its highest weight � 2 (hs)�. For convenience,we shall consider (hs)� as a subset of h� of all elements, which restrict to zero ona. Representations of a can be characterized by a (generalized) conformal weightw 2 C : We shall say that a representation U of g0 has a (generalized) conformalweight w, if E �v = wv; v 2U. The cotangent spaces of our manifolds are associatedto the adjoint representation of g0 on g1, hence 1-forms will have (generalized)conformal weight 1. An irreducible representation of g0 with a conformal weight wand highest weight � 2 (hs)� will be denoted by V�(w).Let fYag, a = 0; 1; : : : , be an orthonormal basis of g0 with respect to the form(:; :). We may choose it in such a way that Y0 = E 2 a and fYa0g, a0 > 0 is anorthonormal basis for gs0. For any representation V of gs0, the Casimir operatorC(V) is de�ned by C(V) = Pa0>0 Ya0 � Ya0 . It is well known (see [H]) that if V isan irreducible representation with a highest weight �, thenC(V) = (�; �+ 2�); � = 1=2 X�2�+(gs0)�:As we have noticed already, our algebras gs0 are irreducible in all cases exceptthe sl(n; C ) series, but even then the formula C(V�) = (�; � + 2�); � = (�1; �2) isstill valid, see 3.1 for the reasons.4.2 Casimir computations. Suppose now that X 2 g�1, Z 2 g1 and let usconsider an irreducible g0-module V�(w); where � 2 h� is an integral dominant



12 ANDREAS �CAP, JAN SLOV�AK, VLADIM�IR SOU�CEKweight for gs0 and w 2 C . In the description of iterated invariant di�erentials, termsof type [Z;X] � s, s 2V�(w), have appeared very often (the � means here the actionof an element of g0 under the representation characterized by � and w), (see 2.4).It is hence important to understand them better.Recall that we identify g1 and (g�1)� using the scalar product (:; :). The term[Z;X] �s de�nes a map from g1
g�1
V�(w) intoV�(w); which can be interpretedalso as a map �: g1 
V�(w)! g1 
V�(w); de�ned by�(Z 
 v)(X) := �([Z;X])v; Z 2 g1; s 2V�(w); X 2 g�1:Let us choose bases f��g, resp. f��g of g�1, resp. g1, which are dual with respectto the scalar product (:; :). Due to[Z;X] � s =X� [Z; (��; X)��] � s = �X� �� 
 [Z; ��] � s�(X);we get �(Z 
 s) =X� �� 
 [Z; ��] � s:The map � is a g0-homomorphism (by direct computation or by the lemmabelow). Let g1 
V�(w) = P�V�(w + 1) be a decomposition of the product ofg0-modules into irreducible components and let ��� : g1 
V�(w) !V�(w + 1) bethe corresponding projections. The g0-homomorphism � acts as a multiple of theidentity on each irreducible component, i.e. there are constants ~c�� 2 R such that� =P� ~c����� and we are going to describe a formula expressing these constantsin terms of the weights � and �.4.3 Lemma. Let V�(w) be an irreducible representation of g0 and let g1 
V� =P�V� be a decomposition of the product into irreducible gs0-modules. Let � be thehighest weight of g1 and let � be the half sum of positive roots for gs0. Then for alls 2V�(w), �(Z 
 s)(X) = [Z;X] � s =X� (w � c��)���(Z 
 s)(X);where c�� = �12 [(�; �+ 2�) � (�; � + 2�) � (�; �+ 2�)]:Proof. Let f��g; resp. f��g be dual bases of g�1, resp. g1. The invariance of thescalar product implies[Z; ��] =Xa (Ya; [Z; ��])Ya =Xa ([Ya; Z]; ��)Ya�(Z
s) =X� ��
 [Z; ��] �s =X� ��
�Xa ([Ya; Z]; ��)Ya� �s =Xa [Ya; Z]
Ya �s:Since Y0 = E, the �rst term in the sum is [Y0; Z]
 Y0 � s = wZ 
 s and for the restwe can use the de�nition of the Casimir operator and its computation by means ofhighest weights, together withXa0 Ya0 Ya0 �(Z
s) =Xa0 (Ya0Ya0 �Z)
s+Xa0 Z
(Ya0Ya0 �s)+2Xa0 (Ya0 �Z)
(Ya0 �s)(notice � means the actions on di�erent modules used in the formula) �



INVARIANT OPERATORS ON MANIFOLDS WITH AHS STRUCTURES III. 134.4 Example. Let us compute now a simple case of the formula above which willbe needed below. The special double commutator terms [[X; � ]; � ] from 2.5 areappearing often in the algorithm mentioned in 2.6. We want to decompose theminto irreducible pieces.Again, let � be the highest weight of g1 considered as gs0-module. By our conven-tions, it has the conformal weight 1. The tensor square g1 
 g1 decomposes alwaysinto symmetric and antisymmetric parts. But the symmetric square decomposes inall but one cases into two components (an exceptional case being projective struc-tures, where is does not decompose). For our purposes, it is su�cient to know thatthere is always a piece in the decomposition with the highest weight 2� (the Cartanproduct of g1 with itself), denoted by g1 � g1.Lemma. Let g1
 g1 = �3i=1V�i be the decomposition into irreducible componentswith V�1 ' �2(g1) and V�3 ' �2(g1) (V�2 is trivial in the projective case). Hence�1 = 2�. Then there exist real numbers Ai; i = 1; 2; 3; such that�12 [[X; � ]; � ](Y ) = 3Xi=1 Ai�i[� 
 � ](X;Y );where X;Y 2 g�1; � 2 g1, and �i is the projection onto V�i. For A1, we haveA1 = 12 (j�j2+ 1).Proof. This is the case V� = g1 of lemma 4.3, so the numbers Ai are given byAi = �12 [c��i � 1]; i = 1; 2; 3:In particular, c�;2� = �12 [(2�; 2�+ 2�)� 2(�; �+ 2�)] = �j�j2. �In computations below, we shall use often the constant A1 but we shall seethat its actual value does not inuence the explicit formula for standard operators,because the constant A1 will be absorbed by a renormalization of the deformationtensor �. 5. P -module homomorphismsLet us suppose, as in the previous section, that g is a complex j1j-graded Liealgebra, p = g0 � g1 and V is a (complex) irreducible p-module. The algebra g0splits into the sum of the commutative 1-dimensional ideal a and the semisimplepart gs0.Using results obtained in the last two sections, it is possible to construct a broadclass of p-homomorphisms � from �JkV to a P -module V0, where V0 is a suitableirreducible component of the g0-module 
k(g1) 
V. Let us recall that there is aunique grading element E 2 a for g and an invariant scalar product (:; :) on g isnormalized by the condition (E;E) = 1.Before stating the corresponding result, we shall prove a simple auxiliary Lemma.A surprising and important fact coming from it is the independence of the constantscj+1 � cj of the chosen representations.5.1 Lemma. Let � be the highest weight of the gs0-module g1 and � one of itsextremal weights. For any weight �, let us de�ne weights �j = � + j�, j 2 N, andnumberscj = c�j�j+1 = �12�(�j+1; �j+1 + 2�) � (�j ; �j + 2�) � (�; �+ 2�)�:



14 ANDREAS �CAP, JAN SLOV�AK, VLADIM�IR SOU�CEKThen we have(1) c0 = (�; �) � (�; � + �);(2) cj � cj�1 = �j�j2;(3) Pk�1j=0 cj = k [(�; �)� (�; � + �) � k�12 j�j2].Proof. By de�nitionc0 = �12�(� + �; � + � + 2�) � (�; �+ 2�) � (�; �+ 2�)� == (�; �)� (�; �+ �) � 12(j�j2 � j�j2):The weight � lies in the W -orbit of �, so they have the same norm, and (1) follows.Substituting �j instead of �, we getcj = (�; �)� (�; � + �) � jj�j2as well as the formula (2). Using cj = c0 � jj�j2; we getk�1Xj=0 cj = k�1Xj=0(c0 � jj�j2) = k c0 � k(k � 1)2 j�j2: �5.2 The algebraic criterion. We want now to prove that certain G0-homomor-phisms are in fact P -homomorphisms. In [CSS1], the following algebraic conditionfor it was proved, but in the case when the invariant scalar product (:; :) was equalto the Killing form B(:; :). If the normalization of (:; :) is di�erent and if � is anumber such that B(:; :) = �(:; :), then it is easy to check that all terms in theLemma below are scaled uniformly by the constant �k, hence the condition doesnot change.Lemma. Let V and V0 be irreducible P -modules and �: �Jk(V) ! V0 be a g0-module homomorphism whose restriction to 
k(g��1)
V� �Jk(V) does not vanish.Let us choose any invariant scalar product (:; :) on g and let us use it to identify g1with g��1: Then � is a P -module homomorphism if and only if:(1) It factors through the projection � : �Jk(V)!
k(g��1) 
V;(2) � vanishes on the image of 
k�1(g��1)
V in �Jk(V) under the action of g1,i.e. for all Z; Y1; : : : ; Yk�1 2 g1, v 2Vwe have��k�1Xi=0(X� Y1 
 � � � 
 Yi 
 �� 
 �[Z; ��]:(Yi+1 
 � � � 
 Yk�1 
 v)�� = 0;where �� and �� are dual bases of g1 and g�1 with respect to the scalar product (:; :)and the dot means the standard action of an element in g0 on the argument.This criterion looks quite complicated. Using results of Section 4, we can use itto prove easily the existence of a broad class of P -modules homomorphisms.



INVARIANT OPERATORS ON MANIFOLDS WITH AHS STRUCTURES III. 155.3 Corollary. Let V� be an irreducible gs0-module and let � be the highest weightof the irreducible gs0-module g1.Let us suppose that an extremal weight � of g1 and an positive integer k ischosen in such a way that � = �+ k� is dominant. Let � : 
kg1
V�!V� be theprojection on the unique irreducible component of the product with highest weight �(see Theorem 3.5).Then there is a unique value for the generalized conformal weight w such that� de�nes a P -homomorphism from �Jk(V�(w)) to V�(w + k): The value of thatconformal weight is given byw = (�� �; �) � k � 12 (j�j2 + 1)� (�; �);where � is half the sum of positive roots for gs0.Proof. Let us �rst recall the construction of the projection �. If �k0 = � + k0�,k0 = 0; : : : ; k, the projections �k0, k0 = 1; : : : ; k, are de�ned inductively as theprojections from g1 
 V�k0�1 onto the unique irreducible component V�k0 withhighest weight �k0 . The projection � is given by the formula�(Z1 
 � � � 
 Zk 
 v) = �k(Z1 
 �k�1(Z2 
 : : : �1(Zk 
 v) : : : ));where Z1; : : : ; Zk 2 g1, v 2V�.To prove the theorem, we have to verify that with the choice of the weight wabove, the condition in Lemma 5.2 is satis�ed. So we want to �nd w in such a waythat for all Z;Z1; : : :Zk�1 2 g1, v 2V�,��k�1Xi=0X� Z1 
 � � � 
 Zi 
 �� 
 �[Z; ��]:(Zi+1 
 � � � 
 Zk�1 
 v)�� = 0;where �� and �� are dual bases of g1 and g�1 with respect to the product (:; :). Letus recall the notation cj = c�j ;�j+1 from Lemma 5.1.By Lemma 4.3, applied to elements fromV�k�1�i(w + k � 1� i), we have�k�i�X� �� 
 �k�i�1�[Z; ��]:(Zi+1 
 �k�i�2(: : :
 �1(Zk�1 
 v) : : : ))�� =�k�i�X� �� 
 �[Z; ��]:(�k�i�1(Zi+1 
 �k�i�2(: : :
 �1(Zk�1 
 v) : : : )))�� =(w + k � 1� i� ck�1�i)�k�i�Z 
 �k�i�1(Zi+1(: : :
 �1(Zk�1 
 v) : : : ))�:Due to the fact that all images of �j belong to �jg1
V�, j = 1; : : : ; k, all elements�(Z1 
 : : :
 Zi 
 Z 
 Zi+1 
 � � � 
 Zk�1 
 v)); i = 0; : : : ; k � 1coincide. It is hence su�cient to �nd w so thatkw + k(k � 1)2 � k�1Xj=0 ck�1�j = 0:To get the value for w, it is su�cient to use Lemma 5.1 (note that j�j = j�j). �



16 ANDREAS �CAP, JAN SLOV�AK, VLADIM�IR SOU�CEK6. Standard operators6.1 A construction of invariant operators. As described in Section 2, the P -module homomorphisms constructed in the last Section de�ne invariant di�erentialoperators. We can now summarize the whole construction and the data needed forit. Let us return to the situation of Section 2 with a given j1j-graded (real) simpleLie algebra g; the corresponding groups P � G; G0, and a principal �ber bundle Gover M with a given Cartan connection !.The complexi�cation gC is a complex semisimple j1j-graded Lie algebra andgj = g \ gCj ; j = �1; 0; 1. Any (complex) irreducible P -module V is an irreducibleg0-module as well as gC0 -module. They are characterized by an integral dominantweight for (gs0)C and the (generalized) conformal weight w. The tensor productg1 
RV is isomorphic to gC1 
C V, the same is true for iterated tensor products.The space gC1 is an irreducible module for gs0 with a highest weight �.Suppose that we have chosen the following data: An irreducible module V� forgs0, a 'direction' �, which is an extremal weight of the gs0-module gC1 , and a positiveinteger k, such that � = �+ k� 2 �+.Let � be the projection to the unique irreducible component of the gs0-module
kg1 
V� with the highest weight � = � + k� (cf. Theorem 3.5), and let w bethe corresponding (generalized) conformal weight from Corollary 5.3. Then theoperatorD � D(�; �; k) = � � (r!)k : C1(P; V�(w))P ! C1(P; V�(w + k))P ;is an invariant di�erential operator of order k.6.2 Standard operators. We have de�ned above a certain class of operatorswhich were proved to be invariant. There is a traditional division of invariantoperators into two classes | standard and nonstandard ones. We would like toshow now that the operators constructed above include almost the whole class ofso called standard operators.(Fundamental) standard operators were originally de�ned in the homogeneoussituation (on generalized ag manifolds G=P; with G complex simple and P par-abolic). In the Borel case, the classi�cation of all invariant di�erential operatorswas given (in the dual language of homomorphism between Verma modules) byBernstein, Gelfand and Gelfand, see [BGG]. They are all de�ned uniquely by theirsource and target (up to a constant multiple) and they are precisely all operatorsforming the so called BGG resolutions. For a general parabolic, the BGG reso-lutions are also well known but the class of invariant operators corresponding toindividual arrows in them | they are called (fundamental) standard operators |is no more the complete set of invariant operators. There exist also the so callednon-standard operators. To show a relation of our invariant operators D(�; �; k) tothe standard operators, we need just their following simple property (more detailscan be found e.g. in [BasE], [Go]).Suppose that a Cartan subalgebra h in gC and the set of simple roots is chosenin such a way that E 2 h and that all positive spaces are contained in gC0 \ gC1 :Irreducible representations of gC0 can be characterized by their highest weight, con-sidered as an element in h�; such that its restriction to (h)s = h\(gC0 )s is dominant.This carries information both on the highest weight for (gC0 )s and on a generalizedconformal weight. For any such � 2 h�; the symbol V� denotes a homogeneous



INVARIANT OPERATORS ON MANIFOLDS WITH AHS STRUCTURES III. 17bundle given by the irreducible representation of gC0 ; corresponding to this highestweight. The Weyl group W of gC has a structure of a directed graph which isdirectly related to existence of invariant operators.The property we need is the following. If D : �(V�) ! �(V�0) is a standardinvariant operator, then there is a positive root � for gC such that ��(� + �) =�0+�, where �� is the reection with respect to � and � is a half-sum of positiveroots for gC. Consequently, we have also j�+�j2 = j�0+�j2. Before going further,we need two simple auxiliary lemmas.6.3 Lemma. Let g be a complex j1j-graded Lie algebra, S = f�igmi=0 the set of itssimple roots with its numbering chosen in such a way that �0 is the crossed simpleroot. Let f�ig be the corresponding set of fundamental weights.Then we have(1) If � is the highest weight of an irreducible g0-module V, then its conformalweight is equal to w = �(E).(2) The root space g� belongs to gj , j = �1; 0; 1, if and only if a0 = j, whereai are coe�cients in the decomposition � =Pmi=0 ai�i.(3) For any weight � 2 h�, we have (�0;�) = j�0j22 �(E); where E is the gradingelement.(4) Let us consider two weights �, �0 and a number a such that j�j2 = j�0j2,j�+ a�0j2 = j�0 + a�0j2 and (�� �0; �0) 6= 0. Then a = 0.Proof. (1) If v is a highest weight vector forV; then E �v = �(E)v; but by de�nitionE � v = w v:(2) This is a special case of a simple general statement valid for all jkj-graded Liealgebras. The reason is that all simple roots but �0 are in g0, while �0 generatesg1.(3) There is an element H 2 h such that (�0;�) = �(H) for all � 2 h�. Then forall j = 1; : : : ;m, we have 0 = (�0; �_j ) = �_j (H), where �_j = 2�jj�jj2 . The elementH is orthogonal to all roots of g0, hence it is a multiple of E (which has the sameproperty). To check the multiple, it is su�cient to note that �0(E) = 1; becausethe conformal weight for g1 is 1:4) The last property follows fromj�+ a�0j2 � j�0 + a�0j2 = 2a(�� �0; �0): �As a consequence, we get the following interesting fact.6.4 Lemma. In the setting of 6.1, let �; �0 be two dominant integral weights forgs0: Suppose that there are two nontrivial standard invariant di�erential operatorsD; ~D of order k > 0 such thatD : �(V�(w))! �(V�0(w + k)); ~D : �(V�( ~w))! �(V�0( ~w + k)):Then w = ~w:Proof. Let �, �0, ~�, ~�0 be in turn highest weights from h� for irreducible represen-tations V�(w);V�0(w + k);V�( ~w);V�0( ~w + k):



18 ANDREAS �CAP, JAN SLOV�AK, VLADIM�IR SOU�CEKIf � is the half-sum of positive roots for g; then existence of D; ~D implies (see 6.2)that j�+ �j2 = j�0 +�j2; j~� + �j2 = j~�0 +�j2:The di�erences ~� � �, ~�0 � �0 annihilate hs, hence there are numbers a, a0 suchthat ~�� � = a�0; ~�0 � �0 = a0�0. Buta�0(E) = (~� � �)(E) = ~w �w = ( ~�0 � �0)(E) = a0�0(E);hence a = a0. Moreover, (���0)(E) = k > 0, hence (���0; �0) 6= 0. Now, Lemma6.3 implies that a = 0. �6.5 Theorem. Let D be a standard invariant di�erential operator acting betweensections of V� and V~�: Let � 2 h� be a positive root of g such that ~� + � =��(� + �): Denote by � the restriction of � to hs and by � the restriction of �:Then � is a weight of gs0-module g1 and the number k = 2(�+�;�)=(�;�) is apositive integer.If moreover the weight � is an extremal weight of g1; then the operator D(�; �; k)de�ned in 6.1 coincides (up to a multiple) with the operator D on sections of thehomogeneous bundle V�.Proof. The root � is a positive root of g: Consequently, the value of �(E) is either0 or 1. By the properties of standard operators (see 6.2), we have~�� � = k�;where k = 2(�+�;�)=(�;�)must be an integer. Because any di�erential operatormust increase (generalized) conformal weight (which is given by evaluation of thehighest weight on E), the value �(E) cannot vanish. Hence �(E) = 1 and k > 0:If we denote by �, resp. ~�, the restrictions of �, resp. ~� to hs, then we have alsothe relation ~� = �+ k�:Hence the operators D and D(�; �; k) act between the same gs0 bundles and theyare both invariant. By Lemma 6.4, their conformal weights coincide as well. Now,the standard operators are completely de�ned by their domains and targets up tomultiples, see [BC], and D and D(�; �; k) di�er at most by a constant multiple. �6.6 Remark. We have just seen that our construction gives all standard invariantoperators for those AHS structures, for which the set of weights of gC1 is just oneorbit of the Weyl group. This is true for all cases with two exceptions | the odddimensional conformal case and the symplectic case.There is indeed an exceptional set of standard operators for AHS structureswhich do not have a simple description of the form D(�; �; k) constructed above.A typical example is the case of odd conformal structures and the operators inthe middle of the BGG resolution. These are operators acting between sections�(V�(w)) and �(V�(w0)). The representation V� of the semi-simple part of G0 isthe same for the source and the target, they di�er only by their conformal weights.They correspond to the case of operators (�; �; k), where � is the zero weight ofg1. In this case, however, the isotypic component V� appears in 
k(g1)
V� withhigher multiplicities.



INVARIANT OPERATORS ON MANIFOLDS WITH AHS STRUCTURES III. 19In general, the BGG sequence of a representationVof g can be realized using thetwisted (V-valued) de Rham sequence. In the particular case of the BGG sequenceof the basic spinor representation Sof g = Spin(2n + 2; C ), the middle operatorcorresponds to a second order operator D between �(V�(n� 1=2)), and �(V�(n+3=2)), where � = (3=2; : : : ; 3=2). There are 3 pieces in the decomposition of thetensor product 
2(g1)
�(V�), corresponding to sequences of weights (�; �; �) with�1 = (5=2; 3=2; : : : ; 3=2); �2 = (3=2; : : : ; 3=2); �3 = (3=2; : : : ; 3=2; 1=2). It can beshown by methods described in [CSS4], [B], (see also [Sev]) that the correspondingstandard operator is given by � � (r)2, where the projection � is equal to � =�2+ 1=4�3, where �j are de�ned as projections to irreducible pieces correspondingto the sequences with �j. The form of the operator D is hence more complicated,it has the formD t = �2[(r)2t� (1=2)�
 t] + 1=4�3[(r)2t� 2�
 t]:So it is clear that its formula has no more the simple universal formD t = �((r)2t+�
 t]) of the second order standard operators deduced below, see 7.11.7. Explicit formulae for standard operators7.1 Obstructionand correction terms. An algorithm for computation of (r!)kin terms of the principal connection r and its deformation tensor � was given in[CSS1], Sec. 4. The formulae for obstruction terms (important for existence proofs)as well as for correction terms (important for explicit description of operators) be-come quickly very complicated. Using explicit description of the homomorphism� in Section 4 by means of Casimir operators, it is possible to simplify the algo-rithm substantially and to get quite explicit formulae for the coe�cients in generalcorrection terms for the invariant operators constructed in the previous section. Itis quite remarkable that coe�cients in the �nal formula for curvature correctionterms do not depend on a choice of a representation V� as well as on a choice of aparticular AHS structure! They depend only on the order of the operator.Let us �rst simplify the algorithmgiven in [CSS1]. Let k be a �xed integer and letus consider an operator D = � � (r!)k, where the projection � of 
k(gC1 )
V� ontoone of its irreducible components is determined by a chain of dominant weights,as described in Section 3. Knowing highest weights of all intermediate irreduciblecomponents in the chain of projections, Lemma 4.3 can be used to compute thevalues of the homomorphism � on all terms in the algorithm. The same is true forthe action of the double commutator term [[X; � ]; � ] (see Example 4.4). This makesit possible to evaluate, in principle, all terms in the expansion. But the result isstill quite complicated.A considerable simpli�cation in the algorithm can be achieved, if we restrictourselves to the symmetric case, i.e. if the image of � is a subspace of �k(gC1 )
V�.Then many multiple tensor products contained in various terms of the formulamay be reordered and combined together. Any term of the formula is then justa symmetric tensor product of a power of � , suitable powers of �; its covariantderivatives and a covariant derivative of the section s: A problem to be solved iswhether there is a way how to compute e�ectively coe�cients in the correspondinglinear combination of such terms.An additional simpli�cation can be achieved in the case, when we know whichsummand in the description of the action of the double commutator (Lemma 4.4)



20 ANDREAS �CAP, JAN SLOV�AK, VLADIM�IR SOU�CEKis really appearing in various terms. Such information is available in the case ofthe operators D(�; �; k) constructed above. In this case, we may use properties ofthe decomposition of the tensor product 
k(gC1 )
V� proved in Section 3 to get anexplicit form of the operator. Before tackling the main Theorems 7.4 and 7.9, wediscuss the low order cases.7.2 The �rst order operators. Using results from [CSS1], see 2.4, and Lemma4.3, we get immediately the existence and an explicit form of the 1st order operators.Corollary. Let V� be an irreducible representation of (gC0 )s and V� be an irre-ducible component of the product g1 
V�. Let � = ��� be the corresponding pro-jection. Then �(r!(p�t)) = �[p�(rt) + (c0 � w)� 
 t]where c0 = c�� are the constants from 4.3.In particular, there is the unique value w = c0 of the conformal weight for whichthe projection de�nes a �rst order invariant operator D t = �[p�(r)t].Operators of this type were introduced in conformal case in paper [SW] andare now standardly called generalized gradients or Stein{Weiss operators (see e.g.[Bra]). The result above was proved in the conformal case by Fegan (see [F]). Hegave the �rst systematic classi�cation of such operators. The theorem above treatscompletely all �rst order operators for all AHS structures (note that in odd con-formal case, the class of them includes also certain exceptional standard operatorsof �rst order not covered by the class of operators D(�; �; k), e.g. the one in themiddle in the de Rham resolution).7.3 The second order operators. In a similar way, we can use the �rst orderformula, the algorithm leading in [CSS1] to the formula in 2.5, and Lemma 4.2,in order to compute explicitly the form of the second order invariant di�erentialprojected to an irreducible component given by a sequence of dominant weights� = (�0; �1; �2). Let � be the corresponding projection.Corollary. Using notation of Example 4.4 and Lemma 5.1, we have���(r!)2(p�t)�] = �[p�((r)2t) + (c0 � w)�
 p�t+(c0 �w)� 
 p�(rt) + (c1 �w � 1)p�(rt)
 �+(c0 �w)(c1 � w � 1)� 
 � 
 t� 3Xi=1 Ai�i(� 
 � 
 t)�:The most complicated term to compute is clearly the last one coming from thedouble commutator term. To understand that term, one has to understand well therelation among the chosen projection � de�ned by the chain of weights � and theprojections �i coming from the splitting g1
 g1 into symmetric and antisymmetricparts. We shall see that for operators D(�; �; k), this relation can be understoodand the formula above can be simpli�ed further.The operators D(�; �; 2) are invariant for a unique value for the (generalized)conformal weight, cf. 6.1. It is immediate to check that it is just given by therequirement that the sum of coe�cients at terms linear in � vanishes. It is alsopossible to verify directly that then the coe�cient at the term of second order in �vanishes as well.We shall now follow line of reasoning suggested in 7.1 and we shall develop ane�ective procedure for explicit description of all operators D(�; �; k).



INVARIANT OPERATORS ON MANIFOLDS WITH AHS STRUCTURES III. 217.4 Theorem. Let A1 be the number de�ned in Example 4.4. The value of theoperator D(�; �; k)t(u) = �k � ((r!)k(p�t))(u) constructed in 6.1 expands into asum of the formX ak;js0;::: ;sm�k[� j � �s0 � (r�)s1 � : : :� (rm�)sm �ri t](u);where the summation goes overj; si 2 f0; 1; 2; : : :g such that j + mXi0=0 si0(i0 + 2) + i = k;ak;js0;::: ;sm 2 R, � (u) 2 gC1 , and� j = �j�; [ri t](X1; : : : ; Xi) = p�rXi : : :rX1t;[r`�](X;Y;X1; : : : ; X`) = [p� � rX` : : :rX1(�)](X;Y ):The expressions F kt(u) := �k[(r!)k(p�t)](u) 2 �k(gC1 )
 V�are given by recursive formulaeF 0t(u) = p�t(u)F k+1t(u) = [S�+� ](F kt(u)) + [Sr](F kt(u)) + [S�](F kt(u)):The individual transformations S�+� ; Sr and S� act as follows:S�+� [�k(� j�1 � !k�j+1)] = (ck � k + (j � 1)A1 � w)�k+1(� j � !k�j+1 
 t);where !k�j+1 2 �k�j+1(gC1 ) 
 V�; ck = c�k;�k+1 ; �k = �+ k�; j > 1.Sr[�k(� j � �s0 � (r�)s1 � : : :� (rm�)sm �ri t)] == s0[�k+1(� j � �s0�1 � (r�)s1+1 � : : :� (rm�)sm �ri t)]++ : : :+sm[�k+1(� j � �s0 � : : :� (rm�)sm�1 � (rm+1�)
ri t]+[�k+1(� j � �s0 � (r�)s1 � : : :� (rm�)sm �ri+1 t)]:S�[�k(� j+1 � !k�j�1)] = (j + 1)�k+1(� j � �� !k�j�1);where !k�j�1 2 �k�j�1(gC1 )
 V�.Proof. In [CSS1, 4.9], we have described an algorithm to inductively compute thedi�erence (r!)k(p�t) � p�((r)kt) as a sum of correction and obstruction terms.Computing instead of that di�erence the value of F kt(u) := (r!)k(p�t) inductively,the results of [CSS1, 4.9] read as follows: The expression F kt(u), evaluated at karguments from g�1, expands into a sum of terms of the forma�(t1)(�1) : : :�(ti)(�i)p�(r)jt



22 ANDREAS �CAP, JAN SLOV�AK, VLADIM�IR SOU�CEKwhere a is a scalar coe�cient, the �` are iterated brackets involving some argumentsX` 2 g�1, the iterated covariant di�erentials (r)r� evaluated on some X's, and� 's. Exactly the �rst tj arguments X1; : : : ; Xtj are evaluated after the action of�(tj)(�j), the other ones appearing on the right are evaluated before. For k = 1,we have F 1t(u)(X1) = p�((r)t)(u)(X1) + [X1; � ](p�t)(u):Inductively,F kt(u)(X1; : : : ; Xk) = ��(k�1)([Xk; � (u)])F k�1t(u)�(X1; : : : ; Xk�1)+~S� (F k�1t(u))(X1; : : : ; Xk)+~Sr(F k�1t(u))(X1; : : : ; Xk)+~S�(F k�1t(u))(X1; : : : ; Xk):where �(k�1) is the obvious tensor product representation on 
k�1g 
 V� and theindividual transformations ~S� , ~Sr, and ~S� act as follows.(1) The action of ~S� replaces each summand a�(t1)(�1) : : :�(ti)(�i)p�(r)jt bya sum with just one term for each occurrence of � where this � is replacedby [�; [�;Xk]] and the coe�cient a is multiplied by �1=2.(2) ~Sr replaces each summand in F k�1 by a sum with just one term for eachoccurrence of � and its di�erentials, where these arguments are replaced bytheir covariant derivatives rXk , and with one additional term where (r)jtis replaced by rXk((r)jt).(3) ~S� replaces each summand by a sum with just one term for each occurrenceof � where this � is replaced by �(u):Xk.Now we are going to specialize these results to the case we are interested in here:Under the assumptions of the theorem, which we want to prove, the image of theprojection � is included in �k(gC1 )
V� hence order of factors in the multiple tensorproduct does not matter. Consequently all � 's can be shifted to the front of theproduct, derivatives of � can be reordered as indicated above, and all derivativesof t can be put to the end of the expression. Terms rl� can be hence interpretedas elements of �l+2(gC1 )
 V� and ri t can be substituted by its symmetrization in�i(gC1 ) 
 V�. We have already seen that the expression F 1t has the required form(see 7.2). Using Casimir operators, we can now express the algorithm describedabove in the following way.Suppose (by induction) that the term F k has already been written in the formgiven in the theorem. The action of an element [Xk+1; � (u)] on F kt(u) can becomputed by Lemma 4.3, because we know that F kt(u) belongs to the image of �k,which is, by assumption, an irreducible representation with the highest weight �k.The result is (ck � w � k)F kt(u).The action of ~S� was a replacement of � at all j � 1 places in the expressionby �1=2[�; [�;Xk]] Applying the projection � and using the result of Example 4.4and 3.6, only the �rst part in the decomposition of � 
 � survives and the resultis the same term containing one more � multiplied by (j � 1)A1. Adding bothcontributions, we get the action of S�+� .The action of ~Sr is just a derivation and action of ~S� is a substitution of �instead of � , so we arrive directly at the description of Sr and S� in the theorem.



INVARIANT OPERATORS ON MANIFOLDS WITH AHS STRUCTURES III. 23The fact that F k has the required form follows from the above description of theoperators S�+� , Sr, S� by induction. �Looking at the action of the individual transformations and at the form of theexpansion, we get immediately the following algorithm for the unknown coe�cients.7.5 An algorithm for expansion coe�cients. The coe�cients ak+1;js0;::: ;sm in the-orem 7.4 satisfy the following recursive relations.ak+1;js0;::: ;sm = (1� �j;0)ak;j�1s0;::: ;sm(ck � k + (j � 1)A1 � w)+ ak;js0;::: ;sm+ (1� �s0 ;0)(j + 1)ak;j+1s0�1;s1;::: ;sm++ (1� �s1 ;0)(s0 + 1)ak;js0+1;s1�1;::: ;sm++ : : :++ (1� �sm ;0)(sm�1 + 1)ak;js0;::: ;sm�2;sm�1+1;sm�1:7.6 Constants ~ck. In the algorithmabove, the value ck�k+jA1�w has frequentlyappeared. It will be convenient to change the de�nition of constants cj and to de�nenew shifted constants ~cj instead. Let us de�ne them by~cj = c0 � j A1:Then ck � k + j A1 �w = c0 � kA1 � (k � j)A1 � w = ~ck � (k � j)A1 �w.Note for future use that the di�erences ~cj � ~ck = (k� j)A1 are always multiplesof A1.7.7 Constants Bm(s0;::: ;sm). As the last item in the preparation of an explicitcomputation of the coe�cients in the expansion, we are going to de�ne induc-tively the following parametric system of constants Bns ; where n � 0 is an integer,s = (s0; s1; s2; : : : ) is a sequence of non-negative integers with a �nite number ofnonvanishing elements. We shall often write s = (s0 : : : sm) by cutting the sequenceat the last nontrivial entry; (0) will denote the sequence (0; 0; : : :). For any �nitesequence of integers s ,we shall use two integers jsj, [s] associated with s, de�nedby jsj = 1X0 si and [s] = 1X0 si(i+ 1):Symbols �i; i = 0; 1; : : : , will be used for special sequences of integers de�ned by�0 = (1; 0; : : :); �1 = (�1; 1; 0; : : :); �2 = (0;�1; 1; 0; : : :); : : :De�nition. Let ~c0, A1, and w, be any �xed real numbers and de�ne ~cj, j 2 N, by~cj = ~c0 � j A1.A system of real numbers Bns , where n is a non-negative integer and s is asequence of non-negative integers with �nite number of nonzero terms, is de�nedby induction with respect to n+ [s] as followsB00 = 1;Bns = (1� �s0;0)(n + jsj � 1)(~cn+jsj�2 �w)"n�1Xl=0 Bls��0#+1Xi=1(1� �si ;0)(si�1 + 1) n�1Xl=0 Bls��i :



24 ANDREAS �CAP, JAN SLOV�AK, VLADIM�IR SOU�CEKIn the formula above, we use the convention that any sum Pba ::: vanishes whenevera > b.In the sequel, we shall use the B's with the numbers A1 and ~c0 = c0 chosen asin 4.4 and 5.1, respectively. Note that then the numbers Bns still depend implicitlyon the value of the variable w which plays the role of the conformal weight.The induction above works �ne, because the smallest possible value of n+ [s] isachieved only for n = 0, s = (0) and the value of B00 is �xed as 1 in advance. Theinductive formula for Bns clearly uses only B's with a smaller value of n+ [s].Certain values of B's are immediately clear from de�nition: Bn(0) = 0 for alln 6= 0 and B0s = 0 for all s 6= (0). More generally, we get from the de�nition byinduction (with respect to n) that Bns = 0 for all n, s such that n < [s].7.8 Basic properties of Bns . Before treating more complicated examples, weshall introduce one more piece of notation. For a positive integer n, the symbolfng will denote the number fng := n(~cn�1 �w):Later on, we shall consider values of these factors fng at special values of conformalweight w = ~ck�1, k 2 N. Let us note already at this point that for this value of wthe resulting number depends linearly on A1 (see 7.6).The case where jsj = 1. Using the shorthands fng, we get immediately from thede�nition that Bn(1) = fng; for all n � 1,Bn(2) = fn+ 1g n�1Xl=1flg; for n � 2,while B1(2) = 0.Similarly (by induction with respect to n), we get easily for any n � m + 1Bn(m+1) = fn+mg n�1Xlm=mflm +m� 1g lm�1Xlm�1=m�1flm�1 +m � 2g lm�1�1Xlm�2=m�2: : : l2�1Xl1=1fl1g;and Bn(m+1) = 0 for n = 0; : : : ;m: Clearly, the numbers Bn(m)jw=~ck�1 are homoge-neous of degree m in A1 for each k 2 N.The case where jsj = 2. To understand the de�nition of Bns better, let us alsoconsider the numbers Bn(ij): Couples (ij) of non-negative integers can be consideredas vertices of a graph in the plane. These vertices will be connected with arrowsof length 1 going horizontally right and antidiagonal arrows of length p2 going upand left.Any vertex in the lattice can be reached from (00) by one or more paths (lyingcompletely in the �rst quadrant). For every path to a vertex (ij), it is possibleto deduce a contribution to the value of Bn(ij) corresponding to this path fromthe algorithm de�ning B's. The actual value of Bn(ij) is then the sum of suchcontributions over all possible paths from (00) to (ij).



INVARIANT OPERATORS ON MANIFOLDS WITH AHS STRUCTURES III. 25The situation for longer sequences s is similar. The numbers Bns play a principalrole in the evaluation of coe�cients for standard operators, so we shall study themin more details in Appendix B and we shall give an explicit formula for them there.Using the very de�nition of B's and the simple relations js � �0j = jsj � 1,js� �ij = jsj, for all i > 0, we get immediately by induction with respect to valuesof n and jsj the following important fact:Lemma. The numbers Bns evaluated at w = ~ck�1 are homogeneous of degree jsj inA1.7.9 Formulae for expansion coe�cients. Let k 2 N be �xed. Suppose thatj 2 N and s = (s0; s1; : : : ; sm) is a �nite sequence of non-negative integers suchthat j + [s] = j +Pmi=0 si(i+ 2) � k. Let ~ci be the real numbers de�ned in 7.6 andBns the numbers de�ned in 7.7. Then we have the following theorem.Theorem. The coe�cients ak;js in the expression for D(�; �; k)t in 7.4 are givenby the formulaeak;js := �kj �24 k�1Yi=k�j(~ci � w)3524k�j�jsjXl=0 Bls35 ; for all j � 1(1) ak;0s := k�jsjXl=0 Bls:(2)Proof. The theorem will be proved by induction with respect to k, using the recur-sive relations from 7.5.Let k = 1. Then, according to Corollary 7.2, F 1 = �(rt + (~c0 � w)� 
 t). Theinequality j +Pmi=0 si(i + 2) � 1 is satis�ed only for s = (0) and j = 0; 1. Therelations (1) and (2) read as a1;00 = B00 +B10 and a1;10 = (~c0 �w)B00 . The de�nitionof B's yields B00 = 1; B10 = 0 which proves the claim in this case.Suppose now that the theorem holds for some �xed k. Let us �rst prove therelation (2), i.e. suppose �rst j = 0. By inductive assumption and the recursiverelations 7.5 for a's, we getak+1;0s = 24k�jsjXl=0 Bls35+ (1� �s0 ;0)� k1� (~ck�1 � w)24k�jsjXl=0 Bls��035+mXi=1(1� �si ;0)(si�1 + 1)24k�jsjXl=0 Bls��i35 = k+1�jsjXl=0 Bls;where we use Bk+1�jsjs = (1� �s0;0)k(~ck�1 � w)24k�jsjXl=0 Bls��035+mXi=1(1� �si;0)(si�1 + 1)24k�jsjXl=0 Bls��i35 :



26 ANDREAS �CAP, JAN SLOV�AK, VLADIM�IR SOU�CEKFor positive j, we getak+1;js = � kj � 1� k�1Yk�j+1(~ci �w)24k+1�j�jsjXl=0 Bls35 (~ck � w � (k � j + 1)A1)++� kj � k�1Yk�j(~ci � w)24k�j�jsjXl=0 Bls35++ (j + 1)(1� �s0 ;0)� kj + 1� k�1Yk�j�1(~ci � w)24k�j�jsjXl=0 Bls��035++ mXi=1(1 � �si;0)(si�1 + 1)�kj � k�1Yk�j(~ci � w)24k�j�jsjXl=0 Bls��i35=� k + 1j � k�1Yk�j+1(~ci � w)24k�j�jsjXl=0 Bls35 �� � jk + 1(~ck �w � (k � j + 1)A1) + k � j + 1k + 1 (~ck�j � w)�++� k + 1j � k�1Yk�j+1(~ci �w) hBk+1�j�jsjs i �� � jk + 1(~ck �w � (k � j + 1)A1) + k � j + 1k + 1 (~ck�j � w)�=� k + 1j � kYk�j+1(~ci � w)24k+1�j�jsjXl=0 Bls1 ;::: ;sm35 ;where we have used the relationsBk+1�j�jsjs =(1� �s0;0)(~ck�j�1 �w) k�j�jsjXl=0 Bls��0 (k � j)+mXi=1(si�1 + 1)(1� �si;0) k�j�jsjXl=0 Bls��i : �7.10 Formulae for the operators D(�; �; k). Note that the form of the coef-�cients ak;js shows immediately that all obstruction terms vanish at once for thevalue w = ~ck�1 of the (generalized) conformal weight. It con�rms once more thatthe operators D(�; �; k) are invariant, independently of the algebraic proof workedout in Section 5. Theorem 7.9 gives at the same time the values of coe�cients inthe correction terms, i.e. the explicit form of the operators D(�; �; k). It is su�cientto use 7.9.(2) and to substitute there the corresponding value of w.As a consequence of Lemma 7.8 and the de�nition of the constants ak;0s , it isclear that ak;0s are homogeneous of degree jsj in A1. Hence the constants A1 canbe absorbed into the de�nition of the deformation tensor � by introducing news



INVARIANT OPERATORS ON MANIFOLDS WITH AHS STRUCTURES III. 27tensors ~� := A1� and the resulting formula is uniform and universal for all AHSstructures (for conformal structures, the constant A1 is equal to 1).For practical calculations of curvature correction terms of standard operators,it is better to �rst write down formulas for coe�cients Bns , because they have thesame form for all k. Having k �xed, it is then easy to evaluate Bns at w = ~ck�1 andto get the necessary coe�cients ak;0s . Note, however, that for operators of orderbigger than 10, it is better to implement the algorithm on a computer, since thelist of correction terms is going quickly to be unmanageable. We have postponedthe exposition of the general formulae for Bns to Appendix B, but let us illustratethe procedure by a few examples now.In order to make the dependence on the order k and the corresponding �xedconformal weight w explicit, we shall use the notation Bns (k), or fng(k), for thenumbers Bns , or fng, evaluated with w = ~ck�1, respectively. Clearly fng(k) =n(k � n)A1. The numbers Bns (k) are simpli�ed considerably, because the term~cj�1�w reduces to k � j. Note that after such substitution, 'symmetric' productsfjg = j(k � j)A1 are appearing repeatedly in formulas for Bns (k). This leads tofurther simpli�cations of the formulae for some B(k)'s, for example Bn(n)(2n) =[(2n� 1)!!]2.7.11 Examples in low degrees. Let us recall that Bns = 0 for all n, s such thatn < [s] and Bn(0) = 0 for all n > 0. We have already seen special cases of theprevious general formulae:Bn(1) = fng; Bn(2) = fn+ 1g n�1X̀�1f`g:The Example in Appendix B provides the coe�cientsBn(01) = n�1Xl=1flg; Bn(001) = n�1Xl0=2 l0�1Xl=1 flgBn(11) = 2 n�1Xl0=2fl0 + 1g l0�1Xl=1 flg+ fn+ 1gn�1Xl0=2 l0�1Xl=1flg:We denote by ~� here the corrected tensor A1� and we compute the universalformula for the operators D(�; �; k) independently of the choice of AHS structureand the data �; � for low values of k. The projection � denotes as before theprojection onto the unique irreducible componentV� in 
k(gC1 )
V�, the operatorD is written using the conventions set up in Theorem 7.4, and we write aks instead ofak;0s . Note that by formula (2) of theorem 7.9 we have ak(0) =Pkl=0Bl(0) = B0(0) = 1.The case k = 2. Here we only need the coe�cients a2(0) = 1 anda2(1) = B1(1) = f1g(2) = 1:Hence D(�; �; 2)t = �[r2t+ ~�
 t]:The case k = 3. We need the 3 coe�cients a3(0) = 1,a3(1) = B1(1) + B2(1) = f1g+ f2g and a3(01) = B2(01) = f1g:



28 ANDREAS �CAP, JAN SLOV�AK, VLADIM�IR SOU�CEKUsing f1g(3) = 2, f2g(3) = 2, we getD(�; �; 3)t = �[r3t + 4~�
 (rt) + 2(r~�)
 t]:The case k = 4. Now, we need 5 coe�cients: a4(0) = 1, anda4(1) = B1(1) +B2(1) +B3(1) = f1g+ f2g+ f3g a4(2) = B2(2) = f3gf1ga4(01) = B2(01) +B3(01) = 2f1g+ f2g a4(001) = B3(001) = f1g:Hence using again fng(k) = n(k � n)A1, we getD(�; �; 4)t = �[r4t+ 10~�
 (r2t) + 10(r~�)
 (rt) + 9~�
 ~�
 t+ 3(r2~�) 
 t]:The case k = 5. Here we need 7 coe�cients: a5(0) = 1, anda5(1) = B1(1) + : : :+ B4(1) = f1g+ f2g+ f3g+ f4ga5(2) = B2(2) +B3(2) = f3gf1g+ f4g(f1g+ f2g)a5(01) = B2(01) + B3(01) + B4(01) = 3f1g+ 2f2g+ f3ga5(001) = B3(001) + B4(001) = f1g+ (2f1g+ f2g)a5(0001) = B4(0001) = f1ga5(11) = B3(11) = 2f3gf1g+ f4gf1gHence we getD(�; �; 5)t = �[r5t+ 20~�
 (r3t) + 30(r~�)
 (r2t) + 64~�
 ~�
 (rt)+18(r2~�)
 (rt) + 4(r3~�) 
 t+ 64~�
 (r~�)
 t]:As a further illustration we include the �nal formula in order seven. Here we usethe concatenation of the symbols instead of the tensor products and we omit theprojection �r7t+ 56~�r5t+ 140(r~�)r4t+ 168(r2~�)r3t + 784(~�)2r3t + 2352~�(r~�)r2t+112(r3~�)r2t+ 2304(~�)3rt+ 1180(r~�)2rt+ 1408~�(r2~�)rt + 40(r4~�)rt+708(r~�)(r2~�)t+ 312~�(r3~�)t + 3456(~�)2(r~�)t+ 6(r5~�)tAppendix A.For explicit description of all weights in the representation g1 in individual cases,we shall use results gathered in [FH]. The facts which are not proved below can befound there.A.1 Conformal case, even dimension. Here gC = so(2n + 2; C ), (gC0 )s =so(2n; C ). Let L1; : : : ; Ln be the standard basis for the dual of the Cartan subal-gebra. The fundamental weights �i; i = 1; : : : ; n are given by relations�i = L1+ : : :+Li; i = 1; : : : ; n�2; �n+�n�1 = L1+ : : :+Ln�1; �n��n�1 = Ln:The dimension of g1 is 2n and the list of all weights of g1 (all with multiplicity one)is given by f�Li; i = 1; : : : ; ng. In terms of fundamental weights, we getL1 = �1; Li = �i � �i�1; i = 2; : : : ; n� 2;Ln�1 = �n + �n�1 � �n�2; Ln = �n � �n�1:Hence all coe�cients in the decompositions are in absolute values at most one. Allweights of g1 belong in this case to the same orbit of the Weyl group.



INVARIANT OPERATORS ON MANIFOLDS WITH AHS STRUCTURES III. 29A.2 Conformal case, odd dimension.Here gC = so(2n+ 3; C ), (gC0 )s = so(2n+ 1; C ). Let L1; : : : ; Ln be the standardbasis for the dual of the Cartan subalgebra. The fundamental weights �i; i =1; : : : ; n are given by relations�i = L1 + : : :+ Li; i = 1; : : : ; n� 1; �n = (1=2)[L1 + : : :+ Ln�1]:The dimension of g1 is 2n+ 1 and the list of all weights of g1 (all with multiplicityone) is given by f0; �Li; i = 1; : : : ; ng. In terms of fundamental weights, we getL1 = �1; Li = �i � �i�1; i = 2; : : : ; n� 1; Ln = 2�n � �n�1:So it not true in this case that all weights of g1 have coe�cients (with respectto fundamental weights) in absolute value less or equal to 1: There are two orbitsof the Weyl group in the set of all weights of g1: All nonzero weights form the �rstorbit and the zero weight the second one.A.3 Grassmannian case. Here gC = Ap+q+1 , (gC0 )s = Ap � Aq . This is theonly case, where (gC0 )s is not a simple Lie algebra. Irreducible representationsV�;�0 of (gC0 )s are just tensor products V� 
 V�0 of two irreducible representationsV�, resp. V�0 of Ap, resp. Aq . To decompose the product V�;�0 
 g1 means todecompose individual products V�
V and V�0 
V 0, where V , resp. V 0 are de�ningrepresentations of both parts of (gC0 )s and then to multiply both decompositions.So it is su�cient to study just the case An: Let us consider the algebra An =sl(n + 1; C ): Let L1; : : : ; Ln+1 be the canonical basis for C n+1 : The dual of theCartan subalgebra can be identi�ed with the quotient f(Li) 2 C n+1g=fPn+1i=1 Li =0g: The fundamental weights �i; i = 1; : : : ; n are given by relations�i = L1 + : : :+ Li; i = 1; : : : ; n:The dimension of the de�ning representation V of sl(n+ 1; C ) is n+ 1 and the listof all weights of g1 (all with multiplicity 1) is given by f�Li; i = 1; : : : ; n+ 1g. Interms of fundamental weights, we getL1 = �1; Li = �i � �i�1; i = 2; : : : ; n; Ln+1 = ��n:Hence all coe�cients in the decompositions are in absolute values at most one.All weights of g1 belong in this case to the same orbit of the Weyl group.A.4 Symplectic case. Here gC = sp(2n; C ); (gC0 )s = sl(n�1; C ); hence the algebra(gC0 )s is again of type Ak: Let L1; : : : ; Ln be the canonical basis for the de�ningrepresentation V = C n. The dual of the Cartan subalgebra is again identi�edwith the quotient f(Li) 2 C ng=fPni=1 Li = 0g. The fundamental weights �i; i =1; : : : ; n� 1 are given by relations�i = L1 + : : :+ Li; i = 1; : : : ; n� 1:In this case, the representation g1 of (gC0 )s is equivalent to �2(V ) and its highestweight is equal to 2�1. The dimension of g1 is equal to (n + 1)n=2 and the list ofall weights of g1 (all with multiplicity 1) is given byfeij = Li + Lj ; i; j = 1; : : : ; n; i � jg:Using conventions �0 = �n = 0; we can express eij using �j byeij = (�i � �i�1) + (�j � �j+1); i � j:Hence eii = 2�i � 2�i�1 and the corresponding coe�cients are �2. There aretwo orbits of the Weyl group | feiig and feijji < jg.



30 ANDREAS �CAP, JAN SLOV�AK, VLADIM�IR SOU�CEKA.5 Spinorial case. Here gC = so(2n; C ); (gC0 )s = sl(n � 1; C ) and the algebra(gC0 )s is again of type Ak: In this case, the representation g1 of (gC0 )s is equivalentto �2(V ) and its highest weight is equal to the second fundamental weight �2. Thedimension of g1 is equal to n(n � 1)=2 and the list of all weights of g1 (all withmultiplicity 1) is given by feij = Li + Lj ; i; j = 1; : : : ; n; i < jg. Using the sameconventions �0 = �n = 0; we can express eij using �j byeij = (�i � �i�1) + (�j � �j+1); i � j:Hence all coe�cients in the decompositions are in absolute values at most one. Allweights of g1 belong in this case to the same orbit of the Weyl group.A.6 E6 case. Here gC = E6, (gC0 )s = D5 and g1 is one of the basic (half)-spinorrepresentations. Its dimension is 16. All weights form one orbit of the Weyl groupand all their coe�cients with respect to the fundamental weights are in absolutevalue at most one. The structure of the orbit as well as all these coe�cients can befound in [Kr].A.7 E7 case. Here gC = E7 and (gC0 )s = E6. All weights of g1 form one orbitof the Weyl group and all their coe�cients are in absolute value at most one (fordetails, see [Kr]). Appendix B.To understand the de�nition of Bns better, we discussed the case of numbers Bn(ij)already in 7.8. Couples (ij) of non-negative integers were considered as vertices ofa graph in plane and these vertices were connected with arrows of length 1 goinghorizontally right and antidiagonal arrows of length p2 going up and left.Any vertex in the lattice can be reached from (00) by one or more paths. Forevery path to a vertex (ij), it is possible to deduce its contribution to the value ofBn(ij) from the algorithm de�ning B's. The actual value of Bn(ij) is then the sumof such contributions over all possible paths from (0) to (ij). The situation forlonger sequences s is similar. It would be possible to de�ne a similar graph for allsequences s, but it is not possible to draw it in more general cases. We shall do thesame in the language of sequences, which also makes possible to prove an explicitformula for the values of Bns , resp. Bns (k).Let us �rst introduce a few additional notations. Let A denote the set of all �nitesequences (of a variable length) J = (j1; j2; : : : ; j�), where j1 = 0 and j2; : : : ; j�are non-negative integers and put jJ j := �. For a positive integer a and J 2 A, letus de�ne the sequences sJ , sJa bysJ := jJjXa0=1�ja0 ; sJa := aXa0=1�ja0 ; a = 1; : : : ; jJ j � 1; sJ0 := (0)where �i are the sequences from 7.7. The subset A0 of A is de�ned byA0 := fJ 2 A j (sJa )i � 0; a = 1; : : : ; jJ j; i = 0; 1; : : : g:We have the following simple properties[�i] = 1 for all i and [�i] + [�j] = [�i + �j] for all i; j[sJ ] = jJ j:



INVARIANT OPERATORS ON MANIFOLDS WITH AHS STRUCTURES III. 31In order to generalize formulas for Bn(m) deduced in Section 7, let us introducefor every sequence s of non-negative integers the setA0s := fJ 2 A0 j sJ = sg:This set is a generalization of the set of all di�erent paths from (0) to s discussedabove in the case of sequences of length two.We also need a generalization of the numbers fng from 7.8. Let us de�ne thenumbers fs; l; ag, where s is a �nite sequence of integers and l, a are positive integersfs; l; ag := � fl + jsjg if a = 0sa�1 if a 6= 0.Using all this notation we obtain the following explicit formula for the numbers Bns :Theorem. The numbers Bns are given by the formulaXJ2A0sfsJ��1; n; j�g n�1Xl��1=��1fsJ��2; l��1; j��1g l��1�1Xl��2=��2 : : : l3�1Xl2=2fsJ1 ; l2; j2g l2�1Xl1=1fl1gwhere � = [s] = jJ j.Proof. We can use induction with respect to �. The case � = 1 means that s = (1).This case was discussed in 7.8: Bn(1) = fng. But s = �0; there is just one elementJ = (0) in A0s and the theorem holds.Suppose now that the formula is valid for all s with [s] � k � 1 and consider asequence s with [s] = k: The set A0s of sequences J can be split into a disjoint unionof subsets by an additional condition j[s] = i; i = 0; 1; : : : ; (all but a �nite numberof them being empty). Now, let us have a look at the algorithm de�ning B's.Using the induction assumption for terms Pn�1l=0 Bls��i ; i = 0; 1; : : : and noticingthat n+ jsj � 1 = n+ js� �0j; si�1 + 1 = (s � �i)i�1; we get the correct value forBns : �Examples. Let us use the formula in a few cases. If s = (01), then the set A0s isa one point set. It consists of J = (0; 1), s = �0 + �1. HenceBn(01) = f(1); n; 1g n�1Xl=1flg = n�1Xl=1flg:Similarly, for s = (001), we have A0s = f(0; 1; 2)g, s = �0 + �1 + �2. HenceBn(001) = f(01); n; 2gn�1Xl0=2f(1); l0; 1g l0�1Xl=1flg = n�1Xl0=2 l0�1Xl=1 flg:If s = (11), there are two elements in the set A0s; namely J = (0; 0; 1); s =�0 + �0 + �1 and J = (0; 1; 0); s = �0 + �1 + �0: SoBn(11) = f(2); n; 1gn�1Xl0=2f(1); l0; 0g l0�1Xl=1 flg+ f(01); n; 0gn�1Xl0=2f(1); l0; 1g l0�1Xl=1flg == 2 n�1Xl0=2fl0 + 1g l0�1Xl=1flg+ fn+ 1g n�1Xl0=2 l0�1Xl=1 flg:A similar computation leads to the last constant B4(0001) = f1g which we haveused in 7.11.
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