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REMARKS ON BIVARIANT CONSTRUCTIBLE FUNCTIONSJean-Paul Brasselet and Shoji Yokura�Dedicated to the memory of Professor Nobuo SasakuraIntroductionThe so-called Chern-Schwartz-MacPherson class (or transformation) is the uniquenatural transformation from the covariant functor of constructible functions to theintegral homology covariant functor, satisfying a certain normalization condition (see[14], and also [3], [10]. [20].) The bivariant theory has been introduced by W.Fultonand R.MacPherson [9], and they conjectured (or posed as a question) the existence ofa Grothendieck transformation from the bivariant theory of constructible functions tothe bivariant homology theory in the category of complex algebraic varieties, whichspecializes to the original Chern-Schwartz-MacPherson transformation. The conjec-ture has been solved by Brasselet for a certain reasonable category [2] (see also [19]and [24]). In this paper we report some consequences of this Brasselet's theorem,concerning bivariant constructible functions (i.e., constructible functions satisfyingthe local Euler condition) and some related results and we also pose some problems.x1 Constructible functions and Chern-Schwartz-MacPherson classesA constructible set of an analytic variety X is obtained from analytic subvarietiesof X by a �nite number of unions, intersections and complements. A constructiblefunction on a compact complex analytic variety X is an integer-valued function onX , � : X ! Z, such that for each integer n , ��1(n) is a constructible set of X .We say that a cellular decomposition (K) of X is �-adapted if � is constant on theinterior of each cell � of (K) , the value beeing denoted by �(�) .Let F(X) denote the abelian group of constructible functions on X . Any con-structible function can be expressed as a (�nite) linear combination of the charac-teristic functions 11W 's where W are reduced and irreducible subvarieties of X .Clearly the correspondence F assigning to each variety X the abelian group F(X)becomes a contravariant functor when we consider the usual (functional) pull-backf� : F(Y ) ! F(X) for a morphism f : X ! Y ; i.e., f�(�)(x) := �(f(x)) . An in-teresting feature of the correspondence F is that it can be made a covariant functorwhen we consider the following pushforward:f�(11W )(y) := �(f�1(y) \W );(*) Partially supported by Grant-in-Aid for Scienti�c Research(No.10640084), the Japanese Ministry of Education, Science and Culture Typeset by AMS-TEX1



2 JEAN-PAUL BRASSELET AND SHOJI YOKURA�which is linearly extended with respect to the generators 11W . Here �(F ) denotes thetopological Euler-Poincar�e characteristic of the space F . The proof of the covariantfunctoriality of F requires a strati�cation of the morphism f (see [14], [21]).Deligne and Grothendieck (in 1969) conjectured the following in the algebraic cat-egory:Let F be the above covariant functor of constructible functions andH�( : Z) be the usual Z-homology covariant functor. Then there exists a uniquenatural transformation C� : F ! H�( :Z)such that (normalization condition) if X is smooth, thenC�(1X) = c(TX) \ [X];where c(TX) is the total Chern cohomology class of the tangent bundle TX and [X]is the fundamental homology class of X .The conjecture was solved by MacPherson [14] (in 1974), using Chern-Matherclasses, local Euler obstructions (which are constructible functions) and graph con-struction method. The folklore was that the above conjecture or theorem now wastrue in the analytic category also, and indeed in the analytic category MacPherson'sproof works mutatis mutandis, except for the analyticity of the graph construction.However this analyticity was �nally resolved a�rmatively by M. Kwieci�nski in his the-sis [13]. Thus the Chern-Schwartz-MacPherson transformation C� : F ! H�( : Z)can be considered in both the algebraic and analytic categories. The total homol-ogy class C�(11X) is called the Chern-Schwartz-MacPherson class of X . To avoidsome possible confusion, we call the above transformation C� the Chern-Schwartz-MacPherson transformation, emphasizing that it is a transformation. In fact, beforethe above conjecture was made M.-H.Schwartz [20] had already constructed charac-teristic cohomology classes of a (possibly singular) analytic variety embedded in acomplex manifold, using the notion of radial vector �eld. For a given embedding Xin a manifold M the Schwartz classes lie in H�X (M) = H�(M;M �X) . It turned outthat they are isomorphic to MacPherson's classes via Alexander duality isomorphism(see [3]). x2 Bivariant theory of constructible functionsLet � be a constructible function on X . For A � X , we de�ne�(A;�) =Xn2Z n �(A \ ��1(n));which is the Euler-Poincar�e characteristic of A weighted by � (\ pon- d�er�ee par �")([2], [14], [19]). With this notation, the pushforward f�� of the constructible function� under a morphism f : X ! Y is expressed as follows:(f��)(y) := �(f�1(y);�);i.e., the Euler-Poincar�e characteristic of the �ber f�1(y) weighted by � . Put it inanother way, using the Chern-Schwartz-MacPherson transformation C� , it can berewritten as follows: (f��)(y) = Zf�1(y)C�(�jf�1(y));



REMARKS ON BIVARIANT CONSTRUCTIBLE FUNCTIONS 3the degree of the 0-dimensional component of the total Chern-Schwartz-MacPhersonclass of the constructible function �jf�1(y) on the �ber f�1(y) . This simple in-terpretation leads us to a na��ve question of what one could say about these classesC�(�jf�1(y)) parameterized by the target variety Y . It turns out that for this weneed the bivariant theory of constructible functions which has been introduced byFulton and MacPherson [9].For a technical reason, the category which we treat is the following one, denotedby SC :(i) The objects Obj(SC) consist of compact complex analytic varieties which areembeddable into smooth manifolds, and(ii) The morphisms HomSC(X;Y ) consist of analytic maps f : X ! Y which arecellular, i.e., with (K) and (L) being cellular decompositions of X and Y respec-tively, the image of each cell of (K) is a cell of (L) and the restriction of f to theinterior of each cell is constant rank.At the moment it is not known whether any analytic map is cellular. Conjecturallyit would be so.In the following \cell" will always mean a closed cell, the interior of � will bedenoted by �o and we de�ne the star Sto� as the set of cells which meet the interiorof � .In this category, the pushforward can be written as follows: Given cellular decom-positions (K) and (L) of X and Y respectively, such that (K) is �-adapted and fcellular, then(2.1.1) (f��)(y) = X�\f�1(y)6=�(�1)dimf ��(�)where dimf � denotes the relative dimension of � 2 (K) . Here we note that the aboveformula (2.1.1) is due to the fact that the topological Euler-Poincar�e characteristic ofa CW-complex can be also de�ned to be the alternating sum of the number of cellsof a (in fact, any) cellular decomposition of the CW-complex, and therefore that theEuler-Poincar�e characteristic weighted by � is equal to the alternating sum of thenumber of cells multiplied by the weights \�".De�nition (2.1). Let � be a constructible function on X and let f : X ! Y bean analytic map. We say that � satis�es the local Euler condition with respect to fif for any cellular decompositions (K) and (L) of X and Y respectively, such that(K) is �-adapted and f is cellular, and if for any x 2 X , x 2 �o , � 2 (K) , thefollowing equality holds �(x) = �(Sto� \ f�1(y);�)where y 2 Stof(�) is arbitrary.Using the values of � on the cells of (K) , the previous formula can be written(2.1.2) �(x) = X�0�Sto��0\f�1(y)6=�(�1)dimf �0�(�0)Remark 2:2 . There is another de�nition of local Euler condition without refering tothe cellular decomposition of a morphism (see [19]): � 2 F(X) satis�es the local



4 JEAN-PAUL BRASSELET AND SHOJI YOKURA�Euler condition with respect tof if for any point x 2 X and any local embedding(X;x) ! (CN ; 0) the following equality holds�(x) = �(B� \ f�1(z);�);where B� is a su�ciently small open ball of the origin 0 with radius � and z is anypoint close to f(x) .De�nition (2.3). The bivariant group of constructible functions is de�ned, for everymorphism f : X ! Y , by:F(X f�! Y ) := f� 2 F(X)j � satis�es the local Euler conditionwith respect to fg:>From this de�nition we see thatF(X id�! X) = f� 2 F(X)j� is locally constantg:This fact will be used later.For simplicity a constructible function satisfying the local Euler condition shall becalled a bivariant constructible function. If 11X satis�es the local Euler condition withrespect to the morphism f : X ! Y , i.e., 11X 2 F(X f�! Y ) , then the morphism fis called an Euler morphism.We can de�ne the following three basic operations on F(X ! Y ) , which are calledbivariant operations.(BO-I) (Product operations): For morphisms f : X ! Y and g : Y ! Z , the productoperation � : F(X f�! Y )
 F(Y g�! Z)! F(X gf�! Z)is de�ned, for � 2 F(X f�! Y ) and � 2 F(Y g�! Z) , by:(� � �)(x) := �(x) � �(f(x));i.e., �� � := � � f��: (To avoid some confusion, the symbol � is used.)(BO-II) (Pushforward operations): For morphisms f : X ! Y (proper) and g : Y !Z , the pushforward operationf� : F(X gf�! Z)! F(Y g�! Z)is de�ned, for � 2 F(X gf�! Z) , by:(f��)(y) := �(f�1(y);�);which is the same as one described in x1.(BO-III) (Pull-back operations): For a �ber squareX 0 g0����! Xf 0??y ??yfY 0 g����! Y;



REMARKS ON BIVARIANT CONSTRUCTIBLE FUNCTIONS 5where X 0 = Y 0 �g=f X is the �ber product and f 0 : X 0 ! Y 0 and g0 : X 0 ! X arethe canonical projections, the pull-back operationg� : F(X f�! Y )! F(X 0 g�! Y 0)is de�ned, for � 2 F(X f�! Y ) , by: g�� := g0��;which is the usual (functional) pull-bak.It is known that these three operations are well-de�ned, and we give a proof of thisfact for the sake of completeness.Proof of well-de�nedness.Let (K) , (L) and (M) be any cellular decompositions of X , Y and Z respectivelyadapted to the corresponding constructible functions and such that the correspondingmorphisms are cellular.(BO-I): Let xo be a point of the interior of �o 2 (K) . What we want to show is that�� �(xo) = (� � f��)(xo) = �(xo)�(f(xo)) = �(Sto�o \ (g � f)�1(z);� � �)where z 2 Sto(g �f)�o . We will denote by y a point in Stof(�o) and by �o = f(�o) ,so z 2 Stog(�o) . We start with the last term:�(Sto�o \ (g � f)�1(z);� � �)= X��Sto�o�\(g�f)�1(z)6=�(�1)dimf��(�) � (�1)dimgf(�)�(f(�))= X��Sto�o�\g�1(z)6=�(�1)dimg��(� ) � X�=f(�)��Sto�o�\f�1(y)6=�(�1)dimf��(�)= X��Sto�o�\g�1(z)6=�(�1)dimg��(� ) � �(Sto�o \ f�1(y);�)= �(f(xo)) � �(xo)= �� �(xo):�(BO-II): We must prove that, if y 2 � o with � 2 (L) , then(f��)(y) = �(Sto� \ g�1(z); f��)for any z 2 Stog(� ) .Denoting h = g � f , let us remark the following properties:f�1(g�1(z) \ Sto� ) = [f(�)=� h�1(z) \ Sto�Let �0 be a cell of (K) such that f(�0) � Sto� , thenA(�0; � ) = f� 2 (K) j �0 � Sto�; f(�) = �g;



6 JEAN-PAUL BRASSELET AND SHOJI YOKURA�is the subset of the face �0 \ f�1(� ) of �0 consisting of cells whose image is � . Itsrestriction to any �ber f�1(y) , y 2 � o is a cell whose Euler-Poincar�e characteristic is(2.3.1) �(�0 \ f�1(y)) = X�2A(�0;�)(�1)dimf� = 1:This equality is a crucial observation which makes the proof of BO-II \the most fun"(cf [9, x6.1.2, the last two lines of p. 61]). We have :(f��)(y) = �(f�1(y);�)= X�\f�1(y)6=�(�1)dimf��(�) (by 2.1.1)= X�\f�1(y)6=�(�1)dimf� X�0�Sto��0\h�1(z)6=�(�1)dimh�0�(�0) (by 2.1.2)= X�0�Sto��0\h�1(z)6=�(�1)dimh�0 0@ X�2A(�0;�)(�1)dimf�1A�(�0)= X�0�Sto��0\h�1(z)6=�(�1)dimh�0�(�0) (by 2.3.1)= X�0�Sto��0\h�1(z)6=�(�1)dimgf(�0)(�1)dimf�0�(�0)= X� 0�Sto�� 0\g�1(z)6=�(�1)dimg� 00@ Xf(�0)=� 0(�1)dimf�0�(�0)1A= X� 0�Sto�� 0\g�1(z)6=�(�1)dimg� 0�(f�1(� 0);�)= X� 0�Sto�� 0\g�1(z)6=�(�1)dimg� 0(f��)(� 0)= �(Sto� \ g�1(z); f��):�(BO-III): Let x0 2 � oo be a point in X 0 . Then for any y0 2 Stof 0(�o) in Y 0 ,letting �o = g0(�o) and y = g(y0) , we have�(Sto�o \ f 0�1(y0); g��) = X��Sto�o�\f 0�1(y0)6=�(�1)dimf0�g��(� )= X��Sto�o�\f 0�1(y0)6=�(�1)dimf0��(g0(� ))= X��Sto�o�\f�1(y)6=�(�1)dimf��(�)= �(g0(x0)) = (g��)(x0):



REMARKS ON BIVARIANT CONSTRUCTIBLE FUNCTIONS 7�It is easy to see that these bivariant operations enjoy the following seven proper-ties.(B-1) Product is associative : for a diagram X f�! Y g�! Z h�!W and� 2 F(X f�! Y ) , � 2 F(Y g�! Z) and  2 F(Z h�!W ) ,(�� �)�  = �� (� � ) 2 F(X hgf�!W ):(B-2) Pushforward is functorial: for a diagram X f�! Y g�! Z h�! W and � 2F(X hgf�!W ) , (gf)�(�) = g�f�(�) 2 F(Z h�!W ):(B-3) Pullback is functorial: for a double �ber squareX 00 h0����! X 0 g0����! X??yf 00 ??yf 0 ??yfY 00 h����! Y 0 g����! Yand � 2 F(X f�! Y ) , (gh)�(�) = h�g�(�) 2 F(X 0 0 f 00�! Y 00):(B-4) Product and pushforward commute: for a diagram X f�! Y g�! Z h�!W and� 2 F(X gf�! Z) , � 2 F(Z h�!W ) ,f�(�� �) = f�(�) � � 2 F(Y hg�!W ):(B-5) Product and pullback commute: for a double �ber squareX 0 h00����! X??yf 0 ??yfY 0 h0����! Y??yg0 ??ygZ 0 h����! Zand � 2 F(X f�! Y ) , � 2 F(Y g�! Z) ,h�(� � �) = h0�(�)� h�(�) 2 F(X 0 g0f 0�! Z 0):(B-6) Pushforward and pullback commute: for a double �ber squareX 0 h00����! X??yf 0 ??yfY 0 h0����! Y??yg0 ??ygZ 0 h����! Z



8 JEAN-PAUL BRASSELET AND SHOJI YOKURA�and � 2 F(X gf�! Z) , f 0�(h�(�)) = h�f�(�) 2 F(Y 0 g0�! Z 0):(B-7) Projection formula: For a �ber squareX 0 g0����! Xf 0??y ??yfY 0 g����! Y;a morphism Y h�! Z , � 2 F(X f�! Y ) and � 2 F(Y 0 hg�! Z) ,g0�((g��)� �) = �� g�(�) 2 F(X hf�! Z):Before �nishing this section we note that the well-de�nedness of the pushforward(BO-II) implies the followingProposition (2.4). Let � 2 F(X f�! Y ) , then the pushforward f�� is a locallyconstant function on Y .This can be seen as follows: Consider the pushforward on the following diagram:X f�! Y id�! Y:Indeed, for � 2 F(X f�! Y ) = F(X id�f�! Y )f�� 2 F(Y id�! Y );which implies that f�� is locally constant sinceF(X id�! X) = f� 2 F(X)j� is locally constantg:In other words the local Euler condition posed on a constructible function may be aright local condition to guarantee such a strong requirement that the Euler-Poincar�echaracteristic of the �bers weighted by � are locally constant. This is certainly astrong requirement for a map.x3 Bivariant Chern classesIn general, a bivariant theory B on a category C to abelian groups is an assignmentto each morphism X f�! Yin the category C an abelian group B(X f�! Y )



REMARKS ON BIVARIANT CONSTRUCTIBLE FUNCTIONS 9which is equipped with the three basic operations such as in (BO-I, BO-II, BO-III)above and satisfy the seven properties as in (B-1)-(B-7).Let H (X ! Y ) be the bivariant homology theory (see [2] and [9]). For a morphismf : X ! Y and for any integer i , Hi(X ! Y ) := Hi+2m(Y �M;Y �M � �(X)) ,where � : X ! M is an embedding into a smooth manifold of real dimension 2mand � := (f; �) : X ! Y �M is an embedding. The de�nition is independent of theembedding � : X ! M . Then as in the case of the bivariant constructible functiontheory the three basic bivariant operations can be de�ned for the bivariant homologytheory, namely we have the following (for details see Fulton-MacPherson's book [9]):(BO-I:H ) (Product operations): For morphisms f : X ! Y and g : Y ! Z , theproduct operation�H : H (X f�! Y ) 
 H (Y g�! Z)! H (X gf�! Z)is de�ned.(BO-II:H ) (Pushforward operations): For morphisms f : X ! Y (prop- er) andg : Y ! Z , the pushforward operationf� : H (X gf�! Z)! H (Y g�! Z)is de�ned.(BO-III:H ) (Pull-back operations): For a �ber squareX 0 g0����! Xf 0??y ??yfY 0 g����! Ythe pull-back operation g� : H (X f�! Y )! H (X 0 g�! Y 0)is de�ned.Fulton and MacPherson [9] conjectured (or posed as a question ) the existence of abivariant version of the Chern-Schwartz-MacPherson transformation C� : F ! H�( :Z) , i.e., the existence of Grothendieck transformation (or \bivariant Chern class"),in the category of complex algebraic varieties. Brasselet [2] proved this conjecture inthe category SC de�ned in x2. Also C. Sabbah [19] constructed a bivariant theoryof cycles and J.Zhou [24] proved that Sabbah's bivariant Chern classes de�ned bybivariant cycles are the same as Brasselet's bivariant Chern classes.Theorem (3.1). (Brasselet [2, III, Th�eor�eme]) Let SC be the category to be consid-ered. There exists a Grothendieck transformation : F ! Hsuch that if X is a smooth variety, then(11�) = c(TX) \ [X];



10 JEAN-PAUL BRASSELET AND SHOJI YOKURA�where � : X ! pt is a map to a point pt and 11� := 11X 2 F(X ��! pt) . Namely, foreach morphism f : X ! Y ,  gives rise to a homomorphism : F(X f�! Y )! H (X f�! Y )such that  preserves the basic three operations, i.e., (i) (� � �) = (�) �H (�) ,(ii) (f��) = f�(�) and (iii) (f��) = f�(�) .Remark 3:2 . The uniqueness problem of  is still open. We will discuss it a littlelater in the next section (Remark (4.10)).Brasselet constructs the above transformation in such a way that the Chern-Schwartz-MacPherson classes iy�C�(�jf�1(y)) of the �bers weighted by � are locallyconstant, where iy : f�1(y) ! X is the inclusion map. Of course this is a muchstronger requirement than the local constancy of the Euler-Poincar�e characteristicof the �bers weighted by the constructible function � . In fact as a consequence ofthe above Brasselet's theorem we can say more and we see that this quite strongrequirement is a necessity for a bivariant constructible function.Theorem (3.3). (1) Let � 2 F(X f�! Y ) and let V1; V2 be subvarieties of Y suchthat the Chern-Schwartz-MacPherson classes of V1 and V2 are homologous in Y ,then the Chern-Schwartz-MacPherson classes C�(�jf�1(V1)) and C�(�jf�1(V2)) of theinverses f�1(V1); f�1(V2) weighted with � are also homologous in X . Namely, ifi1�C�(V1) = i2�C�(V2)with ij : Vj ! Y being the inclusion maps (j = 1; 2), thene1�C�(�jf�1(V1)) = e2�C�(�jf�1(V2))with ej : f�1(Vj )! X being the inclusion maps (j = 1; 2).(2) In particular, if � 2 F(X f�! Y ) , then the Chern-Schwartz-Mac- Pherson classesiy�C�(�jf�1(y)) of the �bers weighted by � are locally constant, where iy : f�1(y)!X is the inclusion map.Corollary (3.4). Let f : X ! Y be an Euler morphism. Then if V1; V2 be sub-varieties of Y such that the Chern-Schwartz-MacPherson classes of V1 and V2 arehomologous in Y , then the Chern-Schwartz-MacPherson classes C�(f�1(V1)) andC�(f�1(V2)) of the inversesf�1(V1); f�1(V2) are also homologous in X . Namely, ifi1�C�(V1) = i2�C�(V2)with ij : Vj ! Y being the inclusion maps (j = 1; 2), thene1�C�(f�1(V1)) = e2�C�(f�1(V2))with ej : f�1(Vj ) ! X being the inclusion maps (j = 1; 2). In particular, theChern-Schwartz-MacPherson classes iy�C�(f�1(y)) of the �bers are locally constant.The proof of Theorem (3.3) goes as follows; for the sake of later use we give adetailed proof.



REMARKS ON BIVARIANT CONSTRUCTIBLE FUNCTIONS 11Proof of Theorem (3.3). The constructible function � induces the following homo-morphism, �F : F(Y )! F(X)de�ned by �F (�) := �� � = � � f��:Then we can get the following commutative diagram:(3.3.1) F(Y ) �F����! F(X)C�??y ??yC�H�(Y ;Z) �H����! H�(X;Z)Here �H : H�(Y ;Z) = H (Y ! pt)! H�(X;Z) = H (X ! pt) is de�ned by�H (a) := (�)�H a;where  : F ! H is a Grothendieck transformation and �H : H (X f�! Y ) 
 H (Y !pt) ! H (X ! pt) is the bivariant homology product operation. Here it should benoted that since the uniqueness of the Grothendieck transformation  is not knownyet the homomorphism �H could depend on the transformation  but that our state-ment is independent of the choice of  . Of course the commutativity of the abovediagram follows from the fact that the Grothendieck transformation preserves thethree basic operations. First note that for a morphism X ! pt the Grothendieckhomomorphism  : F(X ! pt) ! H (X ! pt) is nothing but the Chern-Schwartz-MacPherson transformation C� : F(X) ! H�(X;Z) . Then the commutativity canbe seen as follows C��F (�) = C�(�� �)= (� � �)= (�) �H (�)= (�) �H C�(�)= �HC�(�):We call the commutative diagram (3.3.1) aVerdier-type Riemann-Roch associated withthe constructible function �(cf. [22]). To �nish the proof of (1), we just apply thisVerdier-type Riemann-Roch to two constructible functions 11V1; 11V2 . First observethat for any subset A � Y �F(11A) = � � f�11A = � � 11f�1(A) = e��jf�1(A) , wheree : f�1(A) ! X is the inclusion map. Now suppose thatV1; V2 are subvarieties of Ysuch that the Chern-Schwartz-MacPherson classes of V1 and V2 are homologous inX , i.e, i1�C�(V1) = i2�C�(V2) with ij : Vj ! Y being the inclusion maps (j = 1; 2).



12 JEAN-PAUL BRASSELET AND SHOJI YOKURA�Then we havee1�C�(�jf�1(V1)) = C�(e1��jf�1(V1))= C��F (11V1)= �H (C�(11V1))= �H (i1�C�(V1))= �H (i2�C�(V2)) (since i1�C�(V1) = i2�C�(V2))= �H (C�(11V2))= C��F (11V2)= C�(e2��jf�1(V2))= e2�C�(�jf�1(V2)):Thus (1) is proved and (2) is a special case of (1). �Remark (3.5). It follows from the de�nition of Eulerness that any local trivial �brationis always Euler. But Eulerness does not imply local triviality, as the following example(given by T. Ohmoto) shows. Let X = �(x; y; z) 2 C 3 jx2 + y2 + z = 0	[fthe z -axisgand let f : X ! C be the restriction to X of the projection p : C 3 ! C to the thirdfactor C . The Milnor �ber at the origin is homotopic to the disjoint union of circle(i.e., the vanishing cycle ) and one point, thus the Euler-Poincar�e characteristic ofa nearby �ber in a small neighborhood of the origin is equal to one. Hence at theorigin it satis�es the local Euler condition, but it is not a local trivial �bration. Atevery point of X o� the origin the map f is a local trivial �bration. Thus f isEuler but not a local trivial �bration. The map f is not proper, but the example canbe modi�ed into the following example of a map between compact varieties. Let usconsider the following surface E in P2�P1:E : = f([x0 : x1 : x2]; [w0 : w1]) 2 P2�P1jw0x20 + (w0 + w1)x21 + w1x22 = 0g:Let X := E [ ([1 : 0 : 0]�P1) [ ([0 : 1 : 0]�P1) [ ([0 : 0 : 1]�P1):and let f : X ! P1 be the restriction to the subvariety X of the projection P2�P1!P1 to the second factor. Then just like the above example, at the three distinguishedpoints ([1 : 0 : 0]; [0 : 1]); ([0 : 1 : 0]; [1 : �1]); ([0 : 0 : 1]; [1 : 0]) the Milnor �ber of fis homotopic to the union of the circle and one point and otherwise f is locally trivialo� these three points. Hence f : X ! P1 is Euler but not a local trivial �bration.In general, some other well-studied morphisms, such as at, open, Af , and trian-gulable morphisms, are not Euler. For example, consider a Kodaira's elliptic surface[12], i.e., a surjective holomorphic mapf : S ! Cof a smooth compact complex surface S onto a smooth compact complex curve Csuch that its generic �ber is a smooth elliptic curve and that it has only �nitely manysingular �bers. This Kodaira elliptic surface f : S ! C is not Euler, because the



REMARKS ON BIVARIANT CONSTRUCTIBLE FUNCTIONS 13topological Euler-Poincar�e characteristics of the �bers are not constant; the topolog-ical Euler-Poincar�e characteristic of the generic �ber is zero but that of the singular�bers are not zero. On the other hand, it follows from [11, x4] that the map f : S ! Cis at since S and C are smooth and (locally) the �bers have the same dimension(= 1) and furthermore, since C is smooth, hence Cohen-Macauley, f is open due tothe universal openness of the at map. Since the target C of the map f is a smoothanalytic curve, it follows from [11, Corollary 1, p.248] that f is Af , i.e., there existsa Whitney strati�cation of f which satis�es Thom's Af condition. It is not clearwhether it is triangulable or not, which is left for the reader. However, as an exampleof a morhismwhich is triangulable but not Euler, we can consider the following simplesituation: X := (P1� [1 : 0]) [ ([1 : 0]�P1) � P1�P1:Namely, if we let [z0 : z1] and [w0 : w1] be the homogeneous coordinates of the �rstand second factor P1, respectively, then X is de�ned by the equation z1w1 = 0. Letf : X ! P1 be the restriction of the projection P1 � P1 ! P1 (either to the �rstfactor or to the second factor) to the subvariety X . Then f is obviously triangulable,but certainly not Euler because the topological Euler-Poincar�e characteristics of the�bers are not constant; �(f�1([1 : 0])) = �(P1) = 2 and �(f�1(x)) = 1 if x 6= [1 : 0] .At the moment a reasonable characterization of Eulerness is not known yet.Before �nishing this section we pose one problem. First, suggested by Proposi-tion (2.4), one might be able to consider the following na��ve group of constructiblefunctions:Fl:c:(X f�! Y ) := f� 2 F(X)jf�� is a locally constant function on Y gThen we can show the followingProposition (3.6). Let us consider only topologically connected compact complexanalytic varieties. Then the above na��ve group of constructible functions Fl:c:(X f�!Y ) becomes a bivariant theory with the same operations as ones for F(X f�! Y ) .Proof. We have only to show that the three operations are well-de�ned. First we notethat since our varieties are assumed to be topologically connected, that f�� is locallyconstant on Y means that it is a constant function on Y. This constancy is neededonly for the well-de�nedness of the product operation, as we see below.(1) (BO-I) (Product operations) For morphisms f : X ! Y and g : Y ! Z , let� 2 F(X) such that f�� is a constant function on Y and � 2 F(Y ) such thatf�� is a constant function on Z . Then we need to show that (gf)�(� � �) is aconstant function. First we note thatf�(�� �) = (f��)� � by the commutativity ofpushforward and product operation (B-4). Then since we can consider f�� 2 F(Y id�!Y ) , (f��)�� = (f��) �� = c �� , where c = �(f�1(y);�) for any y 2 Y is a constant.Therefore (gf)�(� � �) = g�(f�(� � �)) = g�(c � �) = c � g�(�) , which is a constantfunction because g�(�) is so. As we can see, the constancy of f�� is crucial. (If it isnot constant, we can easily get a counterexample.)(2) (BO-II) (Pushforward operations) For morphisms f : X ! Y and g : Y ! Z ,and � 2 Fl:c(X gf�! Z) we want to show that f�� 2 Fl:c(Y g�! Z) . But this isobvious, because (gf)�� = g�(f��) .



14 JEAN-PAUL BRASSELET AND SHOJI YOKURA�(3) (BO-III) (Pull-back operations) For a �ber squareX 0 g0����! Xf 0??y ??yfY 0 g����! Yand � 2 F(X) , we need to show that if f�� is locally constant on Y , then f 0�g0�� islocally constant. For this we can use the following lemma ([5, Proposition 3.5]):Lemma (3.6.1). The following diagram is commutative:F(X) g0�����! F(X 0)f�??y ??yf 0�F(Y ) g�����! F(Y 0)Since f�� is locally constant, g�f�� is also locally constant. Then using the lemma,g�f�� = f 0�g0�� is locally constant, thus g�� := g0�� 2 Fl:c:(X 0 f 0�! Y 0) .�Note that(1) Fl:c:(X ! pt) = F(X ! pt) = F(X);Fl:c:(X id�! X) = F(X id�! X)(2) = f� 2 F(X) j � is locally constant onXg;and(3) in general, F(X ! Y ) � Fl:c:(X ! Y ) and they are not necessarily equal as thefollowing example shows: (Example) Let L1 be the diagonal of the cartesian productP1 � P1 of the 1-dimensional projective space P1. Choose a point z0 in P1, andconsider another line L2 : f(z; z0)jz 2 P 1g � P1 �P1 . Set L := L1 [ L2 � P1� P1 .Let E be a smooth elliptic curve, so that its Euler characteristic �(E) = 0. LetX := L � E: And let f : X ! P1 be the composite of the inclusion X = L � E !P1�P1�E , the projection to the �rst two factors P1�P1�E ! P1�P1 and theprojection to the �rst factor P1�P1! P1 . Then the Euler-Poincar�e characteristic ofthe �bers are clearly locally constant; in fact �(f�1(z)) = 0 for any point z , whichcomes from the fact that �(E) = 0. Thus the pushforward f�11X is locally constant.However, it is easy to see that the map f is not Euler, i.e., 11X 62 F(X f�! Y ) .Because at every point of the �ber f�1(z0) = f(z0; z0)g�E , 11X does not satisfy thelocal Euler condition with respect to f .Let � : F ! Fl:c: be the inclusion, i.e., �(�) = � .Problem (3.7). Can one construct a Grothendieck transformation l:c: : Fl:c: ! Hsuch that (1) l:c:(1�) = c(TX) \ [X] if X is smooth and (2)  = l:c: � � ?



REMARKS ON BIVARIANT CONSTRUCTIBLE FUNCTIONS 15x4 Generalized Milnor numbersDe�nition (4.1). ( Parusi�nski's generalized Milnor number)([15], [16] and [17]) LetX be a local complete intersection variety of a smooth variety M . Let n = dimX .Then the Parusi�nski's generalized Milnor number �(X) is de�ned to be�(X) := (�1)n+1��(X) � ZX CFJ(X)�;where CFJ(X) is Fulton-Johnson's Chern class, de�ned to be c(TM jX�NXM)\ [X]with NXM being the normal bundle of X . Note that this class is independent of theembedding of X into a smooth variety M (see Fulton's book [7, Example 4.2.6]).Since �(X) = RX C�(X) , as a simple generalization of the generalized Milnornumber we have the followingDe�nition (4.2). (see [1], [4], [18], [23]) Let the situation be as in De�nition (4.1) .The Milnor class M(X) is de�ned byM(X) := (�1)n+1�C�(X) � CFJ (X)�:With these de�nitions we can show the following theorem.Theorem (4.3). Let f : X r�!M p�! Y be an Euler and local complete intersectionmorphism (i.e., r : X ! M is a regular embedding and p : M ! Y is a smoothmorphism) such that over each point y 2 Y , the restriction to the �bers ry : Xy !Myis also a regular embedding with dimXy = n , i.e., the �ber Xy := f�1(y) is a localcomplete intersection variety of the smooth �ber My := p�1(y) . Then the Milnorclass M(Xy) of the �ber Xy (considered as classes of X ) are locally constant. Inparticular, the generalized Milnor number of the �bers Xy are locally constant.Proof. Firstly we remark that the smoothness of the �ber My comes from the smooth-ness of the morphism p . Since f : X ! Y is a local complete intersection morphism,we can de�ne the following homomorphismc(Tf ) \ f� : H�(Y ;Z)! H�(X;Z);where Tf is the virtual relative tangent bundle, de�ned to beTf := i�Tp �NXM;and f� : H�(Y ;Z) ! H�(X;Z) is the Gysin homomorphism [7, Example 19.2.1].Since we are in the homology theory, the homology classes c(Tf )\f�([y]) are certainlylocally constant. Since f : X ! Y is also Euler, it follows from Corollary (3.4)that the Chern-Schwartz-MacPherson classes iy�C�(Xy) of the �bers Xy are locallyconstant. So to prove the theorem we only need to prove the following equalityc(Tf ) \ f�([y]) = iy�CFJ(Xy)



16 JEAN-PAUL BRASSELET AND SHOJI YOKURA�for which we proceed as follows:c(Tf ) \ f�([y]) = c(Tf ) \ i�([My ])= c(Tf ) \ i�iy�([My ])= c(Tf ) \ iy�i�([My ]) (by [5, Theorem (6.2)(a)])= iy��c(iy�Tf ) \ i�([My])� (by the projection formula)= iy��c(Tfy ) \ [Xy ])� (by [5, Example (6.2.1)])= iy�CFJ (Xy):�Motivated by this result, we can consider the following: Since we are mostly in-terested in homology classes determined by subvarieties of a variety, we consider theChow group A(X) , i.e., the group of cycles modulo rational equivalence [7], and thefollowing homology group, which shall be provisionally called the \algebraic homologygroup", denoted by AH�(X;Z) :AH�(X;Z) := Image (cl : A(X)! H�(X;Z));where cl : A(X)! H�(X;Z) is the cycle map [6, x19.1].Lemma (4.4). For a variety X ,AH�(X;Z) = Image (C� : F(X)! H�(X;Z)):Proof. First of all we note that MacPherson's proof [14] actually shows that C� :F(X) ! H�(X;Z) is the composite of the homomorphism C� : F(X) ! A(X) intothe Chow homology group and the cycle map cl : A(X) ! H�(X;Z) . Here we usethe same notation C� , i.e., C� = cl � C�:In fact it is easy to see by induction on dimension that the homomorphism C� :F(X)! A(X) is always surjective, because for any subvariety W C�(11W ) = [W ] +lower classes: Thus we get AH�(X;Z) = Image (C� : F(X)! H�(X;Z)):�Now consider a Verdier-type Riemann-Roch diagram associated with the bivariantconstructible function 11X : F(Y ) f�=(11X)F������! F(X)C�??y ??yC�H�(Y ;Z) (11X)H����! H�(X;Z)where  : F ! H is a Grothendieck transformation (cf. [22]). It follows from Lemma(4.4) that the restricted homomorphismfEu := (11X)H jAH�(Y ;Z) : AH�(Y ;Z)! AH�(X;Z) can be expressed as follows:fEu := C�f�C�1� : AH�(Y ;Z)! AH�(X;Z);



REMARKS ON BIVARIANT CONSTRUCTIBLE FUNCTIONS 17which is well-de�ned because of the commutativity of the above Verdier-type Riemann-Roch diagram. And of course we have the following homomorphismc(Tf ) \ f� : AH�(Y ;Z)! AH�(X;Z):These two homomorphisms coincide when f : X ! Y is a smooth morphism, butin general they are not identical if f is not smooth ([22]). So it is quite natural topose the problem of describing the di�erence between the two.Problem (4.5). Let f : X ! Y be an Euler and local complete intersection mor-phism. Then give an explicit description of the following defect � :fEu = c(Tf ) \ f� + �:Remark 4:6 . For a hypersurface X Parusi�nski and Pragacz [17] give an interestingand promising formula for the generalized Milnor number �(X) , in terms of theChern-Schwartz-MacPherson of the closure of the strata of a Whitney strati�cationof X . Suggested by their result and Theorem (4.3), we expect that the defect � inthe above looked-for formula will be possibly described using a Whitney strati�cationof a morphism f . After the preparation of the manuscript we learned that in thehypersurface case the Parusi�nski-Pragacz's formula for the Milnor number �(X) hasbeen generalized to a formula for the Milnor class M(X) in [18].An interesting feature of this looked-for formula is that it implies some relationshipamong Fulton-Johnson's canonical classC(f) := c(Tf ) \ [X] of a local complete intersection morphism f [8] and the Chern-Schwartz-MacPherson class C�(X) of the source variety X and (hopefully) some kindof invariants of singularities of the morphism f . Here is a citation from [8, p.382]: \...It would be interesting to relate the canonical class of a mapping to its singularities."Proposition (4.7). Let f : X ! Y be an Euler and local complete intersectionmorphism. Then we have the following formula:C(f) = C�(X) +X aV C�(f�1(V )) � �([Y ]);where [Y ] = C�(Y ) +PdimV <dimY aV C�(V ) . In particular, if f is smooth, thenC(f) = C�(X) +X aV C�(f�1(V )):Proof. First we observe that since[Y ] = C�(Y ) + XdimV <dimY aV C�(V )we can take C�1� ([Y ]) = 11Y + XdimV<dimY aV 11V :



18 JEAN-PAUL BRASSELET AND SHOJI YOKURA�Then C(f) = c(Tf ) \ [X]= c(Tf ) \ f�([Y ])= fEu([Y ])� �([Y ])= C�f�C�1� ([Y ])� �([Y ])= C�f�  11Y + XdimV<dimY aV 11V! � �([Y ])= C�(X) + XdimV <dimY aV C�(f�1(V )) � �([Y ]):�Proposition (4.8). Let f : X ! Y be an Euler morphism and let Y be topologicallyconnected. Then for any algebraic homology class � 2 AH�(Y ;Z) we haveZX fEu(�) = �f � ZY �:Here �f denotes the topological Euler-Poincar�e characteristic of any �ber.Proof. Since any homology class � 2 AH�(Y ;Z) is generated by the Chern-Schwartz-MacPherson class C�(V ) = C�(11V ) of subvarieties V , it su�ces to show the formulafor � = C�(11V ) .ZX fEu(C�(11V )) = ZY f�fEu(C�(11V ))= ZY f�C�f�C�1� (C�(11V )) (since fEu = C�f�C�1� )= ZY C�f�f�(11V ) (since f�C� = C�f�)= ZY C�(�f � 11V ) (f�f�(11V ) = �f � 11V )= �f � ZY C�(11V ):�Problem (4.9).(1) Let f : X ! Y be a local complete intersection morphism and let Y betopologically connected. Let � 2 AH�(Y ;Z) . Describe the following numberas in the above propositionZX c(Tf ) \ f�(�):(2) Let f : X ! Y be a local complete intersection morphism with Y beingtopologically connected such that f : X ! M ! Y and that for each y 2 Y



REMARKS ON BIVARIANT CONSTRUCTIBLE FUNCTIONS 19ry : Xy ! My is a regular embedding with dimXy = n , i.e., Xy is a localcomplete intersection of the smooth �ber My . Then is it true thatZX c(Tf ) \ f�(�) = �f FJ � ZY � ?Here �f FJ = RXy CFJ (Xy) is called the Fulton-Johnson's characteristic ofthe �ber.If (2) of the above problem be true, then we will get the following formula:ZX �(�) = (�1)n+1�f � ZY �;where �f is the generalized Milnor number of the �ber.Remark 4:10 . Here we remark a little on the uniqueness problem of the bivariantChern class. If we consider the algebraic homology group instead of the usual ho-mology group, then to some extent we could see the \uniqueness" in the followingsense. We want to see that if ; 0 : F ! H are two Grothendieck-Chern trans-formations, then for any bivariant constructible function � the bivariant homology(�) = 0(�) . If we consider these two bivariant homology classes (�) and 0(�)as homological operators �H (a) = (�) �H a and �H0(a) = 0(�) �H a , which bothde�ne the homomorphism AH�(Y ;Z)! AH�(X;Z):However, in the same argument as above we have the following equality:�H = C��FC�1� = �H0 :Thus all the Grothendieck transformations induce the same homological operatorsif they are restricted to the algebraic homological classes. In particular, in the casewhen the cycle map cl : A�(X)! H�(X) is an isomorphism, e.g., if X has a cellulardecomposition (see [7, Example 1.9.1 and Example 19.1.11]), then the transformation : F ! H is unique if it is considered as the homological operator �H . When thebivariant homology theory is replaced by the bivariant Chow homology theory ([6],[7]), see [6] for the uniqueness.Acknowledgement. This work was partially processd during two stays of the �rstnamed author at University of Kagoshima, which he thanks for invitation. Alsosome of the work was done while the second named author was staying at the ErwinSchr�odinger Institute, Vienna, Austria, in summer 1997. He wishes to express histhanks to the sta� of the the institute, in particular the director, Peter W. Michorfor their hospitality during his stay at the institute. And we also thank P. Alu�, M.Kwieci�nski, T. Ohmoto, J. Zhou and the referee for their helpful comments.References1. P. Alu�, Chern classes for singular hypersurfaces, Trans. Amer. Math. Soc., (to appear).2. J.P. Brasselet, Existence des classes de Chern en th�eorie bivariante, Ast�erisque 101-102 (1981),7{22.
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