B N - AR AR FE AR st e AR R ARV RS AR
DJ. Institute for Mathematical Physics

AL UA LA II S CI S

A-1090 Wien, Austria

Remarks on Bivariant
Constructible Functions

Jean—Paul Brasselet
Shoji Yokura

Vienna, Preprint ESI 614 (1998)

Supported by Federal Ministry of Science and Transport, Austria
Available via http://www.esi.ac.at

May 21, 1999



REMARKS ON BIVARIANT CONSTRUCTIBLE FUNCTIONS
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Dedicated to the memory of Professor Nobuo Sasakura

INTRODUCTION

The so-called Chern-Schwartz-MacPherson class (or transformation) is the unique
natural transformation from the covariant functor of constructible functions to the
integral homology covariant functor, satisfying a certain normalization condition (see
[14], and also [3], [10]. [20].) The bivariant theory has been introduced by W.Fulton
and R.MacPherson [9], and they conjectured (or posed as a question) the existence of
a Grothendieck transformation from the bivariant theory of constructible functions to
the bivariant homology theory in the category of complex algebraic varieties, which
specializes to the original Chern-Schwartz-MacPherson transformation. The conjec-
ture has been solved by Brasselet for a certain reasonable category [2] (see also [19]
and [24]). In this paper we report some consequences of this Brasselet’s theorem,
concerning bivariant constructible functions (i.e., constructible functions satisfying
the local Euler condition) and some related results and we also pose some problems.

§1 CONSTRUCTIBLE FUNCTIONS AND CHERN-SCHWARTZ-MACPHERSON CLASSES

A constructible set of an analytic variety X is obtained from analytic subvarieties
of X by a finite number of unions, intersections and complements. A constructible
function on a compact complex analytic variety X is an integer-valued function on
X, a: X — Z, such that for each integer n, a~!(n) is a constructible set of X .
We say that a cellular decomposition (K) of X is a-adapted if « is constant on the
interior of each cell o of (K), the value beeing denoted by a(o).

Let F(X) denote the abelian group of constructible functions on X. Any con-
structible function can be expressed as a (finite) linear combination of the charac-
teristic functions Ly ’s where W are reduced and irreducible subvarieties of X .
Clearly the correspondence F assigning to each variety X the abelian group F(X)
becomes a contravariant functor when we consider the usual (functional) pull-back
f*r FY) —» F(X) for a morphism f: X — Y;ie, f*(o)(z) :=a(f(x)). An in-
teresting feature of the correspondence F is that it can be made a covariant functor
when we consider the following pushforward:

Fo(Lw)(y) == x(F T (y) N W),
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which is linearly extended with respect to the generators Ly . Here x(F') denotes the

topological Euler-Poincaré characteristic of the space F'. The proof of the covariant

functoriality of F requires a stratification of the morphism f (see [14], [21]).
Deligne and Grothendieck (in 1969) conjectured the following in the algebraic cat-

egory:

Let F be the above covariant functor of constructible functions and

H.( : Z) be the usual Z-homology covariant functor. Then there exists a unique

natural transformation

Co:F—H. :7Z)

such that (normalization condition) if X 1is smooth, then
Ci(lx) = o(Tx) N [X],

where ¢(Tx) 1s the total Chern cohomology class of the tangent bundle Tx and [X]
18 the fundamental homology class of X .

The conjecture was solved by MacPherson [14] (in 1974), using Chern-Mather
classes, local Euler obstructions (which are constructible functions) and graph con-
struction method. The folklore was that the above conjecture or theorem now was
true in the analytic category also, and indeed in the analytic category MacPherson’s
proof works mutatis mutandis, except for the analyticity of the graph construction.
However this analyticity was finally resolved affirmatively by M. Kwiecinski in his the-
sis [13]. Thus the Chern-Schwartz-MacPherson transformation Cy : F — H.( : Z)
can be considered in both the algebraic and analytic categories. The total homol-
ogy class Cy(1x) is called the Chern-Schwartz-MacPherson class of X. To avoid
some possible confusion, we call the above transformation C, the Chern-Schwartz-
MacPherson transformation, emphasizing that it is a transformation. In fact, before
the above conjecture was made M.-H.Schwartz [20] had already constructed charac-
teristic cohomology classes of a (possibly singular) analytic variety embedded in a
complex manifold, using the notion of radial vector field. For a given embedding X
in a manifold M the Schwartz classes liein H% (M) = H*(M, M —X). It turned out
that they are isomorphic to MacPherson’s classes via Alexander duality isomorphism

(see [3]).
§2 BIVARIANT THEORY OF CONSTRUCTIBLE FUNCTIONS
Let o be a constructible function on X . For A C X, we define
X(4;0) =) nx(Ana'(n)),
n€eZ

which is the Euler-Poincaré characteristic of A weighted by o (“ pon- dérée par o”)
([2], [14], [19]). With this notation, the pushforward f.a of the constructible function
«a under a morphism f: X — Y is expressed as follows:

(fea)(y) == x(f""(y); ),

i.e., the Euler-Poincaré characteristic of the fiber f~!(y) weighted by . Put it in
another way, using the Chern-Schwartz-MacPherson transformation C,, it can be
rewritten as follows:

e = [ | el
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the degree of the 0-dimensional component of the total Chern-Schwartz-MacPherson
class of the constructible function «fs-1¢,) on the fiber f~'(y). This simple in-
terpretation leads us to a naive question of what one could say about these classes
Ci(alf-1(y)) parameterized by the target variety Y. It turns out that for this we
need the bivariant theory of constructible functions which has been introduced by
Fulton and MacPherson [9].

For a technical reason, the category which we treat is the following one, denoted
by SC:

(i) The objects Obj(SC) consist of compact complex analytic varieties which are
embeddable into smooth manifolds, and

(ii) The morphisms Homse(X,Y) consist of analytic maps f : X — Y which are
cellular, i.e., with (K) and (L) being cellular decompositions of X and Y respec-
tively, the image of each cell of (K) is a cell of (L) and the restriction of f to the
interior of each cell is constant rank.

At the moment it is not known whether any analytic map is cellular. Conjecturally
it would be so.

In the following “cell” will always mean a closed cell, the interior of ¢ will be
denoted by ¢° and we define the star St°c as the set of cells which meet the interior
of 0.

In this category, the pushforward can be written as follows: Given cellular decom-
positions (K) and (L) of X and Y respectively, such that (K') is a-adapted and f
cellular, then

(2.1.1) (fa)y) = Y (=1)"™7a(o)

onf~Hy)#e

where dims o denotes the relative dimension of o € (I'). Here we note that the above
formula (2.1.1) is due to the fact that the topological Euler-Poincaré characteristic of
a CW-complex can be also defined to be the alternating sum of the number of cells
of a (in fact, any) cellular decomposition of the CW -complex, and therefore that the
Euler-Poincaré characteristic weighted by « is equal to the alternating sum of the
number of cells multiplied by the weights “a” .

Definition (2.1). Let o be a constructible function on X and let f: X — Y be
an analytic map. We say that o satisfies the local Euler condition with respect to f
if for any cellular decompositions (K) and (L) of X and Y respectively, such that
(K) is a-adapted and f is cellular, and if for any @ € X, 2 € ¢°, 0 € (K), the
following equality holds

ar) = x(St°c N [ (y); )
where y € St°f(o) is arbitrary.
Using the values of « on the cells of (K), the previous formula can be written
(2.1.2) ofz)= Y (=17 a(o)

o' CSt°e
o' nfH (y)#e

Remark 2.2. There is another definition of local Euler condition without refering to
the cellular decomposition of a morphism (see [19]): a € F(X) satisfies the local



4 JEAN-PAUL BRASSELET AND SHOJI YOKURA*

Euler condition with respect to f if for any point « € X and any local embedding
(X,2) — (CV,0) the following equality holds

a(z) = (BN f(2); ),

where B, is a sufficiently small open ball of the origin 0 with radius € and z is any
point close to f(x).

Definition (2.3). The bivariant group of constructible functions is defined, for every
morphism f: X — Y, by:

F(X N V) :={a € F(X)| « satisfies the local Euler condition

with respect to f}.

. From this definition we see that

vd

F(X — X) = {a € F(X)|a is locally constant}.

This fact will be used later.

For simplicity a constructible function satisfying the local Euler condition shall be
called a bivariant constructible function. If 1 x satisfies the local Euler condition with
respect to the morphism f: X — Y, ie, Ix € F(X 7, Y'), then the morphism f
is called an Euler morphism.

We can define the following three basic operations on F(X — Y'), which are called
bivariant operations.

(BO-I) (Product operations): For morphisms f: X — Y and ¢g:Y — Z, the product
operation

O FX -Ly)eRY % 2) - Fx 2L 7)
is defined, for a € F(X S, Y) and g € F(Y -4 Z), by:
(a ©B)(z) = alz) - B(f(x)),

le, a®p:=a- f*B. (To avoid some confusion, the symbol © is used.)
(BO-II) (Pushforward operations): For morphisms f: X — Y (proper) and ¢g:Y —
Z , the pushforward operation

foRX 2 2y S RY L 2)

is defined, for a € F(X N Z), by:

(fea)(y) == x(f""(y); ),

which is the same as one described in §1.

(BO-III) (Pull-back operations): For a fiber square

x -4 . x
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where X’ =Y’ x,—; X is the fiber product and f': X' - Y’ and ¢’ : X’ — X are

the canonical projections, the pull-back operation
¢ FX L Y) s FX LY

f

is defined, for a € F(X — YY), by:

k . I*
g ai=g a

which is the usual (functional) pull-bak.

It is known that these three operations are well-defined, and we give a proof of this
fact for the sake of completeness.

Proof of well-definedness.

Let (K), (L) and (M) be any cellular decompositions of X, Y and Z respectively
adapted to the corresponding constructible functions and such that the corresponding
morphisms are cellular.

(BO-I): Let x, be a point of the interior of o, € (K). What we want to show is that

a®Blae) = (a- f*B)(w,) = alw,)B(f(x,)) = X(St°0 N (g0 f) 7 (2); 0 © )

where z € St°(go f)o,. We will denote by y a point in St°f(0,) and by 7, = f(0,),
so z € St°g(7,). We start with the last term:

X(5t°0, N (go f) 7 (2);a @ f)
= > (FD"Ma(e) - ()" B(f(e))

ocCSt°o,
on(gof) ™ (2)#e

= > (DTG Y (=1)"™%a(o)

TCStT, r=f(o)
g~ (2)#¢ cCSt°a,
onf~ (y)#¢
= > (CD)UTB(r) - X(St0, N f () 0)
TCSt°T,
g (2)#e
= B(f(x,)) - a(x,)
=a® [(x,).

O(BO-II): We must prove that, if y € 7° with 7 € (L), then

(fea)(y) = x(5t°7 N g7 (2); fue)

for any z € St°g(7).
Denoting h = g o f, let us remark the following properties:

U () nstry= | ()N St
flo)=r

Let o' be a cell of (K) such that f(¢') C St°r, then

Ao’ 7y ={oc € (K) | o' C St°c, f(o) = T},
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is the subset of the face o' N f~1(7) of o' consisting of cells whose image is 7. Its
restriction to any fiber f~1(y), y € 7° is a cell whose Euler-Poincaré characteristic is

231) o= Y (CrEmr =
ocA(o’,T)

This equality is a crucial observation which makes the proof of BO-II “the most fun”

(cf [9, §6.1.2, the last two lines of p. 61]). We have :
(fea)(y) = x(fFH(y); @)
= > (=1n*"m7a(o) (by 2.1.1)

onfT (y)#¢
= Y (=t Y (=nTma(e’) (by 2.1.2)
onf~Hy)#e o' CSt’a
o'NhT(2)#
— Z (_1)dimha' Z (_1)dimfcr Oz(O'/)
o' CSt°e c€A(s',T)
o'NhT(2)#
= > (=nfma(e) (by 2.3.1)
o' CSt°o
o'NhT(2)#
_ Z (_1)dimgf(cr')(_1)dimfa'a(0/)
o' CSt°o
o'NhT(2)#
— Z (_1)dimgr' Z (_1)dimfcr'a(0_/)
' CSt°r fleH=r'
TogT (2)#e
= > (=t ()
' CStr
TogT (2)#e
= > (=T (fea)(r)
' CStr
TogT (2)#e

= X(St°1 N g7 (2); fea).
O(BO-III): Let 2’ € 72 be a point in X'. Then for any y’ € St°f'(7,) in Y,
letting o, = ¢'(7,) and y = g(y'), we have
0 -1 * T T %
(St N f T (y) 9% a) = Z (—1)d Tyt a(r)

TCSt°T,
f Ty ) #e

= Y yEea(n)

TCSt°T,
rof TNy )#e

= Y (pimTag)

ocCSt°o,
onfT (y)#¢

= a(g'(2") = (g"a)(z").
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It is easy to see that these bivariant operations enjoy the following seven proper-
ties.

(B-1) Product is associative : for a diagram X oy Sz MW oand
a € FX L Y), BeFY % Z) and v € F(Z 5 W),

(o) eoy=a6 (o) e X 25 w).

(B-2) Pushforward is functorial: for a diagram X Loy 2z MW oand o €
FX 2wy,

(9F)+(a) = g f(a) EF(Z = TW).
(B-3) Pullback is functorial: for a double fiber square

R g

X s X7 s X
[P VA I
Y h s Y/ b .y

and a € F(X L5 v),
(gh)*(a) = h*g*(a) e F(X" L5 v,
B-4) Product and pushforward commute: for a diagram X oy 272 W oand
g
aeFX 2 z), perz LW,
fola® ) = fula) @ B e RY 25 W)
(B-5) Product and pullback commute: for a double fiber square

x My

z Mz
and 0 € F(X L5 V), e RY -4 2),
R (o 8) = B (a) & 1*(8) € F(X' 245 71,

(B-6) Pushforward and pullback commute: for a double fiber square

H

X ", x
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and o € F(X 25 7)),

*

FL(h* (@) = h* fula) € FY' 25 27),

(B-7) Projection formula: For a fiber square

x 9 x

f'l lf

Yy — Y,
amorphismYLZ, a € F(X i>Y) and ﬁEF(Y’%Z),

* hf
9.((g5a) ©B) = a® g.(B) e F(X — Z).
Before finishing this section we note that the well-definedness of the pushforward
(BO-II) implies the following

Proposition (2.4). Let o € F(X 7, Y), then the pushforward f.a is a locally

constant function on Y .

This can be seen as follows: Consider the pushforward on the following diagram:
x Ly Ly
Indeed, for o € F(X N V)=FX M Y)
fia e FY 4 v),

which implies that f.a is locally constant since

LN X) ={a € F(X)|a is locally constant}.

F(X
In other words the local Euler condition posed on a constructible function may be a
right local condition to guarantee such a strong requirement that the Euler-Poincaré
characteristic of the fibers weighted by « are locally constant. This is certainly a
strong requirement for a map.

63 BIVARIANT CHERN CLASSES

In general, a bivariant theory B on a category C to abelian groups is an assignment

to each morphism

x Ly

in the category C an abelian group

B(x L v)
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which is equipped with the three basic operations such as in (BO-I, BO-II, BO-III)
above and satisfy the seven properties as in (B-1)-(B-T7).

Let H(X — YY) be the bivariant homology theory (see [2] and [9]). For a morphism
f:X =Y and for any integer i, H'(X — Y) := HF?™(Y x M,Y x M — ®(X)),
where ¢ : X — M is an embedding into a smooth manifold of real dimension 2m
and ® := (f,¢): X - Y x M is an embedding. The definition is independent of the
embedding ¢ : X — M. Then as in the case of the bivariant constructible function
theory the three basic bivariant operations can be defined for the bivariant homology
theory, namely we have the following (for details see Fulton-MacPherson’s book [9]):
(BO-I: H) (Product operations): For morphisms f: X — Y and g : Y — Z, the
product operation

o HX L y)yeHy L 2) - HX 2L 2)

is defined.
(BO-II: H) (Pushforward operations): For morphisms f : X — Y (prop- er) and
g:Y — Z, the pushforward operation

£ HX 2L 2y s HY L 2)

is defined.
(BO-III: H) (Pull-back operations): For a fiber square

x 9 x

f/l lf
e N 4
the pull-back operation

g HX LYy - HX L YY)
is defined.

Fulton and MacPherson [9] conjectured (or posed as a question ) the existence of a
bivariant version of the Chern-Schwartz-MacPherson transformation C, : F — H,( :
Z), i.e., the existence of Grothendieck transformation (or “bivariant Chern class”),
in the category of complex algebraic varieties. Brasselet [2] proved this conjecture in
the category SC defined in §2. Also C. Sabbah [19] constructed a bivariant theory
of cycles and J.Zhou [24] proved that Sabbah’s bivariant Chern classes defined by
bivariant cycles are the same as Brasselet’s bivariant Chern classes.

Theorem (3.1). (Brasselet [2, III, Théoréme]) Let SC be the category to be consid-
ered. There exists a Grothendieck transformation

v:F—H
such that +of X 1s a smooth variety, then

Y(Ix) = o(TX) N [X],
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where m: X — pt is a map to a point pt and 1, := 1x € F(X — pt). Namely, for
each morphism f: X =Y, ~ qives rise to a homomorphism

viFX L y) s Hx Ly

such that ~ preserves the basic three operations, i.e., (1) v(a ® 3) = v(a) Ou v(03),
(1) y(fea) = fav(a) and (i) y(f*a) = f*y(a).

Remark 3.2. The uniqueness problem of ~ is still open. We will discuss it a little
later in the next section (Remark (4.10)).

Brasselet constructs the above transformation in such a way that the Chern-
Schwartz-MacPherson classes i, Ci(a|p-1(,)) of the fibers weighted by a are locally
constant, where 7, : f7'(y) — X is the inclusion map. Of course this is a much
stronger requirement than the local constancy of the Euler-Poincaré characteristic
of the fibers weighted by the constructible function «. In fact as a consequence of
the above Brasselet’s theorem we can say more and we see that this quite strong
requirement is a necessity for a bivariant constructible function.

Theorem (3.3). (1) Let o € F(X N Y) and let Vi,Va be subvarieties of Y such
that the Chern-Schwartz-MacPherson classes of Vi and V, are homologous mn Y,
then the Chern-Schwartz-MacPherson classes Ci(alp-1¢v,y) and Cy(a|p-1(v,)) of the
inverses f~H(V1), f~1(V2) weighted with o are also homologous in X . Namely, if

11:C (V1) = 12,C(V3)
with 1; : V; =Y being the inclusion maps (7 =1,2), then
el*C*(a|f—1(V1)) = 62*0*(Oé|f—1(v2))

with e; : f~1(V;) = X being the inclusion maps (7 = 1,2).

(2) In particular, of o € F(X S, Y'), then the Chern-Schwartz-Mac- Pherson classes
iy, Culalp-1(,)) of the fibers weighted by o are locally constant, where iy : f~'(y) —
X s the inclusion map.

Corollary (3.4). Let f : X — Y be an FEuler morphism. Then if Vi,V5 be sub-
varieties of Y such that the Chern-Schwartz-MacPherson classes of Vi and V, are
homologous in Y, then the Chern-Schwartz-MacPherson classes C.(f~'(V1)) and
C.(f~1(V2)) of the inverses

f~1(V1), £~ (V2) are also homologous in X . Namely, if

ZI*C*(VI) == ZZ*C*(VZ)
with 1; : V; =Y being the inclusion maps (7 =1,2), then
e1,.Co(fT1 (V1)) = 2, Co (71 (V2)

with e; + f~1(V;) — X being the inclusion maps (j = 1,2). In particular, the
Chern-Schwartz-MacPherson classes 1, Cy(f~1(y)) of the fibers are locally constant.

The proof of Theorem (3.3) goes as follows; for the sake of later use we give a
detailed proof.
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Proof of Theorem (8.3). The constructible function « induces the following homo-
morphism,

al FY)— F(X)

defined by
(B =a0f=a fp.

Then we can get the following commutative diagram:

FY) — F(X)
(3.3.1) C*l lc*

H

H.(YV;Z) —2— H.(X;Z)

Here ozﬂ;]I cH(Y;Z)=HY — pt) » H (X;Z) = H(X — pt) is defined by

H
&y

(a) :==~(a) Om a,

where v : F — H is a Grothendieck transformation and O : H(X i> V)yo H(YY —
pt) — H(X — pt) is the bivariant homology product operation. Here it should be
noted that since the uniqueness of the Grothendieck transformation + is not known
yet the homomorphism ozﬂ;]I could depend on the transformation v but that our state-
ment is independent of the choice of ~v. Of course the commutativity of the above
diagram follows from the fact that the Grothendieck transformation preserves the
three basic operations. First note that for a morphism X — pt the Grothendieck
homomorphism ~ : F(X — pt) — H(X — pt) is nothing but the Chern-Schwartz-
MacPherson transformation Cy : F(X) — H.(X;Z). Then the commutativity can
be seen as follows

Cya’(B) = Cu(a @ B)
=7(a © )
=7(a) Or (B)
=7(a) Om Ci(B)
= a2 C.(B).

We call the commutative diagram (3.3.1) a Verdier-type Riemann-Roch associated with
the constructible function o(cf. [22]). To finish the proof of (1), we just apply this
Verdier-type Riemann-Roch to two constructible functions 1y, 1y,. First observe
that for any subset A C Y of(l4) = a- f*l4 = a- Lp-104) = exar|p-1(4), Where
e: f71(A) = X is the inclusion map. Now suppose thatV;, V3 are subvarieties of ¥’
such that the Chern-Schwartz-MacPherson classes of V; and V; are homologous in
X, ie, 11,C.(V1) = 12,C(V3) with ¢; : V; = Y being the inclusion maps (7 =1,2).
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Then we have

e1.Cula|p-1v7)) = Culersalp-1(vy))
= C*ozF(]lvl)
= a,(Ci(1y,))
= a(i1,C (V1))
= ag(ig*C*(Vz)) (since 11, Cy (V1) = 12,C(V2))
= a2(Cy(1yy))
= Cia'(1y,)
= Cileasalp-1(1))
= e2.Ci(alp-1(1y))-

Thus (1) is proved and (2) is a special case of (1). O

Remark (5.5). It follows from the definition of Eulerness that any local trivial fibration
is always Euler. But Eulerness does not imply local triviality, as the following example
(given by T. Ohmoto) shows. Let X = {(:zj,y,z) ceC?+y* + 2= O}U{the z-axis}
and let f: X — C be the restriction to X of the projection p: C* — C to the third
factor C. The Milnor fiber at the origin is homotopic to the disjoint union of circle
(i.e., the vanishing cycle ) and one point, thus the Euler-Poincaré characteristic of
a nearby fiber in a small neighborhood of the origin is equal to one. Hence at the
origin it satisfies the local Euler condition, but it is not a local trivial fibration. At
every point of X off the origin the map f is a local trivial fibration. Thus f is
Euler but not a local trivial fibration. The map f is not proper, but the example can
be modified into the following example of a map between compact varieties. Let us
consider the following surface E in P? x P!:

E:={([xo: x1 : w2, [wo : wq]) € P? x P!

word + (wo + wy)x? + wias = 0}.

Let
X:=FU([1:0:0xPHuU([0:1:0] x PHYU([0:0:1] xP).

and let f: X — P! be the restriction to the subvariety X of the projection P?x P! —
P! to the second factor. Then just like the above example, at the three distinguished
points ([1:0:0],[0:1]),([0:1:0],[1:—=1]),([0:0:1],[1:0]) the Milnor fiber of f
is homotopic to the union of the circle and one point and otherwise f is locally trivial
off these three points. Hence f: X — P! is Euler but not a local trivial fibration.

In general, some other well-studied morphisms, such as flat, open, A, and trian-
gulable morphisms, are not Euler. For example, consider a Kodaira’s elliptic surface
[12], i.e., a surjective holomorphic map

f:5=0C

of a smooth compact complex surface S onto a smooth compact complex curve C'
such that its generic fiber is a smooth elliptic curve and that it has only finitely many
singular fibers. This Kodaira elliptic surface f : S — C is not Euler, because the
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topological Euler-Poincaré characteristics of the fibers are not constant; the topolog-
ical Euler-Poincaré characteristic of the generic fiber is zero but that of the singular
fibers are not zero. On the other hand, it follows from [11, §4] that the map f: S — C
is flat since S and C are smooth and (locally) the fibers have the same dimension
(= 1) and furthermore, since C' is smooth, hence Cohen-Macauley, f is open due to
the universal openness of the flat map. Since the target C' of the map f is a smooth
analytic curve, it follows from [11, Corollary 1, p.248] that f is Ay, i.e., there exists
a Whitney stratification of f which satisfies Thom’s Ay condition. It is not clear
whether it is triangulable or not, which is left for the reader. However, as an example
of a morhism which is triangulable but not Euler, we can consider the following simple
situation:

X:=P'x[1:0)uU([L:0] x P cP'x P

Namely, if we let [z0 : z1] and [wq : wq] be the homogeneous coordinates of the first
and second factor P!, respectively, then X is defined by the equation zjw; = 0. Let
f : X — P! be the restriction of the projection P! x P! — P! (either to the first
factor or to the second factor) to the subvariety X . Then f is obviously triangulable,
but certainly not Euler because the topological Euler-Poincaré characteristics of the
fibers are not constant; x(f~'([1:0])) = x(P') =2 and x(f'(a)) =1if 2 #[1:0].

At the moment a reasonable characterization of Eulerness is not known yet.

Before finishing this section we pose one problem. First, suggested by Proposi-
tion (2.4), one might be able to consider the following naive group of constructible
functions:

Fle (X N V) :={a € F(X)|fsca is a locally constant function on Y}

Then we can show the following

Proposition (3.6). Let us consider only topologically connected compact complex

analytic varieties. Then the above naive group of constructible functions F'-¢ (X 7,

Y) becomes a bivariant theory with the same operations as ones for F(X 7, Y).
Proof. We have only to show that the three operations are well-defined. First we note
that since our varieties are assumed to be topologically connected, that f,« islocally
constant on Y means that it is a constant function on Y. This constancy is needed
only for the well-definedness of the product operation, as we see below.

(1) (BO-I) (Product operations) For morphisms f : X — Y and ¢ : Y — Z, let
a € F(X) such that f.o is a constant function on Y and § € F(Y) such that
f+«0 is a constant function on Z. Then we need to show that (¢f)«(a ® 3) is a
constant function. First we note that f,(a ® ) = (fia) @ 8 by the commutativity of

pushforward and product operation (B-4). Then since we can consider f.o € F(Y i,
V), (fea) @8 = (fra)-3 = c- 3, where ¢ = x(f~1(y); ) for any y € Y is a constant.
Therefore (¢f)«(a @ B) = gu(fula ©® 3)) = gu(c- B) = ¢+ g«(8), which is a constant
function because g.(3) is so. As we can see, the constancy of fia is crucial. (If it is
not constant, we can easily get a counterexample.)

(2) (BO-II) (Pushforward operations) For morphisms f: X — Y and ¢ : Y — Z,

and o € F'o(X EEN Z) we want to show that f.a € F-¢(Y I, Z). But this is
obvious, because (¢gf)«a = g.(fecr).
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(3) (BO-III) (Pull-back operations) For a fiber square

!

X 2 X
f/l lf
vV 2y
and o € F(X), we need to show that if f.a is locally constant on Y, then flg'"a is
locally constant. For this we can use the following lemma ([5, Proposition 3.5]):

Lemma (3.6.1). The following diagram is commutative:

1*

FIX) —— F(X)

/. M

F(Y) == F(Y)

Since f,a islocally constant, ¢* fya is also locally constant. Then using the lemma,

g* fra = flg'"a is locally constant, thus g*a := ¢'*a € F- (X' AN Y').

U
Note that
(1) F'e (X — pt) = F(X — pt) = F(X),
(2) Flo (X 24 x) = Ry 24 X))
={a € F(X) | a is locally constant onX},
and

(3) in general, F(X — Y) C F'*(X — Y) and they are not necessarily equal as the
following example shows: (Example) Let Ly be the diagonal of the cartesian product
P! x P! of the 1-dimensional projective space P!. Choose a point zg in P!, and
consider another line Ly : {(z,20)]z € P'} C P! x P!'. Set L := Ly ULy, C P! x PL.
Let E be a smooth elliptic curve, so that its Euler characteristic y(E) = 0. Let
X :=LxE. Andlet f: X — P! be the composite of the inclusion X = L x E —
P! x P! x E, the projection to the first two factors P! x P! x E — P! x P! and the
projection to the first factor P! x P! — P!. Then the Euler-Poincaré characteristic of
the fibers are clearly locally constant; in fact x(f~'(z)) = 0 for any point z, which
comes from the fact that y(E) = 0. Thus the pushforward f,1x is locally constant.

However, it is easy to see that the map f is not Euler, ie., 1x ¢ F(X N Y).
Because at every point of the fiber f~!(29) = {(20,20)} x E, I x does not satisfy the
local Euler condition with respect to f.

Let ¢ : F — F\¢ be the inclusion, i.e., ¢(a) = a.

Problem (3.7). Can one construct a Grothendieck transformation ~'-¢ : F-¢ — H
such that (1) ¥4 (1) = ¢(Tx) N[X] if X is smooth and (2) v =~"%o01 ?
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84 GENERALIZED MILNOR NUMBERS

Definition (4.1). ( Parusinski’s generalized Milnor number)([15], [16] and [17]) Let
X be a local complete intersection variety of a smooth variety M. Let n = dimX.
Then the Parusiiski’s generalized Milnor number p(X) is defined to be

p(X) =~ ) = [ ),

X

where CT'7(X) is Fulton-Johnson’s Chern class, defined to be ¢(TM|x — NxM)N[X]
with Nx M being the normal bundle of X . Note that this class is independent of the
embedding of X into a smooth variety M (see Fulton’s book [7, Example 4.2.6]).

Since x(X) = [, C«(X), as a simple generalization of the generalized Milnor
number we have the following

Definition (4.2). (see [1], [4], [18], [23]) Let the situation be as in Definition (4.1) .
The Milnor class M(X) is defined by

M(X) == (-1)"TC(X) - CT(X)].

With these definitions we can show the following theorem.

Theorem (4.3). Let f: X — M —25Y be an Euler and local complete intersection
morphism (i.e., v : X — M is a regular embedding and p : M — Y s a smooth
morphism) such that over each point y € Y, the restriction to the fibers ry : X, — M,
is also a reqular embedding with dimX, = n, i.e., the fiber X, := f~(y) 1s a local
complete intersection variety of the smooth fiber M, := p~'(y). Then the Milnor
class M(Xy) of the fiber X, (considered as classes of X ) are locally constant. In

particular, the generalized Milnor number of the fibers X, are locally constant.

Proof. Firstly we remark that the smoothness of the fiber M, comes from the smooth-
ness of the morphism p. Since f: X — Y is a local complete intersection morphism,
we can define the following homomorphism

o(Ty) N f7 e Ho(Y3Z) = Hio (X5 Z),
where Ty is the virtual relative tangent bundle, defined to be
Ty :=1"T, — NxM,
and f* : H(Y;Z) - H.(X;Z) is the Gysin homomorphism [7, Example 19.2.1].
Since we are in the homology theory, the homology classes ¢(T)N f*([y]) are certainly
locally constant. Since f : X — Y is also Euler, it follows from Corollary (3.4)

that the Chern-Schwartz-MacPherson classes 1, C.(X,) of the fibers X, are locally
constant. So to prove the theorem we only need to prove the following equality

co(Ty) N F([y]) = iy, €7 (Xy)



16 JEAN-PAUL BRASSELET AND SHOJI YOKURA*

for which we proceed as follows:

)
= (Tp) %y, (M)
=c(Ty) Ny " ([My]) (by [5, Theorem (6.2)(a)])
=iy, lc(i,"Ty) N z*([My])> (by the projection formula)
=1y, le(Ty,) N [X,]) (by [5, Example (6.2.1)])
= Zy*CFJ(Xy)

O
Motivated by this result, we can consider the following: Since we are mostly in-
terested in homology classes determined by subvarieties of a variety, we consider the
Chow group A(X), i.e., the group of cycles modulo rational equivalence [7], and the

following homology group, which shall be provisionally called the “algebraic homology
group”, denoted by AH.(X;Z):

AH,(X;Z) :=Image (cl: A(X) — H.(X;Z)),

where ¢l : A(X) — H.(X;Z) is the cycle map [6, §19.1].
Lemma (4.4). For a variety X,

AH,(X;Z)=Image(C, : F(X) —» H(X:;Z)).

Proof. First of all we note that MacPherson’s proof [14] actually shows that C, :
F(X) = H.(X;Z) is the composite of the homomorphism C, : F(X) — A(X) into
the Chow homology group and the cycle map ¢l : A(X) — H.(X;Z). Here we use
the same notation C,, i.e.,

C,=clo(C,.

In fact it is easy to see by induction on dimension that the homomorphism C, :
F(X) — A(X) is always surjective, because for any subvariety W C,(1w) = [W] +
lower classes. Thus we get AH,(X;Z)=Image (C, : F(X) = H.(X;7Z)).

O
Now consider a Verdier-type Riemann-Roch diagram associated with the bivariant
constructible function 1 x:

FlY) SRS R
| le.
(1x)%

H.(Y;Z) H.(X;Z)

where v : F — H is a Grothendieck transformation (cf. [22]). It follows from Lemma
(4.4) that the restricted homomorphism
fEu = (]lX)E”AH*(Y;Z) c AH.(Y;Z)— AH,(X;Z) can be expressed as follows:

fPe=C,frC7t AHL(YZ) —» AH (X Z),
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which is well-defined because of the commutativity of the above Verdier-type Riemann
-Roch diagram. And of course we have the following homomorphism

cTe)N f* AH (Y Z) - AH,. (X Z).

These two homomorphisms coincide when f: X — Y is a smooth morphism, but
in general they are not identical if f is not smooth ([22]). So it is quite natural to
pose the problem of describing the difference between the two.

Problem (4.5). Let f: X — Y be an Euler and local complete intersection mor-
phism. Then give an explicit description of the following defect 4 :

P = o(Ty) 0 f* +4.

Remark 4.6. For a hypersurface X Parusinski and Pragacz [17] give an interesting
and promising formula for the generalized Milnor number p(X), in terms of the
Chern-Schwartz-MacPherson of the closure of the strata of a Whitney stratification
of X. Suggested by their result and Theorem (4.3), we expect that the defect § in
the above looked-for formula will be possibly described using a Whitney stratification
of a morphism f. After the preparation of the manuscript we learned that in the
hypersurface case the Parusinski-Pragacz’s formula for the Milnor number p(X) has
been generalized to a formula for the Milnor class M(X) in [18].

An interesting feature of this looked-for formula is that it implies some relationship
among Fulton-Johnson’s canonical class
C(f) == c(Ty) N [X] of a local complete intersection morphism f [8] and the Chern-
Schwartz-MacPherson class Cy(X) of the source variety X and (hopefully) some kind
of invariants of singularities of the morphism f. Here is a citation from [8, p.382]: “...
It would be interesting to relate the canonical class of a mapping to its singularities.”

Proposition (4.7). Let f : X — Y be an FEuler and local complete intersection
morphism. Then we have the following formula:

C(f) = CulX) + Y avCu(f71 (V) = 6([Y]),

where [Y] = Cu(Y) + 2 simv<aimy @VCx(V). In particular, of f is smooth, then

C(f) = CulX) + D avCu(fH(V)).

Proof. First we observe that since

Yi=C(Y)+ Y avCu(V)

dimV <dimY

we can take

oY) =1y + > avly.
dimV <dimY



18 JEAN-PAUL BRASSELET AND SHOJI YOKURA*

Then
C(f) = e(Ty) N [X]
=c(Ty) N fH([Y])
= fP(YD) - 6(YD)
= C. f*C7H[Y]) = 6([Y))

— C.f* (]ly + Y av]lv> —o([Y])

dimV <dimY

=Cu(X)+ > avC(fTHV)) = ([Y]).

dimV <dimY

4

Proposition (4.8). Let f: X — Y be an Euler morphism and let Y be topologically
connected. Then for any algebraic homology class o € AH(Y;Z) we have

/XfE”(a):Xf-/Ya.

Here x5 denotes the topological Euler-Poincaré characteristic of any fiber.

Proof. Since any homology class o € AH,(Y;Z) is generated by the Chern-Schwartz-
MacPherson class C(V) = C,(1y) of subvarieties V', it suffices to show the formula
for a = Cy(1y).

[ e = [ gercm)
_ /Y FCLf CIYC(Ty))  (since f2 = CLf*CY)
- /Y C.fuf*(Iy)  (since f.C\ = Cuf.)
:/YC*(Xf']lv) (fef*(Lv) = xs - 1v)
:Xf./yc*(nv).

4

Problem (4.9).

(1) Let f : X — Y be a local complete intersection morphism and let Y be
topologically connected. Let o € AH.(Y;7Z). Describe the following number
as 1n the above proposition

[ cmpnf

(2) Let f: X — Y be a local complete intersection morphism with Y being
topologically connected such that f: X — M — Y and that for each y € Y
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ry + Xy = My is a reqular embedding with dimX, = n, i.e., X, s a local
complete intersection of the smooth fiber M, . Then is 1t true that

[empnr@=t [a

Here y;i7 = fX CF7(X,) is called the Fulton-Johnson’s characteristic of
the fiber.

If (2) of the above problem be true, then we will get the following formula:

[ dtey= (=1 [

where (¢ is the generalized Milnor number of the fiber.

Remark 4.10. Here we remark a little on the uniqueness problem of the bivariant
Chern class. If we consider the algebraic homology group instead of the usual ho-
mology group, then to some extent we could see the “uniqueness” in the following
sense. We want to see that if v,4" : F — H are two Grothendieck-Chern trans-
formations, then for any bivariant constructible function a the bivariant homology
~v(a) = ~'(«). If we consider these two bivariant homology classes y(a) and '(«)
as homological operators a(a) = v(a) Oy a and ozﬂj,(a) = (o) ®m a, which both

~
define the homomorphism

AH,(Y,Z)— AH.(X;Z).
However, in the same argument as above we have the following equality:
oz]EI = C*oz]FC*_l = ozﬂj,.

Thus all the Grothendieck transformations induce the same homological operators
if they are restricted to the algebraic homological classes. In particular, in the case
when the cycle map ¢l : A, (X) — H.(X) is an isomorphism, e.g., if X has a cellular
decomposition (see [7, Example 1.9.1 and Example 19.1.11]), then the transformation
~ : F — H is unique if it is considered as the homological operator ozﬂj. When the
bivariant homology theory is replaced by the bivariant Chow homology theory ([6],
[7]), see [6] for the uniqueness.
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