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DEDEKIND ZETA FUNCTIONS
AND QUANTUM STATISTICAL MECHANICS

Paula B. Cohen

1 Introduction

In 1859 Riemann published an important foundational paper on the Riemann
zeta function. Recall that this function is given for Re(s) > 1 by

(=3

and that 1t has a continuation to all the complex plane which is analytic except
for a simple pole at s = 1. It is straightforward to show that the Riemann
zeta function has zeros at the negative even integers and these are called the
trivial zeros of the Riemann zeta function. The Riemann hypothesis predicts
that the remaining zeros lie on the line Re(s) = 1/2. One knows that the non-
trivial zeros of {(s) lie in the band Re(s) €]0,1[. The generalisation of this
function for a number field is known as the Dedekind zeta function. It encodes
much important arithmetical information about the field. One of the major
motivations of number theory i1s to understand more fully the Dedekind zeta
function, the most famous challenge being to understand the locus of the zeros
of this function and in particular to settle the validity of the Riemann hypothesis.
Much powerful work has been done in analytic number theory in the attempt
to solve the Riemann hypothesis directly. As the study of the zeros of the
Riemann zeta function and its generalisations is so difficult, one may ask how it
1s possible to recast the problem. For example, Polya and Hilbert proposed that
if one can construct a Hilbert space ‘H and an operator D in H whose spectrum
comprises the zeros of the Riemann zeta function in the band Re(s) €]0, 1], then
possibly one can settle whether or not /—1(D — 1/2) is self-adjoint or whether
D(1 — D) is positive, which would imply the Riemann hypothesis. The point
here is that the properties of self-adjointness or of positivity are hopefully easier
to check. It is important that the construction of the Hilbert space and the
operator should note depend @ priori on the zeta function, to avoid tautologies.
An as yet non-rigorous approach to the Riemann hypothesis initiated by Connes
in [C/ras] and being further developed in more recent work of his, includes an
interesting and rigorous spectral interpretation of the zeros of the L-functions
with Grossencharacter of a global field.

This recent work of Connes derives also from his work with Bost [BC] which
was in turn inspired by ideas of Julia [J] and others. The aim is to enrich our
knowledge of the Riemann zeta function by creating a dictionary between its



properties and phenomena in statistical mechanics. We discuss in this note a re-
casting and generalisation of [BC] to the number field case of which fuller details
can be found in [Coh]. The starting point of these approaches is the observation
that, just as the zeta functions encode arithmetic information, the partition
functions of quantum statistical mechanical systems encode their large-scale
thermodynamical properties. The first step therefore is to construct a quantum
dynamical system with partition function the Riemann zeta function, or the
Dedekind zeta function in the general number field case. In order for the quan-
tum dynamical system to reflect the arithmetic of the primes, it must capture
also some sort of interaction between them. This last feature translates in the
statistical mechanical language into the phenomenon of spontaneous symmetry
breaking at a critical temperature with respect to a natural symmetry group.
In the region of high temperature, there is a unique equilibrium state as the
system 1s in disorder and symmetric with respect to the action of the symme-
try group. In the region of low temperature, a phase transition occurs and
the symmetry is broken. This symmetry group acts transitively on a family of
possible extremal equilibrium states. The construction of a quantum dynamical
system with partition function the Riemann zeta function ¢(/3) and spontaneous
symmetry breaking or phase transition at its pole § = 1 with respect to a nat-
ural symmetry group was achieved by Bost and Connes in [BC]. A different
construction of the basic algebra using crossed products was proposed by Laca
and Raeburn and extended to the number field case by them with Arledge in
[ALR]. An extension of the work of Bost and Connes to general global fields
was done by Harari and Leichtnam in [HL]. The generalisation proposed by
Harari and Leichtnam in [HL] fails to capture the Dedekind zeta function as
partition function in the case of a number field with class number greater than
1. Their partition function in that case is the Dedekind zeta function with a
finite number of non-canonically chosen Euler factors removed. This prompted
the author’s paper [Cohl] where the full Dedekind zeta function is recovered
as partition function. This is achieved by recasting the original construction of
Bost and Connes more completely in terms of adeles and ideles.

The symmetry group of the system constructed by Bost and Connes is a Ga-
lois group, in fact the Galois group over the rational number field of its maximal
abelian extension. Using the Artin isomorphism, which says that this symmetry
group is also the unit group of the finite ideles, Bost and Connes recover the
actual Galois action on the elements of the maximal abelian extension via its
action on the equilibrium states of the system. In the general number field case,
the symmetry group is again the unit group of the finite ideles, but this group
does not in general have a Galois interpretation. See [HL] for a discussion of
this point.



2 The main goal

Before stating the problem solved by Bost and Connes in [BC] and its analogue
for number fields, we recall a few basic notions from the C*-algebraic formulation
of quantum statistical mechanics. For the background, see [C]. Recall that
a C*-algebra A is an algebra over the complex numbers C with an adjoint
z — 2% & € A, that is, an anti-linear map with «** = =z, (zy)* = y*z*,
z,y € A, and a norm || .|| with respect to which A is complete and addition
and multiplication are continuous operations. One requires in addition that
||[za*|| = ||z||? for all z € A. All our C*-algebras will be assumed unital. The
most basic example of a non-commutative C*-algebra is A = My (C) for N > 2
an integer. The C*-algebra plays the role of the “space” on which the system
evolves, the evolution itself being described by a 1-parameter group of C*-
automorphisms o : R — Aut(A). The quantum dynamical system is therefore
the pair (A, o¢). Tt is customary to use the inverse temperature 8 = 1/kT rather
than the temperature T', where & is Boltzmann’s constant. Then, one has the
definition of Kubo-Martin-Schwinger (KMS) of an equilibrium state at inverse
temperature 3. Recall that a state ¢ on a C*-algebra A is a positive linear
functional on A satisfying ¢(1) = 1. Tt is the generalisation of a probability
distribution.

Definition 1: Let (A, o¢) be a dynamical system, and ¢ a state on A. Then
@ 15 an equilibrium state at inverse temperature 3, or KMSg-state, of for each
z,y € A there is a function Fy,(z2), bounded and holomorphic in the band
0 < Im(z) < 8 and continuous on its closure, such that for allt € R,

Foy(t) = p(xae(y),  Foy(t+V=15) = p(oe(y)2). (1)

In the case where A = My (C), every 1-parameter group o; of automorphisms
of A can be written in the form,

or(x) = et e it r € A, t € R,

for a self-adjoint matrix H = H*. Then for H > 0 and for all 8 > 0, there is a
unique KMSg equilibrium state for (A4, o¢) given by
dp(x) = Trace(ze PH) /Trace(e=PH), z € Mn(C). (2)

This has the familiar form of a Gibbs state and is easily seen to satisfy the
KMSg condition of Definition 1. The KMSs states can therefore be seen as
generalisations of Gibbs states. The normalisation constant Trace(e™?H) is
known as the partition function of the system. A symmetry group G of the
dynamical system (A4, o) is a subgroup of Aut(A) commuting with o:

goor =00y, geGteR.



Consider now a system (A, o) with interaction. Then, guided by quantum sta-
tistical mechanics, we expect to see the following features. When the tempera-
ture is high, so that 5 is small, the system is in disorder, there is no interaction
between its constituents and the state of the system does not see the action of
the symmetry group G: the KMSs-state is unique. As the temperature is low-
ered, the constituents of the system begin to interact. At a critical temperature
o a phase transition occurs and the symmetry is broken. The symmetry group
G then permutes transitively a family of extremal KMSs- states generating the
possible states of the system after phase transition: the KMSg-state is no longer
unique. This phase transition phenomenon is known as spontaneous symmetry
breaking at the critical inverse temperature ;. The partition function should
have a pole at 8y. For a fuller explanation, see [BC]. The problem solved by
Bost and Connes was the following.

Problem 1: Construct a dynamical system (A, o) with partition function the
zeta function () of Riemann, where 3 > 0 is the inverse temperature, having
spontaneous symmetry breaking at the pole 3 = 1 of the zeta function with
respect to a natural symmetry group.

As mentioned in the introduction, the symmetry group is the unit group of
the 1deles, given by W = Hp Z;, where the product is over the primes p and
Zy = {up € Qp : |up|, = 1}. We use here the normalisation [p[, = p~l. This
is the same as the Galois group Gal(Q*/Q). Here Q2 is the maximal abelian
extension of the rational number field Q, which in turn is isomorphic to its
maximal cyclotomic extension, that is the extension obtained by adjoining to
Q all the roots of unity. The interaction detected in the phase transition comes
about from the interaction between the primes coming from considering at once
all the embeddings of the non-zero rational numbers Q* into the completions
Q, of Q with respect to the prime valuations |.|p.

The natural generalisation of this problem to the number field case was
solved in [Cohl1] and is the following.

Problem 2: Given a number field K, construct a dynamical system (A, o¢)
with partition function the Dedekind zeta function (g (3), where § > 0 is the
mverse temperature, having spontancous symmetry breaking at the pole § = 1
of the Dedekind function with respect to a natural symmetry group.

Recall that the Dedekind zeta function is given by

1
cCco
Here O is the ring of integers of K and the summation is over the ideals C of K
contained in . The symmetry group is the unit group of the finite ideles of K.
For the natural generalisation to the function field case see [HL]. For the
sake of exposition, we restrict ourselves in the sequel to the case of the rational
numbers, that is to a discussion of Problem 1.



3 Construction of the C*-algebra

We give a different construction of the C*-algebra of [BC] to that found in their
original paper. Tt is essentially equivalent to the construction of [ALR], except
that we work with adeles and ideles. In the generalisation to the number field
case, this makes quite a difference. Let A denote the finite adeles of Q, that
is the restricted product of Q, with respect to Z,. Recall that this restricted
product consists of the infinite vectors (ap)p, indexed by the primes p, such that
ap € Qp with a, € Z, for almost all primes p. The (finite) adeles form a ring
under componentwise addition and multiplication. The (finite) ideles J are
the invertible elements of the adeles. They form a group under componentwise
multiplication. Let Z; be those elements of w, € Z, with [u,|, = 1. Notice that
an idele (up), has u, € Qp with u, € Z; for almost all primes p. Let

R:Hzp, I=JNR, W:Hz;;.
14 14

Further, let 7 denoted the semigroup of integral ideals of Z. It is the semigroup
of Z-modules of the form mZ where m € Z. Notice that [ as above is also a
semigroup. We have a natural short exact sequence,

1-W—=1—-7—1. (4)

The map I — Z in this short exact sequence is given as follows. To (up), € I
assoclate the ideal Hp p°r 9 (Up) where ord,(up) is determined by the formula

luplp = p~ o (p) Tt ig clear that this map is surjective with kernel W, that is
that the above sequence 1s indeed short exact. By the Strong Approximation
Theorem we have

Q/Z ~A/R ~ &,Q,/Zy (5)

and we have therefore a natural action of I on Q/Z by multiplication in A/R
and transport of structure. We use here that IR C R. Mostly we shall work
in A/R rather than Q/Z. We have the following straightforward Lemma (see
[Cohl]).

Lemma 1: For a = (ap), € I and y € A/R, the equation

axr =1y

has n(a) =: Hp o) solutions in x € A/R. Denote these solutions by
[2:ax =y].

In the above lemma it is important to bear in mind that we are computing
modulo R. Now, let C[A/R] =: span{d, : * € A/R} be the group algebra of
A/R over C, so that §,6, = dp4p forz, 2’ € A/R. We have (see for comparison
[ALR)).



Lemma 2: The formula

1
g (dy) = n(a)[ Z Oz

z:ar=y]

for a € I defines an action of I by endomorphisms of C*(A/R).

The endomorphism «, for a € I is a one-sided inverse of the map d, — 45
for x € A/R, so it is like a semigroup “division”. The C*-algebra can be
thought of as the operator norm closure of C[A/R] in its natural left regular
representation in [?(A/R). We now appeal to the notion of semigroup crossed
product developed by Laca and Raeburn and used in [ALR], applying it to our
situation. A covariant representation of (C*(A/R), I, &) is a pair (m, V) where

7:C*(A/R) — B(H)
1s a unital representation and
V:I— B(H)

i1s an isometric representation in the bounded operators in a Hilbert space H.
The pair (7, V) is required to satisfy,

m(ea(f)) = Var(f)VS, a€l, feC*(A/R).

Notice that the V,, are not in general unitary. Such a representation is given by
(A, L) on I*(A/R) with orthonormal basis {e, : * € A/R} where X is the left
regular representation of C*(A/R) on I*(A/R) and

Laey = ! ) Z €.

n(a [z:az=y]

The universal covariant representation, through which all other covariant repre-
sentations factor, is called the (semigroup) crossed product C*(A/R) x o I. This
algebra is the universal C*-algebra generated by the symbols {e(z) : # € A/R}
and {p4 : a € I} subject to the relations

Hatta =1, papty = plav,  a,b €1, (6)
e(0) =1, e(@)" =e(-2), e(v)e(y)=e(x+y), xyeA/R, (7)
T 2w =gl eelye AR, (¥

[z:az=y]

The relations in (6) reflect a multiplicative structure, those in (7) an additive
structure and those in (8) how these multiplicative and additive structures are
related via the crossed product action. Julia [J] observed that by using only the



multiplicative structure of the integers one cannot hope to capture an interaction
between the different primes. When v € W then p, 1s a unitary, so that
ity = pupl = 1 and we have for all 2 € A/R,

1

pe(o)y, = e(u=la), el = e(uz). (9)

Therefore we have a natural action of W as inner automorphisms of C*(A/R) x o
I using (9).

To recover the C*-algebra of [BC] we must split the short exact sequence
(4). The ideals in Z are all of the form mZ for some m € Z. This generator
m is determined up to sign. Consider the image of |m| in I under the diagonal
embedding ¢ — (¢), of Q" into I, where the p-th component of (¢), is the image
of ¢ in Q under the natural embedding of Q" in Q. The map

+ :mZ — (Iml), (10)

defines a splitting of (4). Let Iy denote the image and define A to be the
semigroup crossed product C*(A/R) x4 I+ with the restricted action « from
I to I;. By transport of structure using (5), this algebra is easily seen to
be isomorphic to a semigroup crossed product of C*(Q/Z) by N4, where N4
denotes the positive natural numbers. This is the algebra constructed in [BC]
(see also [ALR]). ;From now on, we use the symbols {e(z) : # € Q/Z} and
{pa 1 @ € Np}. Tt is essential to split the short exact sequence in this way in
order to obtain the symmetry breaking phenomenon.

In particular, this replacement of I by I, now means that the group W acts
by outer automorphisms. For # € A, one has that u}zp, is still in A (computing
in the larger algebra C*(A/R) x4 I), but now this defines an outer action of
W. This coincides with the definition of W as the symmetry group as in [BC].

4 The time evolution and the KMSs-states

Using the abstract description of the C*-algebra A of §3, to define the time
evolution ¢ of our dynamical system (A, o) it suffices to define it on the symbols
{e(w) : 2 € Q/Z} and {pq : @ € N1 }. For t € R, let oy be the automorphism of
A defined by

or(pm) =m,  meN,, oile(x)) =e(x), »€Q/Z. (11)

By (6) and (9) we clearly have that the action of W commutes with this 1-
parameter group o;. Hence W will permute the extremal KMSg-states of (A4, o).
To describe the KMSg-states for § > 1, we shall represent (A, o¢) on a Hilbert
space. Namely, following [BC], let H be the Hilbert space I?(N ) with canonical
orthonormal basis {,,,m € N4 }. For each v € W, one has a representation m,

of Ain B(H) given by,

Fu(/,tm)(fn =&mn, M,N € N+



mule(x))en, = exp(2imnu o z)e,, n € Ny, z € Q/Z. (12)

Here uox for u € W and € Q/Z is the multiplication induced by transport of
structure using (5). One verifies easily that (12) does indeed give a C*-algebra
representation of A. Let H be the unbounded operator in H whose action on
the canonical basis is given by

He, = (logn)e,, neNy. (13)
Then clearly, for each u € W, we have
mu(oe(2)) = e”Hﬂ'u(x)e_”H, teR,xe A

Notice that, for G > 1,

(o] (o] (o]
Trace(e ") =3 (7 ey 0y = nHen,en) =D 077,
n=1 n=1 n=1

so that the Riemann zeta function appears as a partition function of Gibbs state
type. We can now state the main result of [BC].

Theorem:(Bost-Connes) The dynamical system (A, o¢) has symmetry group W.
The action of u € W is given by [u] € Aut(A) where

[u] s e(y) = e(uoy), yeQ/Z, [u] : pg = g, a €N,
This action commutes with o,
[u] 0 0y = 0y 0 [u], ueW, teR.

Moreover,

(1) for 0 < B < 1, there is a unique KMSg state. (It is a factor state of
Type 111y with associated factor the Araki-Woods factor Re.)

(2) for 8> 1 and u € W, the state

bp.u(x) = C(ﬁ)_lTrace(ﬂu(x)e_ﬁH), rEA

is a KMSg state for (A, o). (It is a factor state of Type 1. ). The action of W
on A induces an action on these KMSg states which permutes them transitively
and the map u — ¢g. ts a homomorphism of the compact group W onto the
space Eg of extremal points of the simplex of KMSg states for (A, oy).

(3) the ¢ function of Riemann is the partition function of (A, oy).

Part (1) of the above theorem is difficult and the reader is referred to [BC]
for complete details, as for a full proof of (2). That for § > 1 the KMSg-states
given in part (2) fulfil Definition 1 of §2 is a straightforward exercise. Notice
that they have the form of Gibbs equilibrium states.



5 Concluding remarks

The Theorem of the preceding section solves Problem 1 of §2. More information
is contained in its proof however. As mentioned in the Introduction, given the
existence of the Artin isomorphism in class field theory for the rationals, one
can recover the Galois action of W explicitly. It is still an open problem to
exhibit this Galois action in terms of an analogue of (A, o¢) in a satisfactory
way for general number fields.

Another exciting feature occurs in the analysis of the proof of part (1) of the
Theorem of the preceding section. If one treats also the infinite places, working
with the full adeles A and ideles (the restricted product now extending over
the archimedean places as well as over the non-archimedean places (primes)),
Connes has observed that the von-Neumann algebra of Type Il in the region
0 < £ <1 has in its continuous decomposition the Type Il factor given by the
crossed product of L*°(A) by the action of @* by multiplication. This can be
interpreted as the von-Neumann algebra associated to the orbit space A/Q* and
it is this space which plays a fundamental role in Connes’ proposed approach to
the Riemann hypothesis in [C/ras].
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