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Abstract

This paper is concerned with constructive and structural aspects of eu-
clidean field theory. We present a C*-algebraic approach to lattice field the-
ory. Concepts like block spin transformations, action, effective action, and
continuum limits are generalized and reformulated within the C*-algebraic
setup. Our approach allows to relate to each family of lattice models a set
of continuum limits which satisfies reflexion positivity andtranslation in-
variance which suggests a guideline for constructing euclidean field theory
models. The main purpose of the present paper is to combine the concepts of
constructive field theory with the axiomatic framework of algebraic euclidean
field theory in order to separate model independent aspects from model spe-
cific properties.
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1 Introduction

To begin with, we explain why euclidean field theory is of interest when
constructive purposes are concerned. Furthermore, we briefly explain the
basic notions which we are dealing with. In the second part ofthis section,
we give an overview of the content of this paper by illustrating our main
concepts and ideas.

1.1 Motivation

The techniques of euclidean field theory are powerful tools in order to con-
struct quantum field theory models. Compared to the method ofcanonical
quantization in Minkowski space, which, for instance, has been used for the
construction ofP (�)2 and Yukawa2 models [13, 14, 16, 25, 26], the meth-
ods of euclidean field theory simplify the construction of interactive quantum
field theory models.

The existence of the�43 model as a Wightman theory has been estab-
lished by using euclidean methods [7, 28, 21]. In the contrary the methods
of canonical quantization are much more difficult to handle and lead by no
means as far as euclidean techniques do. Only the proof of thepositivity of
the energy has been carried out within the hamiltonian framework [13, 15].

Motivated by the considerations above, a C*-algebraic version of the
Osterwalder-Schrader reconstruction scheme has been worked out in [24].
The starting point of the analysis in [24] is a so calledeuclidean field. Within
the present paper, we consider a particular class of euclidean fields, namely
those which are statistical mechanics. These particular euclidean fields are
called euclidean statistical mechanics. We point out that within the sub-
sequent considerations all physical motivations and interpretations are con-
cerned with statistical mechanical systems and not with thequantum field
theory model which can be reconstructed from it. The axioms which we pro-
pose in [24] for an euclidean field theory are motivated by an analogous point
of view as it has been used for the Haag-Kastler axioms [17].

In order to set up our language and the notions we are going to use, we
briefly introduce and explain the mathematical formulationof the concept of
statistical mechanics from a C*-algebraic point of view.

We apologize for being very formal within this part of the present section,
but one aspect of our basic philosophy is to realize the physical notions and
concept, we are dealing with, in terms of clear mathematicalobjects.

In order to describe a statistical mechanics, we consider a C*-algebraA
where the self adjoint elements describe observations related to the system
under considerations. Each observable can belocalizedwithin open regionsU of a topological spaceX. This region is related to particularproperties
of the corresponding quantity which can be measured in a certain experi-
ment. For instance, one may think of a stochastic process, where observa-
tions (events) can be localized within a time intervalI � R+, i.e. in this case
the topological spaceX = R+ is simply the set of positive real numbers.

As a mathematical realization of the notionstatistical mechanics, we pro-
pose the following list of axioms:
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SM1: LetK be a collection of open sets inX. The first ingredient of a
statistical mechanics is a net of C*-subalgebrasAA :K 3 U 7�! A(U ) � A
which is inclusion preserving, i.e.U � U1 ) A(U ) � A(U1) :
A regionU 2 K can be regarded as a set ofpropertieswhich the observ-
ables inA(U ) have in common.

SM2: In order to describe the dynamics and symmetries of the system, we
consider a groupG, which acts continuously onX, and a group homomor-
phism 
 2 Hom(G;AutA)
from G into the automorphism group ofA. We require that
 acts partially
covariantly, i.e. 
gA(U ) = A(gU )
for each(g;U ) 2 G�K with gU 2K .

SM3: In addition to that, if forU ;U1 2 K the setU is a proper subset
of XnU1, then the algebrasA(U ) andA(U1) are statistically independent
(see [23]). Roughly speaking, two observations which have no properties in
common do not disturb each other.

SM4: Finally, we consider a state! is a state on the C*-algebraA which
isG-invariant, i.e.! � 
g = ! for eachg 2 G. The state! describes a basic
distribution of events and the set of physically admissiblestates of the system
under consideration is the norm closed convex hullF! of the set of states�!v : a 7! h !; v�av ih !; v�v i ���� v 2 A : h !; v�v i 6= 0�
which is called thefolium generated by!. It is required that the GNS-
representation of! is faithful which is a sensible condition since, if the
GNS-representation�! is not faithful, then the idealJ! = ��1! (0) is irrel-
evant when physical aspects are concerned. Without changing the physical
content of the system under consideration we can replace thealgebraA by
the quotient C*-algebraA=J!.

The tuple� = (A; 
; !;X;G;K ) which fulfills the axiomsSM1- SM4
is called astatistical mechanics. If A is an abelian C*-algebra, then we call� a classical statistical mechanics.

For later purpose, it is convenient to introduce the notion of a subsystem
of a statistical mechanics. A statistical mechanics�1 = (A1; 
1; !1; X1; G1;K1)
is called asubsystem of� (�1 � �) if the following conditions are fulfilled:
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SU1: The inclusionsX1 � X, G1 � G, andK1 � K are valid, i.e. if
one restricts ones considerations to a subsystem, then the symmetry of the
underlying system can be broken.

SU2: The dynamics of a subsystem has to be compatible with the dynam-
ics of the underlying theory. There exists a C*-subalgebraB � A and a
surjective *-homomorphism� : B ! A1 and for eachg 2 G1 and for eachU 2K1 the following relations hold true:
g(B) = B
1;g � � = � � 
gjB��1(A1(U )) � A(U ) :
SU3: Each state of the subsystem which is physically admissible,should
be related to a state of the underlying theory. Hence one requires that for
each state'1 2F!1 there exists a state' 2 F! such that'1 � � = 'jB :
Two statistical mechanics�;�1 areequivalentif �1 is a subsystem of� and
vice versa.

In general, the *-homomorphism� is not faithful, which can be inter-
preted in physical terms: Relations between observables within the subsys-
tem are tested by states inF!1 . Within the underlying theory a larger set
of statesF! can be prepared and therefore relations between observables,
which hold for the subsystem, can be violated within the underlying one.

It is clear that to each localizing regionU 2K we can assign a subsys-
tem in a natural manner, namely�U := (AK (U ); 
jG(U ); !jA(U );U ; G(U );K (U )) � �
whereG(U ) � G is the stabilizer subgroup ofU andK (U ) contains all
setsU1 2K withU1 � U .

We are now prepared to introduce the notion of euclidean statistical me-
chanics. LetK d be the set of open bounded convex subsets ofRd. A eu-
clidean statistical mechanicsis a statistical mechanics(A; �; !;Rd;E(d);K d)
where the state! fulfills the axioms:

E1: The state! is euclidean invariant, i.e.! � � = !.
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E2: The state! is reflexion positive: Lete 2 Sd�1 be an euclidean time-
direction and let�e be the hyper-plane which is orthogonal toe. The eu-
clidean time reflexion�e : Rd! Rd is the reflexionx 7�! �e(x) = x� 2(e � x) e
wherey �x is the canonical scalar product inRd. We consider the anti-linear
involution je := ��e�� 2 AutA
and we require that h !; je(a)a i � 0
for eacha 2 A(R+e+ �e).
E3: The state! fulfills a regularity condition, namely for eacha; b; c 2 A
the map g 7�! h !; a�g(b)c i
is continuous.

By considering euclidean statistical mechanics, the property SM2is then
calledeuclidean covarianceand the statistical independence inSM3is called
locality [24].

The problem of constructing non-trivial examples which fulfill the ax-
ioms E1-E3 is rather difficult to handle. Up to now, the known examples
for euclidean field theory models which arenot related to free field theory
models are examples ind < 4 space-time dimensions. The question whether
there are interesting models ind � 4 dimensions is still open.

One possible procedure, which is often used within the framework of
constructive field theory, is to start from a family of lattice field theory mod-
els which can be regarded as statistical mechanics in our sense (see [9] and
references given there). As a tool to control the continuum limit, block spin
transformations are used to relate models, which belong to agiven lattice,
with models on a finer lattices. This method has been applied to scalar field
theories [12] as well as to the treatment of gauge theories [2], for instance.
But even if a suitable continuum limit exists in the sense of [9, 12, 2], then
this does not imply that the axiomsE1-E3are fulfilled. Since one works here
with cubic lattices, it is extremely difficult to prove the rotation invariance
of the model which is indeed a crucial property for passing from a euclidean
field theory to a quantum field theory in Minkowski space. One nice idea,
which works at least ind = 2 dimensions and which makes use of the facts
developed in [2], is presented in [18]. We also refer the reader to [9] where
this problem is also mentioned.

Within this paper we also work with cubic lattices and the problem of
rotation invariance is discussed within a forthcoming paper. Concerned with
this simplification, we study statistical mechanics� = (A; �; !;Rd;Qdb;K d) ;
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withQdb := [nb�nZd, b 2 N, i.e. the netA is translationally covariant with
respect to a dense subgroupQdb � Rd of rational translations. The axioms
E1-E3 for the state! are also substituted by weaker propertiesWE1-WE3:

WE1: The state! is translationally invariant, i.e.! � � = !.

WE2: The state! is reflexion positive with respect to the directionsek,
whereek is the unit vector with components(ek)l = �kl.
WE3: The state! fulfills a regularity condition, namely for eacha; b; c 2A the map Qdb 3 g 7�! h !; a�g(b)c i
is continuous.

We call the tuple� a weak euclidean statistical mechanicsif it satisfies
the axiomsWE1-WE3and the pair(A; �) is called aweak euclidean net of
C*-algebras.

We expect that the axioms for a weak euclidean statistical mechanics are
not sufficient to construct a Haag-Kastler net within a vacuum representation
from these data. Nevertheless, a weak euclidean statistical mechanics can be
treated as a physical system by its own right.

1.2 Overview

After we have introduced the general concepts and notationsin the previous
section, we outline here the basic ideas and concepts which are developed
within this paper in a concrete manner.

We consider the lattice of the discretized torus�0(n) = b�n0Zd=bn1Zd
whereb 2 N is odd andn = (n0; n1) 2 Z2 is a pair of integer numbers.
The corresponding sets ofq-cubes are denoted by�q(n), q � d. The set
of q-cubes of the dual lattice is denoted by��q(n) and we use the symbol�
for the isomorphism which maps��d�q(n) onto�q(n) and vice versa. We

introduce a partial ordering onZ2: We writen � n1 for nj � nj1, j = 0; 1.
For a given lattice, we build the C*-algebra of bounded continuous func-

tions1 A(n;R) := Cb(R�d(n)) :
The algebraA(n;R) contains subalgebrasA(n;R)(U ) which are related to an

open convex setsU � [�bn1 ; bn1]d in euclidean space, namely a func-
tion a 2 A(n;R) is localized inU if it only depends upon the variablesu(�); �(�) � U , where� is an appropriate chart from the torusRd=bn1Zd
intoRd.

1For a C*-algebraA we writeA(n;X[A]) = A(n;A) := 
�2�d(n)f�g �A whereX[A] denotes
the spectrum ofA.
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Figure 1: The bold as well as the bold dashed lines are indentified. Let� = 1 be
the vertical direction, then operators which are localizedinR+e1+�e1 depend on
grey and light grey shaded cubes. The reflexionj(n;1) maps the grey shaded region
onto the unshaded one and the light grey shadedtime zerolayer is stable underj(n;1).

As an example for a lattice field theory model we consider a lattice action
functional of the forms(�;n)(u) = �0(n) X�2�d�1(n)�d � u(�)+ X�2�d(n) LXl=1 �l(n)u(�)2l (1)

which induces a state�(�;n) onA(n;R) by definingh �(�;n); a i = z�1(�;n) Z du exp(�s(�;n)(u)) a(u)
where the partition functionz(�;n) is for normalization. In order to formulate
the important properties of the states�(�;n), we look at particular automor-

phisms onA(n;R). The groupb�n0Zd acts on the set of cubes�d(n) in a

natural manner and for eachg 2 b�n0Zd we introduce an automorphism�(n;g) onA(n;R) by the prescription�(n;g)a(u) := a(u � g) :
Moreover, the euclidean time reflexions�� = �e� , � = 1 � � �d, also act on�d(n) and we define anti-automorphismsj�j(n;�)a(u) := �a(u � ��) :
It can be proven that the states�(�;n) are invariant under the automorphisms�(n;g) and that they are reflexion positive, i.e.h �(�;n); j(n;�)(a)a i � 0
for each operatora which is localized inR+e� + �e� . Figure 1 illustrates
the situation ford = 2 dimensions.
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LetK dn be the collection of all open convex sets in[�bn1; bn1]d and letJ(n;�) be the kernel of the GNS-representation of�n. The prescriptionA(n;Rj�) :K dn 3 U 7�! A(n;Rj�)(U ) := A(n;R)(U )=J(n;�)
yields a concrete example for a classical statistical mechanics, namely the
tuple �n = (A(n;Rj�); �n; �n;Rd; b�n0Zd;K dn ) :
In the subsequent, we call�n a lattice field theoryif the state�n is b�n0Zd
invariant and reflexion positive.

Continuum limits for lattice field theories:As already mentioned, in or-
der to control the continuum limit of lattice field theory models the concept of
block spin transformations turned out to be a useful tool. For a review of the
basic ideas, we refer the reader to [9] and references given there. We refor-
mulate the basic concepts of block spin transformations from a C*-algebraic
point of view. Each configurationu 2 R�d(n+k), k 2 N2, can be identi-
fied with a configurationp(n;n+k)u 2 R�d(n) by an averaging procedure.
Usually, the averaging mapp(n;n+k) is defined by the block average(p(n;n+k)u)(�0) := b�dk0 X���0 u(�) : (2)

A simplified version of a block spin transformation can by obtained by setting(p(n;n+k)u)(�0) := u(�(n;n+kj�0)) (3)

where�(n;n+kj�0) is the unique cube contained in�0 which contains the
point��0 in the dual lattice (See Figure 2 for illustration).

Figure 2: The left figure illustrates the block average, given by Equation (2), the
right figure illustrates the block spin transformation, given by Equation (3). The
bold lines belong to the coarser lattice, and the average is taken over the grey
shaded cubes, respectively.

The block spin transformations can be used to identify operators inA(n;R)
with operators inA(n+k;R), namely�(n+k;n)a := a � p(n;n+k)
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defines a faithful *-homomorphism formA(n;R) intoA(n+k;R). In contrary
to the common literature, we distinguish here betweenblock spintransfor-
mations andrenormalization grouptransformations. One important feature
of block spin transformations is that localizing regions are preserved, i.e.�(n+k;n)A(n;R)(U ) � A(n+k;R)(U ). Hence there is no scaling involved as
block spin transformations are concerned. On the other hand, renormaliza-
tion group transformations identify operators which are localized inU with
operators, localized in a scaled region�U . An overview of the basic ideas
of renormalization group transformations applied to constructive field theory
can be found in [12, 3] and references given there. The general concept of
renormalization group transformations from an axiomatic point of view is
presented in [5, 4] and related work.

By looking at algebraic properties, in Section 2.2 the general concept of
block spin transformation is introduced within the C*-algebraic setting. As
we shall describe in Section 2.3, by performing the C*-inductive limit, one
constructs from a given family of block spin transformations� = (�(n;n0))n0�n
and from the lattice algebrasA(n;R) a C*-algebraA(�;R) which can be re-
garded as the C*-algebra for the continuum model. One obtains a net of
C*-algebras A(�;R) : U �! A(�;R)(U )
on which the dense subgroupQdb = [n2Nb�nZd � Rd acts covariantly
by automorphisms�(�;g) and thus this yields a weak euclidean net of C*-
algebras(A(�;R); ��).

One aim of this paper is to analyze the space ofQdb-invariant and reflex-
ion positive statesS(�;R) onA(�;R). The application of block spin transfor-
mations to states leads to a net of invariant reflexion positive states(�n+k � �(n+k;n))k2N2
onA(n;R)which has, according to compactness arguments, weak limit points.
We denote this weak limit points by'n := E[� 
 �]n, where� labels a limit
point, more precisely,� is a measure on the space�Z2nZ2, where�Z2 is the
spectrum of the C*-algebra of bounded functions onZ2. The consistency
condition 'n+k � �(n+k;n) = 'n
is fulfilled and hence there is a unique state' 2 S(�;R) on the C*-inductive
limit A(�;R) such that ' � �n = 'n
where�n is the embedding ofA(n;R) intoA(�;R). For a given family of lattice
field theory models(A(n;Rj�); �n; �n;Rd; b�n0Zd;K dn )n2Z2
we symbolize the corresponding set ofcontinuum limitsby S(�;R)[�] �S(�;R). Each continuum limit' 2 S(�;R)[�] gives rise to a classical sta-
tistical mechanics� = (A(�;Rj'); ��; ';Rd;Qdb;K d)
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where the netA(�;Rj') is given byA(�;Rj') : U 7�! A(�;R)(U )=J(�;')
andJ(�;') is the kernel of the GNS-representation of'.

The self adjoint operators inA(�;Rj') correspond to observations with
respect to the full energy momentum range. By setting'n := ' � �n, each
lattice field theory�n = (A(n;Rj'); �n; 'n;Rd; b�n0Zd;K dn )
is a proper subsystem of� which corresponds to observations within the en-
ergy momentum range[b�n1; bn0] and we regard�n as aneffective theoryin
which observations within the energy momentum range[0; b�n1] [ [bn0 ;1)
are not admissible. TheQdb covariance of the effective theory is broken and
only theb�n0Zd covariance remains.

At this point, we have to emphasize that our considerations essentially
rely on the C*-algebraic point of view. The advantage in comparison to
non-C*-based approaches (see for example [9]) is that we always get con-
tinuum limits no matter how our input data� = (�n)n2Z2 are chosen. In
particular, by looking at the family�� = (�(�;n))n2Z2 of scalar field the-
ory models, given by Equation (1), we get continuum limits for arbitrary
couplings(�l(n))n2Z2, l = 0 � � �L. Even in case of a perturbatively non-
renormalizable model, it makes sense to study the set of continuum limits.

On the other hand, the fact that there are weak limit points isnot sufficient
for concluding the existence of interesting models. Therefore, the problem
which occur here is to get detailed information about the states inS(�;R)[�].
At this point, we introduce a rough classification of families of states by
considering the possible limit points of a given family�.

(1) For a given family� every limit point inS(�;R)[�] is a character which
is the most trivial case.

(2) There is another uninteresting case, namely each state inS(�;R)[�] is
ultra local, i.e. each state' 2 S(�;R)[�] has no correlation for two
operatorsaj 2 A(�;R)(Uj), j = 1; 2, which are localized in disjoint
regionsU1 \U2 = ;:h '; a1a2 i = h '1; a1 ih '2; a2 i
for suitable states'j on A(�;R)(Uj), j = 1; 2. This implies that, if
the corresponding theory in Minkowski space exists, then itis the con-
stant field. The notion of ultra local (scalar) fields is explained in [19].
In particular an application of the measures, constructed in [1], to eu-
clidean field theory leads to ultra local models.

(3) There exists a limit point' 2 S(�;R)[�] which is not ultra local.

By looking at our example of scalar fields, the case(3) can be subdivided
into two further cases:

(3.1) Let ' 2 S(�;R)[�] be a non-ultra local state, then it is equivalent to a
gaussian state.
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(3.2) There exists a limit point' 2 S(�;R)[�] which is not ultra local and
which is not equivalent to a gaussian state.

We have to mention at this point that for many examples case(1) can be
excluded. One now asks the following question:

Question: Can we decide, by studying the family of states�, whether the
case(3) is valid or not?

In order to show the existence of states inS(�;R), which are not ultra
local, we propose the following strategy: For a cube� 2 �d(n) and for an
operatora 2 Cb(R)we define the function�n(�; a) by�n(�; a)(u) := a(u(�)) :
Let�1;�2 2 �d(n) be two disjoint cubes�1 \�2 = ;. Find a continuous
bounded positive functionh 2 Cb(R) and a family of states� such that there
exists a constantsc�(n;h;�1;�2) > 0 withc+(n;h;�1;�2) � jh c[�n+k��(n+k;n) ];�n(�1; h)
 �n(�2; h) ij> c�(n;h;�1;�2)
for largek. Here we define for any state! its correlation byh c[!]; a
 b i := h !; ab i � h !; a ih !; b i :
Since the bound is uniform ink, there exists a state' 2 S(�;R)[�] such that
the correlation of'n = ' � �n fulfills the boundsc+(n;h;�1;�2) � jh c['n ];�n(�1; h)
 �n(�2; h) ij> c�(n;h;�1;�2)
which implies that' is not ultra local. From the invariance properties of'n we conclude that this bound holds for each pair of cubes whichcan be
obtained by applying a transformationg 2 b�n0Zd to (�1;�2). Hence the
constantc(n;�1;�2) only depends on the orbit of(�1;�2) under the action

of b�n0Zd. Let d(�1;�2) be the distance of the cubes(�1;�2) and let us
assume that the upper boundc+(n;h;�1;�2) has the formc+(n;h;�1 ;�2) = K(n;h) exp��d(�1;�2)`(n; h) �
with two constantsK(n;h); `(n; h), then the constant̀(n; h) plays the role of
the correlation length. A proposal how to tackle the problemof estimating
correlations is given in Appendix A.

12



Action, effective action, and continuum limits:We assume now that
somebody has already constructed a weak euclidean statistical mechanics� = (A(�;Rj!); ��; !;Rd;Qdb;K d) :
Then it is natural to ask whether one can construct new theories out of�
by a suitable deformation procedure. Remember thatA(�;Rj!) denotes the
C*-algebra A(�;Rj!) := A(�;R)=J(�;!)
whereJ(�;!) is the kernel of the GNS-representation of! 2 S(�;R). The
basic idea is to perturb each of the subsystems�n = (A(n;Rj!); �n; !n;Rd; b�n0Zd;K dn )
separately, by replacing each of the states!n by appropriate states�n 2F!n . If we assume that�(k)n := �n+k � �(n+k;n) is contained inF!n for
eachk 2 N2, then we obtain for eachn 2 Z2 and for eachk 2 N2 a
subsystem�(k)n := (A(n;Rj�(k)n ); �n; �(k)n ;Rd; b�n0Zd;K dn ) � �n :
which is, in particular, a subsystem of�. There are also examples for which
the theories�(k)n �= �n are equivalent for eachk. Formally, the relation�(k)n �= � may be no longer valid in the continuum limitk; n ! 1. More
precisely, for a continuum limit' 2 S(�;R)[�] the corresponding theory�(') = (A(n;Rj'); ��; ';Rd;Qdb;K d)
is, however,not equivalentto the theory where we have started from.

But one may ask whether the subsystem�(')n , which corresponds to the
energy momentum range[b�n1; bn0], is a subsystem of�n. This question
is related to the existence of an effective action [12]. The states�n under
consideration are of the formh �n; a i = ZR�d(n) d!n(u) vn(u) a(u)
and we call the family of functionsv = (vn)n2Z2 anaction.

Our notion of action is slightly different to the one which one usually
finds in the literature where in comparison the negative logarithm � lnvn
is usually called the action. In order to distinguish these notions we call� lnvn theaction functionalwith respect ton. For example, choose!n to
be the gaussian part andvn to be the interaction part (see [3]). Within our
analysis, we also consider examples where!n is an ultra local state andvn
contains the next neighbor coupling.

From a given actionv, we obtain a new family of functions bye(k)(!)(v)n(u) := Z d!(n+k)(u0) k(!;n;n+k)(u; u0) vn+k(u0)
13



where the kernelk(!;n;n+k)(u; u0) is determined by the conditionZ d!n(u) d!(n+k)(u0) k(!;n;n+k)(u; u0) a(u0)= Z d!(n+k)(u0) a(u0) :
We calle(k)(!)(v) theeffective actionwith respect to the actionv. For a fixed

cut-offn 2Z2 the operation ofe(k)(!) corresponds to a substitution by the un-
derlying lattice theory on�d(n) by a lattice theory, also defined on�d(n),
arising from a lattice theory on�d(n+ k) by integrating out the correspond-
ing high energy degrees of freedom (See [12]).

In Section 3, we discuss in a more general context conditionsfor v under
which there exists a family of measurable functionsv0 = (v0n)n2Z2 (v0n is!n-measurable) such thath '; �n(a) i = z�1(!;v0;n) Z d!n(u) v0n(u) a(u) (4)

holds for a continuum limit' 2 S(�;R)[�]. In this case,�(')n is a subsystem
of �n since the foliumF'n is contained inF!n .

In Section 3.4 we formulate a sufficient condition (multiplicative renor-
malizability) for an actionv which allows to construct a new actionv0 fromv such thatv0 satisfies the fix point equatione(k)(!)(v0) = v0 and therefore
Equation (4) (Proposition 3.7). We have to emphasize here that the existence
of v0 does not exclude the case(2) of ultra locality. In order to conclude that
one deals with an interesting model one has to studyv0 in more detail.

To illustrate the notionmultiplicative renormalizability, an ultra local ex-
ample for a multiplicatively renormalizable action is alsopresented in Sec-
tion 3.4 and Appendix B deals with a larger class of examples.

A large variety of lattice models:The C*-algebraic point of view sug-
gests to study a large class of lattice field theories among which there are ex-
amples which are rather different from the usual lattice field theory models,
likeP (�)d for instance. To some extend they can be regarded as generalized
spin models.

The abelian C*-algebraCb(R), which we have used for illustration in the
previous paragraphs, can easily be replaced by any C*-algebraA in particular
by a�-finite von Neumann algebraM acting on a Hilbert spaceK. As usual,
we denote byM 0 the commutant ofM , i.e. the set of bounded operators onK which commute with all operators inM .

As input data for the construction of lattice models we choose

(1) a von Neumann algebraM , acting on a Hilbert spaceK, and a vector
, which is cyclic and separating forM ,

(2) a family of positive operatorsw 2 (M 0 
M 0)Z2 such that[wn 
 1;1
wn] = 0
for eachn 2Z2.
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Figure 3: The left figure illustrates the operator�n(�; a) where� is the shaded
cube. The figure on the right illustrates operators�n(�; w),w =Pi ai
bi which
couple nexted neighbor cubes. Here� is the face which the gray shaded cubes have
in common.

The algebraA(n;M) = 
 �2�d(n)f�g�M is simply the von Neumann
tensor product ofM over�d(n) and the vector
n := 
�2�d(n)f�;
g is
cyclic and separating forA(n;M). For a cube� 2 �d(n) and an operatora 2M we denote by�n(�; a) operator inA(n;M) which is a tensor product
of operators inM where at� the factora appears and the unit1 else (See
Figure 3). For a hypercube� 2 �d�1(n) there are two unique cubes�0;�1
such that�0 \�1 = � and we put�n(�; a
 b) := �n(�0; a)�n(�1; b).
We introduce a state�n onA(n;M) byh �n; a i := z�1(
;n;w)� 
n; Y�2�d�1(n)�n(�;wn) a 
n �
where the partition functionz(
;n;w) is for normalization. If the vector	(
;n;w) := Y�2�d�1(n)�n(�;wn)1=2
n
is cyclic and separating forA(n;M) for eachn 2 Z2, then�n is faithful and
we obtain for eachn 2Z2 a lattice field theory model�n := (A(n;M); ��; �n;Rd; b�n0Zd;K dn ) :

For eachn 2 N, we consider the state!n = h 
n; (�)
n i and by an
appropriate choice of block spin transformations� the consistency condition!n+k��(n+k;n) = !n is fulfilled and we obtain the corresponding continuum
model (A(�;M); ��; !;Rd;Qdb;K d) :
The state�n is a perturbation of!n where the action is given byv : n 7�! Y�2�d�1(n)�n(�;wn) :
Each of the operators�n(�;wn) induces a coupling of the two next neighbor
cubes which have the face� in common (See Figure 3). Ifwn is of the formwn = hn
hn the cubes are decoupled and the resulting theory is ultra local.
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The simplest non-trivial choice forwn is 1 + hn 
 hn for instance. More
general, one can choosew in the following manner: Putwn := Z 10 hn(s)
 hn(s)
wherehn 2 C1([0; 1];M 0) is a smooth function withhn(s) > 0 and[h(s1);h(s2)] = 0. If hn(s) = hn is constant, then we would end up with an
ultra local theory. Therefore we have to require that the derivative ofhn does
not vanish. For this kind of examples, the effective actione(k)(!)(v) can be
computed quite explicitly and our hope is that the corresponding continuum
limits could be easier controlled than the continuum limitsfor P (�)d-like
models, for instance.

There is a further nice feature of models which correspond tosuch ac-
tions likev. Particular correlation functions can be interpreted in terms of
correlation functions of a different, some kind of dual, lattice field theory.
In order to explain this, we introduce for a cube� 2 �d(n) and for eachs 2 [0; 1]�d�1(n) a normal state onM :h E(s)(h;nj�); a i := [z(s)(h;nj�)]�1� 
; Y�2@�hn(s(�)) a 
 �
wherez(h;nj�)(s) is for normalization. This yields a statê�(n;h) on the

algebraÂ(n;[0;1]) := C ([0; 1]�d�1(n)) such that for operators(aj)j=1���k,aj 2M , the correlation functions fulfill the relation� �n; kYj=1�n(�j; aj) � = Z d�̂n(s) kYj=1h E(s)(n;hj�j ); aj i :
The statê�(h;n) is given byh �̂(h;n); â i = z�1(h;n) Z Y�2�d�1(n) ds(�) v̂n(s) â(s)
andv̂n is given by v̂n(s) = Y�2�d(n)z(s)(h;nj�) :
Indeed, particular correlation functions of the model, which is given by the
actionv, can be expressed in terms of correlation functions of a lattice model
which is given by the action̂v and whose corresponding field configurations
are functions from the faces of cubes into the interval[0; 1]. Hence some
properties of the non-commutative lattice field theory models �n can be in-
vestigated by studying commutative lattice models. This point of view may
be helpful in order to construct non-ultra local models.

On the regularity condition WE3:However, the above discussion is not
concerned with the the regularity conditionWE3. By using a slightly differ-
ent construction for the continuum C*-algebras we show in Section 4 how
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from a given family of invariant and reflexion positive states � = (�n)n2N
continuum limits can be constructed which fulfill all the axioms of a weak
euclidean statistical mechanics.

Conclusion and outlook: We close our paper by the Section 5conclusion
and outlook.

2 Continuum limits for lattice field theory mod-
els

Within this section we develop a concept ofcontinuum limitwhich can be
applied to a large class of lattice field theory models. In Section 2.1, we
introduce notation and conventions which we are going to use.

A general and model independent notion of block spin transformations
is given in Section 2.2. Although the construction of C*-inductive limits is
standard and can be found in many text books, we present a version of this
procedure in Section 2.3. One reason is to keep the paper as self contained as
possible. Furthermore, the notations and definitions whichwe introduce in
Section 2.3, are used later to perform a procedure which is slightly different
from taking the C*-inductive limit of a net of C*-algebras.

Finally, we present in Section 2.4 a general concept for continuum limits
of lattice models.

2.1 Notation and conventions

We consider a C*-algebraA and for a given cutoffn 2Z2 we introduce the
C*-algebra A(n;A) := O�2�d(n)f�g �A :
To each subsetU � [�bn1; bn1]d a subalgebraA(n;A)(U ) := O�2�d(n;U )f�g � A
can be assigned in a natural manner. The set�d(n;U ) is defined as follows:
We identify the set�o0(n) := b�n0Zd\[�bn1; bn1]d with a subset of the torus�0(n). Theq-cubes�oq(n) in b�n0Zd \ [�bn1 ; bn1]d can also be identified
with q-cubes in�q(n). The set�d(n;U ) consists of all cubes� in �od(n)
with � � U .

The groupb�n0Zd � E(d) acts by automorphisms covariantly on the
algebraAn(A). In other words, there exists a group homomorphism�n 2 Hom(b�n0Z;AutA(n;A))
such that for eachg 2 b�n0Zd the equation�(n;g)A(n;A)(U ) = A(n;A)(gU )
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holds. The automorphism�(n;g) is simply given by�(n;g)� O�2�d(n)f�; a(�)g� := O�2�d(n)f�; a(g�1�)g :
There is one important automorphism which corresponds to the euclidean
time reflexion. x 7�! ��(x) = x� 2(e� � x) e�
wherey � x is the canonical scalar product inRd ande� 2 Rd is the unit
vector with components(e�)� = ��� . For each� = 1; � � � ; d we consider
the anti-linear involutionj(n;�) : A(n;A) �! A(n;A)
which is given byj(n;�)� O�2��(n)f�; a(�)g� := O�2�d(n)f�; a(���)�g :
Sinceb is odd, the set ofd-cubes can be decomposed into a union of three
disjoint set�d(n) = �d(n; �; 0)[�d(n; �;+) [�d(n; �;�)
where�d(n; �; 0) is a layer of��-invariantd-cubes and�d(n; �;+) is mapped
onto�d(n; �;�) via ��. Therefore, operators of the forma = O�2�d(n;�;0)f�; a(���)g
with a(�)� = a(�) arej(n;�)-invariant. The algebraA(n;A) can be written
as a tensor productA(n;A) = A(n;A)(�; 0)
A(n;A)(�;+)
 A(n;A)(�;�)
whereA(n;A)(�; 0) is stable underj(n;�) andA(n;A)(�;+) is mapped ontoA(n;A)(�;�) via j(n;�) (see Figure 2).

2.2 Block spin transformations: The general setup

In our context, block spin identify operators inA(n;A) with operators con-
tained in a algebraA(n1;A) which corresponds to a finer lattice, i.e.n � n1.
Let us state a list of axioms which characterizes the notion of block spin
transformations.

Definiton 2.1 : A family of *-homomorphisms� = f�(n1;n0) 2 Hom(A(n0;A);A(n1;A))jn0 � n1g
is called a family ofblock spin transformationsif it fulfills the following
conditions:
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(1) Cosheaf condition: For eachn0 � n1 � n2:�(n2;n1) � �(n1;n0) = �(n2;n0) :
(2) Locality: For eachn0 � n1 and for eachU � [�bn10; bn10]d:�(n1;n0)A(n0;A)(U ) � A(n1;A)(U ) :
(3) Translation covariance: LetU0;U1 � [�bn10; bn10]d such thatU0 [gU0 � U1 for someg 2 b�n00Zd � b�n01Zd:�(n1;n0)�(n0;g)a = �(n1;g)�(n1;n0)a

for eacha 2 A(n0;A)(U0).
2.3 C*-inductive limits revisited

For a given family of block spin transformations� we construct the C*-
inductive limit A(�;A) of the netn 7! A(n;A). In order to carry through
our subsequent analysis, we briefly describe the construction ofA(�;A).
Step I. Let Cb(Z2;AA) be the C*-algebra which is generated by bounded
sections in the bundleAA : n 7! A(n;A). We consider the closed two-sided
idealC0(Z2;AA) in Cb(Z2;AA), which is generated by sectionsa : n 7! an
for which the limit limn!1 kank = 0 vanishes. We build the quotient C*-
algebra Ca(Z2;AA) := Cb(Z2;AA)=C0(Z2;AA) :
In the following,p denotes the corresponding canonical projection onto the
quotient.

Step II. For a given family of block spin transformations�, we denote byAo(�;A) the C*-subalgebra inCb(Z2;AA) which is generated by sectionsa :n 7! an for which there existsn0 2Z2 and there existsa0 2 A(n0;A) such
that an = �(n;n0)a0
for eachn0 � n. The C*-inductive limit of the pair(�; A) now is given byA(�;A) := p[Ao(�;A)] � Ca(Z2;AA) :
For eachn 2Z2 we obtain a *-homomorphism�n : A(n;A) ! A(�;A) which
identifiesA(n;A) with a subalgebra inA(�;A). It is given by the prescription�na := p[n1 7! �(n1;n)a]
where the sectionao = [n1 7! �(n1;n)a] is any representative such thatao(n1) = �(n1;n)a for eachn � n1. It is obvious that the relation�n ��(n;n0) = �n0 holds forn0 � n.
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The C*-algebraA(�;A) can be regarded as the continuum C*-algebra and
it contains observables which correspond to observations at the full energy
momentum range, whereas The C*-subalgebras�n(A(n;A)) contain only ob-
servables which correspond to observations for the energy momentum range[b�n1; bn0].

We consider the dense subgroupQdb := [nb�nZd of the translation
groupRd. There exists a group homomorphism�� 2 Hom(Qdb;AutA(�;A))
which acts covariantly onA(�;A). Forg 2 Qdb we define�(�;g)p[n 7! �(n;n0)a] := p[n 7! �(n;g)�(n;n0)a]
with g 2 b�lZd andn0 > l. LetA(�;A)(U ) be the C*-subalgebra which is
generated by local operators in�n[A(n;A)(U )] for somen 2 Z2. Then we
conclude from the construction of��:�(�;g)A(�;A)(U ) = A(�;A)(gU ) :
Thus the prescriptionA(�;A) : U 7�! A(�;A)(U )
is a (weak) euclidean net of C*-algebras which is translationally covariant
with respect to the groupQdb.
2.4 On a general concept for continuum limits for lattice
models

For each cutoffn 2 Z2 we select a class of appropriate states onA(n;A).
We denote byS(n;A) the set of all states� 2 S(A(n;A)) which satisfy the
assumptions:

Invariance: For eachg 2 b�n0Z:� � �(n;g) = � :
Reflexion positivity: The sesqui-linear forma 
 b 7�! h �; j(n;�)(a)b i
is positive semi-definite onA(n;A)(�;+) for each� = 1; � � � ; d.

There are also anti-linear involutionsj(�;�) acting on the C*-inductive
limit A(�;A) according to the prescription:j(�;�)p[n 7! �(n;n0)a] := p[n 7! �(n;n0)j(n0;�)a]= p[n 7! j(n;�)�(n;n0)a] :
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Analogously to the definition, given above, we introduce thespaceS(�;A) ofQdb-invariant and reflexion positive functionals onA(�;A).
Let �(Z2;SA) be the convex set of sections� :Z2 3 n 7�! �n 2 S(n;A)

We identifyS(�;A) with the corresponding subset in�(Z2;SA) by identify-
ing! 2 S(�;A): with the section! : n 7�! !n := ! � �n :
For simplicity, we do not distinguish the state! 2 S(�;A) and the corre-
sponding section within our notation.

Proposition 2.2 : There is a canonical surjective convex-linear mapE : S[Ca(Z2; C )] 
 �(Z2;SA) �! S(�;A) :
Proof. For a state� 2 S[Ca(Z2; C )] and a section� 2 �(Z2;SA) we
define a new sectionE[� 
 �] byh E[� 
 �]n;p[n 7! �(n;n0)a] i := h �;p[ n 7! h �n; �(n;n0)a i ] i :
It is obvious thatE is convex linear and thatE[� 
 �] fulfills the consistency
condition E[� 
 �]n � �(n;n0) = E[� 
 �]n0 :
Let ! 2 S(�;A) be given, then we obtain by a straight forward computationE[� 
 !] = !
for each� 2 S[Ca(Z2; C )]. ThusE is surjective. Finally, the invariance and
the reflexion positivity follow directly from the construction ofE.�
Remark:

(1) For a given family of lattice field theory models�n := (A(n;Aj�); �n; �n;Rd; b�n0Zd;K dn )n2N
we introduce the set of continuum limits byS(�;A)[�] := �E[� 
 �] ���� � 2 S[Ca(Z2; C )]� � S(�;A) :

(2) Proposition 2.2 suggests a guideline how to construct continuum limits
from an appropriate family(�n)n2Nof lattice field theory models. For
each continuum limit' 2 S(�;A)[�] the statistical mechanics(A(�;Aj'); ��; ';Rd;Qdb;K d)
fulfill the axioms of a weak euclidean statistical mechanicsexcept the
continuity requirementWE3. Hence we deal with a well posed prob-
lem, namely to analyze the properties of the states contained inS(�;A)[�]
with respect to the properties of the section�.

21



3 Actions, effective actions, and continuum lim-
its

This section is destined to introduce the notions action andeffective action
within the C*-algebraic setup. Section 3.1 is concerned with the problem
of constructing from a given a weak euclidean statistical mechanics a new
model by means of perturbations. For this purpose, we introduce the concept
of action and effective action.

In particular, we study perturbations of ultra local models. We present in
Section 3.2 a simple example for a family of block spin transformation which
allows to compute some useful expressions quite explicitly.

In Section 3.3, we show that, for a given lattice, there is a large variety of
reflexion positive invariant states.

A criterion for the existence of an effective action for continuum limits is
formulated in Section 3.4.

3.1 Effective actions and continuum limits

To begin with, we consider for a weak euclidean statistical mechanics� = (A(�;A); ��; !;Rd;Qdb;K d)
whereA is a C*-algebra and� a family of block spin transformations. The
corresponding subsystems with respect to a finite lattice are�n = (A(n;A); �n; !n;Rd; b�n0Zd;K dn ) � �
with !n = ! � �n. We are now interested in the problem ofdeformingthe
theory� in such a way that one obtains a new one.

We assume that the C*-algebrasA(n;A), A(�;A), are von Neumann al-
gebras, acting on separable Hilbert spacesHn, H, and the states!n =h
n; (�)
n i,! = h
; (�)
 i, are induced by a vector
n 2 Hn, 
 2 H, re-
spectively, which are cyclic and separating for the corresponding algebras. In
order to study perturbations of the state!; �, we introduce the notionaction.

Definiton 3.1 : We denote byB(!)(Z2;A0A) the set of all sectionsv :Z2 3 n 7�! vn 2 A0(n;A)
for whichvn > 0 for eachn 2Z2 and for which the state�(!;v;n), given byh �(!;v;n); a i := z�1(!;v;n)h !n;vn a i ;
is contained inS(n;A). The sectionv is calledactionandz(!;v;n) = h !n;vn i
is called thepartition functionwith respect to the triple(!;v; n).

In oder to introduce the notion effective action, we consider for eachn0 � n the normal conditional expectatione(!;n0;n) : A0(n;A) �! A0(n0;A)
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which is determined by the conditionh !n; b �(n;n0)(a) i = h !n0 ; e(!;n0;n)(b)a i
for eachb 2 A0(n;A) and for eacha 2 A(n0;A).

For a given actionv and fork 2 N2 we get a further action bye(k)(!)(v)n := e(!;n;n+k)(vn+k)
ande(k)(!)(v) is called theeffective actionwith respect tok andv. Note thate(k)(!) is a convex linear map fromB(!)(Z2;A0A) intoB(!)(Z2;A0A). To carry
through our subsequent analysis we select an appropriate class of actions inB(!)(Z2;A0A).
Definiton 3.2 : We denote by�o(!)(Z2;A0A) the linear space of sectionsf : n 7�! fn 2 A0(n;A)
for which the semi-norms[[f ]](!;n) = supk2N2ke(!;n;n+k)(fn+k)k
are finite for eachn 2 Z2. The closure with respect to the corresponding
Fréchet topology is denoted by�(!)(Z2;A0A). Furthermore, we introduce
the convex subsetA(!)(Z2;A0A) := cls[�o(!)(Z2;A0A) \B(!)(Z2;A0A)] :
Remark:

(1) Note that the norms may increase withn, i.e.[[f ]](!;n) � [[f ]](!;n1)
for n � n1.

(2) The mapse(k)(!) are continuous maps. For a fixed cut-offn 2 Z2 the

operation ofe(k)(!) corresponds to a substitution by the underlying lattice
theory on�d(n) by a lattice theory, also defined on�d(n), arising from
a lattice theory on�d(n+k) by integrating out the corresponding high
energy degrees of freedom. An actionv which is stable undere(k)(!) for

everyk 2 N2 can be interpreted as acontinuum limit. As we shall see
below, this can be justified by the fact that then the section�(!;v) is
contained inS(�;A), i.e.�(!;v;n) � �(n;n0) = �(!;v;n0) :

In order to point out the structure of the space�(!)(Z2;A0A) and the coneA(!)(Z2;A0A), we summarize some facts in the proposition below.
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Proposition 3.3 :

(i) For eachZ2-invariant state� 2 S[Ca(Z2; C )] there exists a continu-
ous linear mape(!;�) : �(!)(Z2;A0A) �! �(!)(Z2;A0A)
such that for eachk 2 N2 the following holds true:e(k)(!) � e(!;�) = e(!;�) :

(ii) For each v 2 A(!)(Z2;A0A) the state�(!;e(!;�)(v)) is contained inS(�;A).
Proof.

(i) For eachf 2 �(!)(Z2;A0A) and for eachn 2Z2 we obtain a bounded
family of operators(e(!;n;n+k)(fn+k))k2N2 in A0(n;A) since the semi-
norm [[f ]](!;n) is finite. For any bounded family(wk)k2N2 and for a
given state� 2 S[Ca(Z2; C )] we define a continuous linear map on the
pre-dual(A0(n;A))� byw� : ' 7�! h �;p[k 7! h ';wk i] i
and hencew� 2 A0(n;A). We define the mape(!;�) according toe(!;�)(f )n := e(!;n;�)(f )
wheree(!;n;�)(f ) is given bye(!;n;�)(f ) : ' 7�! h �;p[k 7! h '; e(!;n;n+k)(fn+k) i] i :
We have for eacha 2 A(n;A):h !n; e(!;n;n+k0)e(!;n+k0;�)(f )a i= h !n+k0 ; e(!;n+k0;�)(f )�(n+k0;n)(a) i= h �;p[k 7! h !n+k+k0 ; fn+k+k0�(n+k+k0;n)(a) i] i= h �;p[k 7! h !n+k; fn+k�(n+k;n)(a) i] i= h !n; e(!;n;�)(f )a i
which yieldse(!;n;n+k0)e(!;n+k0;�)(f ) = e(!;n;�)(f ) :
Finally we conclude[[e(!;�)(f )]](!;n) = supk2N2ke(!;n;n+k)e(!;n+k;�)(f )k= supk2N2ke(!;n;n+k)e(!;n+k;�)(f )k= ke(!;n;�)(f )k � [[f ]](!;n)
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which proves(i).

(ii) Let v 2 �o!(Z2;A0A) \B(!)(Z2;A0A) be an action. For eachn 2Z2
the state�(!;v;n) is reflexion positive andb�n0Zd-invariant. For eachn 2Z2 and for eacha 2 A(n;A) we compute for an actionv0 which is

stable undere(k)(!) for eachk 2 N2: e(k)(!)(v0) = v0:h !n+k;v0n+k�(n+k;n)a i = h !n; e(!;n;n+k)(v0n+k)a i= h !n;v0na i
which yields fora = 1:z(!;v0;n+k) = h !n; e(!;n;n+k)(v0n+k)a i= z(!;v0;n)
and therefore E[�0 
 �(!;v0)] = �(!;v0)
for each�0, and thus we conclude forv0 = e(!;�)(v):E[� 
 �(!;v)] = E[�0 
 �(!;e(!;�)(v))]= �(!;e(!;�)(v))
which implies�(!;e(!;�)(v)) 2 S(�;A).
Let (vi)i2I be a net in�o!(Z2;A0A) \ A (Z2;A0A) which converges tov inA(!)(Z2;A0A). For eachn 2Z2 and for eacha 2 A(n;A) the mapT(a;!;n) : f 7�! h !n; e(!;n;�)(f )a i
is a continuouslinear functional on�(!)(Z2;A0A) which follows di-
rectly from the estimatejh !n; e(!;n;�)(f )a ij � ke(!;n;�)(f )k kak� [[f ]](!;n) kak :
Therefore we haveh !n; e(!;n;�)(v)�(n;g)a i = h !n; e(!;n;�)(limi2I vi)�(n;g)a i= limi2I h !n; e(!;n;�)(vi)�(n;g)a i= limi2I h !n; e(!;n;�)(vi)a i= h !n; e(!;n;�)(v)a i
which proves theQdb-invariance of�(!;e(!;�)(v)). The reflexion positiv-
ity follows by an analogous argument.

25



�
We formulate one important consequence of the proposition above by the

following corollary:

Corollary 3.4 : For each actionv 2 A(!)(Z2;A0A) and for each continuum
limit � 2 S(�;A)[�(!;v)] the states� � �n 2 S(n;A) \ (A(n;A))�
are normal for eachn 2Z2.
Proof. For each operatora 2 A(n;A) we have for a continuum limit� =E[� 
 �(!;v)]h E[� 
 �(!;v)]; �n(a) i = h �(!;n); e(!;n;�)(v)a i
which proves the normality.�
Remark:

(1) A given actionv 2 A(!)(Z2;A0A) can be used todeformthe given
theory�, namely for eachZ2-invariant state� 2 S[Ca(Z2; C )] we
obtain a new theory�(�;v) := (A(�;Aj�); ��; �;Rd;Qdb;K d)
with � = �(!;e(!;�)(v)) and the netA(�;Aj�) is given byA(�;Aj�) : U 7�! A(�;A)(U )=J(�;�) :

(2) If A(�;A) is a factor of type III, then the theories�(�;v) and� are in-
equivalent if and only if� is not normal onA(�;A).

(3) If ! is a gaussian state, the statement of Corollary 3.4 can be regarded
as a weaken version of thelocal Fock property[13, 26]. Whereas the
local Fock property states that the restriction of the deformed state�
is normal on each local algebra, Corollary 3.4 states that one also have
to restrict to operators which correspond to a high energy momentum
cut-off.

(4) We claim here that a necessary condition forv such that the states!
and� are disjoint is that the supremesupn2Z2kvnkA0(n;A) = 1
is infinite.
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3.2 Block spin transformations: Concrete examples

LetM be a von Neumann algebra acting on a Hilbert spaceK and let
 be a
cyclic and separating vector forM . We consider the von Neumann algebraA(n;M) := O�2�d(n)f�g �M
acting on the Hilbert spaceH(n;K) := O�2�d(n)f�g �K :
The vector 
n := O�2�d(n)f�;
g
is cyclic and separating forA(n;M).

For eachn0 � n we define for each cube�0 2 �d(n0) the cube��0 � �(n;n0j�0) � �0
in �d(n) which is determined by the condition to contain the dual one cube��0 of�0 (See Figure 2). A faithful normal *-homomorphism fromA(n0;M)
intoA(n;M) is given by�(n;n0) := O�02�d(n0)�1D(n;n0j�0) 
 f�(n;n0j�0); idg�
with1D := 
�2Df�;1g for a subsetD � �d(n). Here the setD(n; n0j�0)
of hypercubes isD(n; n0j�0) := f� � �0j� 6= �(n;n0j�0)g :
The following proposition follows directly from the definitions, given above.

Proposition 3.5 : The family� = (�(n;n0))n0�n is a family of block spin
transformations.

For eachn 2Z2 we consider the normal state!n := h 
n; (�)
n i. One
easily verifies that the section! : n 7! !n satisfies the consistency condition
with respect to�, i.e. !n � �(n;n0) = !n0
and therefore! = E[� 
 !] is a state on the C*-inductive limitA(�;M),
independent of the choice of�. This yields a statistical mechanics� := (A(�;M); ��; !;Rd;Qdb;K d)
which fulfills the axiomsWEF1andWEF2.
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For each pairn0 � n there is a normal conditional expectatione(!;n0;n):= O�02�d(n0)�� O�2D(n;n0j�0)f�; h
; (�)
 ig� 
 f�(n;n0j�0); idg�
which mapsA0(n;M) intoA0(n0;M) and one easily computes forb 2 A0(n;M)
and fora 2 A(n0;M):h !n; b �(n;n0)(a) i = h !n0; e(!;n0;n)(b)a i :
3.3 Construction of invariant reflexion positive states

We are now interested in the spaceB(!)(Z2;A0M) of actions in order to per-
form deformations of the theory� which we have introduced in the previous
section.

Let a 2 M be an operator and let� 2 �d(n) be a cube, then we
write �n(�; a) for the corresponding element inA(n;M). For each face� 2 �d�1(n) there are unique cubes�0;�1 2 �d(n) such that� =�0\�1. We write:�n(�; a
 b) = �n(�0; a)�n(�1; b) for a; b 2M . Letw = (wn)n2N�M 0 
M 0 be a family of positive operators such that[wn 
 1;1
 wn] = 0
for eachn 2Z2. Then we introduce forn 2Z2 the positive operatorv[w]n := Y�2�d�1(n)�n(�; wn) 2 A0(n;M)
and we obtain a sectionv[w] 2 �(Z2;AM 0) :
Proposition 3.6 : Given a familyw = (wn)n2N� M 0 
M 0 of positive
operators such that [1
 w;w
 1] = 0 ;
then the sectionv[w] is an action contained inB(!)(Z2;A0M).
Proof. For eachn 2 Z2 it is obvious, that the state�(!;v[w];n) is b�n0Zd
invariant. Let�d�1(n; �; 0) be the subset in�d�1(n) which consists of all
faces� of cubes in�d(n; �; 0) which intersect the hyperplane�e� . We
define the sets�d�1(n; �;�) := f� 2 �d�1(n)n�d�1(n; �; 0)j� � R�e� +�e�g
andv[w]n can be decomposed as follows:v[w]n := v[w; 0]nv[w;+]nv[w;�]n
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wherev[w; `]n, ` = 0;� is given byv[w; `]n := Y�2�d�1(n;�;`)�n(�; wn) :
The operatorsv[w;�]n are contained inA(n;M 0)(�; 0)
 A(n;M 0)(�;+) and
we conclude for an operatora 2 A(n;M)(�; 0) 
 A(n;M)(�;+)v[w]n j(n;�)(a) a = v[w; 0]n j(n;�)(v[w;+]na) v[w;+]na= v[w; 0]1=2n j(n;�)(v[w;+]na) v[w;+]nav[w; 0]1=2n :
where we have used the fact thatj(n;�)(v[w;+]n) = v[w;�]n[v[w; 0]n;v[w;�]n] = 0 :
We put for` = 0;� 
(n;`) := O�2�d(n;�;`)f�;
g
and we consider the conditional expectationE(!;n;�):= h 
(n;+); (�)
(n;+) i 
 h 
(n;�); (�)
(n;�) i 
 � O�2�d(n;�;0)f�; idg� :
We compute for operatorsa� 2 A(n;B(K))(�;�) andb� 2 A(n;B(K))(�; 0):E(!;n;�)((a� 
 b�)(a+ 
 b+))= b�b+h 
(n;+); a+
(n;+) ih 
(n;�); a�
(n;�) i= b�b+E(!;n;�)(a�)E(!;n;�)(a+)= E(!;n;�)(a� 
 b�)E(!;n;�)(a+ 
 b+)
which impliesE(!;n;�)( v[w]n j(n;�)(a) a )= v[w; 0]1=2n E(!;n;�)( j(n;�)(v[w;+]na) ) E(!;n;�)(v[w;+]na) v[w; 0]1=2n= v[w; 0]1=2n E(!;n;�)( v[w;+]na )� E(!;n;�)(v[w;+]na) v[w; 0]1=2n :
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Here we have used the fact thatE(!;n;�) is invariant under the euclidean time

reflexionj(n;k). We conclude for	n := v[w; 0]1=2n 
(n;0)h �(!;n);v[w]n j(n;�)(a) a i= h 
(n;0); E(!;n;�)( v[w]n j(n;�)(a) a )
(n;0) i= h 	n;E(!;n;�)( v[w;+]na )� E(!;n;�)(v[w;+]na)	n i� 0
which proves the reflexion positivity.�
3.4 Multiplicative renormalization

The main problem which arises here is to check that the setA(!)(Z2;AM 0)
contains interesting elements. Letv 2 B(!)(Z2;AM 0) be any action. Ac-
cording to what we claim in Section 3.1, one has to deal with the follow-
ing behavior for the partition function, provided one requires thatkvk :=supn2Z2 kvnk <1: limn2Z2z(!;v;n) = 0 ;
in order to obtain a deformed theory�(�;v) which is not equivalent to the
underlying one.

Furthermore, one expects that for eachn 2Z2limk2N2e(!;n;n+k)(vn+k) = 0
which yieldse(!;�)(v) = 0. In order to get a non-trivial limit we replacev
by r!v : n 7! z�1(!;v;n)vn
This implies forr!v z(!;r!v;n) = 1
for eachn 2Z2 and therefore1 � supk2N2ke(!;n;n+k)(r!vn+k)k = [[r!v]](!;n)
provided the right hand side is finite. The semi-norms of the resulting fix-
pointse(!;�)(r!v) are bounded from below by1. The operationr! can be
regarded asmultiplicative renormalization. Therefore it is natural to call the
conditionr!v 2 A(!)(Z2;AM 0) multiplicative renormalizabilityof v.
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We first illustrate the notion multiplicative renormalization by an ultra-
local example. Letv : n 7! vn be a section of the formvn = Y�2�d(n)�n(�; wn)
with wn 2M 0 andkwnk = 1 for eachn 2Z2. Then we easily computez(!;v;n) = h 
; wn
 i�(n)e(!;n;n+k)(vn+k) = Y�2�d(n)�n+k(�; wn+k)h 
; wn+k
 i�(n+k)��(n) :
For lim suph 
; wn
 i < 1 the partition functionz(!;v;n+k) vanishes fork!1. On the other hand we havez�1(!;v;n+k)ke(!;n;n+k)(vn+k)k � h 
; wn+k
 i��(n)
with � (n) := bd(n0+n1). By choosingwn = w with h 
; w
 i = 
 < 1, for
instance, we conclude1 < [[r!v]](!;n) � 
��(n) < 1
andv is multiplicatively renormalizable. An example for a multiplicatively
non-renormalizable action can be obtained by choosing(wn)n2Z2 in such a
way thatlimnh 
; wn
 i = 0.

From the physical point of view, perturbation of! by ultra local action is
quite uninteresting since the corresponding theory in Minkowski space, pro-
vided it exists, is then nothing else but the constant field. In the subsequent,
we discuss conditions under which a non-ultra local action is multiplicatively
renormalizable.

Let h 2 C1(Z2 � [0; 1];M 0) be an operator-valued function which is
smooth in its second variable and for which[h(n; s1); h(n; s2)] = 0 for eachs1; s2 2 [0; 1] and for whichkh(n; s)k � 1. We introduce the following
numbers inR+[ f1g associated withh:I(!;n)(h) := infs1���s2dh 
; h(n; s1) � � �h(n; s2d)
 iS(!;n)(h) := sups1���s2dh 
; h(n; s1) � � �h(n; s2d)
 iR(!;n)(h) := supk2N2�S(!;n+k)(h)I(!;n+k)(h)��(n+k)S(!;n+k)(h)��(n)
and we define an action byv[h]n := Y�2�d�1(n)�n��; Z 10 ds h(n; s)
 h(n; s)�= Z Y�2�d�1(n)ds(�) O�2�d(n)��; Y�2@�h(n; s(�))� :
The proposition, given above states a sufficient condition forh such thatv[h]
can multiplicatively by renormalized.
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Proposition 3.7 : Leth 2 C1(Z2� [0; 1];M 0) be given. IfR(!;n)(h) <1
is finite for everyn, then the actionv[h] is multiplicatively renormalizable,
i.e. r!v[h] 2 A(!)(Z2;AM 0).
Proof. Computing the partition function givesz(!;v[h];n) = Z Y�2�d�1(n)ds(�) Y�2�d(n)� !; Y�2@�h(n; s(�)) �
and according to our assumption the partition functionz(!;v[h];n) satisfies
the inequalityI(!;n)(h)�(n) � z(!;v[h];n) � S(!;n)(h)�(n) :
and we computee(!;n;n+k)(v[h]n+k) = Z Y�2�d�1(n+k)ds(�) O�02�d(n)�� Y�2 D(n;n+kj�0)� !; Y�2@�h(n+ k; s(�)) �� ��0; Y�2@�(n;n+kj�0) h(n+ k; s(�))��
which implies for the normke(!;n;n+k)(v[h]n+k)k � S(!;n+k)(h)�(n+k)��(n) :
This yields z�1(!;v[h];n+k)ke(!;n;n+k)(v[h]n+k)k� I(!;n+k)(h)��(n+k)S(!;n+k)(h)�(n+k)��(n)� �S(!;n+k)(h)I(!;n+k)(h)��(n+k)S(!;n+k)(h)��(n)
and we obtain for the semi-norms the estimate[[ v[h] ]](!;n) � R(!;n)(h)
and the result follows.�
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4 Weak euclidean field theory models

As already mentioned, the previous sections are not concerned with the reg-
ularity conditionWE3. In Section 4.1 we present a procedure which, in
comparison to building the C*-inductive limit, leads to a euclidean net of
C*-algebras on which the full euclidean group acts by automorphisms. In
particular we show that the translations act norm continuously.

Section 4.2 is concerned with states which fulfill all axiomsfor weak
euclidean statistical mechanics. We show thateachsection of states� 2�(Z2;SA) can be associated with a family of weak euclidean statistical me-
chanics.

4.1 Construction of a weak euclidean net of C*-algebras

For a given C*-algebraA, we consider for eachn 2 Z2 the tensor algebraT(n;A) := T (S(Rd) 
 A(n;A)) over the linear spaceS(Rd) 
 A(n;A). For a
regionU � Rd we denote byT(n;A)(U ) the *-subalgebra inT(n;A) which is
generated by operatorsf 
a with a 2 A(n;A)(U0) andsupp(f)+U0 � U .
For eachn 2Z2 there is a group homomorphism�n 2 Hom(E(d);Aut(T(n;A)))
which is defined by�(n;g)(f 
 a) := (f � g�1)
 a :
It is obvious that the euclidean groupE(d) acts covariantly on the netT(n;A) :U 7! T(n;A)(U ).

For eachn 2Z2 we now introduce a *-homomorphism�n which mapsT(n;A) into the C*-algebra of boundedA(n;A)-valued functions onRd. The
*-homomorphism�n : T(n;A) �! Cb(Rd;A(n;A))
is given by�n(f 
 a) : x 7�! b�dn0 Xx02b�n0Zd f(x0 � x) �(n;x0)(a) :
We introduce the C*-algebraB(n;A) = cls[�n(T(n;A))] � Cb(Rd;A(n;A))
The norm onB(n;A) is denoted byk � kn. There is a natural group homomor-
phism �n 2 Hom( E(d);AutCb(Rd;A(n;A)) )
which is given by (�(n;g)a)(y) := a(g�1y)
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and the *-homomorphism�n is euclidean covariant�(n;g) ��n = �n � �(n;g) :
In particular we obtain forx 2 b�n0Zd � E(d):�(n;x)�n(f 
 a) := �n(f 
 �(n;x)a) :
Proposition 4.1 : The translationgroupRd acts norm continuouslyonB(n;A)
via�n.

Proof. It is sufficient to test the continuity on the generators�n(f 
 a).
We computek�n(f 
 a)� �(n;x)�n(f 
 a)kn= supy2Rd 



 b�dn0 Xy02b�n0Zd(f(y0 � y) � f(y0 � y � x))�(n;y0)a 



A(n;A)� b�dn0 Xy02b�n0Zd supy2Rd jf(y0 � y) � f(y0 � y � x)jkakA(n;A)
and sincef 2 S(Rd) we concludelimx!0 supy2Rd jf(y0 � y) � f(y0 � y � x)j = 0
and thereforelimx!0k�n(f 
 a)� �(n;x)�n(f 
 a)kn = 0
which proves the proposition.�

Instead of the C*-inductive limitA(�;A), we consider another C*-algebra
in order to build continuum limits. We defineB(�;A) to be the C*-subalgebra
in Ca(Z2;BA) which is generated by elements of the form�(�;n)(f 
 a) := p[k 7! �n+k(f 
 �(n+k;n)(a))] :
with a 2 A(n;A) andn 2 Z2. The notion of local algebrasB(�;A)(U ) is
obvious. We obtain a euclidean net of C*-algebras(B(�;A); �) where the net
is given by B(�;A) : U 7�! B(�;A)(U )
and the euclidean group acts onB(�;A) as follows:�gp[n 7! an] := p[n 7! �(n;g)an] :
As a consequence of Proposition 4.1 we get:

Corollary 4.2 : The pair(B(�;A); �), whereB(�;A) is the netB(�;A) : U 7�! B(�;A)(U )
is a euclidean net of C*-algebras and the translation group acts norm con-
tinuously onB(�;A).

34



4.2 On the regularity condition for continuum limits

We denote bŷS(�;A) the set of states onB(�;A) such that the triple(B(�;A); �; !)
is a weak euclidean statistical mechanics, i.e. it fulfills the axiomsWE1to
WE3, given in the introduction.

Theorem 4.3 :There is a canonical convex-linear mapF : S[Ca(Z2; C )] 
 �(Z2;SA) �! Ŝ(�;A) :
Proof. For a state� 2 S[Ca(Z2; C )] and a section� 2 �(Z2;SA) we
defineF[� 
 �] byh F[� 
 �];p[n 7! an] i := h �;p[ n 7! h �n; an(0) i ] i :
wherean is contained inCb(Rd;A(n;A)). It is obvious thatF is convex lin-
ear. In order to prove the translation invariance, we consider the correlation
functionh F[� 
 �] ; kYj=1�(�;nj)(fj 
 aj) i = � �;p� n 7! b�dn0 Xx1 ���xk2b�n0Zd� f1(x1) � � �fk(xk) h �n; �(n;x1)�(n;n1)(a1) � � ��(n;xk)�(n;nk)(ak) i� �
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Since each�n is b�n0Zd-invariant, we conclude forx 2 Qdb:� F[� 
 �] ; �x� kYj=1�(�;nj)(fj 
 aj)� �= h F[� 
 �] ; kYj=1�(�;nj)(�xfj 
 aj) i= � �;p� n 7! b�dn0 Xx1���xk2b�n0Zd f1(x1 � x) � � �fk(xk � x)� h �n; �(n;x1)�(n;n1)(a1) � � ��(n;xk)�(n;nk)(ak) i� �= � �;p� n 7! b�dn0 Xx1���xk2b�n0Zd f1(x1) � � �fk(xk)� h �n; �(n;x)[�(n;x1)�(n;n1)(a1) � � ��(n;xk)�(n;nk)(ak)] i� �= � �;p� n 7! b�dn0 Xx1���xk2b�n0Zd f1(x1) � � �fk(xk)� h �n; �(n;x1)�(n;n1)(a1) � � ��(n;xk)�(n;nk)(ak) i� �= h F[� 
 �] ; kYj=1�(�;nj)(fj 
 aj) i
which implies thatF[� 
 �] is invariant under the dense subgroupQdb. Since
the translation group acts norm continuously onB(�;A) the statesF[� 
 �]
are invariant under the full translation groupRd. In particular, the mapx 7�! h F[� 
 �]; a �x(b) c i
is continuous for everya;b; c 2 B(�;A). Hence we have provenWE1and
WE3. Let n 7! an 2 B(n;A) be a representative ofa = p[n 7! an]. Ifa is localized inR+ek + �ek , thenan(0) is contained inA(n;A)(�; 0) 
A(n;A)(�;+), for n large enough. This impliesh F[� 
 �]; jk(a) a i = h �;p[n 7! h �n; j(�;n)(an(0))an(0) i] i� 0
according to the reflexion positivity of the�ns. ThusWE2follows and the
triple (B(�;A); �;F[�
 �]) is a weak euclidean field.�
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Remark: For each section� we introduce the set of continuum limitsŜ(�;A)[�] := fF[� 
 �] j � 2 S[Ca(Z2; C )]g � Ŝ(�;A) :
The best situation is present if the block spin transformations� are arranged
in such a way that the groupQdb acts norm continuously onA(�;A). In this
case the investigation of the set of continuum limitsŜ(�;A)[�] onB(�;A) is
equivalent to the investigation of the set of continuum limitsS(�;A)[�] on the
C*-inductive limit algebraA(�;A). Since then we conclude for the correlation
function h F[� 
 �] ; kYj=1�(�;nj)(fj 
 aj) i= Z dx1 � � �dxk kYj=1 fj(xj) � E[� 
 �] ; kYj=1�(�;xj )�nj (aj) �
and in particular we obtain for a consistent section� 2 S(�;A):h F[� 
 �] ; kYj=1�(�;nj)(fj 
 aj) i= Z dx1 � � �dxk kYj=1 fj(xj) � �; kYj=1�(�;xj )�nj (aj) �
which is independent of�.
5 Conclusion and outlook

Concluding remarks: Some of the basic ideas and concepts which are
used in order to construct euclidean field theory models are generalized by
using the setup of algebraic euclidean field theory. We have introduced the
notions block spin transformations, action, and effectiveaction within a gen-
eral model independent framework.

As described in Section 3 and Section 4, in the C*-algebraic approach to
euclidean field theory the concept of continuum limits for lattice field theo-
ries arises in a very natural manner. To each section� 2 �(Z2;SA), which
is a family of lattice field theory models (these models can bechosen on
each lattice�d(n) independently from each other), there always exists the
corresponding setS(�;A)[�] of continuum limits.

Therefore, our point of view leads to a well posed problem. Inorder to
prove the existence of non-trivial (weak) euclidean field theory models, one
has to study the properties of the set of continuum limits with respect to the
properties of the corresponding section�.

Outlook: It would be desirable to study the continuum limits, which arise
from lattice models with an action (see Section 4) of the formv[h]n := Y�2�d�1(n)�n(�; w) ;
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in more detail. As already mentioned in the introduction, one of the ques-
tions, which we want to investigate, is the following:

Question: Which are sufficient conditions for the family of operatorsw =(wn)n2Z2 �M 0 
M 0 such that the set of continuum limitsS(�;A)[�]
(1) contains only characters (in case of abelian C*-algebras)?

(2) contains only ultra local states?

(3) contains at least one state which is not ultra local?

The states' 2 S(�;A)[�] are weak limit points and labeled by states� on
the corona algebraCa(Z2; C ). The states� are not explicitly given, namely
its existence is related to the Hahn-Banach extension theorem and therefore
it relies on Zorn’s lemma, however. In order to conclude properties for the
continuum limits one has to think about which type of statements one can
prove. For instance, one can use operators inA(n;M) to test properties of the
states�n like bounds of correlation functions.

In order to decide whether case(3) is valid, we propose to compute cor-
relations h c[�n+k��(n+k;n) ];�n(�1; a)
�n(�2; a) i
for an appropriate choice of the operatora > 0. Then one has to arrange
each operatorwn in such a way that the boundjh c[�n+k��(n+k;n) ];�n(�1; a)
 �n(�2; a) ij > c(n;�1;�2 ;a)
is fulfilled with a positive constantc(n;�1;�2;a) which only depends onn
the cubes(�1;�2) and the operatora. Within Appendix A, we discuss a
strategy how to deal with this problem.

In Section 4 the notion of effective action for continuum limits is dis-
cussed. Let(X;P; !o) be a measure space with�-algebraP and we con-
sider the von Neumann algebraM = L1(X;P; !o) and the states!n :=
�2�d(n)f�; !og. Let ' 2 S(�;M)[�] be a continuum limit for which the
effective actionv exists, i.e.h '; �na i = Z d!n vn a :
Thenvn is a
�2�d(n)P-measurable function.

Let X be a smooth orientable manifold, letP be the�-Borel algebra
and let!o be a volume form onX, then one can ask for a criterion for the
section� such that the effective actionv is a section of smooth functionsvn onX�d(n). Within a coordinate chart(��)�=0;��� ;p, atuo 2 X one can
perform a Taylor expansion of the effective action functional sn = � lnvn
atu(o;n) : � 7! uosn = KXk=0 1k! X(�j ;�j)�(�1;�1) � � ��(�k;�k)@(�1;�1) � � �@(�k;�k)sn(u(o;n))+ reminder
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where(�(�;�))�2�d(n);�=0;��� ;p is the coordinate chart ofX�d(n) induced
by (��)�=0;��� ;p. Thefree partv(0) of v can be defined byv(0)n = exp[�h �;An� i]
where the quadratic formAn is given byh �;An� i = 12 X(�1 ;�1);(�2;�2)�(�1;�1)�(�2;�2)@(�1;�1)@(�2 ;�2)sn(u0) :
Since the sum over the pairs(�1; �1); (�2; �2)may also contain cubes(�1;�2)
which are not next neighbors, we expect that in generalv(0) is not an action.

Nevertheless, it makes sense to study the section of gaussian states�(0),
where�(0) is a state onA(n;TuoM) andTuoM is the von Neumann algebraL1(TuoX) of Lebesgue measurable functions on the tangent spaceTuoX
atuo. If we assume thatAn is a positive quadratic form, then we obtain for
the characteristic functionalh �(0)n ; exp(�(f)) i = exp(�h f;A�1n f i) :
This implies that the continuum limits inS(�;TuoM)[�(0)] are (mixtures of)
gaussian states. We propose to compare the set of continuum limitsS(�;TuoM)[�(0)] with the set of continuum limitsS(�;M)[�] of the underlying
section� in order to decide whether there are states' 2 S(�;M)[�] which
describe a physical system with interaction phenomena.
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A Criterion for the existence of non ultra local
continuum limits

We use the following notation: We choose a von Neumann algebraM acting
on K and a cyclic and separating vector
 2 K and! is the state! :=h 
; (�)
 i. For a positive operatorw 2 M 0 
 M 0 �1;�2 2 �d(n) we
introduce a correlation functional onM 
M byh c(�1 ;�2)(!;w;n) ; a1 
 a2 i := h �(!;w;n);�n(�1; a1)�n(�2; a2) i� h �(!;w;n);�n(�1; a1) ih �(!;w;n);�n(�2; a2) i
where�(!;w;n) is the state which is given byh �(!;w;n); a i := z�1(!;w;n)� �(!;n); Y�2�d�1(n)�n(�; w) a � :

We now introduce particular classes of positive operators inM 0 
M 0.
Definiton A.1 : For a constant2 > c > 0 and cubes�1;�2 2 �d(n) and
projectionsP1; P2 2 Proj(M ) we define the setP [�1 ;�2;P1;P2](c;n) := �w 2M 0 
M 0 ����w > 0 and jh c[�1 ;�2](!;w;n); P1 
 P2 ij > c� :
Remark: For each translationg 2 b�n0Zd we obtain the identityP [g�1 ;g�2;P1 ;P2](c;n) = P [�1;�2;P1;P2](c;n) :
Furthermore, we haveP [�1 ;�2 ;P;1](c;n) = ; for each projectionP 2 Proj(M ).

One easily computes the relationh c(�1;�2)(!;w;n) ; (1� P1)
 P2 i = �h c(�1;�2)(!;w;n) ; P1 
 P2 i
and thereforeh c(�1 ;�2)(!;w;n) ; P1 
 P2 i = h c(�1 ;�2)(!;w;n) ; (1� P1)
 (1� P2) i
and we obtain the identityP [�1 ;�2;P1 ;P2](c;n) = P [�1 ;�2 ;1�P1;P2](c;n)= P [�1 ;�2 ;1�P1;P2](c;n)= P [�1 ;�2 ;1�P1;1�P2](c;n)
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By using the block spin transformation introduced in Section 3.1 we ob-
tain �(n+k;n)�n(�; P ) = �n+k(�(n+k;nj�); P )
and we may define for eachk 2 N2 the setsP [�1 ;�2;P1;P2](c;n+k;n) := P [�(n+k;nj�1) ;�(n+k;nj�2);P1 ;P2](c;n) :

According to Proposition 3.6, a sectionw : k 7�! wk 2P [�1 ;�2 ;P1;P2 ](c;n+k;n) (5)

yields an actionv[h] byv[w]n+k = Y�2�d�1(n+k)�n+k(�; wk)
and therefore a section of reflexion positive invariant states�.

Proposition A.2 : Let w be a section, given by Equation (5) and let� be
the corresponding section of reflexion positive invariant states. Then the set
of continuum limitsS(�;A)[�] contains at least one state which is not ultra
local, i.e. case (3) is valid (see Introduction).

Proof. According to the definition ofP [�1;�2 ;P1;P2 ](c;n+k;n) we obtain the boundc < jh c[�n+k��(n+k;n) ];�n(�1; P1) 
�n(�2; P2) ij :
We define the subsetX+ � Z2 to consist of alln1 2 Z2 such thatn � n1
and c < h c[�n1 ��(n1 ;n)];�n(�1; P1) 
�n(�2; P2) i
and writeX� :=Z2nX+. Then there exists a character� 2 S[Ca(X+; C )] [S[Ca(X�; C )] � S[Ca(Z2; C )]
which impliesc < jh c[E[�
�]n ];�n(�1; P1) 
�n(�2; P2) ij
and the stateE[� 
 �] is not ultra local.�

In order to prove the existence of non-ultra local continuumlimits one
has to check the assumption of the following corollary:

Corollary A.3 : If for a projectionP 2 Proj(M )nf1g and for each pair
of cubes�1;�2 2 �d(n) there exists a constantc[�1;�2; P ] 2 [2; 0) such
that P [�1 ;�2;P;P ](c[�1 ;�2;P ];n) 6= ; ;
then there exists a non ultra local state inS(�;M).
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B Multiplicatively renormalizable actions: An ex-
ample

We consider the von Neumann algebraM = L1([0; 1]) and a family of
positive functionsh 2 C1([0; 1]2)Z2. The action of the model under con-
sideration is given byv[h]n(u) := Z Y�2�d�1(n)ds(�) Y�2�d(n) Y�2@�hn(u(�); s(�))
and we introduce the functionH(�;I)(h;n) (s) := ZI du Y�2@�hn(u; s(�))
Let yn 2 C1(R) be a smooth positive function withyn(s) � 1 for eachs.
We choosehn(u; s) := exp(uyn(s)) and by settingy(n;�)(s) := X�2@� y(s(�))
we obtain:H(�;[u0;u1])(h;n) (s) = y(n;�)(s)�1[exp(u1y(n;�)(s)) � exp(u0y(n;�)(s))] :
By introducingqn := sups y(n;�)(s) andrn := infs y(n;�)(s) we con-
clude: S(!;n)(h) = q�1n (exp(qn)� 1)I(!;n)(h) = r�1n (exp(rn)� 1) :
and for eachk 2 N2 we get�S(!;n+k)(h)I(!;n+k)(h) ��(n+k)S(!;n+k)(h)��(n) = � rn+kqn+k ��(n+k)� �exp(qn+k)� 1exp(rn+k)� 1 ��(n+k)� q�(n)n+k(exp(qn+k) � 1)��(n) :

The actionv[h] is multiplicatively renornmalizable if the values ofqn
andrn can be arranged in such a way that the following holds true:

(1) There exists a constantc > 1 such thatc := limn2Z2qn = limn2Z2rn :
(2) The supremeSn := supk2N2�exp(qn+k) � 1exp(rn+k)� 1 ��(n+k)

is finite for eachn 2Z2.
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Then one easily computes1 � [[ r!v[h] ]]n � const: Snc�(n)(exp(c) � 1)��(n) :
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Renormalization theory in four-dimensional scalar fields I.
Commun. Math. Phys.100, 545-590, (1985)
Renormalization theory in four-dimensional scalar fields II.
Commun. Math. Phys.101, 247-282, (1985)

44



[11] Gallavotti, G. and Rivasseau, V.:�4 field theory in dimension 4: a modern introduction to its
unsolved problems.
Ann. Inst. Henri Poincaré40, 185-220, (1984)
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