B N - AR AR FE AR AR e A AR R AR AT RS ettt S
b J. Institute for Mathematical Physics A-1090 Wien, Austria

Constructive Aspects of
Algebraic Euclidean Field Theory

Dirk Schlingemann

Vienna, Preprint ESI 622 (1998) October 15, 1998

Supported by Federal Ministry of Science and Transport, Austria
Available via http://www.esi.ac.at



Constructive aspects of algebraic euclidean field
theory

Dirk Schlingemann
The Erwin Schrodinger International Institute
for Mathematical Physics (ESI)
Vienna

November 12, 1998

Abstract

This paper is concerned with constructive and structunaéets of eu-
clidean field theory. We present a C*-algebraic approachtitick field the-
ory. Concepts like block spin transformations, actioneetffre action, and
continuum limits are generalized and reformulated witthie €*-algebraic
setup. Our approach allows to relate to each family of lattimdels a set
of continuum limits which satisfies reflexion positivity atr@nslation in-
variance which suggests a guideline for constructing deeln field theory
models. The main purpose of the present paper is to combémoticepts of
constructive field theory with the axiomatic framework ajabraic euclidean
field theory in order to separate model independent aspextsrhodel spe-
cific properties.
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1 Introduction

To begin with, we explain why euclidean field theory is of net& when
constructive purposes are concerned. Furthermore, wéybeeplain the
basic notions which we are dealing with. In the second pathisfsection,
we give an overview of the content of this paper by illustrgtour main
concepts and ideas.

1.1 Motivation

The techniques of euclidean field theory are powerful taolsrder to con-
struct quantum field theory models. Compared to the methazhobnical
guantization in Minkowski space, which, for instance, hasrbused for the
construction ofP(¢), and Yukawa models [13, 14, 16, 25, 26], the meth-
ods of euclidean field theory simplify the construction déractive quantum
field theory models.

The existence of the; model as a Wightman theory has been estab-
lished by using euclidean methods [7, 28, 21]. In the contitae methods
of canonical quantization are much more difficult to handid &ad by no
means as far as euclidean techniques do. Only the proof giasiévity of
the energy has been carried out within the hamiltonian freonk [13, 15].

Motivated by the considerations above, a C*-algebraicivaref the
Osterwalder-Schrader reconstruction scheme has beered/ankt in [24].
The starting point of the analysis in [24] is a so cakeatlidean field Within
the present paper, we consider a particular class of eacliflelds, namely
those which are statistical mechanics. These particulelidaan fields are
called euclidean statistical mechanicsWe point out that within the sub-
sequent considerations all physical motivations and jpmégations are con-
cerned with statistical mechanical systems and not withgtentum field
theory model which can be reconstructed from it. The axiohEkwwe pro-
pose in [24] for an euclidean field theory are motivated byraal@gous point
of view as it has been used for the Haag-Kastler axioms [17].

In order to set up our language and the notions we are goingg¢pwe
briefly introduce and explain the mathematical formulatéthe concept of
statistical mechanics from a C*-algebraic point of view.

We apologize for being very formal within this part of the geat section,
but one aspect of our basic philosophy is to realize the ghysiotions and
concept, we are dealing with, in terms of clear mathematib@cts.

In order to describe a statistical mechanics, we considefalgebrall
where the self adjoint elements describe observationteckla the system
under considerations. Each observable catobalizedwithin open regions
7% of a topological spac&’. This region is related to particul@roperties
of the corresponding quantity which can be measured in aiceexperi-
ment. For instance, one may think of a stochastic processrenbserva-
tions (events) can be localized within a time intervat R 4, i.e. in this case
the topological spac& = Ik is simply the set of positive real numbers.

As a mathematical realization of the notistiatistical mechanigave pro-
pose the following list of axioms:



SM1: Let.# be a collection of open sets ii. The first ingredient of a
statistical mechanics is a net of C*-subalgelffas

U: X 5% — WU)CA
which is inclusion preserving, i.e.
U Ct = Ww)cCMw) .

A regionZ € ¢ can be regarded as a setpybpertieswhich the observ-
ables in2((%/) have in common.

SM2: In order to describe the dynamics and symmetries of the isyste
consider a groujg+, which acts continuously o', and a group homomor-
phism

vy € Hom(G, Aut2l)

from ¢ into the automorphism group &f. We require thaty acts partially
covariantly, i.e.

Y W%) = Ug¥)
foreach(y, %) € G x & with g% € ¢ .

SM3: In addition to that, if fore/, %, € ¢ the setZ is a proper subset
of X'\%, then the algebra®(7/) and®((%/) are statistically independent
(see [23]). Roughly speaking, two observations which havpnoperties in
common do not disturb each other.

SM4: Finally, we consider a state is a state on the C*-algebg which
is G-invariant, i.e.w o v4, = w for eachy € G. The states describes a basic
distribution of events and the set of physically admissiitéges of the system
under consideration is the norm closed convex H&jll of the set of states

{wwm—)% vEQl:(w,v*v>7é0}
which is called thefolium generated by. It is required that the GNS-
representation ofv is faithful which is a sensible condition since, if the
GNS-representation,, is not faithful, then the ided}, = =_'(0) is irrel-
evant when physical aspects are concerned. Without chguigenphysical
content of the system under consideration we can replacaldgiebra?l by
the quotient C*-algebral/J,,.

The tupleA = (2, v,w, X, G, ) which fulfills the axiomsSM1- SM4
is called astatistical mechanicslf 21 is an abelian C*-algebra, then we call
A aclassical statistical mechanics

For later purpose, it is convenient to introduce the notiba subsystem
of a statistical mechanics. A statistical mechanics

Al - (glapylawlaXlaGlaL%/l)

is called asubsystem aof (A; < A) if the following conditions are fulfilled:
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SU1: TheinclusionsX; C X, Gy C G, and#; C ¢ are valid, i.e. if
one restricts ones considerations to a subsystem, therythmetry of the
underlying system can be broken.

SU2: The dynamics of a subsystem has to be compatible with thenadyna
ics of the underlying theory. There exists a C*-subalgeBraC 2 and a
surjective *-homomorphism : B — 2[; and for eacly € &, and for each
Z € . the following relations hold true:

79(53) = B
Yigop = pogls

p () C )

SU3: Each state of the subsystem which is physically admiss#hleuld
be related to a state of the underlying theory. Hence onenejthat for
each stateo; € .Z,,, there exists a state € .#,, such that

prop = ¢l .

Two statistical mechanics, A; areequivalenif A, is a subsystem of and
vice versa.

In general, the *-homomorphism is not faithful, which can be inter-
preted in physical terms: Relations between observablgsmihe subsys-
tem are tested by states .iA,,,. Within the underlying theory a larger set
of states.Z, can be prepared and therefore relations between obsesyable
which hold for the subsystem, can be violated within the ulyttey one.

Itis clear that to each localizing regid € ¢ we can assign a subsys-
tem in a natural manner, namely

A= Ay V) wlaa), % GU), # (%)) < A

where(G(% ) C G is the stabilizer subgroup &% and.# (%) contains all
sets?%, € ¥ with?/, C % .

We are now prepared to introduce the notion of euclidearsstz me-
chanics. Let# @ be the set of open bounded convex subset& bf A eu-
clidean statistical mechanids a statistical mechanics

(ﬂa a, W, Rda E(d)’ ‘%/d)

where the state fulfills the axioms:

E1l: The statev is euclidean invariant, i.ev o o« = w.



E2: The statev is reflexion positive: Let € S%~! be an euclidean time-
direction and let:. be the hyper-plane which is orthogonaldo The eu-
clidean time reflexiord, : R¢ — R4 is the reflexion

r— . (r) = x—2(€-z)e

wherey - z is the canonical scalar productlitf’. We consider the anti-linear
involution

Je = g 0" € Autd
and we require that
(w,jela)a) > 0

foreacha € A(R e + X.).

E3: The statev fulfills a regularity condition, namely for each b, c € 2
the map

g — {(w,aayg(b)e)

is continuous.

By considering euclidean statistical mechanics, the pig@M2is then
calledeuclidean covariancand the statistical independenceiii 3is called
locality [24].

The problem of constructing non-trivial examples whichfifuthe ax-
ioms E1-E3 is rather difficult to handle. Up to now, the known examples
for euclidean field theory models which amet related to free field theory
models are examples ih< 4 space-time dimensions. The question whether
there are interesting modelsdn> 4 dimensions is still open.

One possible procedure, which is often used within the fraonk of
constructive field theory, is to start from a family of lattifield theory mod-
els which can be regarded as statistical mechanics in osedsee [9] and
references given there). As a tool to control the continuinnit| block spin
transformations are used to relate models, which belongdiven lattice,
with models on a finer lattices. This method has been appdieddlar field
theories [12] as well as to the treatment of gauge theoriggdRinstance.
But even if a suitable continuum limit exists in the sensefl)2, 2], then
this does not imply that the axion-E3 are fulfilled. Since one works here
with cubic lattices, it is extremely difficult to prove thetadion invariance
of the model which is indeed a crucial property for passitgrfia euclidean
field theory to a quantum field theory in Minkowski space. Oreeridea,
which works at least i@ = 2 dimensions and which makes use of the facts
developed in [2], is presented in [18]. We also refer the eedd [9] where
this problem is also mentioned.

Within this paper we also work with cubic lattices and theljpeon of
rotation invariance is discussed within a forthcoming pa@®ncerned with
this simplification, we study statistical mechanics

A = (ﬂaaawaRdana%d) ’
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with Q¢ := U,b="Z% b € N, i.e. the nefl is translationally covariant with
respect to a dense subgrolyj C ¢ of rational translations. The axioms
E1-E3for the states are also substituted by weaker properifég -WE3

WEL: The statev is translationally invariant, i.ev o o = w.

WE2: The statev is reflexion positive with respect to the directiong
whereey, is the unit vector with componentsy ); = dy;.

WE3: The statev fulfills a regularity condition, namely for each b, c €
20 the map

Q539 > (w,ang(b)c)

is continuous.

We call the tuple\ aweak euclidean statistical mechanitst satisfies
the axiomsWEXLWE3and the pair(2l, «) is called aweak euclidean net of
C*-algebras

We expect that the axioms for a weak euclidean statisticahar@cs are
not sufficient to construct a Haag-Kastler net within a vawwapresentation
from these data. Nevertheless, a weak euclidean statistezzhanics can be
treated as a physical system by its own right.

1.2 Overview

After we have introduced the general concepts and notatiotie previous
section, we outline here the basic ideas and concepts whicHeseloped
within this paper in a concrete manner.

We consider the lattice of the discretized toFugn) = b=""Z%/pm 74
whereb € Nis odd andn = (n”, n') € Z? is a pair of integer numbers.
The corresponding sets gfcubes are denoted By, (n), ¢ < d. The set
of g-cubes of the dual lattice is denoted B§(») and we use the symbel
for the isomorphism which mags;_ (n) ontoX,(n) and vice versa. We
introduce a partial ordering dA% We writen < n; forn/ < nf,j =0, 1.

For a given lattice, we build the C*-algebra of bounded amntius func-
tions?

Q[(n,]R) = %b(REd(n)) .

The algebral,, x) contains subalgebra%,, (% ) which are related to an
open convex setg/ C [—b”l,bnl]d in euclidean space, namely a func-
tion a € A, x) is localized inZ if it only depends upon the variables

u(A), $(A) C %, wheres is an appropriate chart from the toriag/p"' 7.4
into R4,

'For a C*-algebrad we write A, x1a)) = A(n,4) ‘= Qaen, 1A} X A whereX[A] denotes
the spectrum ofd.



Figure 1: The bold as well as the bold dashed lines are iniikhtiLet;, = 1 be
the vertical direction, then operators which are localize® ;e; 4 3., depend on
grey and light grey shaded cubes. The reflexign) maps the grey shaded region
onto the unshaded one and the light grey shéded zerolayer is stable under

](n,l)'

As an example for a lattice field theory model we considertickagction
functional of the form

s () = Xo(n) D xdxu(l)

FEEd_l(n)

+ Y D mua)* (1)

AEEd(n) =1

which induces a statg ) on2l, k) by defining

(Nany,a) = z(_Alyn)/du exp(—s(x,n)(u)) a(u)

where the partition function, ) is for normalization. In order to formulate
the important properties of the statgs .y, we look at particular automor-

phisms orl(,, k). The groupb—""Z< acts on the set of cub&s,(n) in a

natural manner and for eagh € b=""Z¢ we introduce an automorphism
Bin,g) ONU(, &) DY the prescription

ﬁ(nyg)a(u) = aluog) .

Moreover, the euclidean time reflexiofts = 0., © = 1---d, also act on
X4(n) and we define anti-automorphiss

Jmwa(u) = aluob,) .

It can be proven that the statgs, ) are invariant under the automorphisms
B(n,g) @nd that they are reflexion positive, i.e.

<77(>\,n)aj(n,u)(a)a> > 0

for each operatos which is localized inR e, + ¥ . Figure 1 illustrates
the situation forl = 2 dimensions.



Let 24 be the collection of all open convex setsinp™ 5" 17 and let
J(n,n) be the kernel of the GNS-representatiompf The prescription
Ui k) A DU — U ppo)(%) = Ui 1)(%)[Inm)
yields a concrete example for a classical statistical m@ckanamely the
tuple
An = (ﬂ(nyﬂﬂn)aﬁnannaﬂgda b_nozd"%/nd) .

In the subsequent, we call, alattice field theonyif the staten,, is b="74
invariant and reflexion positive.

Continuum limits for lattice field theories:As already mentioned, in or-
der to control the continuum limit of lattice field theory nedg the concept of
block spin transformations turned out to be a useful toot.d&eview of the
basic ideas, we refer the reader to [9] and references ghene.t We refor-
mulate the basic concepts of block spin transformations facC*-algebraic
point of view. Each configuration € R¥«(*+) [ c ? can be identi-
fied with a configuration,, ,,+1)u € R¥(") by an averaging procedure.
Usually, the averaging man., »++) is defined by the block average

(Pnnrmym) (Do) = 57 37 w(A) )

ACAg

A simplified version of a block spin transformation can byaibed by setting

(P i)W (Do) = w(Apn ntkiag) (3)

whereA, ,4x|a,) IS the unique cube contained ik, which contains the
pointxAg in the dual lattice (See Figure 2 for illustration).

B AR

ENEETEENE

]

Figure 2: The left figure illustrates the block average, gilg Equation (2), the
right figure illustrates the block spin transformation, yivby Equation (3). The
bold lines belong to the coarser lattice, and the averagekisnt over the grey
shaded cubes, respectively.

The block spin transformations can be used to identify dpesan?l,, k)
with operators iffl,, ; x k), namely

Ln+k,n)d = QAOPnntk)



defines a faithful *-homomorphism forf,, ) into 2, ;x ). In contrary
to the common literature, we distinguish here betwbkatk spintransfor-
mations andenormalization grougransformations. One important feature
of block spin transformations is that localizing regions @reserved, i.e.
Untk ) A &) (%) C Antr k) (% ). Hence there is no scaling involved as
block spin transformations are concerned. On the other ,hamdbrmaliza-
tion group transformations identify operators which arealized in% with
operators, localized in a scaled regid® . An overview of the basic ideas
of renormalization group transformations applied to cargtve field theory
can be found in [12, 3] and references given there. The geoenzept of
renormalization group transformations from an axiomatdnp of view is
presented in [5, 4] and related work.

By looking at algebraic properties, in Section 2.2 the gaheoncept of
block spin transformation is introduced within the C*-dbgaic setting. As
we shall describe in Section 2.3, by performing the C*-irtdkeclimit, one
constructs from a given family of block spin transformaBor= (¢, 1) )na<n
and from the lattice algebra¥,, xy a C*-algebrall, ry which can be re-
garded as the C*-algebra for the continuum model. One obtainet of
C*-algebras

Q[(L,]R) U — Q[(LV]R)(%)

on which the dense subgroip? = U,cxb~"Z* C R? acts covariantly
by automorphismg’, ;) and thus this yields a weak euclidean net of C*-
algebrag®, x), 4,).

One aim of this paper is to analyze the spacé@finvariant and reflex-
ion positive state$>(, x) on 2, x). The application of block spin transfor-
mations to states leads to a net of invariant reflexion peaséiates

(Mg © L(n+k,n))keN2
on&l,, r) Which has, according to compactness arguments, weak laimitq
We denote this weak limit points by, := E[§ @ ],, where¢ labels a limit
point, more precisely¢ is a measure on the spaéé\Z?, whereZ? is the
spectrum of the C*-algebra of bounded functionsZh The consistency
condition

Prn+k ©l(ntkn) = $n
is fulfilled and hence there is a unique state &, ) on the C*-inductive
limit 24, ) such that

QD O ip = gpn

where:,, is the embedding ol (,, k) into 2, ). For a given family of lattice
field theory models

(ﬂ(n,ﬂﬂn)a Bna ns Rda b=" Zda L%/nd)nEZQ

we symbolize the corresponding set @dntinuum limitsby &, r)[n] C
&(,r). Each continuum limito € &, g)[n] gives rise to a classical sta-
tistical mechanics

A= (ﬂ(b,]RW)aﬁu%Rd’an L%/d)
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where the negl, |, is given by
Aoy 2 W w)( )/ Ie)

andj, ) is the kernel of the GNS-representation.of

The self adjoint operators iR, x|,y correspond to observations with
respect to the full energy momentum range. By set#ing= ¢ o ¢,, €ach
lattice field theory

A” = (ﬂ(n,]th)aﬁnagpna]Rda b_nDZda L%/nd)

is a proper subsystem éf which corresponds to observations within the en-
ergy momentum rang@é="", 5""] and we regard,, as aneffective theorjn
which observations within the energy momentum rajige=—"'] U [o"*, o0)

are not admissible. Th@g’ covariance of the effective theory is broken and
only theb—""Z? covariance remains.

At this point, we have to emphasize that our consideratiessrially
rely on the C*-algebraic point of view. The advantage in cangon to
non-C*-based approaches (see for example [9]) is that wayawget con-
tinuum limits no matter how our input data= (7, ),cz> are chosen. In
particular, by looking at the familyx = (1(x,n))nez> Of scalar field the-
ory models, given by Equation (1), we get continuum limits &obitrary
couplings(A;(n))nez2, { = 0--- L. Even in case of a perturbatively non-
renormalizable model, it makes sense to study the set ofrzamn limits.

On the other hand, the fact that there are weak limit poinmisisufficient
for concluding the existence of interesting models. Tremesfthe problem
which occur here is to get detailed information about theestan &, )[n].

At this point, we introduce a rough classification of fanslief states by
considering the possible limit points of a given family

(1) For a given family; every limit pointin&, x)[n] is a character which
is the most trivial case.

(2) There is another uninteresting case, namely each state, i)[n] is
ultra local, i.e. each state € &, x)[n] has no correlation for two
operatorsz; € U, gy(%;), j = 1,2, which are localized in disjoint
regions?, N % = 0:

(pyaraz) = (p1,a1 )(p2,a2)

for suitable stateg; on %A, xy(%;), j = 1,2. This implies that, if
the corresponding theory in Minkowski space exists, thénthie con-
stant field. The notion of ultra local (scalar) fields is expéal in [19].
In particular an application of the measures, construatdd]i to eu-
clidean field theory leads to ultra local models.

(3) There exists a limit poinp € &, &)[»] which is not ultralocal.

By looking at our example of scalar fields, the c&3gcan be subdivided
into two further cases:

(3.1) Letp € &, r)[n] be anon-ultra local state, then it is equivalent to a
gaussian state.
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(3.2) There exists a limit poing € &, x)[n] which is not ultra local and
which is not equivalent to a gaussian state.

We have to mention at this point that for many examples ¢Bsean be
excluded. One now asks the following question:

Question: Can we decide, by studying the family of statgesvhether the
case(3) is valid or not?

In order to show the existence of statesdi, ), which are not ultra
local, we propose the following strategy: For a cubec X;(n) and for an
operator € % (IR) we define the functio®, (A, a) by

D, (A a)(u) = a(u(d)) .

Let Ay, Ay € X4(n) be two disjoint cubes\; N A, = §J. Find a continuous
bounded positive functioh € %, (IR ) and a family of stateg such that there
exists a constants, , ., A >0 with

C?;L,h,AlyAQ) > K Cl0ntk O (i, m) 1 Pn (A1, h) @ Pn(Az, b))l

> Cluh,ALLAy)

for largek. Here we define for any stateits correlation by
<c[w]aa®b> = <waab>_<w’a><w’b>'

Since the bound is uniform ik, there exists a state € &, k)[n] such that
the correlation ofp,, = ¢ o ¢, fulfills the bounds

C?;L,h,Al,AQ) > (e, Pn(Ar,h) @ @n(Az,h) )|

> Cluh,ALLAy)
which implies thaty is not ultra local. From the invariance properties of
v, We conclude that this bound holds for each pair of cubes wbéchbe
obtained by applying a transformatigne b=""7Z%to (A1, As). Hence the
constant, a, a,) only depends on the orbit ¢f\;, A») under the action

of b=""Z4. Letd(A;, Ay) be the distance of the cubgs;, A,) and let us

assume that the upper bourfg hALAS) has the form

- d(Ay, As)
CEl;LvthlvA2) - [\(n,h) P <_ E(n;h)

with two constants<(,, ), {(n, h), then the constarf{n, #) plays the role of

the correlation length. A proposal how to tackle the probtErestimating
correlations is given in Appendix A.
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Action, effective action, and continuum limitSte assume now that
somebody has already constructed a weak euclidean statistechanics

A= (ﬂ(b,]lﬁw)aﬁbawakda(@ga L%/d) .

Then it is natural to ask whether one can construct new tesaut ofA
by a suitable deformation procedure. Remember #hat ., denotes the
C*-algebra

Ao klw) = Aer)/ 0w

wherej, . is the kernel of the GNS-representationwofe &, xy. The
basic idea is to perturb each of the subsystems

A” = (ﬂ(n,ﬂMw)aﬁnawnaRda b_nDZd, c%/nd)

separately, by replacing each of the statgsby appropriate stateg, €
Z., . If we assume thaﬂ;ﬁf) = Dntk © L(ntk,n) IS CONtained inZ,, for
eachk € N?, then we obtain for each € Z? and for eacht € N? a
subsystem

AF) = (2

n —(n,

]RMSLIC))’BH’nﬁLk)’Rda b™" Zda‘%/nd) =< An .

which is, in particular, a subsystem &f There are also examples for which
the theoriesA ) = A, are equivalent for each. Formally, the relation

S may be no longer valid in the continuum linkitn — oo. More
precisely, for a continuum limip € &, )[n] the corresponding theory

A(W) = (ﬂ(nyﬂglw),ﬁ“@,kd,(@g, L%/d)

is, howevernot equivalento the theory where we have started from.

But one may ask whether the subsyst&fsﬁ), which corresponds to the
energy momentum rangé="",5""], is a subsystem of,,. This question
is related to the existence of an effective action [12]. Tta¢ess, under
consideration are of the form

() = [ o) vo) a(w)

and we call the family of functions = (v,,), ¢z= anaction

Our notion of action is slightly different to the one whicheonsually
finds in the literature where in comparison the negative idiga — In v,
is usually called the action. In order to distinguish theséians we call
—Inv, theaction functionalwith respect ta:. For example, choose,, to
be the gaussian part ang, to be the interaction part (see [3]). Within our
analysis, we also consider examples whegds an ultra local state and,
contains the next neighbor coupling.

From a given actiorv, we obtain a new family of functions by

el Vntu) 3= [ e () ey ) Vo (1)
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where the kernek,, ,, 4+x)(u, u') is determined by the condition

/dwn(u) dw<n+k)(ul) K nntn) (0, u') a(u')

= [ty )

We callegi)) (v) theeffective actiomwith respect to the action. For a fixed

cut-offn € Z? the operation oégi)) corresponds to a substitution by the un-
derlying lattice theory ort,(n) by a lattice theory, also defined ay(n),
arising from a lattice theory oB,(n + k) by integrating out the correspond-
ing high energy degrees of freedom (See [12]).

In Section 3, we discuss in a more general context condifmms under
which there exists a family of measurable functietis= (v/,),cz2 (v), is
wp-measurable) such that

(ornla)) = il [ denlu) Vi) alu) (@)

holds for a continuum limifp € &, k)[5]. In this caseAﬁf) is a subsystem
of A,, since the foliumZ,, is contained inZ,,, .

In Section 3.4 we formulate a sufficient conditianltiplicative renor-
malizability) for an actionv which allows to construct a new actieri from
v such thatv’ satisfies the fix point equati f)) (v') = v’ and therefore
Equation (4) (Proposition 3.7). We have to emphasize hetdhhaxistence
of v/ does not exclude the caé®) of ultra locality. In order to conclude that
one deals with an interesting model one has to stddy more detail.

To illustrate the notiomultiplicative renormalizabilityan ultra local ex-
ample for a multiplicatively renormalizable action is ajs@sented in Sec-
tion 3.4 and Appendix B deals with a larger class of examples.

A large variety of lattice models:The C*-algebraic point of view sug-
gests to study a large class of lattice field theories amorighithere are ex-
amples which are rather different from the usual latticedfibleory models,
like P(¢)4 for instance. To some extend they can be regarded as gemeerali
spin models.

The abelian C*-algebré;, (R ), which we have used for illustration in the
previous paragraphs, can easily be replaced by any C*-edgeim particular
by as-finite von Neumann algebré@ acting on a Hilbert spac&’. As usual,
we denote byl/’ the commutant ofi/, i.e. the set of bounded operators on
K which commute with all operators i#/ .

As input data for the construction of lattice models we cleoos

(1) avon Neumann algebr#@ , acting on a Hilbert spac&’, and a vector
2, which is cyclic and separating far,

(2) afamily of positive operatorer € (M’ ® M’)Z2 such that
W, ®1,10w,] =0

for eachn € Z°.
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Figure 3: The left figure illustrates the operatbf (A, a) whereA is the shaded
cube. The figure on the rightillustrates operatg!', w), w = >, a; @ b; which
couple nexted neighbor cubes. Héres the face which the gray shaded cubes have
in common.

The algebra&l(,, 1) = @ aex,m)1A} x M is simply the von Neumann
tensor product ofi/ over ¥;(n) and the vectof2,, := @aex, )14, 2} is
cyclic and separating foll(,, 4r). For a cubeA € X¥;(n) and an operator
a € M we denote by, (A, ) operator irl, 7y which is a tensor product
of operators inM/ where atA the factora appears and the unit else (See
Figure 3). For a hypercullé € £,4_; (n) there are two unique cubes;, A
such thatA, N A; = T and we putd, (T',a @ b) := &, (A, )P, (A1, b).
We introduce a statg, on®,, ) by

(Mn,a) = z(_ﬂlnw)< Q,, H @H(F,wn)a9n>
Fexy_1(n)

where the partition functionq, ,, w) is for normalization. If the vector

\Ij(ﬂ,n,w) = H (I)n(r’wn)l/an
FexXy_1(n)

is cyclic and separating fo,, 4 for eachn € Z?, thenn, is faithful and
we obtain for eachn € Z? a lattice field theory model

An = By, B, BT ZE 1)

For eachn € N, we consider the state, = ( Q,,(-)Q, ) and by an
appropriate choice of block spin transformatiartee consistency condition
Wntk ©l(ntk,n) = wn IS fulfilled and we obtain the corresponding continuum
model

(ﬂ(LVM)aﬁbawaRdana%d) .

The statey, is a perturbation of,, where the action is given by

Each of the operatoiB,, (T', w,, ) induces a coupling of the two next neighbor
cubes which have the fadein common (See Figure 3). ¥, is of the form
w, = h, ®h,, the cubes are decoupled and the resulting theory is ulted.loc
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The simplest non-trivial choice fox,, is 1 + h,, @ h,, for instance. More
general, one can choosein the following manner: Put

W, = /01 h,, (s) @ hy, (s)

whereh,, € €~ ([0, 1], M) is a smooth function with,, (s) > 0 and
[h(s1),h(s2)] = 0. If h,(s) = h, is constant, then we would end up with an
ultra local theory. Therefore we have to require that thésdéve ofh,, does
not vanish. For this kind of examples, the effective ackhéﬁ) (v) can be
computed quite explicitly and our hope is that the corresiiogncontinuum
limits could be easier controlled than the continuum linfids P(¢)4-like
models, for instance.

There is a further nice feature of models which corresponsuith ac-
tions likev. Particular correlation functions can be interpreted imie of
correlation functions of a different, some kind of dualfilz field theory.
In order to explain this, we introduce for a cube € ;(n) and for each
s € [0,1]%+-1(?) a normal state o/ :

(B aya) = [Zgi?,nm)]_1< QT Bals(m)as >
I'eaA
wherez, »a)(s) is for normalization. This yields a statg,, ) on the

algebraﬁl(ny[oyl]) = %([0,1]%+-1(")) such that for operatoréu;);—1. x,
a; € M, the correlation functions fulfill the relation

<nn,ﬁ<1>n<Aj,aj> > = /dms) ﬁ< E() a0 @) -

j=1 j=1

The state) ) is given by
Gy = oty [ T1 dstt)vats) ato)

andv,, is given by

AEEd(n)

Indeed, particular correlation functions of the model, efhis given by the
actionv, can be expressed in terms of correlation functions of ecathodel
which is given by the actiosr and whose corresponding field configurations
are functions from the faces of cubes into the intefall]. Hence some
properties of the non-commutative lattice field theory nisde, can be in-
vestigated by studying commutative lattice models. Thisfpaf view may

be helpful in order to construct non-ultra local models.

On the regularity condition WE3: However, the above discussion is not
concerned with the the regularity conditigE3 By using a slightly differ-
ent construction for the continuum C*-algebras we show iatia 4 how
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from a given family of invariant and reflexion positive s&ite= (7, )nen
continuum limits can be constructed which fulfill all the amxis of a weak
euclidean statistical mechanics.

Conclusion and outlook: We close our paper by the Sectio@nclusion
and outlook

2 Continuum limits for lattice field theory mod-
els

Within this section we develop a conceptaintinuum limitwhich can be
applied to a large class of lattice field theory models. IntiSac2.1, we
introduce notation and conventions which we are going to use

A general and model independent notion of block spin tramsétions
is given in Section 2.2. Although the construction of C*-irative limits is
standard and can be found in many text books, we present mwafthis
procedure in Section 2.3. One reason is to keep the papelf asisined as
possible. Furthermore, the notations and definitions whietintroduce in
Section 2.3, are used later to perform a procedure whichightyy different
from taking the C*-inductive limit of a net of C*-algebras.

Finally, we present in Section 2.4 a general concept forinaoin limits
of lattice models.

2.1 Notation and conventions

We consider a C*-algebra and for a given cutoff: € Z? we introduce the
C*-algebra

Uy = Q) {A}xA.
AEEd(n)
To each subse¥ C [—b"t,b"1]¢ a subalgebra
W ) (%) = ) {ArxA4
AES (n, %)

can be assigned in a natural manner. Thé&s¢h, /) is defined as follows:
We identify the seEg(n) := b=""Z4n[—b"", b"']¢ with a subset of the torus
So(n). Theg-cubesT)(n) in b=""Z¢ N [—-b"",b"']? can also be identified
with ¢-cubes inZ,(n). The sett;(n, %) consists of all cubea in X9 (n)
withA C Z.

The grouph=""Z4 ¢ E(d) acts by automorphisms covariantly on the
algebral,, (A). In other words, there exists a group homomorphism

Bn € Hom(b_"DZ,Ath[(nyA))
such that for each € b=""7 the equation

Bing)Rn,a)(%) = Un,a)(9%)
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holds. The automorphisp,, , is simply given by
foo| @ B} = Q@ (Aaa)
A€Xa(n) AES4(n)

There is one important automorphism which corresponds ¢oeticlidean
time reflexion.

o Ou(z) = x—2(e,-x)e,

wherey - z is the canonical scalar product r? ande, € R? is the unit
vector with componentée,,),, = 4,,.. Foreachy = 1,---,d we consider
the anti-linear involution

Iy + Wn,a) — An,a)
which is given by
j(w)[ @ {A,a(A)}] = @ (A a(6,A)) .
AES, (n) AeX,(n)

Sincebd is odd, the set ofl-cubes can be decomposed into a union of three
disjoint set

Ed(n) = Ed(naﬂao)uxd(naﬂa"i')UEd(naﬂa_)

whereX4(n, 1, 0) is a layer o, -invariantd-cubes an@,(n, 4, +) is mapped
ontoX.(n, u, —) viad,. Therefore, operators of the form

a = ) {Aa(6,0)}

A€Tq(n,u,0)

with a(A)* = a(A) arej, . -invariant. The algebral, 4) can be written
as atensor product

Q[(H,A) = Q[(H,A)(/'La 0) ® Q[(n,A)(/'La +) ® Q[(n,A)(/'La _)
wherel,, 4)(x,0) is stable undey,, .,y and2, 4)(x, +) is mapped onto
Un,a) (1, —) Vidjn, ) (see Figure 2).

2.2 Block spin transformations: The general setup

In our context, block spin identify operators #y,, 4y with operators con-
tained in a algebral,,, 4) which corresponds to a finer lattice, i®.< n;.
Let us state a list of axioms which characterizes the notioblack spin
transformations.

Definiton 2.1 : A family of *-homomorphisms
L = {L(nl,nu) € HOHl(Q[(nD’A),Q[(nhA)Hno < 77,1}
is called a family ofblock spin transformations it fulfills the following

conditions:
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(1) Cosheaf condition: For eachy < n; < ns:
tnana) ©tnine) = Hnamne) -
(2) Locality: For eachny < ny and for each?z C [—b"0, bro]?:
Unyng)Rno ) (%) C Uny a) (%) .

(3) Translation covariance: Let;, 24 C [—b”é,bné]d such thatzg U
g% C 2, forsomeg € b="074 C h=ni74;

L) Bnag)@ = Blni,g)tinine@

foreacha € 2, 4)(%).

2.3 C*-inductive limits revisited

For a given family of block spin transformationswe construct the C*-
inductive limit 2L, 4) of the netn — 4, 4). In order to carry through
our subsequent analysis, we briefly describe the consruofi2l, 4).

Step |. Let%,(Z2 24) be the C*-algebra which is generated by bounded
sections in the bundigl 4 : n — 2, 4). We consider the closed two-sided
ideal%,(Z%, 2A4) in 6, (Z2,A.4), which is generated by sectioas n — a,,

for which the limitlim,,_, . ||a,|| = 0 vanishes. We build the quotient C*-
algebra

%a(ZZ,Q[A) = %b(Zz,Q[A)/%(Zz,QLA) .

In the following,p denotes the corresponding canonical projection onto the
guotient.

Step Il. For a given family of block spin transformationswe denote by
AL 4 the C*-subalgebra if¢},(Z2,24) which is generated by sections:
n — a, for which there exists, € Z? and there exists, ¢ 2 (n,,4) SUCh
that

An = l(n ng)@0
for eachny < n. The C*-inductive limit of the paif:, A) now is given by
A4 = pAY &) C Gu(Z%2Aa) .

For eachn € Z? we obtain a *-homomorphism, : 2An,4) — AU, 4) Which
identifies?,, 4) with a subalgebraifl, 4). Itis given by the prescription

tn@ = PN = l(n, n)a]

where the sectiom, = [n; — L(m’n)a] is any representative such that
ao(n1) = t(n,nya for eachn < ny. Itis obvious that the relation, o
U(n,ng) = tn, holds forng < n.
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The C*-algebral, 4, can be regarded as the continuum C*-algebra and
it contains observables which correspond to observatibtiseafull energy
momentum range, whereas The C*-subalgebyé&,,, 4)) contain only ob-
servables which correspond to observations for the enemgyentum range
="', 6m"].

We consider the dense subgroGyy := U,b-"Z% of the translation
grouplR<. There exists a group homomorphism

B, € Hom(Qg, Autl, 4))
which acts covariantly o, 4). Forg € Q¢ we define
B(L,g)p[n — L(n,ng)a] = P[n — 6(n,g)L(n,nD)a]

with g € b='Z% andn® > I. Let2, 4)(% ) be the C*-subalgebra which is
generated by local operators in[2,, 4)(% )] for somen & Z?. Then we
conclude from the construction of:

BB (#) = Aua)(9%)
Thus the prescription

ﬂ(L,A) CU — Q[(L,A)(%)

is a (weak) euclidean net of C*-algebras which is transtetily covariant
with respect to the group{.

2.4 On a general concept for continuum limits for lattice
models

For each cutoffn € Z* we select a class of appropriate states2Qp 4).
We denote by, 4) the set of all stateg € &(%,, 4)) which satisfy the
assumptions:

Invariance: For eachy € b=""Z:
no 6(71,9) = n.
Reflexion positivity: The sesqui-linear form

a®@b — < naj(n,u)(a)b >

is positive semi-definite oR(,, 4)(u,+) foreachy =1, .- d.

There are also anti-linear involutiong ,) acting on the C*-inductive
limit 24, 4) according to the prescription:

JewPn = tnngal = P v ng)dnowal
= p[n Hj(n,u)L(n,nD)a] .
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Analogously to the definition, given above, we introducespaceS, 4, of
Qg-invariant and reflexion positive functionals 81, 4.
LetI'(Z? & 4) be the convex set of sections

n:Z”3n — nn € Sy ay

We identify&, 4) with the corresponding subsetii{Z?, & 4) by identify-
ingw € &, 4): with the section

Win — Wy :=WOolty, .

For simplicity, we do not distinguish the state€ &, 1) and the corre-
sponding section within our notation.

Proposition 2.2 : There is a canonical surjective convex-linear map
E:&[6.(Z°,0)) @ T(Z* &4) — &4 -

Proof. For a statef € &[%,(Z% C)] and a sectiom € ['(Z* &4) we

define a new sectioE[¢ @ 7] by

<E[€®77]nap[n'_>L(n,no)a]> = <€,p[nb—> <77naL(n,nu)a>]>'

It is obvious thatE is convex linear and th&[¢ @ »] fulfills the consistency
condition

E[ @ nln o Lin,ng) = E[§ @ nln, -
Letw € &, ) be given, then we obtain by a straight forward computation
Efouw] = w

for each¢ € &[%,(Z? C)]. ThuskE is surjective. Finally, the invariance and
the reflexion positivity follow directly from the construaoh of E.

Remark:

(1) For a given family of lattice field theory models
A” = (ﬂ(n,AM)a 671, Nn, Rda b_nDZda L%/d)nEN

n

we introduce the set of continuum limits by

Sl = {Em®m

&EG[‘@(ZZ,C)]} C Sua -

(2) Proposition 2.2 suggests a guideline how to construct contmlimits
from an appropriate familyA,, ), ¢ Of lattice field theory models. For
each continuum limip € &, 4)[n] the statistical mechanics

(ﬂ(L,Ahp) ) ﬁba 2 Rda an L%/d)

fulfill the axioms of a weak euclidean statistical mechamixsept the
continuity requirementWE3 Hence we deal with a well posed prob-
lem, namely to analyze the properties of the states cordai®,, 4)[n]
with respect to the properties of the sectipn
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3 Actions, effective actions, and continuum lim-
its

This section is destined to introduce the notions actioneffettive action
within the C*-algebraic setup. Section 3.1 is concernedlite problem
of constructing from a given a weak euclidean statisticatimaics a new
model by means of perturbations. For this purpose, we inttedhe concept
of action and effective action.

In particular, we study perturbations of ultra local modé&le present in
Section 3.2 a simple example for a family of block spin transfation which
allows to compute some useful expressions quite explicitly

In Section 3.3, we show that, for a given lattice, there iggdaariety of
reflexion positive invariant states.

A criterion for the existence of an effective action for domtum limits is
formulated in Section 3.4.

3.1 Effective actions and continuum limits

To begin with, we consider for a weak euclidean statisticathanics
A = (ﬂ(byA)aﬁbawaRdana%d)

where A is a C*-algebra and a family of block spin transformations. The
corresponding subsystems with respect to a finite lattiee ar

An = (ﬂ(n,A)’ﬁn’w”’Rdab_nuzda%d) < A

with w,, = w o «,,. We are now interested in the problemddformingthe
theoryA in such a way that one obtains a new one.

We assume that the C*-algebralg, 4, 2, 1), are von Neumann al-
gebras, acting on separable Hilbert spaggs #, and the states,, =
(Qn, ()2 ), w = (Q,(-)2), are induced by a vectét,, € H,, 2 € H, re-
spectively, which are cyclic and separating for the coroasiing algebras. In
order to study perturbations of the state,, we introduce the notioaction

Definiton 3.1 : We denote byZ,,)(Z? 2,) the set of all sections
.72 ’

forwhichv,, > 0 for eachn € Z* and for which the statg, .., given by

< Nw,v,n), & > = Z(_wlyvyn)< Wn, Vn @ > )

is contained ir6,, ). The sectiorv is calledactionandz ., v n) = (wn, vn )
is called thepartition functionwith respect to the tripl¢v, v, n).

In oder to introduce the notion effective action, we consifde each
ng < n the normal conditional expectation

€(w,no,n) :Q[/(n,A) — Q[/(nD,A)
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which is determined by the condition

< Wn, b L(n,no)(a) > = < wnuae(w,no,n)(b)a >

foreachb € 27, ,, and for each: € Uy, 4).
For a given actiorv and fork € IN? we get a further action by

egi))(v)n = ewmntk) (Voik)

andegi)) (v) is called theeffective actiorwith respect to: andv. Note that

e(i) is a convex linear map from# .y (Z* 2, ) into B..y(Z*,2',). To carry
through our subsequent analysis we select an appropregs of actions in
By (22 A).

Definiton 3.2 : We denote bfﬁw)(zz, 2’,) the linear space of sections
f:n+— anQ[/(n,A)
for which the semi-norms

[[f]](w,n) = sup ||e(w,n,n+k)(fn+k)||
keNZ

are finite for eacm € Z2. The closure with respect to the corresponding
Fréchet topology is denoted Ky, (Z* 2/,). Furthermore, we introduce
the convex subset

QQ/(M)(ZZ,Q[;‘) = CIS[FE) (Zz,ﬁ;‘)ﬂgg(w)(zz,ﬁ;‘)].

w)

Remark:
(1) Note that the norms may increase withi.e.

[[f]](w,n) < [[f]](w,m)

forn < ni.

(2) The map@ﬁi)) are continuous maps. For a fixed cut-affce Z? the

operation ok i)) corresponds to a substitution by the underlying lattice

theory onx,4(n) by a lattice theory, also defined &ky(n), arising from

a lattice theory orty(n + k) by integrating out the corresponding high
energy degrees of freedom. An actierwhich is stable undeasgi)) for
everyk € N? can be interpreted asentinuum limit As we shall see
below, this can be justified by the fact that then the sectign,) is
contained inS, 4, i.e.

—

Nw,v,n) ©tn,ng) = Nw,v,n0) -

In order to point out the structure of the spdge) (22,2, ) and the cone
) (Z7,2!)), we summarize some facts in the proposition below.
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Proposition 3.3 :

(i) For eachZXinvariant statet € &[%,(Z?% C)] there exists a continu-
ous linear map

e T (2% W) — T (Z%AY)
such that for eactt € 92 the following holds true:
(k)

€Ly CCwE T CwE) -
(i) For eachv € @, )(Z*2,) the Stater)(w e, ¢ (v)) i contained in
S(ua)-
Proof.

(i) Foreachf € T'(,(Z* ;) and for eac € Z? we obtain a bounded
family of operatorge ., n,n+x)(fn+x))renz iN Aj, 4 since the semi-
norm{[f]].. ») is finite. For any bounded familitvy ). <= and for a
given state € &[%,(Z?, C)] we define a continuous linear map on the
pre-dual(Af,, ,)- by

we i — (& plk= (Wi )])
and hencewv; € 2, ,,. We define the map, ¢, according to

ewe)f)n = ewnelf)
wheree, ,, ¢ (f) is given by

e(w,n,ﬁ)(f) o <€ap[k — < Qpae(w,n,n+k)(fn+k) >] > .
We have for eaclr € 21, 4):

(Wns €(w,n,n+ko)€(w ntkoe) (F)a)
= <w”-l-kuae(w,n-l-kuf)(f)L(n-I-ko,n)(a) )
= (& plk = (Waghiko, Tntktkol (npktkon) (@) )] )
= (& plk= (wWagr, fotrtingr (@) )])

- <Wnae(w,n,§)(f)a>

which yields
e(w,n,n+ko)e(w,n+ku,§)(f) = e(w,n,ﬁ)(f)~
Finally we conclude
[[e(w,ﬁ)(f)]](w,n) = sup ||e(w,n,n+k)e(w,n+k,§)(f)H
keNZ

= sup |leqw nntk)C(wn+ke) ()]l
keN?

= ||e(w,n,§)(f)|| < [[f]](w,n)
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(ii)

which proveq(i).
Letv € T2(Z%A,) N B,y (Z* 2A,) be an action. For each € Z?

the statey., v n») is reflexion positive and—""Z%invariant. For each
n € Z? and for eachu € 2n,4) We compute for an action’ which is

stable undee(*) for eachk € V% el (v/) = v":
(Wntk, V;L+kL(n+k,n)“ ) = (wn, e(w,nyn%)(";%)a )
= (wn,vya)
which yields fora = 1:
Z(wvintk) = < Wn, e(w,n,n+k)(viz+k)a >
= Z{wv'n)

and therefore

E[gl & n(w,v’)] = N w,v)
for each¢’, and thus we conclude for = e, ¢ (v):

E ®nwv)] = El @nwewn. o)l

- n(wve(w,ﬁ)(v))

which impliesn, e, . (v)) € 6 4)-

Let (v;)ier be anetinls (z2, ) N </ (Z* 2,) which converges to

v in.e/,)(Z* 2,). For eachn € Z? and for each: € 2,, 4) the map
T(a,w,n) o <wn,e(wyn7§)(f)a >

is a continuoudinear functional onl’(,y(Z?, 2/;) which follows di-
rectly from the estimate

[(wn,ewneE)a)l < llewneE)ll|lall
Therefore we have
<wnae(w,n,§)(v)6(n,g)a> = <wnae(w,n,ﬁ)(liienIlvi)ﬁ(n,g)a>

= IZIEHIl< wn;e(w,n,ﬁ)(vi)ﬁ(n,g)a >

= 12,16151< Wn, €(w,n,6)(Vi)a)

- <wnae(w,n,§)(v)a>

which proves thé) ¢-invariance ofn(w’e(m)(v)). The reflexion positiv-
ity follows by an analogous argument.
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We formulate one important consequence of the proposiboraby the
following corollary:

Corollary 3.4 : For each actiorv € .« (Z* 2/,) and for each continuum
limit p € &, 4)[nw,v)] the states

10ty € Snay N (U a))-

)

are normal for eactn € 72,

Proof. For each operator € 2, 4) We have for a continuum limiy =
E[f & n(w,v)]

(EE@nwvlim(@)) = (Nwn) €wne(v)a)

which proves the normality.

Remark:

(1) A given actionv € /,)(Z* 2,) can be used tdeformthe given
theory A, namely for eactZ-invariant state¢ € &[%,(Z? C)] we
obtain a new theory

AEY) = (ﬂ(L,Aln)’ﬁunaRdana%d)

with n = 5 (v)) and the negl, 4, is given by

w,e(w)g)

A, Ay U — A ) (%) I -

(2) If A, 4 is a factor of type IlI, then the theories®¥) and A are in-
equivalent if and only ify is not normal or®l, ).

(3) If w is a gaussian state, the statement of Corollary 3.4 can laeded
as a weaken version of thecal Fock property13, 26]. Whereas the
local Fock property states that the restriction of the defxt state;
is normal on each local algebra, Corollary 3.4 states thatabso have
to restrict to operators which correspond to a high energynergum
cut-off.

(4) We claim here that a necessary condition¥osuch that the states
andn are disjoint is that the supreme

sup [vallag, )= o

is infinite.
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3.2 Block spin transformations: Concrete examples

Let M be a von Neumann algebra acting on a Hilbert spaand let2 be a
cyclic and separating vector far . We consider the von Neumann algebra

U,y = ® {AYyx M
AEEd(n)

acting on the Hilbert space

Hry = & {A}xK .
AEEd(n)
The vector

AEEd(n)

is cyclic and separating f&%(,, ar).
For eachny < n we define for each cub&, € X;(ng) the cube

*Ao C A(n nolag) C Ao

in X4(n) which is determined by the condition to contain the dual asec
*Ap of Ag (See Figure 2). Afaithful normal *-homomorphism fraitg, , ar)
into R, ar) is given by

Ln,ne) = ® |:1D(n,nD|AD) & {A(n,mﬂAu)aid}
Ag€Xa(no)

withlp := @aecp{A, 1} forasubseD C 4(n). Herethe seD(n, ng|Ag)
of hypercubes is

D(n,nolAg) = {ACAAF Apnngjan} -
The following proposition follows directly from the definins, given above.

Proposition 3.5 : The family: = (¢(51,n,))n.<n is @ family of block spin
transformations.

For eachn € Z? we consider the normal statg, := ( ,, (-)€2,, ). One
easily verifies that the section: n — w,, satisfies the consistency condition
with respect ta, i.e.

Wn © L(n,nu) = Wny

and therefores = E[¢ @ w] is a state on the C*-inductive limil, ),
independent of the choice 6f This yields a statistical mechanics

A = (g(byM)aﬁbawaRdana%d)

which fulfills the axiomsWEFlandWEF2
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For each pain,; < n there is a normal conditional expectation
€(w,no,n)

= @ [[ ® w@@oon] e e
Ag€Xa(no) - "AED(n,nolAo)

which maps, ) into 20, ,, and one easily computes fore 2, ,,
and fora € A, ar):

<wnabL(n,nD)(a) > = <wnoae(w,no,n)(b)a> .

3.3 Construction of invariant reflexion positive states

We are now interested in the spagk, (%>, 2),) of actions in order to per-
form deformations of the theory which we have introduced in the previous
section.

Leta € M be an operator and leh € X,(n) be a cube, then we
write @, (A, a) for the corresponding element B, 7). For each face
I' € ¥4-1(n) there are unique cube&y, A, € X4(n) such thatl' =
AgNA;. Wewrite: @, (T, a® b) = &, (Ag, a)P,, (A1, b) fora, b € M. Let
w = (wp)nen C M’ © M’ be a family of positive operators such that

[w, ®1, 1@ w,] = 0

for eachn € Z2. Then we introduce forn € Z? the positive operator

viw], = H D, (T, wy,) € Q[/(n,M)
FEEd_l(n)

and we obtain a section
viw] € T(Z? Aprr) .

Proposition 3.6 : Given a familyw = (wy)neny C M’ @ M’ of positive
operators such that

lMewwgl = 0,

then the section|[w] is an action contained i ,,)(Z?, ;).

Proof. For eachn € Z? it is obvious, that the statg. vju)n) is 0" 29

invariant. LetX4_,(n, i, 0) be the subset iX;_1(n) which consists of all
facesI' of cubes inX,(n, i, 0) which intersect the hyperplang. . We

define the sets

Yaoi1(n,pu,£) = {T€Xg1(n)\Eao1(n, 1, 0)|T C Rye, + X, }
andv|[w],, can be decomposed as follows:

viwl, = v[w,0],v[w, +]pv[w, ],
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wherev[w, {],,, { = 0, & is given by

viw, l], = D, (T, wy) .
TeXa_1(n,u,l)

The operators [w, £],, are contained iR, a7+ (p,0) @ Ay, sy (11, +) and
we conclude for an operatare 2, ary (1, 0) © Ugn a1y (1, +)

v[wl], j(nyu)(a) a = vw,0], j(nyu)(v[w,—l—]na) viw, +]na

= V[wa 0]711/2 j(n,u) (V[wa +]na) V[wa +]nav[w, 0]711/2 .

where we have used the fact that

Jonwy (VIw, +1n) = v[w, -],
[v[w, 0], v[w,£],] = 0.
We put for¢ = 0, £+
Qnyy = X  {aq)
AEEd(nvuv‘e)

and we consider the conditional expectation
Ew,n,m)

= (R () 9 2o, O2m) 0 | @ (A

AEX4(n,u1,0)
We compute foroperatorsy € A, (k) (1, £) andbx € A, w(x)) (1, 0):

Ewn,m((a- @b )(ay @by))

= b0 (R4, 04200 4) N Din -y, - ) )

b_b+E(w,n,u)(a—)E(wv”vu)(a-l_)

= Ewnuw(a- @0 )Enu(ay @by)

which implies

E(w,n,u)( V[w]n j(n,u) (Cl) a )
= v[w, 0]711/2 E(w,n,u)( j(n,u)(v[wa +]na) ) E(w,n,u)(v[wa +]na) viw, 0]711/2

= v[w, 001/ * Eqy o ( VIw, 4100 )" B n wy(v[w, +]ma) vw, 0]/
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Here we have used the fact thg, ,, . is invariant under the euclidean time
reflexionj, »). We conclude forr,, := v[w, 0]71/2(2(”70)

( N(w,n)s viw], j(n,u)(a) a)
= < Q(n,o), E(w,n,u)( v[w], j(n,u)(a) a )Q(n,o) >
= < W, E(w,n,u)( V[wa +]na )* E(wynyu)(v[w’ +]”a)\IJ” >

> 0

which proves the reflexion positivity.

3.4 Multiplicative renormalization

The main problem which arises here is to check that thesef(Z?, Ans)
contains interesting elements. Lete #,(Z? 2Ax) be any action. Ac-
cording to what we claim in Section 3.1, one has to deal withfthilow-
ing behavior for the partition function, provided one reggithat||v|| :=
SUp, ez || va|| < oot

limzg v, = 0,

neL?
in order to obtain a deformed theon/(¢¥) which is not equivalent to the
underlying one.

Furthermore, one expects that for eack Z?
khe%ge(w,n,n+k)(vn+k) = 0
which yieldse, ¢ (v) = 0. In order to get a non-trivial limit we replace
by
r,v:in— Z(_wl,v,n)vn

This implies forr,, v

Z(wyr,vn) = 1

for eachn € 72 and therefore

I < sup ||e(w,n,n+k)(rwvn+k)|| = [[rwv]](w,n)
kEN?2
provided the right hand side is finite. The semi-norms of #multing fix-
pointse(, ¢ (r.,v) are bounded from below by. The operationr,, can be
regarded amultiplicative renormalizationTherefore it is natural to call the
conditionr, v € ¢7,(Z? 2y) multiplicative renormalizabilityf v.
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We first illustrate the notion multiplicative renormalizat by an ultra-
local example. Let : n — v,, be a section of the form

v, = H D, (A wy)

AEEd(n)

with w, € M’ and||w,|| = 1 for eachn € Z2. Then we easily compute

Z(wvn) = < Q, an >T(n)
Cwnnit)(Vask) = I Ptk (A wapr)( Qw7 HI=T00
AEEd(n)

For lim sup( Q,w,Q ) < 1 the partition functiorz, v »1x) vanishes for
k — oo. On the other hand we have

20y nrillenntn (Vi) < (Q w2 )7

with 7(n) := b4*"+7") By choosingw, = w with { Q, wQ ) = v < 1, for
instance, we conclude

1< [rvl]wn < 7770 < oo

andv is multiplicatively renormalizable. An example for a mplicatively
non-renormalizable action can be obtained by choo&ing ¢z in such a
way thatlim,, { ©Q, w, ) = 0.

From the physical point of view, perturbation®fy ultra local action is
quite uninteresting since the corresponding theory in Mimgki space, pro-
vided it exists, is then nothing else but the constant fieldhe subsequent,
we discuss conditions under which a non-ultralocal acanultiplicatively
renormalizable.

Leth € €>(Z* x [0,1], M') be an operator-valued function which is
smooth in its second variable and for whidtin, s1), A(n, s»)] = 0 for each
s1,s2 € [0,1] and for which||A(n, s)|| < 1. We introduce the following
numbers ink ; U {co} associated with:

Twny(h) = inf (@ h(n,s1) - h(n, s2a)2)
Swny(h) = sup (Qh(n, 1) h(n, s24)2)
S(w n+k)(h) ) Tintk) _
Ry (b)) = sup (’7 Siwn By~
wm (h) e A (et (B)

and we define an action by

v[h], = II @H<F,/1dsh(n,s)®h(n,s))

0

Fexy_1(n)
_ / I a0 & {A, 11 h(n,s(F))} .
FexXy_1(n) A€X4(n) Teoa

The proposition, given above states a sufficient conditton such thaw[A]
can multiplicatively by renormalized.
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Proposition 3.7 :Leth € 4°°(Z*x [0, 1], M') be given. IR, ,,)(h) < oo
is finite for everyn, then the actiorv[h] is multiplicatively renormalizable,
i.e.r,v[h] € ) (Z2 Unrr).

Proof. Computing the partition function gives
z(. / H ds(F) II <w, II h(n,s(F))>
reXa_q( AE€X4(n) TeoA

and according to our assumption the partition functQn )., satisfies
the inequality

Twny(B)™ ™ <z vimgny < Sy (B)M

and we compute

e(w,nntk)(V[Antr) = / H ds(I') ® [

FexXg_1(n+k) Ap€EXqg(n)
X II <w, II h(n+k,s(F))>
A€ D(n,n+k|Ao) resda
X {Ao, II h(n+k,s(r))}]

PEIA(n, ntklag)
which implies for the norm

||e(w,n,n+k)(v[h]n+k)|| < S(w,n+k)(h)7(n+k)_7(n)~

This yields

Z(_wlyv[h]ynq.k) ||e(w,n,n+k)(v[h]n+k)||

IN

I(w,n+k)(h)_T(n-I—k)S(w,n+k)(h)7(n+k)_7(n)

S(w n+k)(h))7'(n+k‘) _
etV Stwnir) () m(n)
<f<w,n+k)(h) (onth)

and we obtain for the semi-norms the estimate

(v Jwny < Rwn)(h)

and the result follows.
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4 Weak euclidean field theory models

As already mentioned, the previous sections are not coadesith the reg-
ularity conditionWE3 In Section 4.1 we present a procedure which, in
comparison to building the C*-inductive limit, leads to ackdean net of
C*-algebras on which the full euclidean group acts by autqrhisms. In
particular we show that the translations act norm contisiyou

Section 4.2 is concerned with states which fulfill all axiofos weak
euclidean statistical mechanics. We show tbath section of stateg €
['(Z? & 4) can be associated with a family of weak euclidean statistiea
chanics.

4.1 Construction of a weak euclidean net of C*-algebras

For a given C*-algebrai, we consider for each € Z? the tensor algebra
Tin,a) = T(S(RY) @ U, 4)) Over the linear spacg(IR?) @ 2y, 4). Fora
regionZ C R¢we denote b, 4)(% ) the *-subalgebraiff(, 4)whichis
generated by operatofs® a with a € U, 4)(%) andsupp(f) +% C % .
For eachn € Z? there is a group homomorphism

7, € Hom(E(d), Aut(T( a)))
which is defined by
T ©0) = (fog™)oa,

Itis obvious that the euclidean groiid) acts covariantly on the n&y,, 4 :
U — S(n,A)(%)-

For eachn € Z? we now introduce a *-homomorphisf, which maps
% (n,4) into the C*-algebra of bounded,, 4)-valued functions o ?. The
*-homomorphism

b, ZE(n,A) — %b(Rd, Q[(n,A))

is given by
S, (f@a):x — p=dn® Z Ja' =) 5(n,x’)(a) .
w'eb=n’7d
We introduce the C*-algebra
Binay = cls[@(Tin,a))] C EoBRY U a)

The normorfB,, 4) is denoted by - || .. There is a natural group homomor-
phism

a, € Hom( E(d), Aut%, (R, An,a)) )
which is given by

(amga)(y) = alg~'y)

33



and the *-homomorphisnd,, is euclidean covariant

An,g) 0 Pn = PpoTng -
In particular we obtain for: € b=""Z% C E(d):

Vo) Pr(f@a) = @p(f @ Bnya) -
Proposition 4.1 : The translation groufit * acts norm continuously dB,, 4)
via a,.
Proof. It is sufficient to test the continuity on the generat®s(f © a).
We compute
[0 (f @ a) = @)@ (f © )]

b N (W —y) — FY — = 2)Bnyna

yleb—nDZd

= sup
yeRd

A(n.a)
< 6T N sup [f(Y — )~ S~y )l
yreb-noza YR
and sincef € S(R?) we conclude
lim sup |f(y' —y) = f(y —y—=)| = 0
CL‘—}OyE]Rd
and therefore
lim [|[®a(f © @) = a(n oy @u(f @ a)lln = 0

which proves the proposition.
[ ]

Instead of the C*-inductive lim#l, 4, we consider another C*-algebra
in order to build continuum limits. We defiriB, 4, to be the C*-subalgebra
in €. (Z*, B 4) which is generated by elements of the form

q)(b,n)(f & Cl) = p[k — q)n+k(f @ L(n+k,n)(a))] .

with @ € A, 4) andn € Z?. The notion of local algebra®, 4)(%) is
obvious. We obtain a euclidean net of C*-algebis, 4, «) where the net
is given by

B, 4y U —> B a) (%)
and the euclidean group acts %, 4) as follows:

agpln —a,] = ph— a(nyg)an] .

As a consequence of Proposition 4.1 we get:
Corollary 4.2 : The pair(B,, 4, «), whereB,, ,, is the net

E(L,A) U —> %(L,A)(%)

is a euclidean net of C*-algebras and the translation grogpsanorm con-
tinuously orf3, 4.
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4.2 On the regularity condition for continuum limits

We denote by, 4 the set of states dB, 4) such that the tripléB, 1), @, w)
is a weak euclidean statistical mechanics, i.e. it fulfiise axiomswE1to
WES3 given in the introduction.

Theorem 4.3 :There is a canonical convex-linear map

F:6[6.(2° 0] 0 T(Z%,64) — S(.a) -

Proof. For a statet € &[%,(Z? ()] and a sectiom € ['(Z? &4) we
defineF[¢ @ 5] by

(Fcon,pln—ax]) = (&plne (0p,a,(0))])

wherea,, is contained irg, (R4, n,a)). Itis obvious thafF" is convex lin-
ear. In order to prove the translation invariance, we caarsilde correlation
function

k
( Flcon], H@(L,nj)(fj®aj) y = <£,p[nb—> p—an’ Z

j 1 xl...xkeb—nuzd

X fl(xl) o fk (xk) < nnaﬁ(n,xl)L(n,nl)(al) c 'ﬁ(n,xk)L(n,nk)(ak) >:| >
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. . 0 . .
Since eachy,, isb~" Z%invariant, we conclude far € Qg’:

< Fl¢ @ 1) ,ax[lﬁ[@w»(ff@“j)] >

j=1

k
(Fleon, [] ®uny(refi @a;) )
j=1

:<g,p[wb—dn° S e e fules - x)

xl...xkeb—nuzd

X (s Bn ey bimna) (@1) - Bl i) tn ) (@) >] >

= <€,P[n'—> pmin’ Z Ji(xe) - fulon)
- wreb—n07d

X < Nn, 6(n,x)[ﬁ(n,x1)L(n,n1)(al) c '6(n,xk)L(n,nk)(ak)] >:| >

= <€,P[n'—> pmin’ Z Ji(xe) - fulon)
xl...xkeb—nozd

X < Mn, B(n,xl)L(n,nl)(al) c 'ﬁ(n,xk)L(n,nk)(ak) >:| >

k
= (F[¢on, Hq)(b,nj)(fj®aj) )

which implies thaff [¢ @ 7] is invariant under the dense subgralif). Since
the translation group acts norm continuously®p 4 the stateF'[¢ @ 5]
are invariant under the full translation grofiy. In particular, the map

v — (Flg@n],aa.(b)c)

is continuous for evern, b, ¢ € B(, 4). Hence we have proveWEland
WE3 Letn — a, € B, 4) be arepresentative of = p[n — a,]. If
a is localized inR ye; + X, thena, (0) is contained irklg, 4)(x,0) ®
AUn,4)(pt, +), forn large enough. This implies

(FlE@nlir(a)a) = (&= (0, dun)(an(0))an(0))])

> 0

according to the reflexion positivity of thg,s. ThusWE2follows and the
triple (B, 4), o, F[§ © 7]) is a weak euclidean field.
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Remark: For each section we introduce the set of continuum limits

Sua = {FEonl|te6[6 (2,01} C & a) .
The best situation is present if the block spin transforareti are arranged
in such a way that the group¢ acts norm continuously o%(, 4). In this
case the investigation of the set of continuum Iinﬁi@A)[n] onB, 4 is
equivalent to the investigation of the set of continuum1g®, 4)[»] on the
C*-inductive limit algebrall, 4. Since then we conclude for the correlation
function
k
s I

Jj=1

- /dx1~~~dxkﬁfj($j)< li[ Blesws)tns >

and in particular we obtain for a consistent sectiod &, 4):

n5) f] ©@aj) )

k
H (v,n5) f]®a]) >
j=1
k k
= /dxldl‘k Hf](l‘]) < H (1, ) tn; >
j=1 j=1

which is independent df.

5 Conclusion and outlook

Concluding remarks: Some of the basic ideas and concepts which are
used in order to construct euclidean field theory models areglized by
using the setup of algebraic euclidean field theory. We hatreduced the
notions block spin transformations, action, and effectizgon within a gen-
eral model independent framework.

As described in Section 3 and Section 4, in the C*-algebmar@ach to
euclidean field theory the concept of continuum limits fdtite field theo-
ries arises in a very natural manner. To each secfienl'(Z? & 4), which
is a family of lattice field theory models (these models carchesen on
each latticez4(n) independently from each other), there always exists the
corresponding seb, 4)[»] of continuum limits.

Therefore, our point of view leads to a well posed problemoraer to
prove the existence of non-trivial (weak) euclidean fieleaity models, one
has to study the properties of the set of continuum limithwéspect to the
properties of the corresponding sectign

Outlook: It would be desirable to study the continuum limits, whictsar
from lattice models with an action (see Section 4) of the form

v[h], = H @, (T, w) ,

FEEd_l(n)
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in more detail. As already mentioned in the introductione @f the ques-
tions, which we want to investigate, is the following:

Question: Which are sufficient conditions for the family of operatars=
(Wn)nezz C M"® M’ such that the set of continuum limig, 4 [»]

(1) contains only characters (in case of abelian C*-algebras)?
(2) contains only ultra local states?
(3) contains at least one state which is not ultra local?

The statep € &, 4[] are weak limit points and labeled by stagesn
the corona algebr&, (Z?%, C). The stateg are not explicitly given, namely
its existence is related to the Hahn-Banach extensionéheand therefore
it relies on Zorn's lemma, however. In order to conclude gmigs for the
continuum limits one has to think about which type of statetm@ne can
prove. For instance, one can use operatolsin,) to test properties of the
statesy,, like bounds of correlation functions.

In order to decide whether cag®) is valid, we propose to compute cor-
relations

< c[ﬂn+k OL(n+k,n)]’ q)n(Ala Cl) ® q)n (AZa Cl) >

for an appropriate choice of the operator> 0. Then one has to arrange
each operatow, in such a way that the bound

|< c[nn+k0L(n+k)n)]a q)n(Ala Cl) @ q)n(AZa a) >| > C(n,Al,AQ,a)

is fulfilled with a positive constant(, a, a, ) Which only depends on
the cubeq A, A,) and the operatog. Within Appendix A, we discuss a
strategy how to deal with this problem.

In Section 4 the notion of effective action for continuumilisnis dis-
cussed. LetX, Z,w,) be a measure space withalgebra?” and we con-
sider the von Neumann algebld = .2 (X, 2, w,) and the states,, :=
@aezim1A,wo}. Lety € &, ar[n] be a continuum limit for which the
effective actiorw exists, i.e.

(pyina) = /dwnvna .

Thenv,, is a®aex, (n) Z-measurable function.

Let X be a smooth orientable manifold, |e¢ be thes-Borel algebra
and letw, be a volume form on¥X, then one can ask for a criterion for the
sectionn such that the effective action is a section of smooth functions
v, on X~4(?) Within a coordinate chait$” ), o ... ,, atu, € X one can
perform a Taylor expansion of the effective action funcéibs), = —Inv,
atugn) A ug

K
1 o1 kyOk
S, = ZE Z ¢(A17 )¢(A ) )6(A1,01)"'6(Ak,0k)sn(u(o,n))
k=0

(Aj,05)

+ reminder
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where(¢(47)) aes,(n),0=0,..- » IS the coordinate chart ok ¥+(") induced
by (¢7)o=o,... p. Thefree partv(?) of v can be defined by

vi) = exp[=(¢,An0)]

where the quadratic form, is given by

1
< ¢, Apd > = 3 Z ¢(A1’01)¢(A2’02)8(A1701)8(A2702)Sn(uo) .

(A1,01),(Az2,02)

Since the sum over the paifA+, o1 ), (A2, o2) may also contain cubga\;, A,)
which are not next neighbors, we expect that in geneflis not an action.

Nevertheless, it makes sense to study the section of gaustsiees;®),
wheren®) is a state o, 1, ) andZ,, M is the von Neumann algebra
2> (T,,X) of Lebesgue measurable functions on the tangent sSpace
atu,. If we assume thad,, is a positive quadratic form, then we obtain for
the characteristic functional

(0 exp(6(f))) = exp(—(f,AZ'f)) .

This implies that the continuum limits iﬁ(L,TuDM)[U(O)] are (mixtures of)
gaussian states. We propose to compare the set of contirinits |

&, 7., ) [1V] with the set of continuum limit&, »7)[n] of the underlying
sectionn in order to decide whether there are stageg &, yr)[n] which
describe a physical system with interaction phenomena.
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A Criterion for the existence of non ultra local
continuum limits

We use the following notation: We choose a von Neumann atgebacting
on /i and a cyclic and separating vect@r € K andw is the states :=
(Q,()Q ). For a positive operatow € M’ @ M’ Ay, Ay € X4(n) we
introduce a correlation functional aif @ M by

(2053 a1 @as) = (Nuwwmy PalA1,a1)8,(As,a5) )

- <77(w,w,n)aq)n(A1aa1) >< n(w,w,n)aq)n(AZaGZ) >
wherer,, . ») is the state which is given by
< Nw,w,n), @ > = Z(_wl,w,n)< Nw,n)> H <I>n(1“, w) a > .
Fexy_1(n)
We now introduce particular classes of positive operatorg{ @ A’

Definiton A.1 : For a constan? > ¢ > 0 and cubes\;, A, € ¥,(n) and
projectionsPy, P, € Proj(M) we define the set

(@ECA;,)AmPhPﬂ - {wEM/®M/

w,w,n)

w>0 and [( CEAMM,P1 @ Py)| > c} .

Remark: For each translatiop € 6="°Z% we obtain the identity

[9A1,9A2;P1,P] @[A17A2;P17P2]
(e,n) - (e,n) :
Furthermore, we hav@([f;’)AQ;P’l] = { for each projectio? € Proj(M).

One easily computes the relation

(2189 1 _pyep,) = cEA1,A2)’P1 @ Py )

(w,w,n) w,w,n)
and therefore

(A1,Az2)

< c(w,wyn) aP1 ® Py > = < C(A17A2)

(wywyn),(l—P1)®(1—P2)>
and we obtain the identity

9[A1,A2;P1,P2] _ 9[A1,A2;1—P1,P2]
(e,n) - (e,n)

[A1,A2;1-P,P5]

- (en)

9[A1,A2;1—P1,1—P2]

- (en)
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By using the block spin transformation introduced in SetBdl we ob-
tain
L(n+k,n)q)n(AaP) = q)n+k(A(n+k,n|A)aP)
and we may define for eadhe IN? the sets

[A1,A2;P1,P2] @[A(nw,nlm)VA(n+k,nIAz)?P17P2]
(e,n+k,n) T (e,n) :

According to Proposition 3.6, a section

[A1,A2;P1,P2] (5)

w:k — w € ’@(c,n-l—k,n)

yields an actiorv[h] by
vy = [T @ors(fyw)
TeX g (n+k)
and therefore a section of reflexion positive invariantestat

Proposition A.2 : Let w be a section, given by Equation (5) and 1ebe
the corresponding section of reflexion positive invariaates. Then the set
of continuum limitsS, 4) [7] contains at least one state which is not ultra
local, i.e. case (3) is valid (see Introduction).

[A1,A0;P1, P

(en+hn) I we obtain the bound

Proof. According to the definition of#
C < |<c[nn+k0L(n+k)n)]aq)n(AlaPI) ®q)n(A2aP2) >| .

We define the subsét,; C 72 to consist of alln; € Z? such that < n;
and

¢ < (€, oigny ] Pul(A1, P1) © @4 (An, Po))
and writeX _ := Z?\X . Then there exists a character
¢ € B[%,(X4, O] US[%.(X_, 0)] C 8[%.(Z% )]
which implies
¢ < [(eErgon.] Pa(d1, P1) @ @n(Ag, P2) )|
and the stat&[¢ © »] is not ultra local.

In order to prove the existence of non-ultra local contindiumits one
has to check the assumption of the following corollary:

Corollary A.3 : If for a projection P € Proj(M)\{1} and for each pair
of cubesA, A, € X4(n) there exists a constantA;, Ay, P] € [2,0) such
that
[Ay,A2;P,P]
’@(C[Al,AQ,P],n) ;é 0 ’

then there exists a non ultra local state, ).

41



B Multiplicatively renormalizable actions: An ex-
ample
We consider the von Neumann algebta = £ ([0, 1]) and a family of

positive functionsh € % ([0, 1]2)%". The action of the model under con-
sideration is given by

v[h]a(u) = / II ds@ I I elu(d),sr)
reXa_1(n) A€eXy(n) I'eoA
and we introduce the function
H(s) = /Idu [T Pl s(r)
I'eoA
Lety, € €°°(IR) be a smooth positive function wity, (s) > 1 for eachs.
We choosé, (u, s) := exp(uy,(s)) and by setting

Yn,a)(s) = Zy(s(F))

I'eaA
we obtain:
H U () =y a) ()7 exp(uym,a)(5)) — exp(uoy(n,a)(s))] -

By introducingq,, := sup,y(,,a(s) andr, = inf,;y, A)(s) we con-
clude:

Swmy(h) = ag'(exp(an) = 1)
Twny(h) = v, H(exp(r,) — 1) .
and for each: € N? we get
[S<w,n+k>(h)]7(n+k)5 o ()= = [Pn+k]7(”+k)
I(w,n+k)(h) (wnth) dn+k

B

T(n+k)
exp(Tpn4r) — 1]

al") (exp(augr) — 1))

X

The actionv[h] is multiplicatively renornmalizable if the values qf,
andr,, can be arranged in such a way that the following holds true:

(1) There exists a constaat> 1 such that

c:= limq, = limr, .
nez? nez?
(2) The supreme
. _1 T(n+k)
S, = sup [—exp(q k) ]
wenzLexp(rpyr) — 1

is finite for eachn € Z2.
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Then one easily computes

1 < [[rvwv[h]]]ln < const. SncT(”)(exp(c)_l)—T(”) )
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