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1 Introduction

Many problems in the optimization theory and other fields of mathematics
appear to be linear over semirings with an idempotent addition (the so-called
idempotent superposition principle [1] which is a natural analog of the well-
known superposition principle in Quantum Mechanics). The corresponding ap-
proach is developed systematically as Idempotent Mathematics or Idempotent
Analysis, a branch of mathematics which has been growing vigorously last time
(see, e.g., [1] - [7]).

Moreover, there exists a correspondence between interesting, useful, and
important constructions and results concerning the field of real (or complex)
numbers and similar constructions dealing with various idempotent semirings.
This correspondence can be formulated in the spirit of the well known N. Bohr’s
correspondence principle in Quantum Mechanics [4]. We discuss idempotent
analogs of some basic ideas, constructions, and results in traditional calculus
and functional analysis; also, we show that the correspondence principle is a
powerful heuristic tool to apply unexpected analogies and ideas borrowed from
different areas of mathematics (see, e.g., [1] - [5]).

The theory is well advanced and includes; in particular, new integration the-
ory, new linear algebra, spectral theory, and functional analysis. Its applications
include various optimization problems such as multicriteria decision making, op-
timization on graphs, discrete optimization with a large parameter (asymptotic
problems), optimal design of computer systems and computer media, optimal
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organization of parallel data processing, dynamic programming, applications
to differential equations, numerical analysis, discrete event systems, computer
science, discrete mathematics, mathematical logic, etc. (see, e.g., [2] — [8] and
references therein).

In this paper we present an idempotent analog of Interval Analysis (see,
e.g., [9], [10]). The idempotent interval (and, more generally, set-valued) arith-
metics appears to be remarkably simpler than its traditional analog. We stress
that this construction provides another example of heuristic power of the idem-
potent correspondence principle.

This paper is organized as follows. In section 2 we give a short heuristic
introduction into Idempotent Mathematics. Section 3 contains definitions of
basic concepts of idempotent arithmetics and several important examples. In
sections 4-6 we consider the notion of linearity in Idempotent Analysis and
discuss its computer applications. In section 7 we discuss a set-valued general-
ization of algebraic operations of Idempotent Analysis. The interval extension of
an idempotent semiring, already considered in [11], is constructed in section 8.
In section 9 we consider a simple application of this structure to linear algebra.

2 Dequantization and idempotent
correspondence principle

Let R be the field of real numbers and R be the subset of all non-negative
numbers. Consider the following change of variable:

ur— w=hlnu,

where u € Ry \ {0}, h > 0; thus u = ¢“/? w € R. Denote by 0 the additional
element —oco and by S the extended real line R U {0}. The above change of
variable has a natural extension Dj to the whole S by Dy (0) = 0; also, we
denote Dy (1) =0=1.

Denote by Sy, the set S equipped with the two operations @) (generalized
addition) and ®p (generalized multiplication) such that Dy, is a homomorphism
of {R4,+, -} to {S,®n, ®n}. This means that Dy (w1 + u2) = Dp(u1) ©p Dp(uz)
and Dp(uy - u2) = Dp(u1) @p Dp(us2), ie., w1 Op we = wy + we and wy Gp we =
hln(ewl/h —|—ew2/h). It is easy to prove that wy ®p ws — max{w, ws} as h — 0.

Denote by Rax the set S = RU {0} equipped with operations & = max

and ©® = 4, where 0 = —o0, 1 = 0 as above. Algebraic structures in R and
S}, are isomorphic; therefore R ax is a result of a deformation of the structure
iIl R+.

We stress the obvious analogy with the quantization procedure, where h is
the analog of the Planck constant. In these terms, Ry (or R) plays the part of
a ‘quantum object’ while R .5 acts as a ‘classical’ or ‘semiclassical’ object that
arises as the result of a dequantization of this quantum object.

Likewise, denote by R, the set R U {0} equipped with operations & =
min and ® = +, where 0 = +00 and 1 = 0. Clearly, the corresponding



dequantization procedure is generated by the change of variables u — w =
—hlnu.

Consider also the set RU{0,1}, where 0 = —o0, 1 = 400, together with the
operations & = max and @ = min. Obviously, it can be obtained as a result of
a ‘second dequantization’ of R or R .

The algebras presented in this section are the most important examples
of idempotent semirings (for the general definition see section 3), the central
algebraic structure of Idempotent Analysis. The basic object of the traditional
calculus 1s a function defined on some set X and taking its values in the field R
(or C); its idempotent analog is a map X — S, where X is some set and S =
R min, Rmax, or another idempotent semiring. Let us show that redefinition of
basic constructions of traditional calculus in terms of Idempotent Mathematics
can yield interesting and nontrivial results (see, e.g., [1] — [6] for details and
generalizations).

ExaMPLE 2.1. INTEGRATION AND MEASURES. To define an idempotent
analog of the Riemann integral, consider a Riemann sum for a function ¢(z),
z € X = [a,b], and substitute semiring operations & and @ for operations + and
- in its expression (for the sake of being definite, consider the semiring Ryax):

Z@(%)'Ai — @@(l‘i)QAi = max_(p(@i) + Ad),

i=1,...,

where ¢ = xg < @1 < ... < oy =b, A; = x; —w;_q, 1 =1, ..., N. As

max; A; — 0, the integral sum tends to

bl

@
/ p(x)de = sup p(x)

X z€eX
for any function ¢: X — Ry, that is bounded. In general, the set function

mwm=w£¢w»Ach

is called an R ax-measure on X; since my(J,, Ba) = sup, my(By), this mea-

sure is completely additive. An idempotent integral with respect to this measure
is defined as

& &
/;¢@me=ArM@®@@ﬁmzswwwﬂ+¢W»

rzeX

EXAMPLE 2.2. FOURIER-LEGENDRE TRANSFORM. Consider the topological
group G = R™. The usual Fourier-Laplace transform is defined as

p) B0 = [ Tty do

G

where exp(i€ - #) is a character of the group G| i.e., a solution of the following
functional equation:

f@+y) = f()f(y).



The idempotent analog of this equation is

fle+y) =f@) o fly) = fl=)+ f(y).

Hence ‘idempotent characters’ of the group (' are linear functions of the form
z—=&-x=E&x1+ ...+ &z, Thus the Fourier-Laplace transform turns into

@
P) - 36 = [ € pla)de = sup (€0 + pla).
G we
This equation differs from the well-known Legendre-Fenchel transform (see,
e.g., [12]) in insignificant details.
These examples suggest the following formulation of the idempotent corre-
spondence principle [4]:

There exists a heuristic correspondence between interesting, useful,
and important constructions and results over the field of real (or
complex) numbers and similar constructions and results over idem-
potent semirings in the spirit of N. Bohr’s correspondence principle
m Quantum Mechanics.

So Idempotent Mathematics can be treated as a “classical shadow (or coun-
terpart)” of the traditional Mathematics over fields.

3 Idempotent semirings

Now we are prepared to give a number of general definitions. Consider a
set S equipped with two algebraic operations: addition & and multiplication
®. The triple {S,®, ®} is an idempotent semiring (i.s.r. for short) if it satisfies
the following conditions (here and below, the symbol x denotes any of the two
operations @, ®):

e the addition & and the multiplication @ are associative: = % (y * z) =
(zxy) xz for all z,y,z € S

e the addition @ 18 commutative: © Py =y P x for all z,y € S,
e the addition & is idempotent: © G x = « for all z € 5}

e the multiplication ® is distributive with respect to the addition ®: =z ®
(ydpz)= @0y dxoz)and (xdy) Oz = (20 z) B (y© z) for all
T, Y,z S S

A unity of an 1.s.r. S is an element 1 € S such that for all z € S
lor=z01l==x.
A zero of an i.s.r. S is an element 0 € S such that 0 #1 and for all z € S

O0dzx=rx, 0Oxz=200=0.



It is readily seen that if an i.s.r. S contains a unity (a zero), then this unity
(zero) is determined uniquely.

Note that different versions of this axiomatics are used, see, e.g., [2] - [7]
and some literature indicated in these books and papers.

The addition @ defines on an i.s.r. S the partial order: z K yiff e y =y.
We use the notation z < y if x < y and & # y. If an i.s.r. S contains a zero 0,
then 0 is its least element with respect to the order <. The operations ¢ and ®
are consistent with the order < in the following sense: if ¢ < y, then zxz < y*xz
and zxaz < zxy forall z, y, z € 5.

An isr. S is said to be a-complete if for any subset {z,} C S, including
@, there exists a sum P{ra} = P, zo such that (P, za) Oy = P, (2o O y)
and y © (P, ra) = P, (y © 2,) for any y € S. Anisr. S containing a zero 0
is said to be b-complete if the conditions of a-completeness are satisfied for any
nonempty subset {z,} C S that is bounded from above. See [5] for details.

Note that B, 2o = sup{x,}; in particular, an a-complete i.s.r. always con-
tains a zero 0 = P @.

An i.s.r. S does not contain zero divisors if * © y = 0 implies that x = 0 or
y=0forall z, y €S. Anis.r. S is said to satisfy the cancellation condition if
for all z, y, z € S such that  # 0 it follows from 2 Qy=2z0zoryOr =20
that y = z. Obviously, an i.s.r. satisfying the cancellation property contains
no zero divisors. In 1.s.r. S is said to be idempotent semifield if every nonzero
element of S is invertible; in this case the cancellation condition is valid.

An i.s.r. S 1s said to be algebraically closed if the equation z” = y, where
" =2z ®r®...02 (n times), has a solution for all y € S and n € N; an
1.s.r. S with a unity 1 satisfies the stabilization condition if the sequence 2" @y
stabilizes whenever # < 1 and y # 0 [13], [14].

The most important examples of i.s.r. are those considered in section 2. We
see that Ry,x is a b-complete algebraically closed idempotent semifield (satisfy-
ing stabilization and cancellation conditions; it contains no zero divisors). The
1.s.r. Ry, 1s 1somorphic to R.x. Note that both R,.x and R, are linearly
ordered with respect to the corresponding addition operations; the order < in
Roax coincides with the usual linear order < and is opposite to the order < in
Rmir‘y -

Consider the set R,y = Ryax U {oo} with operations @, @ extended by
codx=o0forall 2 € Ryax, 0@z =00ifz#0and co®0=0. It is easily
shown that this set is an a-complete 1.s.r. and oo is its maximal element. In
general, if an 1.s.r. .S is b-complete but not a-complete, then the i.s.r. obtained
by adding to S a maximal element oo is a-complete.

Let {S1,5s,...} be a collection if i.s.r. There are several ways to construct
a new 1.s.1. derived from the semirings of this collection.

EXAMPLE 3.1. Suppose S is ani.s.r., X is an arbitrary set. The set M(X;.5)
of all functions X — S 1s an i.s.r. with respect to the following operations:

(fog)(x)=fz)®glx), (fOg)(x)=/[f(z)ogx), zecX.

If S contains a zero 0 and/or a unity 1, then the functions o(z) = 0 for all
r € X, e(xr) =1 for all z € X are zero and unity of the i.s.r. M(X;5S). Tt is



also possible to consider various subsemirings of the i.s.r. M(X;S).

ExAMPLE 3.2. Let S; be semirings with operations @;, ®; and zeros 0;,
i = 1,...,n. The set S = (S1\{01}) x ... x (Sp \ {0,}) U0 is an is.r.
with respect to the following operations: & xy = (%1,...,2n) * (Y1,...,Yn) =
(Z1 %1 Y1, ..., &y *n Yn); the element O is a zero of this i.s.r.

Note, that the set S = S1 % ---x .S, 1s also an i.s.r. with respect to the same
operations; in this case the element (01, --,0,) is a zero of this i.s.r.

Notice that even if primitive semirings in examples 3.1 and 3.2 are linearly
ordered sets with respect to the orders induced by the correspondent addition
operations, the derived semirings are only partially ordered.

EXAMPLE 3.3. Let S be an i.s.r., Maty,, (S) be aset of all S-valued matrices.
Define the sum & of matrices A = ||a;;||, B = ||bi;]| € Maty,,(S) as A B =
llai; @ bs;]| € Maty,, (S), and let < be the corresponding order on Mat,,, ().
The product of two matrices A € Maty, (S) and B € Mat,, (S) is a matrix
AB € Maty, (S) such that AB = || @), aix @ byj||. Thus the set Mat,,(S) of
square matrices is an 1.s.r. with respect to these operations. If 0 is the zero of
S, then the matrix O = ||0;;||, where 0;; = 0, is the zero of the i.s.r. Mat,,(S5);
if 1 is the unity of S, then the matrix E = ||d;;||, where é;; = 1 if i = j and
d;; = 0 otherwise, is the unity of the i.s.r. Mat,, (S5).

Many additional examples can be found, e.g., in [2] - [7].

4 Idempotency and linearity

Now we discuss an idempotent analog of a linear space. A set V is called
a semimodule over an i.s.r. S (or an S-semimodule) if it is equipped with an
idempotent commutative associative addition operation @y and a multiplication
Oy: S x V = V satisfying the following conditions: for all A, p € S, v, w € V

e Aop) Ovv=A0y (kOV v);
e Aoy (vBv w) = (AoOv v) By (A Ov w);
e ADp)ovv=(A0Ovv)dv (1OV v).

An S-semimodule V 1s called a semimodule with zero if S is an 1.s.r. with zero
0 € S and there exists a zero element Oy € V such that forallve V, A e §

e 0Dy v=u;
e AOy 0y =00y v =0y.

ExaMPLE 4.1. FINITELY GENERATED FREE SEMIMODULE. The simplest
S-semimodule is the direct product S” = {(a1,...,a,)|a; € S,j =1,...,n}.
The set of all endomorphisms S™ — S™ coincides with the semiring Mat,, (S) of
all S-valued matrices (see example 3.3).

EXAMPLE 4.2. MATRIX SEMIMODULE. Take some ¢ € S, A € Maty,(5).
The product ¢ ® A is defined as the matrix ||c ® a;;|| € Maty,, (S). Then the set



of all S-valued matrices of a given order Mat,, (S) forms a semimodule under
addition & and multiplication by elements of S.

The theory of S-valued matrices is similar to the well-known Perron—Fro-
benius theory of nonnegative matrices (see, e.g., [3]). In particular, let S be
an algebraically closed i.s.r. satisfying cancellation and stabilization conditions;
then for any A € Mat,,,(.S) there exists a nontrivial subsemimodule V C 5", or
an eigenspace, and an element A € S, or an eigenvalue, such that Av = A@ v
for all v € V; the eigenvalue is determined uniquely if A is irreducible [13], [14].
Similar results hold for semimodules of bounded or continuous functions [3].

EXAMPLE 4.3. FUNCTION SPACES. An idempotent function space F(X;S)
is a subset of the set of all maps X — S such that if f(x), g(x) € F(X;S) and
c €5, then (f ®r(x;5) 9)(z) = f(z) @ g(z) € F(X;S) and (c OF(x;s) f)(2) =
c® f(z) € F(X;5); in other words, an idempotent function space is another
example of an S-semimodule. If the semiring S contains a zero element 0 and
F(X;S) contains the zero constant function o(#) = 0, then the function space
F(X;S) has the structure of a semimodule with zero o(z) over the semiring S.

Recall that the idempotent addition defines a partial order in an i.s.r. S. An
important example of an idempotent functional space is the space B(X;S) of
all functions X — S bounded from above with respect to the partial order < in
S. There are many interesting spaces of this type including C(X;.S) (a space of
continuous functions defined on a topological space X'), analogs of the Sobolev
spaces, etc. (see, e.g., [2] — [5] for details).

According to the correspondence principle, many important concepts, ideas
and results can be converted from usual functional analysis to Idempotent Anal-
ysis. For example, an idempotent scalar product in B(X;S) can be defined by
the formula

&
(o) = /X o(2) ® () do,

where the integral is defined as the sup operation as in the example 2.1. Notice,
however, that in the general case the ordering < in S is not linear.

EXAMPLE 4.4. INTEGRAL OPERATORS. It is natural to construct idempo-
tent analogs of integral operators of the form

&

K oly) = (Ke)(z) = /Y K(z,y) © ¢(y) dy,

where ¢(y) is an element of a functional space F1(Y;S), (K¢)(z) belongs to
a space F2(X;S) and K(z,y) is a function X x Y — S. Such operators are
gomomorphisms of the corresponding functional semimodules. If S = Ry,
then this definition turns into the formula

(Ko)(z) = sup (K(z,y) +¢(y)).

Formulas of this type are standard for optimization problems (see, e.g., [15]).



5 Superposition principle

In Quantum Mechanics the superposition principle means that the Schrodi-
nger equation (which is basic for the theory) is linear. Similarly in Idempotent
Mathematics the (idempotent) superposition principle means that some impor-
tant and basic problem and equations (e.g. optimization problems, the Bellman
equation and its versions and generalizations, the Hamilton-Jacobi equation)
nonlinear in the usual sense can be treated as linear over appropriate idempo-
tent semirings, see [1] — [4].

The linearity of the Hamilton-Jacobi equation over R i, and R, can be
deduced from the usual linearity (over C) of the corresponding Schrédinger
equation by means of the dequantization procedure described above (in Section
2). In this case the parameter h of this dequantization coincides with if , where
fi is the Plank constant; so in this case fi must take imaginary values (because
h > 0; see [5] for details). Of course, this is closely related to variational
principles of mechanics.

The situation is similar for the differential Bellman equation, see [1], [3].

It is well-known that discrete versions of the Bellman equations can be
treated as linear over appropriate idempotent semirings. The so-called gen-
eralized stationary (finite dimensional) Bellman equation has the form

X=A0X& B,

where X, A, B are matrices with elements from an idempotent semiring and
the corresponding matrix operations are described in Example 3.3 above; the
matrices A and B are given (specified) and it is necessary to determine X from
the equation.

B.A. Carre [16] used the idempotent linear algebra to show that different
optimization problems for finite graphs can be formulated in a unified manner
and reduced to solving these Bellman equations, i.e. systems of linear algebraic
equations over idempotent semirings. For example, Bellman’s method of solving
shortest path problems corresponds to a version of the Jacobi method for solving
systems of linear equations, whereas Ford’s algorithm corresponds to a version

of the Gauss-Seidel method.

6 Correspondence principle for computations

Of course, the (idempotent) correspondence principle is valid for algorithms
as well as for their software and hardware implementations [4], [8]. Thus:

If we have an tmportant and interesting numerical algorithm, then
there is a good chance that its semiring analogs are important and
interesting as well.

In particular, according to the superposition principle, analogs of linear al-
gebra algorithms are especially important. Note that numerical algorithms for



standard infinite-dimensional linear problems over i.s.r. (i.e. for problems re-
lated to i1dempotent integration, integral operators and transformations, the
Hamilton-Jacobi and generalized Bellman equations) deal with the correspond-
ing finite-dimensional (or finite) “linear approximations”. Nonlinear algorithms
often can be approximated by linear ones (and in this case idempotent linear
algebra serves to solve problems nonlinear in the usual sense). Thus idempotent
linear algebra is the basis of the idempotent numerical analysis.

Moreover, 1t is well-known that algorithms of linear algebra are convenient
for parallel computations; their idempotent analogs admit parallelization as
well. Thus we obtain a systematic way of applying parallel computation to
optimization problems.

Basic algorithms of linear algebra (such as inner product of two vectors, ma-
trix addition and multiplication, etc.) often do not depend on concrete semir-
ings, as well as the nature of domains containing the elements of vectors and
matrices. Thus it seems reasonable to develop universal algorithms that can
deal equally well with initial data of different domains sharing the same ba-
sic structure [4], [8]; an example of such universal Gauss—Jordan elimination
algorithm is found in [17].

Numerical algorithms are combinations of basic operations with ‘numbers’,
which are elements of some numerical domains (e.g., real numbers, integers,
etc). But every computer uses some finite models or finite representations of
these domains. Discrepancies between ‘ideal’ numbers and their ‘real’ represen-
tations lead to calculation errors. This is another reason to deal with universal
algorithms that allow to choose a concrete semiring and take into account the
effects of its concrete finite representation in a systematic way; see [4], [8] for de-
tails and applications of the correspondence principle to hardware and software
design.

7 Set-valued idempotent arithmetics

Due to imprecision of sources of input data in real-world problems, the data
usually come in a form of intervals or other number sets rather than exact quan-
tities. To deal with this problem in the context of optimization theory and Idem-
potent Analysis we develop a set-valued extension of idempotent arithmetics.
In this sections we discuss several natural assumptions that this arithmetics 1s
expected to satisfy.

Suppose S is an 1.s.r. and § is a system of its subsets. We shall denote the
elements of S by x, y, ...

Proposition 1 Suppose S satisfies the following conditions

e the system S contains all one-element subsets of S, i.e., the “exact values”
of the elements of this i.s.r.;

e ifx, y €8 and x 1s an algebraic operation in S, then there exists z € S
such thatz Dxxy ={t €S| (Fe ex)(Ay €y)t = x *xy};



o if {xo} is a subset of S such that (), xo # @, then there exists the infimum
of {xq} in 8 with respect to the ordering C, i.e., the set'y € S such that
Yy C\yXa and z Cy for any z € S such that z C (), Xa.

Let the algebraic operations @&, @ in S be defined as follows: if x, y € S, then
xxy is the infimum of the set of all elements z € § such thatz D x*xy. Then §
15 closed with respect to these operations and the element xxy is optimal in the
following sense: suppose the exact values of input variables x and y lie in sets x
and y, respectively, then the result of an algebraic operation x%y contains the
quantity @ xy and s the least subset of S in S with this property. In addition,
the i.s.r. {S,®,®} is isomorphic to a subset of the algebra {S,®,0}.

The proof is straightforward.

In general, not much can be said about the algebra {S,®, ©}, as the following
example shows.

EXAMPLE 7.1. Let & = 2° and x*y = x «y. In general, the set S with
these ‘naive’ operations @, ® satisfies assumptions of proposition 1 but is not
an i.s.r. Indeed, let S be the i.s.r. (Rpayx \ {0})% U {(0,0)} with operations &,
® defined as in example 3.2. Consider a set x = {(0,1),(1,0)} € S; we see
that x®x = {(0,1),(1,0),(1,1)} # x and if y = {(1,0)}, z = {(0,1)}, then
xO(yPz) = {(1,2),(2, )} # (xOy)B(x0z) = {(1,1), (1,2),(2,1),(2,2)}. Thus
S with operations @, ©® does not satisfy axioms of idempotency and distribu-
tivity.

It follows that & should satisfy some additional conditions in order to have
the structure of an i.s.r. In the next section we consider the case when § is a set
of all closed intervals; this case is of particular importance since it represents an
idempotent analog of the traditional Interval Analysis.

8 Interval extensions of idempotent semirings

Let S be an i.s.r. A (closed) interval in S is a set of the form x = [x,X] =
{t € S|x gt < X}, where x, X € S (x X X) are said to be lower and upper
bounds of the interval x, respectively.

Note that if x and y are intervals in S, then x Cyiff y < x<x<y. In
particular, x =y iff x =y and X = ¥y. B

Let x, y be intervals in S. In general, the set x xy is not an interval in S.
Indeed, consider a set S = {0,a,b,c,d} and let @ be defined by the following
order relation: O is the least element, d 1s the greatest element, and a, b, and ¢
are noncomparable with each other. If ® is a zero multiplication,i.e.,if xOy = 0
for all #, y € S, then S is an i.s.r. without a unity. Let x = [0, a] and y = [0, b];
thus x xy = {0, a,b,d}, which is not an interval because it does not contain ¢
although 0 g e < d.

Proposition 2 Suppose S is an i.s.r. and x, y are intervals in S; then the

interval [X xy,X xy] contains the set x xy and is contained in every other
interval containing this set. If S is an a-complete (b-complete) i.s.r. and {Xq}
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is a nonempty set of intervals in S (a nonempty set of intervals in S such
that the set {Xn} is bounded), then the interval [P x,, P, Xa] contains the
set N = {t € S|(Va)(Fxn € x4)t = @ o} and is contained in every other
interval containing N .

Proor. Taket € xxy and let # € x, y € y be such that ¢t =  xy. By
definition of interval, it follows that x < # X X and y < y < y. Since the
operation * is consistent with the order <, we see that xxy < zxy < X*y. In
particular, x xy < X*Y, i.e., the interval [x xy, X *¥] is properly defined. It
follows that x xy C [x*y,X+¥]. B

Now let an interval z in S be such that xxy C z. We have xxy € x*xy C 2
and X+x¥ € xxy C z; hence z < x xy and X+ § +Z. Since xxy < X+ ¥ by the
above, it follows that [x xy, X+ ¥] C z. B

The statement concerning an a-complete i.s.r. is proved similarly. If S is a
b-complete semiring and the set {X,} is bounded from above, then the set {x,}
is also bounded from above | i.e., there exists y € S such that x, < X, < ¥
for all o. Thus there exist @, x, € S and @ X, € S. Now the obvious
adaptation of the above argument completes the proof. a

We see that x*xy = [x*xy, X *Yy].

Consider the set I(S) of all intervals in S that do not contain 0.

Proposition 3 Suppose i.s.r. S either does not contain a zero or has a zero
0 but does not contain zero divisors; then the set I(S) is an i.s.r. with respect
to the operations © and © without a zero element. If S contains a unity 1,
then the interval [1,1] is the unity of i.s.r. I(S). If S is an a-complete i.s.r.
(b-complete i.s.r.) and {Xq} is a nonempty subset of I(S) (a nonempty subset
of S such that the set {Xo} is bounded from above), then its sum @axa € 1(9)
and

yo (@axa) = @a(y@m), (@axa) Oy = @a(xo@y)
for any y € I(S).

ProoF. From proposition 2 it follows that if x = [x,X] € I(S) and y =
[y, ¥] € 1(S), then xxy = [x *y,X*¥]. Let us check that xxy € I(S).
 Indeed, this is obvious if S contains no zero element. Assume S has the zero
0. First we shall show that x@®y € I(S5). Clearly, an interval x = [x,X] in S
belongs to I(S) iff x # 0; hence it is sufficient to check that if x # 0 and y # 0,
then x @y #0. But # ®y = 0 iff z = 0 and y = 0; thus I(5) is closed with
respect to the addition .

Now let us check that x®y € 1(S); to do this, it is sufficient to show that if
x # 0 and y # 0, then x ® y # 0. But this is so because S has no zero divisors.

The reader will have no difficulty in showing that the operations & and
@ are associative, the addition @ is commutative and each element of 7(S) is
idempotent with respect to it, and the multiplication ® is distributive. The
proof is by direct calculation based on proposition 2.
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Notice that the idempotent addition & determines a partial order < on I(S).
Let us check that I(S) contains no zero element. The only nontrivial case is
when the i.s.r. S has a least element [ but [ is not a zero. We see that I(S) has
the least element [[,{] with respect to the order <. Sincel # 0, there exists x € S
such that e ® 1 # 1l or Il ® & # . Hence [z, 2]O[, ] £ [1,1] or [[,1|O[x, 2] £ [I,1].
This means that [/,{] cannot be a zero element of I(S). Let us remember that
if a zero exists, then it is the least element of the i.s.r.; thus I(S) has no zero
element.

It follows easily from proposition 2 that if 1 € S, then the interval [1,1] is
the unity element of 7(S).

The statements concerning a-complete and b-complete i.s.r.”s are proved by
direct calculation based on proposition 2. a

Corollary-Theorem 1 Suppose an i.s.7. S has a zero element 0 but contains
no zero divisors and denote the set I(S) U[0,0] by I(S). Then the set I(S) is
an i.s.r. with the zero element [0, 0] containing no zero divisors with respect to
the operations ©, ©. If S is an a-complete i.s.r. (b-complete i.s.r.), then I(S)
is an a-complete i.s.r. (b-complete i.s.r.).

The proof 1s obvious.

Proposition 4 [fan i.s.r. S without zero divisors satisfies the cancellation con-
dition (the stabilization condition), then the i.s.r. I(S) satisfies the cancellation
condition (the stabilization condition). If S is an i.s.r. with commutative mul-
tiplication ©, then I(S) is an i.s.r. with commutative multiplication ©.

Proofs of commutativity of the multiplication @ and of the cancellation
condition follow easily from proposition 2. Suppose S satisfies the stabilization
condition. By definition of I(S), x # [0,0] iff x # 0 and X # 0. Thus it
follows from proposition 2 that the stabilization holds in S for both bounds of
the involved intervals and hence for the whole intervals as elements of 7(S).

d

Corollary 2 If the i.s.r. S has a zero element, then the above proposition is
true for the i.s.r. I(S).

Proposition 5 IfS is an i.s.7. without zero divisors that satisfies the conditions
of cancellation and algebraic completeness, then the i.s.r. I(S) satisfies the same
conditions.

PRrOOF. By proposition 4, it follows that the i.s.r. I(S) satisfies the can-
cellation condition. Suppose x” = x®x®...®x = y. By proposition 2, we
see that x” =y and X" = ¥y. Let z € S and Z € S be the solutions of these
two equations. We claim that z and Z can be chosen such that z < Z, i.e., the
interval [z,7] is well defined.

Take 2 = z ® Z; hence z < 7. Since S satisfies the cancellation property,
it follows that Z™ = (z ® Z)" = 2" $ 7" (see, e.g., [14, assertion 2.1]). Thus
Z"—y®y =Y. Wesee that [z,Z]" = [y,¥] = ¥. O

12



Corollary 3 Is the i.s.r. S contains a zero, then the same statement holds for

the i.s.r. I(S).

Suppose an i.s.r. S has no zero element; then the map ¢: S — I(S) defined
by «(x) = [, ] is an isomorphic imbedding of the i.s.r. S into the i.s.r. I(S).
Suppose an i.s.r. S contains a zero 0 and the map ¢p: S — I(S) is such that
tp(0) = [0, 0] and ¢q coincides with ¢: S\O — I(S) C I(S) on S\O0; then the map
tp is an isomorphic imbedding of the i.s.r. S into the i.s.r. I(S). In the sequel,
we will identify the i.s.r. S with the subsemiring ¢«(S) C I(S) or ¢(S) C I(S)
and denote the operations in I(S) of I(S) by @, ®. If the i.s.r. S contains a
unity 1, then we denote the unity [1,1] € I(S) by 1; also, denote [0,0] € I(S)
by 0.

We stress that in the traditional Interval Analysis multiplication of intervals
is not distributive with respect to interval addition. On the contrary, in idempo-
tent interval mathematics most of algebraic properties of an i.s.r. are conserved
in its interval extension. On the other hand, even if .S is an idempotent semi-
field, then the set T(S) is only an i.s.r. satisfying the cancellation condition (but
not a semifield).

Note also that it is monotonicity of operations @, @ and positivity of all
elements of an 1.s.r. with respect to the ordering < that makes the idempo-
tent interval arithmetics so simple. In general, idempotent interval analysis
appears to be best suited for treating the problems with order-preserving trans-
formations. An important instance of this kind of transformations is the linear
operator in a semimodule over an 1.s.1.

9 Application to linear algebra

Suppose S is an i.s.r. with zero 0 and unity 1 and I(.S) is its interval extension.
Thus Mat,,(I(S)) is an i.s.r. We stress that that in the traditional Interval
Analysis the set of all interval matrices is not even a semigroup with respect
to matrix multiplication; indeed, the operation of matrix multiplication is not
assoclative since the operation of interval multiplication is not distributive.

Recall that the matrix A = ||a;;|| € Mat,,(I(S)) is said to be irreducible
(see [13], [14]) if b;; # 0 for all ¢, j such that 1 < i < j < n, where B = ||b;;|| =
D=1 A _

If A = ||a;;|| € Maty,, (I(S)), then the matrices A = ||a;;|| and A = ||a;]]
are called lower and upper matrices of the interval matriz A. The unity of the
i.s.r. Maty,,, (I(S)) is denoted by E.

It follows easily from [14, theorem 6.2] that

Proposition 6 If an i.s.r. S with commutative multiplication ® is algebraically
closed and satisfies cancellation and stabilization conditions, then for any matriz
A € Maty, (I(S)) there exist an ‘eigenvector’ V € Mat,1(I(S)) and an ‘eigen-

value’ [A, A] € I(S) such that AV = [A,N] @ V. If the matriz A is irreducible,

then the ‘eigenvalue’ [\, A] is determined uniquely.

13



It follows from proposition 2 that addition and multiplication of interval
matrices are reduced to separate addition and multiplication of their lower and
upper matrices. Hence AV=)XA6oV and AV=X0V.

Consider the following discrete stationary Bellman equation (see Section b
above), which plays an important part in optimization theory:

X = AX @& B, (1)

where A € Mat,, (I(S)), B, X € Mat,;(I(S)). Consider the following iterative
process:

k
Xpp1 = AX, 6B =A""X; 0 (@ Al) B, (2)
=0
where X € Mat, (I(S)), ¥ = 0,1,... If S is an a-complete i.s.r., then for
any matrix A there exists a closure matriz A* = @2, A' and X = A*B
satisfies (1).

Proposition 7 If an a-complete i.s.r. S satisfies the assumptions of propo-
sition 6 and A € Mat,,, (I(S)) is an irreducible matriz with the ‘eigenvalue’

[A, A] < 1, then the sequence {X} stabilizes to the solution X = A*B of equa-
tion (1) for all k > n whenever Xy g X.

Proor. It follows from proposition 2 that it i1s sufficient to prove that
sequences of lower and upper matrices of {Xy} stabilize separately.
Consider the sequence of upper matrices X;. We have

k
X1 =AX; & B = Xk-HXo & (@ Xl) B,
=0

where the eigenvalue of the matrix A is A < 1 and X, < A'B. Suppose
that there exist | € N, 1 < | < n, and a cyele {i1,...,4} C N such that
1<, .., asn, i £isifr£s,and 1 < 1@ P, where the cycle invariant P
is defined as a;;;, ©...a;,_,;, ®a;;,. Using the formula (4) of [14] to express the

greatest eigenvalue of the matrix A, we obtain 1 < 1® P <13 Xw(n)’ where

¢(n) is the least common multiple of 1,2, ..., n. On the other hand, since A=<1,
we see that XW(H) = Xw(n)_l ON= Xw(n)_l <...< A <1, thatis 1@Xw(n) =1.
This contradiction proves that for any cycle P < 1. This means that the matrix
A is semi-definite in the sense of Carré [16]. Thus theorem 6.2 of [16] implies
that for any Xg such that X, < A"B the sequence {X}} stabilizes after at most
n iterations.

Continuing this line of reasoning, we see that {X;} also stabilizes after n
steps since A < A < 1. a
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