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Idempotent Mathematics and Interval Analysis �G.L. Litvinovy V.P. Maslovz A.N. Sobolevski��xAbstractA brief introduction into Idempotent Mathematics and an idempo-tent version of Interval Analysis are presented. Some applications arediscussed.Key words: Idempotent Mathematics, Interval Analysis, idempotentsemiring, idempotent linear algebraMSC: 65G10, 16Y60, 06F05, 08A70, 65K101 IntroductionMany problems in the optimization theory and other �elds of mathematicsappear to be linear over semirings with an idempotent addition (the so-calledidempotent superposition principle [1] which is a natural analog of the well-known superposition principle in Quantum Mechanics). The corresponding ap-proach is developed systematically as Idempotent Mathematics or IdempotentAnalysis, a branch of mathematics which has been growing vigorously last time(see, e.g., [1] { [7]).Moreover, there exists a correspondence between interesting, useful, andimportant constructions and results concerning the �eld of real (or complex)numbers and similar constructions dealing with various idempotent semirings.This correspondence can be formulated in the spirit of the well known N. Bohr'scorrespondence principle in Quantum Mechanics [4]. We discuss idempotentanalogs of some basic ideas, constructions, and results in traditional calculusand functional analysis; also, we show that the correspondence principle is apowerful heuristic tool to apply unexpected analogies and ideas borrowed fromdi�erent areas of mathematics (see, e.g., [1] { [5]).The theory is well advanced and includes, in particular, new integration the-ory, new linear algebra, spectral theory, and functional analysis. Its applicationsinclude various optimization problems such as multicriteria decision making, op-timization on graphs, discrete optimization with a large parameter (asymptoticproblems), optimal design of computer systems and computer media, optimal�The work was supported by the joint INTAS{RFBR grant No. 95{91 and the ErwinSchr�odinger Institute for Mathematical Physics.yElectronic mail: litvinov@islc.msk.suzElectronic mail: maslov@ipmnet.ruxElectronic mail: ans@srdlan.npi.msu.su 1



organization of parallel data processing, dynamic programming, applicationsto di�erential equations, numerical analysis, discrete event systems, computerscience, discrete mathematics, mathematical logic, etc. (see, e.g., [2] { [8] andreferences therein).In this paper we present an idempotent analog of Interval Analysis (see,e.g., [9], [10]). The idempotent interval (and, more generally, set-valued) arith-metics appears to be remarkably simpler than its traditional analog. We stressthat this construction provides another example of heuristic power of the idem-potent correspondence principle.This paper is organized as follows. In section 2 we give a short heuristicintroduction into Idempotent Mathematics. Section 3 contains de�nitions ofbasic concepts of idempotent arithmetics and several important examples. Insections 4{6 we consider the notion of linearity in Idempotent Analysis anddiscuss its computer applications. In section 7 we discuss a set-valued general-ization of algebraic operations of Idempotent Analysis. The interval extension ofan idempotent semiring, already considered in [11], is constructed in section 8.In section 9 we consider a simple application of this structure to linear algebra.2 Dequantization and idempotentcorrespondence principleLet R be the �eld of real numbers and R+ be the subset of all non-negativenumbers. Consider the following change of variable:u 7! w = h lnu;where u 2 R+ n f0g, h > 0; thus u = ew=h, w 2 R. Denote by 0 the additionalelement �1 and by S the extended real line R[ f0g. The above change ofvariable has a natural extension Dh to the whole S by Dh(0) = 0; also, wedenote Dh(1) = 0 = 1.Denote by Sh the set S equipped with the two operations �h (generalizedaddition) and �h (generalized multiplication) such that Dh is a homomorphismof fR+;+; �g to fS;�h;�hg. This means that Dh(u1+u2) = Dh(u1)�hDh(u2)and Dh(u1 �u2) = Dh(u1)�hDh(u2), i.e., w1�h w2 = w1+w2 and w1�h w2 =h ln(ew1=h+ ew2=h). It is easy to prove that w1�hw2 ! maxfw1; w2g as h! 0.Denote by Rmax the set S = R[ f0g equipped with operations � = maxand � = +, where 0 = �1, 1 = 0 as above. Algebraic structures in R+ andSh are isomorphic; therefore Rmax is a result of a deformation of the structurein R+.We stress the obvious analogy with the quantization procedure, where h isthe analog of the Planck constant. In these terms, R+ (or R) plays the part ofa `quantum object' while Rmax acts as a `classical' or `semiclassical' object thatarises as the result of a dequantization of this quantum object.Likewise, denote by Rmin the set R[ f0g equipped with operations � =min and � = +, where 0 = +1 and 1 = 0. Clearly, the corresponding2



dequantization procedure is generated by the change of variables u 7! w =�h lnu.Consider also the set R[f0;1g, where 0 = �1, 1 = +1, together with theoperations � = max and � = min. Obviously, it can be obtained as a result ofa `second dequantization' of R or R+.The algebras presented in this section are the most important examplesof idempotent semirings (for the general de�nition see section 3), the centralalgebraic structure of Idempotent Analysis. The basic object of the traditionalcalculus is a function de�ned on some set X and taking its values in the �eld R(or C ); its idempotent analog is a map X ! S, where X is some set and S =Rmin, Rmax, or another idempotent semiring. Let us show that rede�nition ofbasic constructions of traditional calculus in terms of Idempotent Mathematicscan yield interesting and nontrivial results (see, e.g., [1] { [6] for details andgeneralizations).Example 2.1. Integration and measures. To de�ne an idempotentanalog of the Riemann integral, consider a Riemann sum for a function '(x),x 2 X = [a; b], and substitute semiring operations � and � for operations + and� in its expression (for the sake of being de�nite, consider the semiring Rmax):NXi=1 '(xi) ��i 7! NMi=1 '(xi)��i = maxi=1;:::;N ('(xi) + �i);where a = x0 < x1 < : : : < xN = b, �i = xi � xi�1, i = 1, . . . , N . Asmaxi�i ! 0, the integral sum tends toZ �X '(x) dx = supx2X '(x)for any function ': X ! Rmax that is bounded. In general, the set functionm'(B) = supx2B '(x); B � X;is called an Rmax-measure on X; since m'(S�B�) = sup�m'(B�), this mea-sure is completely additive. An idempotent integral with respect to this measureis de�ned asZ �X  (x) dm' = Z �X  (x) � '(x) dx = supx2X ( (x) + '(x)):Example 2.2. Fourier{Legendre transform. Consider the topologicalgroup G = Rn. The usual Fourier{Laplace transform is de�ned as'(x) 7! e'(�) = ZG ei��x'(x) dx;where exp(i� � x) is a character of the group G, i.e., a solution of the followingfunctional equation: f(x + y) = f(x)f(y):3



The idempotent analog of this equation isf(x + y) = f(x) � f(y) = f(x) + f(y):Hence `idempotent characters' of the group G are linear functions of the formx 7! � � x = �1x1 + : : :+ �nxn. Thus the Fourier{Laplace transform turns into'(x) 7! e'(�) = Z �G � � x� '(x) dx = supx2G (� � x+ '(x)):This equation di�ers from the well-known Legendre{Fenchel transform (see,e.g., [12]) in insigni�cant details.These examples suggest the following formulation of the idempotent corre-spondence principle [4]:There exists a heuristic correspondence between interesting, useful,and important constructions and results over the �eld of real (orcomplex) numbers and similar constructions and results over idem-potent semirings in the spirit of N. Bohr's correspondence principlein Quantum Mechanics.So Idempotent Mathematics can be treated as a \classical shadow (or coun-terpart)" of the traditional Mathematics over �elds.3 Idempotent semiringsNow we are prepared to give a number of general de�nitions. Consider aset S equipped with two algebraic operations: addition � and multiplication�. The triple fS;�;�g is an idempotent semiring (i.s.r. for short) if it satis�esthe following conditions (here and below, the symbol ? denotes any of the twooperations �, �):� the addition � and the multiplication � are associative: x ? (y ? z) =(x ? y) ? z for all x; y; z 2 S;� the addition � is commutative: x� y = y � x for all x; y 2 S;� the addition � is idempotent : x� x = x for all x 2 S;� the multiplication � is distributive with respect to the addition �: x �(y � z) = (x � y) � (x � z) and (x � y) � z = (x � z) � (y � z) for allx; y; z 2 S.A unity of an i.s.r. S is an element 1 2 S such that for all x 2 S1� x = x� 1 = x:A zero of an i.s.r. S is an element 0 2 S such that 0 6= 1 and for all x 2 S0� x = x; 0 � x = x� 0 = 0:4



It is readily seen that if an i.s.r. S contains a unity (a zero), then this unity(zero) is determined uniquely.Note that di�erent versions of this axiomatics are used, see, e.g., [2] { [7]and some literature indicated in these books and papers.The addition � de�nes on an i.s.r. S the partial order : x 4 y i� x� y = y.We use the notation x � y if x 4 y and x 6= y. If an i.s.r. S contains a zero 0,then 0 is its least element with respect to the order 4. The operations � and �are consistent with the order 4 in the following sense: if x 4 y, then x?z 4 y?zand z ? x 4 z ? y for all x, y, z 2 S.An i.s.r. S is said to be a-complete if for any subset fx�g � S, including?, there exists a sumLfx�g =L� x� such that (L� x�) � y =L�(x� � y)and y � (L� x�) =L�(y � x�) for any y 2 S. An i.s.r. S containing a zero 0is said to be b-complete if the conditions of a-completeness are satis�ed for anynonempty subset fx�g � S that is bounded from above. See [5] for details.Note that L� x� = supfx�g; in particular, an a-complete i.s.r. always con-tains a zero 0 =L?.An i.s.r. S does not contain zero divisors if x� y = 0 implies that x = 0 ory = 0 for all x, y 2 S. An i.s.r. S is said to satisfy the cancellation condition iffor all x, y, z 2 S such that x 6= 0 it follows from x� y = x� z or y�x = z�xthat y = z. Obviously, an i.s.r. satisfying the cancellation property containsno zero divisors. In i.s.r. S is said to be idempotent semi�eld if every nonzeroelement of S is invertible; in this case the cancellation condition is valid.An i.s.r. S is said to be algebraically closed if the equation xn = y, wherexn = x � x � : : : � x (n times), has a solution for all y 2 S and n 2 N; ani.s.r. S with a unity 1 satis�es the stabilization condition if the sequence xn� ystabilizes whenever x 4 1 and y 6= 0 [13], [14].The most important examples of i.s.r. are those considered in section 2. Wesee that Rmax is a b-complete algebraically closed idempotent semi�eld (satisfy-ing stabilization and cancellation conditions; it contains no zero divisors). Thei.s.r. Rmin is isomorphic to Rmax. Note that both Rmax and Rmin are linearlyordered with respect to the corresponding addition operations; the order 4 inRmax coincides with the usual linear order 6 and is opposite to the order 4 inRmin.Consider the set eRmax = Rmax [ f1g with operations �, � extended by1� x = 1 for all x 2 Rmax, 1� x = 1 if x 6= 0 and 1� 0 = 0. It is easilyshown that this set is an a-complete i.s.r. and 1 is its maximal element. Ingeneral, if an i.s.r. S is b-complete but not a-complete, then the i.s.r. obtainedby adding to S a maximal element 1 is a-complete.Let fS1; S2; : : :g be a collection if i.s.r. There are several ways to constructa new i.s.r. derived from the semirings of this collection.Example 3.1. Suppose S is an i.s.r.,X is an arbitrary set. The setM(X;S)of all functions X ! S is an i.s.r. with respect to the following operations:(f � g)(x) = f(x) � g(x); (f � g)(x) = f(x) � g(x); x 2 X:If S contains a zero 0 and/or a unity 1, then the functions o(x) = 0 for allx 2 X, e(x) = 1 for all x 2 X are zero and unity of the i.s.r. M(X;S). It is5



also possible to consider various subsemirings of the i.s.r. M(X;S).Example 3.2. Let Si be semirings with operations �i, �i and zeros 0i,i = 1; : : : ; n. The set S = (S1 n f01g) � : : : � (Sn n f0ng) [ 0 is an i.s.r.with respect to the following operations: x ? y = (x1; : : : ; xn) ? (y1; : : : ; yn) =(x1 ?1 y1; : : : ; xn ?n yn); the element 0 is a zero of this i.s.r.Note, that the set eS = S1�� � ��Sn is also an i.s.r. with respect to the sameoperations; in this case the element (01; � � � ;0n) is a zero of this i.s.r.Notice that even if primitive semirings in examples 3.1 and 3.2 are linearlyordered sets with respect to the orders induced by the correspondent additionoperations, the derived semirings are only partially ordered.Example 3.3. Let S be an i.s.r., Matmn(S) be a set of all S-valued matrices.De�ne the sum � of matrices A = kaijk, B = kbijk 2 Matmn(S) as A � B =kaij � bijk 2 Matmn(S), and let 4 be the corresponding order on Matmn(S).The product of two matrices A 2 Matlm(S) and B 2 Matmn(S) is a matrixAB 2 Matln(S) such that AB = kLmk=1 aik � bkjk. Thus the set Matnn(S) ofsquare matrices is an i.s.r. with respect to these operations. If 0 is the zero ofS, then the matrix O = koijk, where oij = 0, is the zero of the i.s.r. Matnn(S);if 1 is the unity of S, then the matrix E = k�ijk, where �ij = 1 if i = j and�ij = 0 otherwise, is the unity of the i.s.r. Matnn(S).Many additional examples can be found, e.g., in [2] { [7].4 Idempotency and linearityNow we discuss an idempotent analog of a linear space. A set V is calleda semimodule over an i.s.r. S (or an S-semimodule) if it is equipped with anidempotent commutative associative addition operation�V and a multiplication�V : S � V ! V satisfying the following conditions: for all �, � 2 S, v, w 2 V� (� � �) �V v = ��V (��V v);� � �V (v �V w) = (��V v) �V (��V w);� (� � �) �V v = (��V v) �V (� �V v).An S-semimodule V is called a semimodule with zero if S is an i.s.r. with zero0 2 S and there exists a zero element 0V 2 V such that for all v 2 V , � 2 S� 0�V v = v;� � �V 0V = 0�V v = 0V .Example 4.1. Finitely generated free semimodule. The simplestS-semimodule is the direct product Sn = f(a1; : : : ; an)j aj 2 S; j = 1; : : : ; ng.The set of all endomorphisms Sn ! Sn coincides with the semiring Matn(S) ofall S-valued matrices (see example 3.3).Example 4.2. Matrix semimodule. Take some c 2 S, A 2 Matmn(S).The product c�A is de�ned as the matrix kc� aijk 2Matmn(S). Then the set6



of all S-valued matrices of a given order Matmn(S) forms a semimodule underaddition � and multiplication by elements of S.The theory of S-valued matrices is similar to the well-known Perron{Fro-benius theory of nonnegative matrices (see, e.g., [3]). In particular, let S bean algebraically closed i.s.r. satisfying cancellation and stabilization conditions;then for any A 2Matnn(S) there exists a nontrivial subsemimodule V � Sn, oran eigenspace, and an element � 2 S, or an eigenvalue, such that Av = � � vfor all v 2 V ; the eigenvalue is determined uniquely if A is irreducible [13], [14].Similar results hold for semimodules of bounded or continuous functions [3].Example 4.3. Function spaces. An idempotent function space F(X;S)is a subset of the set of all maps X ! S such that if f(x), g(x) 2 F(X;S) andc 2 S, then (f �F(X;S) g)(x) = f(x) � g(x) 2 F(X;S) and (c �F(X;S) f)(x) =c � f(x) 2 F(X;S); in other words, an idempotent function space is anotherexample of an S-semimodule. If the semiring S contains a zero element 0 andF(X;S) contains the zero constant function o(x) = 0, then the function spaceF(X;S) has the structure of a semimodule with zero o(x) over the semiring S.Recall that the idempotent addition de�nes a partial order in an i.s.r. S. Animportant example of an idempotent functional space is the space B(X;S) ofall functions X ! S bounded from above with respect to the partial order 4 inS. There are many interesting spaces of this type including C(X;S) (a space ofcontinuous functions de�ned on a topological space X), analogs of the Sobolevspaces, etc. (see, e.g., [2] { [5] for details).According to the correspondence principle, many important concepts, ideasand results can be converted from usual functional analysis to Idempotent Anal-ysis. For example, an idempotent scalar product in B(X;S) can be de�ned bythe formula h';  i = Z �X '(x) �  (x) dx;where the integral is de�ned as the sup operation as in the example 2.1. Notice,however, that in the general case the ordering 4 in S is not linear.Example 4.4. Integral operators. It is natural to construct idempo-tent analogs of integral operators of the formK : '(y) 7! (K')(x) = Z �Y K(x; y)� '(y) dy;where '(y) is an element of a functional space F1(Y ;S), (K')(x) belongs toa space F2(X;S) and K(x; y) is a function X � Y ! S. Such operators aregomomorphisms of the corresponding functional semimodules. If S = Rmax,then this de�nition turns into the formula(K')(x) = supy2Y (K(x; y) + '(y)):Formulas of this type are standard for optimization problems (see, e.g., [15]).7



5 Superposition principleIn Quantum Mechanics the superposition principle means that the Schr�odi-nger equation (which is basic for the theory) is linear. Similarly in IdempotentMathematics the (idempotent) superposition principle means that some impor-tant and basic problem and equations (e.g. optimization problems, the Bellmanequation and its versions and generalizations, the Hamilton-Jacobi equation)nonlinear in the usual sense can be treated as linear over appropriate idempo-tent semirings, see [1] { [4].The linearity of the Hamilton-Jacobi equation over Rmin and Rmax can bededuced from the usual linearity (over C ) of the corresponding Schr�odingerequation by means of the dequantization procedure described above (in Section2). In this case the parameter h of this dequantization coincides with i~ , where~ is the Plank constant; so in this case ~ must take imaginary values (becauseh > 0; see [5] for details). Of course, this is closely related to variationalprinciples of mechanics.The situation is similar for the di�erential Bellman equation, see [1], [3].It is well-known that discrete versions of the Bellman equations can betreated as linear over appropriate idempotent semirings. The so-called gen-eralized stationary (�nite dimensional) Bellman equation has the formX = A �X � B;where X, A, B are matrices with elements from an idempotent semiring andthe corresponding matrix operations are described in Example 3.3 above; thematrices A and B are given (speci�ed) and it is necessary to determine X fromthe equation.B.A. Carre [16] used the idempotent linear algebra to show that di�erentoptimization problems for �nite graphs can be formulated in a uni�ed mannerand reduced to solving these Bellman equations, i.e. systems of linear algebraicequations over idempotent semirings. For example, Bellman's method of solvingshortest path problems corresponds to a version of the Jacobi method for solvingsystems of linear equations, whereas Ford's algorithm corresponds to a versionof the Gauss-Seidel method.6 Correspondence principle for computationsOf course, the (idempotent) correspondence principle is valid for algorithmsas well as for their software and hardware implementations [4], [8]. Thus:If we have an important and interesting numerical algorithm, thenthere is a good chance that its semiring analogs are important andinteresting as well.In particular, according to the superposition principle, analogs of linear al-gebra algorithms are especially important. Note that numerical algorithms for8



standard in�nite-dimensional linear problems over i.s.r. (i.e. for problems re-lated to idempotent integration, integral operators and transformations, theHamilton-Jacobi and generalized Bellman equations) deal with the correspond-ing �nite-dimensional (or �nite) \linear approximations". Nonlinear algorithmsoften can be approximated by linear ones (and in this case idempotent linearalgebra serves to solve problems nonlinear in the usual sense). Thus idempotentlinear algebra is the basis of the idempotent numerical analysis.Moreover, it is well-known that algorithms of linear algebra are convenientfor parallel computations; their idempotent analogs admit parallelization aswell. Thus we obtain a systematic way of applying parallel computation tooptimization problems.Basic algorithms of linear algebra (such as inner product of two vectors, ma-trix addition and multiplication, etc.) often do not depend on concrete semir-ings, as well as the nature of domains containing the elements of vectors andmatrices. Thus it seems reasonable to develop universal algorithms that candeal equally well with initial data of di�erent domains sharing the same ba-sic structure [4], [8]; an example of such universal Gauss{Jordan eliminationalgorithm is found in [17].Numerical algorithms are combinations of basic operations with `numbers',which are elements of some numerical domains (e.g., real numbers, integers,etc). But every computer uses some �nite models or �nite representations ofthese domains. Discrepancies between `ideal' numbers and their `real' represen-tations lead to calculation errors. This is another reason to deal with universalalgorithms that allow to choose a concrete semiring and take into account thee�ects of its concrete �nite representation in a systematic way; see [4], [8] for de-tails and applications of the correspondence principle to hardware and softwaredesign.7 Set-valued idempotent arithmeticsDue to imprecision of sources of input data in real-world problems, the datausually come in a form of intervals or other number sets rather than exact quan-tities. To deal with this problem in the context of optimization theory and Idem-potent Analysis we develop a set-valued extension of idempotent arithmetics.In this sections we discuss several natural assumptions that this arithmetics isexpected to satisfy.Suppose S is an i.s.r. and S is a system of its subsets. We shall denote theelements of S by x, y, . . .Proposition 1 Suppose S satis�es the following conditions� the system S contains all one-element subsets of S, i.e., the \exact values"of the elements of this i.s.r.;� if x, y 2 S and ? is an algebraic operation in S, then there exists z 2 Ssuch that z � x ? y = ft 2 Sj (9x 2 x)(9y 2 y) t = x ? yg;9



� if fx�g is a subset of S such that T� x� 6= ?, then there exists the in�mumof fx�g in S with respect to the ordering �, i.e., the set y 2 S such thaty � T� x� and z � y for any z 2 S such that z � T� x�.Let the algebraic operations �, � in S be de�ned as follows: if x, y 2 S, thenx ?y is the in�mum of the set of all elements z 2 S such that z � x?y. Then Sis closed with respect to these operations and the element x ?y is optimal in thefollowing sense: suppose the exact values of input variables x and y lie in sets xand y, respectively; then the result of an algebraic operation x ?y contains thequantity x ? y and is the least subset of S in S with this property. In addition,the i.s.r. fS;�;�g is isomorphic to a subset of the algebra fS;�;�g.The proof is straightforward.In general, not much can be said about the algebra fS;�;�g, as the followingexample shows.Example 7.1. Let S = 2S and x ?y = x ? y. In general, the set S withthese `na��ve' operations �, � satis�es assumptions of proposition 1 but is notan i.s.r. Indeed, let S be the i.s.r. (Rmax n f0g)2 [ f(0;0)g with operations �,� de�ned as in example 3.2. Consider a set x = f(0; 1); (1; 0)g 2 S; we seethat x�x = f(0; 1); (1; 0); (1;1)g 6= x and if y = f(1; 0)g, z = f(0; 1)g, thenx�(y�z) = f(1; 2); (2; 1)g 6= (x�y)�(x�z) = f(1; 1); (1; 2); (2;1); (2;2)g. ThusS with operations �, � does not satisfy axioms of idempotency and distribu-tivity.It follows that S should satisfy some additional conditions in order to havethe structure of an i.s.r. In the next section we consider the case when S is a setof all closed intervals; this case is of particular importance since it represents anidempotent analog of the traditional Interval Analysis.8 Interval extensions of idempotent semiringsLet S be an i.s.r. A (closed) interval in S is a set of the form x = [x;x] =ft 2 Sjx 4 t 4 xg, where x, x 2 S (x 4 x) are said to be lower and upperbounds of the interval x, respectively.Note that if x and y are intervals in S, then x � y i� y 4 x 4 x 4 y. Inparticular, x = y i� x = y and x = y.Let x, y be intervals in S. In general, the set x ? y is not an interval in S.Indeed, consider a set S = f0; a; b; c; dg and let � be de�ned by the followingorder relation: 0 is the least element, d is the greatest element, and a, b, and care noncomparable with each other. If � is a zero multiplication, i.e., if x�y = 0for all x, y 2 S, then S is an i.s.r. without a unity. Let x = [0; a] and y = [0; b];thus x ? y = f0; a; b; dg, which is not an interval because it does not contain calthough 0 4 c 4 d.Proposition 2 Suppose S is an i.s.r. and x, y are intervals in S; then theinterval [x ? y;x ? y] contains the set x ? y and is contained in every otherinterval containing this set. If S is an a-complete (b-complete) i.s.r. and fx�g10



is a nonempty set of intervals in S (a nonempty set of intervals in S suchthat the set fx�g is bounded), then the interval [L� x�;L� x�] contains theset N = ft 2 Sj (8�)(9x� 2 x�) t = L� x�g and is contained in every otherinterval containing N .Proof. Take t 2 x ? y and let x 2 x, y 2 y be such that t = x ? y. Byde�nition of interval, it follows that x 4 x 4 x and y 4 y 4 y. Since theoperation ? is consistent with the order 4, we see that x ?y 4 x ? y 4 x ? y. Inparticular, x ? y 4 x ? y, i.e., the interval [x ? y;x ? y] is properly de�ned. Itfollows that x ? y � [x ? y;x ? y].Now let an interval z in S be such that x ?y � z. We have x ?y 2 x ?y � zand x ? y 2 x ? y � z; hence z 4 x ? y and x ? y ? z. Since x ? y 4 x ? y by theabove, it follows that [x ? y;x ? y] � z.The statement concerning an a-complete i.s.r. is proved similarly. If S is ab-complete semiring and the set fx�g is bounded from above, then the set fx�gis also bounded from above , i.e., there exists y 2 S such that x� 4 x� 4 yfor all �. Thus there exist L� x� 2 S and L� x� 2 S. Now the obviousadaptation of the above argument completes the proof. �We see that x ?y = [x ? y;x ? y].Consider the set I(S) of all intervals in S that do not contain 0.Proposition 3 Suppose i.s.r. S either does not contain a zero or has a zero0 but does not contain zero divisors; then the set I(S) is an i.s.r. with respectto the operations � and � without a zero element. If S contains a unity 1,then the interval [1;1] is the unity of i.s.r. I(S). If S is an a-complete i.s.r.(b-complete i.s.r.) and fx�g is a nonempty subset of I(S) (a nonempty subsetof S such that the set fx�g is bounded from above), then its sum L�x� 2 I(S)and y��M�x�� =M�(y�x�); �M�x���y =M�(x��y)for any y 2 I(S).Proof. From proposition 2 it follows that if x = [x;x] 2 I(S) and y =[y;y] 2 I(S), then x ?y = [x ? y;x ? y]. Let us check that x ?y 2 I(S).Indeed, this is obvious if S contains no zero element. Assume S has the zero0. First we shall show that x�y 2 I(S). Clearly, an interval x = [x;x] in Sbelongs to I(S) i� x 6= 0; hence it is su�cient to check that if x 6= 0 and y 6= 0,then x � y 6= 0. But x � y = 0 i� x = 0 and y = 0; thus I(S) is closed withrespect to the addition �.Now let us check that x�y 2 I(S); to do this, it is su�cient to show that ifx 6= 0 and y 6= 0, then x�y 6= 0. But this is so because S has no zero divisors.The reader will have no di�culty in showing that the operations � and� are associative, the addition � is commutative and each element of I(S) isidempotent with respect to it, and the multiplication � is distributive. Theproof is by direct calculation based on proposition 2.11



Notice that the idempotent addition � determines a partial order 4 on I(S).Let us check that I(S) contains no zero element. The only nontrivial case iswhen the i.s.r. S has a least element l but l is not a zero. We see that I(S) hasthe least element [l; l] with respect to the order 4. Since l 6= 0, there exists x 2 Ssuch that x � l 6= l or l � x 6= l. Hence [x; x]�[l; l] 6= [l; l] or [l; l]�[x; x] 6= [l; l].This means that [l; l] cannot be a zero element of I(S). Let us remember thatif a zero exists, then it is the least element of the i.s.r.; thus I(S) has no zeroelement.It follows easily from proposition 2 that if 1 2 S, then the interval [1;1] isthe unity element of I(S).The statements concerning a-complete and b-complete i.s.r.'s are proved bydirect calculation based on proposition 2. �Corollary-Theorem 1 Suppose an i.s.r. S has a zero element 0 but containsno zero divisors and denote the set I(S) [ [0;0] by I(S). Then the set I(S) isan i.s.r. with the zero element [0;0] containing no zero divisors with respect tothe operations �, �. If S is an a-complete i.s.r. (b-complete i.s.r.), then I(S)is an a-complete i.s.r. (b-complete i.s.r.).The proof is obvious.Proposition 4 If an i.s.r. S without zero divisors satis�es the cancellation con-dition (the stabilization condition), then the i.s.r. I(S) satis�es the cancellationcondition (the stabilization condition). If S is an i.s.r. with commutative mul-tiplication �, then I(S) is an i.s.r. with commutative multiplication �.Proofs of commutativity of the multiplication � and of the cancellationcondition follow easily from proposition 2. Suppose S satis�es the stabilizationcondition. By de�nition of I(S), x 6= [0;0] i� x 6= 0 and x 6= 0. Thus itfollows from proposition 2 that the stabilization holds in S for both bounds ofthe involved intervals and hence for the whole intervals as elements of I(S). �Corollary 2 If the i.s.r. S has a zero element, then the above proposition istrue for the i.s.r. I(S).Proposition 5 If S is an i.s.r. without zero divisors that satis�es the conditionsof cancellation and algebraic completeness, then the i.s.r. I(S) satis�es the sameconditions.Proof. By proposition 4, it follows that the i.s.r. I(S) satis�es the can-cellation condition. Suppose xn = x�x� : : :�x = y. By proposition 2, wesee that xn = y and xn = y. Let z 2 S and z 2 S be the solutions of thesetwo equations. We claim that z and z can be chosen such that z 4 z, i.e., theinterval [z; z] is well de�ned.Take z0 = z � z; hence z 4 z0. Since S satis�es the cancellation property,it follows that z0n = (z � z)n = zn � zn (see, e.g., [14, assertion 2.1]). Thusz0n = y � y = y. We see that [z; z0]n = [y;y] = y. �12



Corollary 3 Is the i.s.r. S contains a zero, then the same statement holds forthe i.s.r. I(S).Suppose an i.s.r. S has no zero element; then the map �: S ! I(S) de�nedby �(x) = [x; x] is an isomorphic imbedding of the i.s.r. S into the i.s.r. I(S).Suppose an i.s.r. S contains a zero 0 and the map �0: S ! I(S) is such that�0(0) = [0;0] and �0 coincides with �: Sn0! I(S) � I(S) on Sn0; then the map�0 is an isomorphic imbedding of the i.s.r. S into the i.s.r. I(S). In the sequel,we will identify the i.s.r. S with the subsemiring �(S) � I(S) or �0(S) � I(S)and denote the operations in I(S) of I(S) by �, �. If the i.s.r. S contains aunity 1, then we denote the unity [1;1] 2 I(S) by 1; also, denote [0;0] 2 I(S)by 0.We stress that in the traditional Interval Analysis multiplication of intervalsis not distributive with respect to interval addition. On the contrary, in idempo-tent interval mathematics most of algebraic properties of an i.s.r. are conservedin its interval extension. On the other hand, even if S is an idempotent semi-�eld, then the set I(S) is only an i.s.r. satisfying the cancellation condition (butnot a semi�eld).Note also that it is monotonicity of operations �, � and positivity of allelements of an i.s.r. with respect to the ordering 4 that makes the idempo-tent interval arithmetics so simple. In general, idempotent interval analysisappears to be best suited for treating the problems with order-preserving trans-formations. An important instance of this kind of transformations is the linearoperator in a semimodule over an i.s.r.9 Application to linear algebraSuppose S is an i.s.r. with zero 0 and unity 1 and I(S) is its interval extension.Thus Matnn(I(S)) is an i.s.r. We stress that that in the traditional IntervalAnalysis the set of all interval matrices is not even a semigroup with respectto matrix multiplication; indeed, the operation of matrix multiplication is notassociative since the operation of interval multiplication is not distributive.Recall that the matrix A = kaijk 2 Matnn(I(S)) is said to be irreducible(see [13], [14]) if bij 6= 0 for all i, j such that 1 6 i 6 j 6 n, where B = kbijk =Lnm=1Am.If A = kaijk 2 Matmn(I(S)), then the matrices A = kaijk and A = kaijkare called lower and upper matrices of the interval matrix A. The unity of thei.s.r. Matnn(I(S)) is denoted by E.It follows easily from [14, theorem 6.2] thatProposition 6 If an i.s.r. S with commutative multiplication � is algebraicallyclosed and satis�es cancellation and stabilization conditions, then for any matrixA 2 Matnn(I(S)) there exist an `eigenvector' V 2 Matn1(I(S)) and an `eigen-value' [�; �] 2 I(S) such that AV = [�; �] �V. If the matrix A is irreducible,then the `eigenvalue' [�; �] is determined uniquely.13



It follows from proposition 2 that addition and multiplication of intervalmatrices are reduced to separate addition and multiplication of their lower andupper matrices. Hence AV = � �V and AV = ��V.Consider the following discrete stationary Bellman equation (see Section 5above), which plays an important part in optimization theory:X = AX�B; (1)where A 2 Matnn(I(S)), B, X 2 Matnl(I(S)). Consider the following iterativeprocess: Xk+1 = AXk �B = Ak+1X0 � kMl=0 Al!B; (2)where Xk 2 Matnl(I(S)), k = 0; 1; : : : If S is an a-complete i.s.r., then forany matrix A there exists a closure matrix A� = L1l=1Al and X = A�Bsatis�es (1).Proposition 7 If an a-complete i.s.r. S satis�es the assumptions of propo-sition 6 and A 2 Matnn(I(S)) is an irreducible matrix with the `eigenvalue'[�; �] 4 1, then the sequence fXkg stabilizes to the solution X = A�B of equa-tion (1) for all k > n whenever X0 4 X.Proof. It follows from proposition 2 that it is su�cient to prove thatsequences of lower and upper matrices of fXkg stabilize separately.Consider the sequence of upper matrices Xk. We haveXk+1 = AXk �B = Ak+1X0 � kMl=0 Al!B;where the eigenvalue of the matrix A is � 4 1 and X0 4 A�B. Supposethat there exist l 2 N, 1 6 l 6 n, and a cycle fi1; : : : ; ilg � N such that1 6 i1; : : : ; il 6 n, ir 6= is if r 6= s, and 1 � 1� P , where the cycle invariant Pis de�ned as ai1i2� : : :ail�1il�aili1 . Using the formula (4) of [14] to express thegreatest eigenvalue of the matrix A, we obtain 1 � 1 � P 4 1 � �'(n), where'(n) is the least commonmultiple of 1; 2; : : : ; n. On the other hand, since � 4 1,we see that �'(n) = �'(n)�1�� 4 �'(n)�1 4 : : : 4 � 4 1, that is 1��'(n) = 1.This contradiction proves that for any cycle P 4 1. This means that the matrixA is semi-de�nite in the sense of Carr�e [16]. Thus theorem 6.2 of [16] impliesthat for any X0 such that X0 4 A�B the sequence fXkg stabilizes after at mostn iterations.Continuing this line of reasoning, we see that fXkg also stabilizes after nsteps since � 4 � 4 1. �14
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