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Macroscopic Models for Ionization in thePresence of Strong Electric Fields �P. Degondy, A. Nouriz, and C. SchmeiserxAbstract. Starting from a kinetic model for electrons in a weakly ionizedplasma, a spherical harmonic expansion (SHE-) model is derived by a formalasymptotic analysis for strongly disparate masses of electrons and ions. Themacroscopic limit of the SHE-model for high �elds gives a high �eld extensionof standard macroscopic models for ionization.1 IntroductionWe consider the following scaled kinetic equation for electrons in a medium ofions and neutral particles, subject to ionization and recombination reactions:"2@f@t + "v � rxf � "E � rvf = "2 ~Qion(f) + ~Qcoll(f) ; (1.1)where f(x; v; t), x; v 2 IR3, t 2 IR, is the electron distribution function,E(x; t) is the (given) electric �eld, and the dimensionless parameter "2 � 1is the ratio of the electron mass to the mass of a neutral particle. The lengthscale has been chosen such that " can also be interpreted as the Knudsen�This work has been supported by the TMR-network `Asymptotic Methods in KineticTheory' and by the program on `Charged Particle Kinetics' at the Erwin-Schr�odinger-Institute, Vienna. The work of C.S. has also been supported by the Austrian ScienceFoundation under grant No. P11308-MAT.yMath�ematiques pour l`Industrie et la Physique, Universit�e Paul Sabatier Toulouse 3,118 route de Narbonne, 31062 Toulouse cedex, France.zUMR 5585, INSA, 20 av. A. Einstein, 69621 Villeurbanne Cedex, France.xInstitut f�ur Angewandte und Numerische Mathematik, TU Wien, Wiedner Haupt-stra�e 8{10, 1040 Wien, Austria. 1



number, i.e., the ratio of the mean free path (of an electron between (non-ionizing) binary collisions with neutral particles) to the length scale. For thetime scale a di�usion scaling has been chosen, which the following analy-sis will show to be appropriate (instead of a hydrodynamic scaling where "instead of "2 appears in front of the time derivative).The terms ~Qion(f) and ~Qcoll(f) describe the e�ects of ionization reactionsand of the above mentioned binary collisions, respectively. A basic scalingassumption is that the mass ratio "2 is of the same order of magnitude asthe ratio of typical time scales for collisions and ionization reactions. For thederivation of (1.1) and for further details of the scaling see [9].Neutral particles and ions are assumed to be in local equilibrium, withthe distribution functions given by the Maxwellians fn = M�n;u;T and f i =M�i;u;T , respectively, withM�;u;T (v) = �(2�T )3=2 exp �jv � uj22T ! ;and given space and time dependent �n; �i; T 2 IR and u 2 IR3. This can bederived [9] by assuming that the typical densities of electrons and ions aremuch smaller than those of neutral particles. Then, the dynamics of ions andneutral particles are dominated by binary collisions between neutral particleswith each other as well as between neutral particles and ions. Therefore, bothspecies are in local equilibriumwith the samemean velocity and temperature.We consider an impact ionization process where an highly energetic elec-tron hits a neutral particle knocking out an additional electron and leavingback an ion. The reverse process is also considered. The ionization operatoris then given by~Qion(f)(v) = ZIR12(f i1f2f3 � fn5 f)d�1235+2 ZIR12(fn5 f4 � f i1f3f)d�1345 ; (1.2)with the abbreviationd�1235 = �ion(v1; v2; v3 ! v; v5)�((1� "2)v1 + "(v2 + v3 � v)� v5)��((1� "2)jv1j2 + jv2j2 + jv3j2 � jvj2 � jv5j2 + 2�)dv1dv2dv3dv5and a similar de�nition of d�1345, with v2 and v replaced by v and v4, respec-tively, and dv2 replaced by dv4. The support of the �rst Delta-distribution2



represents momentum conservation, and the second describes the loss of en-ergy (�) in the ionization process. In (1.2), the subscript j on a distributionfunction means evaluation at vj. The ionization rate is assumed to be trans-lation invariant:�ion(v1 + v; v2 + "v; v3 + "v! v4 + "v; v5 + v)= �ion(v1; v2; v3 ! v4; v5) ;for every v 2 IR3. The appearance of the parameter " in the above equationis due to the fact that the electron velocities (v2; v3; v4) have been scaleddi�erently from the ion and neutral particle velocities (v1; v5).Models of the form (1.2) for ionization and recombination phenomena arestudied in [8], where an existence theorem is proven.The binary collisions between electrons and neutral particles are modelledby ~Qcoll(f)(v) = �coll ZIR3 Z(v�"v�)�
>0 jv � "v�j(fn� 0f 0 � fn� f)d
dv� ; (1.3)with 0 < �coll 2 IR, j
j = 1, andv0 = v � 21 + "2 ((v � "v�) � 
)
 ;v0� = v� + 2"1 + "2 ((v � "v�) � 
)
 : (1.4)The subsequent computations are greatly simpli�ed by the coordinate trans-formation v � "u ! v. The transformed version of equation (1.1) is givenby "2@f@t � "3@u@t � rvf + "(v + "u) � (rxf � "rxurvf)� "E � rvf= "2Qion(f) +Qcoll(f) ; (1.5)where Qion(f) is de�ned by (1.2) with fn and f i replaced by M�n ;0;T andM�i;0;T , respectively. Similarly, Qcoll(f) is de�ned by (1.3) with fn replacedby M�n;0;T . Thus, in (1.5) the mean velocity of the background mediumappears in the transport operator instead of the ionization and collision op-erators.In the following section some results on the asymptotics of the collisionoperator Qcoll as " ! 0 are presented. This is an extension of some of the3



results of [3]. Section 3 contains the formal asymptotics as "! 0 for solutionsof (1.5). In the limit, the electron distribution function is approximated byan isotropic distribution satisfying a di�usion equation with both spatialdi�usion as well as di�usion in the energy direction. Related results can befound in [6]. The limiting equation is an example of a SHE model, typicalfor situations where the dominating collision mechanism is (almost) elastic.This situation occurs frequently in semiconductor physics [1], [5], [11]. Forhydrodynamic limits of disparate mass binary gases under di�erent scalingassumptions see [4].Finally, in section 4, a macroscopic limit of the SHE model is computedunder the scaling assumption that the inuence of the electric �eld balancesthat of the inelastic contributions to binary collisions. The equilibrium dis-tribution is �eld dependent and interpolates between the Maxwellian distri-bution for low �elds and the Druyvenstein distribution for low temperatures.The resulting equation for the macroscopic density contains �eld dependenttransport parameters and ionization rates. A related treatment for the trans-port in semiconductors can be found in [2].2 Properties of the collision operatorBefore carrying out the limit "! 0 in (1.5) we collect some properties of thecollision operatorQcoll(f)(v) = �coll ZIR3 Z(v�"v�)�
>0 jv � "v�j(f 0M 0� � fM�)d
dv� ;where here and in the following M = M�n ;0;T .Assuming a formal expansion of a solution of (1.5) in the form f =f0 + "f1 + "2f2 +O("3), and letting "! 0 in (1.5) we obtainQ0(f0) := �coll�njvj Zv�
>0(f̂0 � f0)d
 = 0 ; (2.1)where ^denotes evaluation at v̂ = v � 2(v � 
)
, the (" = 0)-version of thepostcollisional velocity v0. It has been shown in [3] that the kernel of theelastic collision operator Q0 consists of the functions depending on v onlythrough the energy w = jvj2=2. Thus, f0 = f0(w) holds. Note that in thissection we shall suppress the dependence of the distribution function on x4



and t. The velocity will frequently be written in terms of energy and angularcoordinates: v = !p2w, ! 2 S2.Another important property of Q0 is its symmetry with respect to theL2(IR3) inner product:ZIR3 Q0(f)g dv = ��coll�n2 ZIR3 jvj Zv�
>0(f̂ � f)(ĝ � g)d
dv : (2.2)The collision invariants of Q0 are all functions of the energy w, implyingZS2 Q0(f)d! = 0 :For an "-independent argument f , the collision operator can be expandedin the formQcoll(f) = Q0(f)+"Q1(f)+"2Q2(f)+O("3). Then, for a solutionof (1.5) we haveQcoll(f) = "(Q0(f1) +Q1(f0))+"2(Q0(f2) +Q1(f1) +Q2(f0)) +O("3) :It is the main objective of this section to compute information on the termsin this expansion.First we collect some basic results, the proofs of which follow from straight-forward computations:Lemma 2.1 i) For any 
 2 S2,ZIR3 M�(v� � 
)2dv� = �nT :ii) For any v 2 IR3,Zv�
>0(v � 
)2d
 = 2�3 jvj2 :Lemma 2.2 Formal computations give Q1(f0) = 0 andp2w ZS2 [Q1(f1) +Q2(f0)]d! = p2w ZS2 Q2(f0)d!= 64�23 �coll�nT @@w "w2  f0T + @f0@w!# :5



Proof. We start with a weak formulation of the collision term. With a testfunction of the form ' = '0(w) + "'1(v), we haveZIR3 Qcoll(f)'dv = " ZIR3 Q1(f0)'0dv + "2 ZIR3 [Q0(f1) +Q1(f0)]'1dv+"2 ZIR3[Q1(f1) +Q2(f0)]'0dv +O("3) : (2.3)On the other hand, we use the symmetry propertyZIR3 Qcoll(f) gM dv = ��coll2 ZIR6 Z(v�"v�)�
>0 jv � "v�jMM�� f 0M 0 � fM ! g0M 0 � gM ! d
dv�dv ;with g = g0(w) + "g1(v). Using (1.4) we expandf 0M 0 � fM = "M (F0 + F1) +O("2) ;F0 = �2(v� � 
)(v � 
) f0T + @f0@w! ; F1 = f̂1 � f1 ;implying ZIR3 Qcoll(f) gM dv= �"2�coll2 ZIR6 Zv�
>0 jvjM�M (F0 + F1)(G0 +G1)d
dv�dv +O("3) :With the notationAij = ��coll2 ZIR6 Zv�
>0 jvjM�M FiGjd
dv�dv ;(2.2) impliesA11 = ZIR3 Q0(f1) g1Mdv :Also, A10 = A01 = 0 holds since the Maxwellian has zero mean velocity andtherefore the integral with respect to v� vanishes. Finally, inA00 = �2�coll ZIR6 jvjM�M  f0T + @f0@w! g0T + @g0@w !Zv�
>0(v� � 
)2(v � 
)2d
dv�dv ;6



we use Lemma 2.1:A00 = �4�3 �coll�nT ZIR3 jvj3 f0T + @f0@w! @@w � g0M � dv :After the introduction of energy and angular variables and an integration byparts this becomesA00 = 64�23 �coll�nT Z 10 @@w "w2  f0T + @f0@w!# g0M dw :Comparison ofZIR3 Qcoll(f) gM dv = "2(A00 +A11) +O("3)for g = 'M with (2.3) completes the proof.3 The di�usion approximationIn this section we carry out the formal limit "! 0 in the transport equation(1.5). Substituting the ansatz f = f0 + "f1 + "2f2 + O("3) in (1.5) andcomparing coe�cients of powers of " gives0 = Q0(f0) ;v � rxf0 �E � rvf0 = Q0(f1) +Q1(f0) ;@f0@t + u � rxf0 � vtrrxurvf0 + v � rxf1 � E � rvf1= Q0ion(f0) +Q0(f2) +Q1(f1) +Q2(f0) : (3.1)The ionization operator Q0ion is obtained by setting " = 0 in Qion:Q0ion(f)= ZIR6 �0ion(v2; v3 ! v)�(w2+ w3 +�� w)(�if2f3 � �nf)dv2dv3+2 ZIR6 �0ion(v; v3 ! v4)�(w+ w3 +�� w4)(�nf4 � �iff3)dv3dv4 ;with w = jvj2=2, wj = jvjj2=2, j = 2; 3; 4, and�0ion(v2; v3 ! v4) = ZIR3 �ion(v1; v2; v3 ! v4; v1)M1;0;T (v1)dv1 :7



The results of the previous section and the �rst equation imply f0 =f0(x;w; t). Also, by Lemma 2.2, the second equation can be written asv �  rxf0 � E@f0@w! = Q0(f1) :A straightforward computation using (2.1) shows that the general solution isgiven byf1 = � 34��coll�njvjv �  rxf0 � E@f0@w!+ f1 ;with f 1 = f1(x;w; t). Finally, an equation for the determination of f0 isobtained by integrating (3.1) over balls. As a preliminary computation, it iseasily shown thatp2w ZS2(u � rxf0 � vtrrxurvf0)d!= rx � (4�p2w uf0)� @@w �4�3 (2w)3=2(rx � u)f0�holds. Then, the above mentioned integration of (3.1) with lemma 2.2 givesp2w@f0@t +rx � (p2w uf0)� @@w �13(2w)3=2(rx � u)f0�+rx � j� @@w(E � j) = @@w "16��coll�nT3 w2  f0T + @f0@w!#+Qion(f0) (3.2)with 4�j := p2w ZS2 vf1d! = � 2w�coll�n  rxf0 � E@f0@w!and Qion(f) = p2w4� ZS2 Q0ion(f)d!= Z 10 Z 10 pw2w3w �ion(w2; w3 ! w)�(w2 + w3 +�� w)(�if2f3 � �nf)dw2dw3(3.3)+2 Z 10 Z 10 pww3w4 �ion(w;w3 ! w4)�(w+ w3 +��w4)(�nf4 � �iff3)dw3dw4 ;8



where �ion(w2; w3 ! w4)= 1�p2 Z(S2)3 �0ion(!2p2w2 ; !3p2w3 ! !4p2w4 )d!2d!3d!4 :The derivation of (3.2) has been the aim of our formal asymptotics. Theequation can also be written asp2w@f0@t +rx � Jx + @Jw@w = Qion(f0) ; (3.4)with Jx = p2w uf0 � w2��coll�n  rxf0 � E@f0@w! ;Jw = w2��coll�nE �  rxf0 � E@f0@w!� (2w)3=23 (rx � u)f0�16��coll�nT3 w2  f0T + @f0@w! :Proposition 3.1 The operator on the left hand side of (3.4) is parabolic forw > 0, but not uniformly parabolic.Proof. A simple computation shows that the leading part of the secondorder operator in position-energy direction is represented by the quadraticform w2��coll�n jX �EW j2 + 16��coll�nT3 w2W 2 ; X 2 IR3; W 2 IR ;which is positive de�nite, but not uniformly, for w > 0.The degeneracy of the equation at the energy boundary w = 0 impliesthat the natural zero ux conditionJw = 0 ; for w = 0 (3.5)is su�cient as a boundary condition. It only excludes too strong singularitiesof f0 at w = 0. 9



4 A Macroscopic Limit at High FieldsIn this section we assume that ionization e�ects are weak compared to the in-elastic contribution of the collision e�ects. Starting with the di�usion model(3.4), we rewrite the ionization cross section �ion as �ion with a small di-mensionless parameter . We are interested in e�ects occurring on lengthand time scales relevant for the ionization processes. Therefore, the rescalingx! x=, t! t= is introduced in (3.4):p2w@f0@t + rx � Jx + @Jw@w = Qion(f0) ; (4.1)with Jx = p2w uf0 � w2��coll�n  rxf0 � E@f0@w! ;Jw = w2��coll�nE �  rxf0 � E@f0@w!�  (2w)3=23 (rx � u)f0�16��coll�nT3 w2  f0T + @f0@w! :The ionization operator Qion is given by (3.3).In the formal limit  ! 0, (4.1) reduces to@@w  (A2w + Tw2)@f0@w + w2f0! = 0 ;with A(x; t) = s32 jE(x; t)j4��coll�n(x; t) :The general solution satisfying the zero ux condition (3.5) is given byf0(x;w; t) = �e(x; t)MA(x;t);T (x;t)(w) with arbitrary �e andMA;T (w) = cA;T exp � Z w0 s dssT +A2! ;where cA;T is chosen such thatZ 10 p2wMA;T (w) dw = 1 : 10



Limiting cases of the equilibrium distribution are the MaxwellianM0;T (w) = s 2�T 3 e�w=Tand the Druyvenstein distribution [7]MA;0(w) = 1A3=221=4�(3=4) e�w2=(2A2) :An equation for the macroscopic electron density �e is obtained by integrating(4.1) with respect to w:@�e@t +rx � [�e(u� �E)] = qion(�e) :The mobility is given by� = 12��coll�n Z 10 MA;T (w)dw ;and the macroscopic ionization rate byqion(�e) = �e(a�n � b�i�e) ;with a(A;T;�) = Z 10 Z 10 Z 10 pw2w3w4 �ion(w2; w3 ! w4)�(w2 + w3 +�� w4)MA;T (w4)dw2dw3dw4 ;b(A;T;�) = Z 10 Z 10 Z 10 pw2w3w4 �ion(w2; w3 ! w4)�(w2 + w3 +�� w4)MA;T (w2)MA;T (w3)dw2dw3dw4 :The equilibrium condition �i�e = ab�n is a high �eld generalization of theSaha law [10]�i�e = s�T 32 e��=T�n ;which is recovered for A = 0. 11
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