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Macroscopic Models for Ionization in the
Presence of Strong Electric Fields *

P. Degond’, A. Nourif, and C. Schmeiser?

Abstract. Starting from a kinetic model for electrons in a weakly ionized
plasma, a spherical harmonic expansion (SHE-) model is derived by a formal
asymptotic analysis for strongly disparate masses of electrons and ions. The
macroscopic limit of the SHE-model for high fields gives a high field extension
of standard macroscopic models for ionization.

1 Introduction

We consider the following scaled kinetic equation for electrons in a medium of
ions and neutral particles, subject to ionization and recombination reactions:

2 b0 Vol =BV = EQunl() 4 Qe (11)
where f(z,v,t), z,v € R?, ¢t € R, is the electron distribution function,
E(x,t) is the (given) electric field, and the dimensionless parameter e < 1
is the ratio of the electron mass to the mass of a neutral particle. The length
scale has been chosen such that ¢ can also be interpreted as the Knudsen
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number, i.e., the ratio of the mean free path (of an electron between (non-
ionizing) binary collisions with neutral particles) to the length scale. For the
time scale a diffusion scaling has been chosen, which the following analy-
sis will show to be appropriate (instead of a hydrodynamic scaling where ¢
instead of e appears in front of the time derivative).

The terms an(f) and Qcou(f) describe the effects of ionization reactions
and of the above mentioned binary collisions, respectively. A basic scaling
assumption is that the mass ratio ¢* is of the same order of magnitude as
the ratio of typical time scales for collisions and ionization reactions. For the
derivation of (1.1) and for further details of the scaling see [9].

Neutral particles and ions are assumed to be in local equilibrium, with
the distribution functions given by the Maxwellians f* = M, , 7 and f' =
M,, .1, respectively, with

P v —uf?
Movur(0) = Gy P (—T) ,

and given space and time dependent p,,p;, T € R and u € IR*. This can be
derived [9] by assuming that the typical densities of electrons and ions are
much smaller than those of neutral particles. Then, the dynamics of ions and
neutral particles are dominated by binary collisions between neutral particles
with each other as well as between neutral particles and ions. Therefore, both
species are in local equilibrium with the same mean velocity and temperature.

We consider an impact ionization process where an highly energetic elec-
tron hits a neutral particle knocking out an additional electron and leaving
back an ion. The reverse process is also considered. The ionization operator
is then given by

Qion(f)(v) = /Rw(fffzf:a—fgf)d/«hz%
+2 /Rw(fgﬁ; — [i13f)dpzas (1.2)

with the abbreviation

dpt123s = Gion(v1, V2,05 = v, v5)6((1 — 52)U1 +e(vy+ v —v) — vs)
XS((1 =) |or |2 + [vo]® + |va]® — |v]* — |vs|* + 2A)dvy dvydvsdus

and a similar definition of dpq345, with vy and v replaced by v and vy, respec-
tively, and dvy replaced by dvy. The support of the first Delta-distribution



represents momentum conservation, and the second describes the loss of en-
ergy (A) in the ionization process. In (1.2), the subscript j on a distribution
function means evaluation at v;. The ionization rate is assumed to be trans-
lation invariant:

Tion(V1 + T, v9 + 0,03 + €0 — vy + €T, 05 + D)

— Uion(U17U27U3 — U47U5)7

for every © € R®. The appearance of the parameter ¢ in the above equation
is due to the fact that the electron velocities (vq,vs,v4) have been scaled
differently from the ion and neutral particle velocities (vq, vs).

Models of the form (1.2) for ionization and recombination phenomena are
studied in [8], where an existence theorem is proven.

The binary collisions between electrons and neutral particles are modelled

by
Qcoll(f)(v) = Ocoll /RS /(U—sv*)~Q>0 lv — 5U*|(ff'f’ — f2dQdv,, (1.3)

with 0 < oo € R, || =1, and

v = v—lf€2((v—5v*)-ﬂ)ﬂ,
L et (v en) )0 (1.4)
v, = U 1522 UV — £V, . .

The subsequent computations are greatly simplified by the coordinate trans-
formation v — eu — v. The transformed version of equation (1.1) is given

by

= 52Qz’on(f) + Qeon(f), (1.5)

where Q;,n(f) is defined by (1.2) with f* and f' replaced by M, o7 and
M, o1, respectively. Similarly, Q..u(f) is defined by (1.3) with f” replaced
by M,,or. Thus, in (1.5) the mean velocity of the background medium
appears in the transport operator instead of the ionization and collision op-
erators.

In the following section some results on the asymptotics of the collision
operator ().,; as ¢ — 0 are presented. This is an extension of some of the



results of [3]. Section 3 contains the formal asymptotics as ¢ — 0 for solutions
of (1.5). In the limit, the electron distribution function is approximated by
an isotropic distribution satisfying a diffusion equation with both spatial
diffusion as well as diffusion in the energy direction. Related results can be
found in [6]. The limiting equation is an example of a SHE model, typical
for situations where the dominating collision mechanism is (almost) elastic.
This situation occurs frequently in semiconductor physics [1], [5], [11]. For
hydrodynamic limits of disparate mass binary gases under different scaling
assumptions see [4].

Finally, in section 4, a macroscopic limit of the SHE model is computed
under the scaling assumption that the influence of the electric field balances
that of the inelastic contributions to binary collisions. The equilibrium dis-
tribution is field dependent and interpolates between the Maxwellian distri-
bution for low fields and the Druyvenstein distribution for low temperatures.
The resulting equation for the macroscopic density contains field dependent
transport parameters and ionization rates. A related treatment for the trans-
port in semiconductors can be found in [2].

2 Properties of the collision operator

Before carrying out the limit ¢ — 0 in (1.5) we collect some properties of the
collision operator

Qe D) = |, [ v — 2o |(f'M, = FM.)de
R? J(v—evs)-Q>0

where here and in the following M = M, o 1.
Assuming a formal expansion of a solution of (1.5) in the form f =

fotefi+e*fa 4+ O(e?), and letting ¢ — 0 in (1.5) we obtain

Qolfo) = ocaupalel | (fo= fo)d02 =0, (2.1)

where " denotes evaluation at o = v — 2(v - Q)Q, the (¢ = 0)-version of the
postcollisional velocity v’. It has been shown in [3] that the kernel of the
elastic collision operator () consists of the functions depending on v only
through the energy w = |v[*/2. Thus, fo = fo(w) holds. Note that in this

section we shall suppress the dependence of the distribution function on x



and t. The velocity will frequently be written in terms of energy and angular
coordinates: v = w\/2w, w € S2.

Another important property of (Jg is its symmetry with respect to the
L*(IR?) inner product:

/RS Qol(f)g dv = _000”'0” /RS v |/Q>0 f (g = g)dQdv. (2.2)

The collision invariants of ()¢ are all functions of the energy w, implying

|, Qo) =0.

For an e-independent argument f, the collision operator can be expanded

in the form Q..u(f) = Qo(f)+eQ1(f)+e*Q2(f)+O(e*). Then, for a solution
of (1.5) we have

Qcou(f) = 5(Qo(f1)‘|‘Q1(f0))
+e3(Qo( f2) + Q1(f1) + Q2(fo)) + O(?).

It is the main objective of this section to compute information on the terms
in this expansion.

First we collect some basic results, the proofs of which follow from straight-
forward computations:

Lemma 2.1 i) For any Q € 52,
/ M. (v - Q)de* =p, 1.
RS
ii) For any v € R?,
[ (w0 = 2.
v-2>0 3
Lemma 2.2 Formal computations give Q1(fo) = 0 and
V2w [ [Qi(f1) + Qafo)ldw = V2w /S | Qulfo)de

_ 64n? Jo | 9fo
— 3 UcollpnTa—w [ ( + a—w



Proof. We start with a weak formulation of the collision term. With a test
function of the form ¢ = @g(w) + e¢1(v), we have

L Quulede = = [ @ilfo)eodv +2* [ [Qul(f1) + Qu(fo)lieade
12 [ 1) + Qulollgodv +O(). (23)

On the other hand, we use the symmetry property
g Ucoll
co —dv = / / UV — EVyx MM
/RS Q ”(f)M RS J(v—cuy) Q>O| |

" IN(Yd

with ¢ = go(w) 4 €g1(v). Using (1.4) we expand
LA (F0+F1)+O( %),

M M M
o 9fo
Fo = =2(v.-Q)(v-Q) (J% + 6—{0) .

/ Qcoll
2 Ocoll / / |
R¢ Ju.0>0

With the notation

—— / / FG AQdv.dv |
R® Q>0

(2.2) implies

_ g
Apn = /R3 Qo(fl)MdU-

Also, Ajg = Agr = 0 holds since the Maxwellian has zero mean velocity and
therefore the integral with respect to v, vanishes. Finally, in

0 0
AOO — _QO-COH/R6 |U M (?ZC? + a—fo) ( + a—i?)

/ (0 - Q)2 (0 - Q)2dQdv.dv
v-§2>0

Flzfl_fla

implying

)(Go + G1)dQdv.dv + O(e?) .
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we use Lemma 2.1:

Ago = — acou,onT/ (fo af“) o (90) dv .

After the introduction of energy and angular variables and an integration by
parts this becomes

_ 64r? < d | o(fo 9f
Ago = TacollpnT/o E [w ( + = Do —dw

Comparison of
[, Qua(F)do = (Ao + An) + O()

for g = pM with (2.3) completes the proof. [ |

3 The diffusion approximation

In this section we carry out the formal limit € — 0 in the transport equation
(1.5). Substituting the ansatz f = fo + efi +e*fe + O(¢?) in (1.5) and

comparing coefficients of powers of ¢ gives

0= Qolfo),
v-Vafo—E-V,fo=0Qu(f1)+ Qi(fo),

0
% + u- vxfo — vtrkuvufo + v - fol —F- Vufl

= Q% (fo) + Qo(f2) + Q1(f1) + Q2(fo) - (3.1)
The ionization operator Q¢
= /R6 o) (vg,v3 = v)§(wy + ws + A — w)(pi fafs — puf)dvadus

is obtained by setting ¢ = 0 in Q;,,:

on

+2 /R6 Ton (0,03 = 04)8(w + w3 + A — ws)(pn fa — pif f3)dvsduy,
with w = [v]*/2, w; = |v;|?/2, 7 = 2,3,4, and

O-?Oﬂ(v% v3 — U4) = /RS O-ion(vlv Vg, U3 — U4, UI)MI,O,T(Ul)dUI .
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The results of the previous section and the first equation imply fo =
fo(z,w,t). Also, by Lemma 2.2, the second equation can be written as
dfo
A\ Vefo—E=—] = :
v ( Jo 8w) Qo(f1)
A straightforward computation using (2.1) shows that the general solution is
given by

; |U'(vxf0_E%)+717

AT O conpn |V ow

fi=

with f, = f,(x,w,t). Finally, an equation for the determination of f; is
obtained by integrating (3.1) over balls. As a preliminary computation, it is
easily shown that

V. Zw/ (u-Vafo —0"V,uV, fo)dw
92

0 /4

= V. (VB afo) — £ (S0 (V. ) )
Jw \ 3

holds. Then, the above mentioned integration of (3.1) with lemma 2.2 gives
0 0 /1 .
VIelo Ly (VEw gy — - (g(zw)ﬁﬁ/?(vgg - u)fo) LY,

ot
0. 9 luw(f %)]@m(fo) (32)

:a_w 3 T—I_aw

with

drg = \/%/S2vfldwz 2w (foo—E%)

TeollPn aw

and

@ion(f) = \/% Q?on(f)dw

4 Js2

= [ VT s = w)
o(wz + w3 + A —w)(pifefs — puf)dwzdwd3.3)
+2 /000 /000 VWWswy Top (W, w3 — wy)
6(w + ws + A —wy)(pnfa — pif f3)dwsdwy

8



where

Eion(w% w3 —» w4)

1
= —\/5/ 02 (wa/ 2w ,wsn/2ws — wyn/2wy Ydwydwsdew, .
T (52)3

The derivation of (3.2) has been the aim of our formal asymptotics. The

equation can also be written as

9 fo IS

V20 + Ve ot ot = Qi fo) (3.4)

with

Jo = \/%Ufo—#( efo— Z{S)a

T O collPr
w dfo (2w)?/?
wo = — - z —FE— - r
J, ST (V fo 8w) 3 (V- u) fo
. 167TUcollpn fO _I_ %
3 Jw

Proposition 3.1 The operator on the left hand side of (3.4) is parabolic for
w > 0, but not uniformly parabolic.

Proof. A simple computation shows that the leading part of the second
order operator in position-energy direction is represented by the quadratic

form
16 co nT
U X - pwp oy DTl 22 X e R, WER,
27T0—collpn 3
which is positive definite, but not uniformly, for w > 0. [ ]

The degeneracy of the equation at the energy boundary w = 0 implies
that the natural zero flux condition

Ju =0, for w =10 (3.5)

is sufficient as a boundary condition. It only excludes too strong singularities
of fo at w=0.



4 A Macroscopic Limit at High Fields

In this section we assume that ionization effects are weak compared to the in-
elastic contribution of the collision effects. Starting with the diffusion model
(3.4), we rewrite the ionization cross section @, as ¥, with a small di-
mensionless parameter 7. We are interested in effects occurring on length
and time scales relevant for the ionization processes. Therefore, the rescaling
x — /v, t = t/v is introduced in (3.4):

afO aJw A
’W2wﬁ‘|‘7vx't]x+a—w = 7Qion(fo) ; (4.1)
with
J, = V2wufy— v (’vafo - E%) )
2T O eoli P dw
B w dfo (2w)?/?
Ju = 2T ol P, b (’vafo -k 8w) 7 3 (vx ' u)fo
167T0—collpnT 2 é %
B 3 v (T + ow |

The ionization operator @, is given by (3.3).
In the formal limit v — 0, (4.1) reduces to

0
g (4 TG ) =

with

Al 1) 3 |E(x, )]
)= —m—— .
’ 2 4mocoupn(x,t)

The general solution satisfying the zero flux condition (3.5) is given by
Jolz,w,t) = pe(, 1) M a(z1),1(2)(w) with arbitrary p. and

W sds
Maz(w) = car exp (—/o m) ,

where ¢4 7 1s chosen such that

/OO V2uMyr(w)dw = 1.
0

10



Limiting cases of the equilibrium distribution are the Maxwellian

2
M()’T(w) = m e_w/T

and the Druyvenstein distribution [7]

1 2 2
_ —w? [(2A
MA,O(w)—A3/221/4F(3/4)€ (24%)

An equation for the macroscopic electron density p. is obtained by integrating
(4.1) with respect to w:

dpe
o+ Ve lpelu = pE)] = gionlpe)
The mobility is given by
1 %]
= — d
a 27T0—collpn /0 MA’T(w) s

and the macroscopic ionization rate by
Gion(pe) = pelapn — bpipe),
with
a(A,T,A) = /OOO /OOO /OOO W23y T (W, W3 — Wy)
d(wg 4+ ws + A — wg) Mg 7(wy)dwrdwsdwy
b(A, T,A) = /OOO /OOO /OOO W23y T (W, W3 — Wy)
d(we 4+ ws + A — wg) Mg p(we) M4 1(ws)dwsdwsdw, .

The equilibrium condition p;p. = %p, is a high field generalization of the
Saha law [10]

T3
pipe = o e

2 p?’L7

which is recovered for A = 0.

11
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