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Abstract:

For a von Neumann algebra with a cyclic and separating vector it will be shown that the
von Neumann subalgebras with the same cyclic vector can uniquely be characterized by one—
parametric operator—valued functions obeying a set of conditions. Since the properties contain
no reference to the subalgebra these operator—valued functions will be called characteristic
functions. On the set of characteristic functions there exists a natural topology under which

this set is complete.

1. Introduction

Quantum field theory of local observables in the sense of Araki, Haag and Kastler
[Ha92] is concerned with von Neumann algebras M(O) associated with bounded open
regions O. In addition one needs states fulfilling some requirements in order to describe
physical situations. Here we are dealing with the vacuum state. If in the vacuum represen-
tation the theory fulfils the nuclearity condition of Buchholz and Wichmann [BW86] then,
by a result of Buchholz, D’Antoni and Fredenhagen [BDF87], all the local algebras M(O)
are of the same von Neumann—Connes type I1];. Hence one local algebra alone does not
contain any information about the structure of the theory except one is dealing with local
quantum physics. Therefore, one has to look at several local algebras at the same time in
order to obtain informations about the underlying physical structure of the theory. The
simplest case is the situation of two local algebras. Here we want to treat the algebras
of two regions where one is a subset of the other. The isotony requirement of the theory
implies that we are dealing with two von Neumann algebras A" C M. In addition by the
Reeh-Schlieder theorem [RSch61] both algebras have many common cyclic and separating
vectors and we will choose one of them and call it 2.

It turns out that every subalgebra N' C M with the same cyclic and separating
vector can uniquely be characterized by an operator—valued function D(t) with certain
properties. This will be shown in section 2. In the characterization of these functions
there is no reference to the von Neumann subalgebra N'. Therefore, these functions will be
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called characteristic functions. The set of these functions is in one to one correspondence
with the subalgebras N' C M which have Q as cyclic vector. The properties of the
characteristic functions are such that there exists a natural topology on this set. It will
be shown in section 3 that the set of characteristic functions is complete in this topology.
In section 4 two examples will be given in order to get a better understanding of the
topology introduced on the set of characteristic functions. Some problems connected with
the concepts develloped in the second section will be listed at the end. The investigations
of this note are based on the Tomita—Takesaki theory [To67],[Ta70]. (See also [BR79] or
[KR86].)

2. Characteristic functions

In this and the following sections we deal with a von Neumann algebra M acting
on a Hilbert space ‘H with a cyclic and separating vector {2 € H. We are interested in
von Neumann subalgebras ' C M for which the vector Q is also cyclic. The modular
operator and the modular conjugation of the pairs {M,Q} and {N,Q} will be denoted by
{Am, Jm} and {Anr, Iy} respectively. Most of the objects we are dealing with depend
also on the vector 2. But since we keep the Hilbert space H and the vector € fixed we
will suppress the index {2 in all our notations.

First we introduce some quantities which are needed for the investigation.

2.1 Definition:

Let M be a von Neumann algebra acting on ‘H with a cyclic and separating vector €.
1. By Sub(M) we denote the set of von Neumann subalgebras A" of M which have  as

cyclic vector.

2. For N € Sub(M) we denote by D ar(t) the function ¢ — B(H) defined by

Dan(t) = AAlL (2.1)

3. We define the strip S(a,b), a < b as
S(a,b) ={r € C;a < ImT < b}.
4. The action of the modular group Ad A'* will be denoted by o?.
First we derive for V' € Sub(M) some properties of the function D ar(t) which will be

crucial for the coming investigation.

2.2 Lemma:

Let M be a von Neumann algebra with a cyclic and separating vector Q and let N' €
Sub(M). Then the function D(t) := D n(t) defined in Eq. (2.1) has the following

properties:

(1) D(t) is unitary and strongly continuous in t. Moreover D(0) = 1.
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(2) D(t)Q =9, for allt € R.

(3) D(t) has a bounded analytic continuation into the strip S(0, %) and has strongly con-

tinwous boundary values at Smt =0 and Imt = %

(4) D(t+ %) is unitary and strongly continuous in t.
(5) D(t) fulfils the following cocycle relation:

D(s +t) = oy (D(s))D(t). (2.2)
(6) For complex values of the arguments one finds
D(t + %)*JMD(t) = D(t)* JuD(t + %)
18 independent of t.

(7) Ad{D(t)D(1)*} M C M holds for allt € IR.

Proof: (1) and (2) follow immediately from the definition of D(¢). The statements
(3) and (4) are nothing else than Thm. A in [Bch95]. (5) From the definition of D(t) we

obtain o/ (D(s))D(t) = AJIATE ARRARL ATHAIL = ATETOATD — D 4gy,
(6) From Thm. A in [Bch95] we know

D(t + %) = JuD(t) . (2.3)

This implies ]
Dt + 5)" TmD(t) = Ty D(t)" JauTmD(t) = T
and

D(t)* JmD(t + %) = D(t)* T I D(t) Iy = T

This shows (6). For proving (7) we use Eqs. (2.1) and (2.3) and get
Ad{D(t)D(%)*}M = Ad{ATAL T T M.

Because of ' C M we know Ad JyM = M’ C N'. Hence Ad{JnyJm}M C N which
implies Ad {A¥ Ty Jp I M C N. Since N/ C M statement (7) is proved. D

2.3 Remarks:
1. The functions Daq ar(t) fulfil the following chain rule: If P C N C M then

D p(t) = Daa(t)Darp(2). (2.4)
2. With N' D M’ one obtains
D./\/’/7M/(t) = DM7./\/’(—t)* (25)
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The function Dag ar(2)* s analytic in the conjugate complex domain, v.e. in S(—%,O).
Therefore, (2.5) reads in the complex

Dy (2) = D (=2)" (2.5)

Notice that the properties of D(t) described in Lemma 2.1 do not contain any reference
to the algebra A/. Therefore, we introduce the following notation:

2.4 Definition:

An operator—valued function D(¢) which fulfils the properties (1)—(7) of Lemma 2.2 will
be called a characteristic function of M. The set of charasteristic functions belonging to

M will be denoted by Char(M).
2.5 Theorem:

Let M be a von Neumann algebra with a cyclic and separating vector ). Then to every
characteristic function D(t) of M exists a von Neumann subalgebra N € Sub(M) such
that D(t) = A Al The correspondence

Sub(M) < Char(M)

18 one to one.
The proof of this theorem will be splitted into several steps. We start with

2.6 Lemma:
Define
1

Ut)=AlD(#) and K= JmD(3)

(2.6)

then there holds:

1) U(t) 1s a strongly continuous unitary group.

( gly y group

(2) K is a conjugation i.e. K = K* = K.

(3) K commutes with U(t), which implies that one can write U(t) = A with an invertible
operator A.

(4) The function D(t) can be reconstructed if we know U(t) and K.

D(t) = AGU®), D(t+ %) = JuD(t)K. (2.7)

Proof: Since D(t) and All, are both unitary and strongly continuous it follows that
U(t) is unitary and weakly continuous. The unitarity implies that U(t) is strongly con-
tinuous. From the cocycle relation (2.2) it follows that U(t) is a unitary group. The
relation X' = K* is a consequence of property Lemma 1.2 (6). Using this again we find
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KK = D(%)*JMJMD(%) = 1. For proving (3) we reformulate the cocycle relation (2.2).
It reads A/_VittD(s)Aij{A = D(t + s)D(t)*. If we replace t by —t and s by t we get

AL D(HAL! = D(—t)* (2.8)

If we analytically continue the last but one equation in s then we find A/_\/ittD(%)Ai]{A =
D(t + %)D(t)* Using this equation and Lemma 2.2 (6) we obtain:

KU(t) = JMD(%)N;{AD@) = Jm AL D(t + %)D(t)*D(t)

2) =U(t)K.

= D)D) TuD(t + ) = Ak D(1) e DI

Finally the first relation of Lemma 2.6,(4) follows from the definition of U(t). The second
relation will be derived by using condition (6) of Lemma 2.2.

D(t + %) = JuD(#)D(t)* TpD(t + %) - JMD(t)JMD(%) = JuD(t)K.

This shows the lemma. O

Next we want to construct the von Neumann algebra N or better the algebra A
which we define

N'= v AdUMHM (2.9)

This algebra is invariant under AdU(¢). Now we show that € is separating for A''. For
this and the following calculation we set AdU(¢t) = o".

2.7 Lemma:

The algebra KJpMJIpm K commutes with o'(M’') and hence with N'. Since KJpq 1s
unitary and maps Q onto itself it follows that Q is cyclic for N.

Proof: Let A € M and B € M'. By using Eq.(2.8) we obtain:

Ut)BU(t)* KJpAJ K = AijAD(t)BD(t)*A;A“D(%)*JMJMAJMJMD(%)
i

2

1

= D(—t)* AL, BA'D(—t)D( :

V*AD(=)D(—t)"D(—t).

Property (7) of Lemma 2.2 and (2.8) leads to

i i
2 2
= D(%)*JMJMAJMJMD(%)A%D(t)BD(t)*A]}f

= D(—t)*D(—t)D(= )*AD(= )D(—t)*Al} BA ! D(—t)
= KJMATMKU(t)BU(—t).

This shows the lemma. O
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;From the invariance of N’ and the last lemma we notice for later use
[0 (A, Ko™ (AL)K] =0, A}, A, e M'; t1,t; € R. (2.10)

This follows from [K, Al!] = 0 and M’ = JyMJpy. Next we want to show that U(¢) is
the modular group of N'. We start with the observation
2.8 Lemma:

With U(t) = Al we obtain for A’ € M’

A_ﬁat(A Q= Kat(A'*)Q.

Proof: Using Egs. (2.6) and (2.8) we get A" A'Q = AY, D(¢t)A’Q = D(—t)* A%, A'Q.
1

This expression has an analytic continuation into the strip S(0, 5) and we obtain with Eq.

(2.7)
A2 40 = D(—t + %)*A”M_l/zA’Q = KD(—t)" AL T A Q
= KD(—t)*AlL,A"Q = KA D(t)A"Q = KU(t)A™*Q,
and the lemma is proved. ]

Next we want to extend Lemma 2.8 to all of A/, To this end we start with the
following remark: Since o/(A’) is weakly continuous in ¢ we can define for f(¢) € £!'(IR)
the weak integral

If we take for f(t) a function which is entire analytic in ¢ then o*(o/(A')) is entire analytic
in 5. Notice that every o!(A’) is the strong limit of elements of the form o/(4’). With
this remark we obtain:

2.9 Lemma:

Let C" € N then we get o .
AT = KATC™Q.

Proof: Choose A; € M’ and f; € L!(IR) entire analytic, i = 1,...,n. Then
Aah (Ay)ol (4,)Q = o' (67 (A1) ..o’ (o (4,))Q

can be analytically continued and we obtain with Lemma 2.8 and Eq. (2.10):

1

N30l (A Lo (A)Q :qt+%(af1(A1)...afn(An))Q
— o3 (o1 (A1)). o E (oI (A1) o 3 (0T (40)) 0
— otts <0‘f1 A1)>...O't+% (Uf"—l(An_1)>KUt <0‘f" (Ai))KQ
NEo™T3 (0l (Ay)).o™ 3 (aIn=1(4,_1))
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Repeating this manipulation we find

Since the set {o/1(4;)...07(4,), n € IN, f € LY(IR) entire analytic} is weakly dense in
N’ and the *—operation is weakly continuous the lemma is proved. ]

Proof of the theorem: In order that U(t) is the modular group of A" we have to
show that U(—t) fulfils the KMS—condition for N'. Let C},C} € N’ then by Lemma 2.9
(Q,CLU(+)C5Q) has an analytic continuation into the strip S(0, %) and we obtain

(Q, CIAITD) C0) = (€10, Ko'(C5)Q) = (0'(C15)2, KC'1Q) =
(0, CLATEKCQ) = (Q, CLAT3C10).

The last expression can again be analytically continued into S(0, %) and we obtain at the
upper boundary (Q,CIATHCIQ). This shows the KMS-condition. It remains to show
the uniqueness of the mapping. If D;(¢t) and Ds(t) are different then follows from the
construction used above that the algebras are different. Conversely assume A, Ny €
Sub(M) and D;(t) and D,(t) coincide. Then Al and Alf coincide and also J; and J;
coincide by Eq. (2.6). This implies that A} N A% is invariant under Al = Alf. Since
JiM'J; is contained in the intersection it follows that Q is cyclic for N7 N A,. Hence
N1 and also N coincide with N7 N N,. (See [KR86] Thm. 9.2.36.) Hence the map
Sub(M) < Char(M) is one to one. O

3. Topology for the set of characteristic functions
The set Char(M) can easily be furnished with a topology.
3.1 Definition:

Let M be a von Neumann algebra with a cyclic and separating vector 2. We introduce
on Char(M) the topology 7 of simultanious *—strong convergence of D, (t) and D, (t + %)
and this uniformly on every compact K of the real line. The neighbourhoods of an element
D(t) are given by

U1, b, K, D(t)) = {D'(t) € Char(M); ||(D(t) — D' ()i ||+

[(D(1)" = Dy Wl + (D + 5y = D't + S+ (3.1)
|(D(t + %)* —D'(t+ %)*)w <1, i=1,.,ntc K}

The importance of this definition is due to the observation that Char(M) is complete
in this topology.
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3.2 Theorem:
The space Char(M) is T complete.

Proof: Let D,(t) be a Cauchy net in Char(M) with limit D(¢). Since D, (t) converges
s«—strong it follows that Dy (¢)* Dy (t) converges weakly. This implies that D(¢) is unitary
and the convergence of D,(t) is strong. As the convergence is uniform on every compact
it follows that D(t) is continuous. D,(0) = 1 implies D(0) = 1 and D, (¢)Q = Q yields
the same relation for D(t). Before discussing the property (3) of Lemma 2.2 let us show
the other properties.

Since D, (t + %) converges *—strongly on every compact it follows that D(t + %) is
also unitary and continuous. Writing the cocycle relation in the form A'{D.(s +t) =
Do (s)A¥ D, (t) we see that the righthand side converges weakly and since all opera-
tors involved are unitary the convergence is strong. Hence the limit function fulfils the
cocycle relation. The same arguments are applicable for the property (6) of Lemma
2.2. To show (7) let A € M then Da(t)Da(%)*ADa(%)Da(t)* € M. Since Dy(t)
and Da(%) converge x—strongly to unitary operators it follows that also the products
Da(t)Da(%)* and Da(%)Da(t)* converge strongly to D(t)D(;—)* and D(%)D(t)*. Conse-
quently Da(t)Da(%)*ADa(%)Da(t)* converges weakly to D(t)D(%)*AD(%)D(t)*. As M
is weakly closed the limit belongs to M.

For the proof of property (3) of Lemma 2.2 exist two different procedures. One of them
uses methods of bounded analytic functions and the other is based on operator theoretic
technics. We will use the second method. Since D, (t) converges s—strongly we conclude
that also the unitary groups All = All D () converge to a unitary group A, (We write
the index « instead of N,.) Since the convergence of D,(t) is uniform on every compact
and since Al is strongly continuous in # it follows that also Alf is strongly continuous in
t. On the other hand we know that J, = JMD(%) converges strongly to a conjugation
J. From JaAin = AZJQ we conclude JAY = AltJ. This implies that A is an invertible
operator.

;From the uniform strong convergence of the unitary groups All on every compact
it follows that log A, converges to log A in the strong resolvent sense. (See, e.g. [RSiT2]
Thm. VIII.21.) Since Sy is an extension of S, one has (1 + A)™! > (1 4+ Ay)7L. (See
also the beginning of section 4.) Since (1 + A)~! is a bounded function of log A it follows
that (1 4+ Aa)_l converges strongly to (1 + A)_l. (See [RSi72] Thm. VIIL.20.) ;From
(1+ AM)_l > (14 Aa)_l follows (1 + AM)_l > (14 A)_l and we conclude by standard
arguments that D(¢) has an analytic extension into S(0, %) wich is norm-bounded by 1.
[If X,Y are selfadjoint operators with X? < Y2 then this implies D(Y') C D(X) and for
Y € DY) holds || X¢|| < ||Y¢|. If Y is an invertible operator then one has D(Y) =
range Y "' and for ¢ € D(Y 1) it follows [|[XY o| < ||[YY ¢| = ||¢||. Hence XY !
has an extension which is bounded in norm by 1. Since for 0 < A < 1 the function
x — z? is operator-monoton on positive operators one easily shows that also X*Y ~* has
an extension which is norm-bounded by 1.] This proves the theorem. ]
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4. Conclusions, examples

The two spaces Sub(M) and Char(M) are isomorphic. The first carries a semi-
ordering (by inclusion) and the second a topology. Therefore, it is natural to try to make
use of the semi—order also for convergence problems. For example the following problem is
easier to answer with help of the T—topology: Let N,, C Sub(M) be a decreasing sequence
of subalgebras and let A, be their associated modular operators. Does this sequence
converge and if the limit exists, is it the modular operator of a subalgebra?

Since Tomita conjugations are a decreasing sequence (in the sense of the extension
theory) of closed operators, it follows by standard arguments that (1+A,,)~! is a decresing
sequence of positive bounded operators. Hence exists a strong limit (1+A)~!. But is A the
modular operator of some subalgebra of M? Since the multiplication of a sequence All by
A/_\/itt does not change the convergence property the answer is positive if D, (t) = A/_\/ittAi,f
converges in the 7-topology. That this is true if the intersection of the N, belongs also to
Sub(M) coincides with a result of D’ Antoni, Doplicher, Fredenhagen and Longo [DDFLS8T].

4.1 Corollary:

Let M be a von Neumann algebra with cyclic and separating vector €). Let
Nn € Sub(M),n € IN be a decreasing sequence of von Neumann subalgebras of M. If Q
is still eyclic for N := (YN, then D,(t) = A All converges to D(t) = A A in the

T—topology.
Proof: From
(T4+AM) " > (1420 > (14 A1) (4.1)
one obtains
AM S An S An+1. (41@)

iFrom Eq. (4.1a) we conclude that the domain of A711/2 is contained in the domain of A%tz.

/ /

Since the domain of A}\/’z is the range of AX/—I 2, the expression

AX/UZAMAX/I/Z
is a densely defined bounded and hence a closable operator, and one gets
closure Axfl/zAMAxfl/z < 1. (4.2)

The map A — A%, 0 < o <1 is an operator monotone function on positive operators (see

e.g. G.K. Pedersen [Ped79] Prop. 1.3.8.). Hence we obtain from Eq. (4.2)
AY>AY, 0<a<l1

and consequently

closure {A;*AGA <1, 0<a<

N —

This implies
||closure AGAL Y| <1, 0<a<

N | —
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(1+A,)7! is a decreasing sequence of positive bounded operators which converges strongly
to (1 + D)_l. Since all these operators are bounded below by (1 + A)_l where A is the
modular operator of the intersection, we conclude, that D is an invertible operator. As
(1 +A%)~1 are bounded functions of log A,, it follows that (1 + A%)~! converges strongly
to (1 + Da)™t. (See e.g. [RSi72] Thm. VIIL.21.) This implies that A} A converges
strongly to A%,D~®. The convergence of (1 + A, )" implies the convergence of the
resolvent and hence the unitary groups All converge *strong to D', and this uniformly
on every compact of the real line. This implies Dy (t + ia) = A/_\/ittA%A;aAirf converges
*—strongly to A/_VlttAﬁAD_aDit. This shows that we have convergence in the 7—topology.
Hence exists a von Neumann algebra N; € Sub(M) which represents this limit. From

N D N D (N, we conclude that A coincides with the intersection. O
"

In order to get a better understanding of the 7—topology of Char(M) let us look at
two examples of decreasing families of von Neumann subalgebras, wher € is no longer
cyclic for the intersection.

4.2 Examples:

(1) Let W be a wedge and W, be the shifted wedge. Then A,, the modular operator of
M(W,), can be expressed as follows:

Al = T(2)AYT(—z)

where T'(x) is the representation of the translations. By a well known result [Bch92] we

find
D, (t) = AGHAY = T((A(=t) = 1)z)

where A(t) are the Lorentz boosts associated with W. If now x tends to spacelike infinity
inside the wedge, then M(W,) tends to the global center. But one sees that in this
situation D, (t) does not converge on the real axis and hence not in the 7—topology.

(2) Let D,, r — 0 be a decreasing family of double cones. It is known that N, M(D,) is
contained in the center of the global algebra. (See e.g. [Bch96] Thm. 4.6.) In order to
be able to compute D, (t) we use a conformal field theory. In this case the modular group
of the algebra of the double cone has been computed by Hislop and Longo [HL82]. The
result is the following:

Let D be the double cone
D ={z:|ao| + ||7]| < 1}

and denote
et =9 £ 12|

Then the modular group of the pair (M(D), ) induces on D a geometric transfor-
mation given by the formula:

_(1 _ xi) + 6—271')\(1 + xi)

xi(/\) - (1+a%) +e 2701 +a%)

10
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The formula for D, is obtained if one replaces % by ? Both modular groups are given

by conformal transformations, hence D, (t) = Al_itAi,f, 0 < r < 1is given by the conformal
transformation
—r? r(l —r)sinh 27t + l’i(l — (1 —r)cosh 2xt)

r—r(l —r)cosh2rt + a*(—r 4+ (1 — r)sinh 27t

l’it(—t) o l’i(t) =

For r = 0 we obtain
1 — cosh 27t

sinh 27t

This expression is well defined on the real axis also for r — 0. If we replace t by t+1/2 then
the hyperbolic functions pick up a factor —1 which has a singularity at ¢ = 0. Therefore,
D, (t) does not converge in the T—topology.

We end this paper with some remaks and questions.
Using the modular automorphisms of M one sees that Sub(M) contains a continuous
family of different elements if it contains a non-trivial element. With help of the Longo
endomorphism one can construct a decreasing family (by inclusion) of elements. (For
N € Sub(M) the Longo endomorphism applied to N is Ad (JyJ )N )

If V'€ Sub(M), then there is a natural injection of Sub(N) into Sub(M). Hence if

Sub(M) is non—trivial it must have a rich structure.

Problems: (a) If U € M is unitary and ¢» = U then one has Suby (M) = USubq(M)U*.
If one has ¢ = AQ with A and A™! both in M then one obtains Suby(M) = Subg(M).
This implies that for a dense set of cyclic and separating vectors the set Suby(M) is
homeomorphic to Subg(M). Is this true for all ¢ which are cyclic and separating for M?
(8) If M is a finite algebra then Sub(M) consists only of one point, namely M itself. If
() is true then for every infinite algebra the set Sub(M) contains non—trivial points.

(v) Using the Longo endomorphisms one observes that at least every second element in

Sub(M) is obtained by applying an endomorphism to M. Is this true for every element
in Sub(M)?
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