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HJB|Oct./98On the embedding of von Neumann subalgebrasH.J. BorchersInstitut f�ur Theoretische PhysikUniversit�at G�ottingenBunsenstrasse 9, D 37073 G�ottingenAbstract:For a von Neumann algebra with a cyclic and separating vector it will be shown that thevon Neumann subalgebras with the same cyclic vector can uniquely be characterized by one{parametric operator{valued functions obeying a set of conditions. Since the properties containno reference to the subalgebra these operator{valued functions will be called characteristicfunctions. On the set of characteristic functions there exists a natural topology under whichthis set is complete.1. IntroductionQuantum �eld theory of local observables in the sense of Araki, Haag and Kastler[Ha92] is concerned with von Neumann algebras M(O) associated with bounded openregions O. In addition one needs states ful�lling some requirements in order to describephysical situations. Here we are dealing with the vacuum state. If in the vacuum represen-tation the theory ful�ls the nuclearity condition of Buchholz and Wichmann [BW86] then,by a result of Buchholz, D'Antoni and Fredenhagen [BDF87], all the local algebrasM(O)are of the same von Neumann{Connes type III1. Hence one local algebra alone does notcontain any information about the structure of the theory except one is dealing with localquantum physics. Therefore, one has to look at several local algebras at the same time inorder to obtain informations about the underlying physical structure of the theory. Thesimplest case is the situation of two local algebras. Here we want to treat the algebrasof two regions where one is a subset of the other. The isotony requirement of the theoryimplies that we are dealing with two von Neumann algebras N �M. In addition by theReeh{Schlieder theorem [RSch61] both algebras have many common cyclic and separatingvectors and we will choose one of them and call it 
.It turns out that every subalgebra N � M with the same cyclic and separatingvector can uniquely be characterized by an operator{valued function D(t) with certainproperties. This will be shown in section 2. In the characterization of these functionsthere is no reference to the von Neumann subalgebraN . Therefore, these functions will be1



HJB|Oct./98called characteristic functions. The set of these functions is in one to one correspondencewith the subalgebras N � M which have 
 as cyclic vector. The properties of thecharacteristic functions are such that there exists a natural topology on this set. It willbe shown in section 3 that the set of characteristic functions is complete in this topology.In section 4 two examples will be given in order to get a better understanding of thetopology introduced on the set of characteristic functions. Some problems connected withthe concepts develloped in the second section will be listed at the end. The investigationsof this note are based on the Tomita{Takesaki theory [To67],[Ta70]. (See also [BR79] or[KR86].)2. Characteristic functionsIn this and the following sections we deal with a von Neumann algebra M actingon a Hilbert space H with a cyclic and separating vector 
 2 H. We are interested invon Neumann subalgebras N � M for which the vector 
 is also cyclic. The modularoperator and the modular conjugation of the pairs fM;
g and fN ;
g will be denoted byf�M; JMg and f�N ; JNg respectively. Most of the objects we are dealing with dependalso on the vector 
. But since we keep the Hilbert space H and the vector 
 �xed wewill suppress the index 
 in all our notations.First we introduce some quantities which are needed for the investigation.2.1 De�nition:Let M be a von Neumann algebra acting on H with a cyclic and separating vector 
.1. By Sub(M) we denote the set of von Neumann subalgebras N of M which have 
 ascyclic vector.2. For N 2 Sub(M) we denote by DM;N (t) the function t! B(H) de�ned byDM;N (t) = ��itM �itN : (2:1)3. We de�ne the strip S(a; b); a < b asS(a; b) = f� 2 C; a < =m� < bg:4. The action of the modular group Ad�it will be denoted by �t.First we derive for N 2 Sub(M) some properties of the function DM;N (t) which will becrucial for the coming investigation.2.2 Lemma:Let M be a von Neumann algebra with a cyclic and separating vector 
 and let N 2Sub(M). Then the function D(t) := DM;N (t) de�ned in Eq. (2:1) has the followingproperties:(1) D(t) is unitary and strongly continuous in t. Moreover D(0) = 1l.2



HJB|Oct./98(2) D(t)
 = 
, for all t 2 IR.(3) D(t) has a bounded analytic continuation into the strip S(0; 12 ) and has strongly con-tinuous boundary values at =mt = 0 and =mt = 12 .(4) D(t + i2 ) is unitary and strongly continuous in t.(5) D(t) ful�ls the following cocycle relation:D(s + t) = ��tM(D(s))D(t): (2:2)(6) For complex values of the arguments one �ndsD(t + i2)�JMD(t) = D(t)�JMD(t + i2)is independent of t.(7) Ad fD(t)D( i2 )�gM �M holds for all t 2 IR.Proof : (1) and (2) follow immediately from the de�nition of D(t). The statements(3) and (4) are nothing else than Thm. A in [Bch95]. (5) From the de�nition of D(t) weobtain ��tM(D(s))D(t) = ��itM ��isM �isN�itM��itM �itN = ��i(s+t)M �i(s+t)N = D(s + t).(6) From Thm. A in [Bch95] we knowD(t + i2) = JMD(t)JN : (2:3)This implies D(t + i2)�JMD(t) = JND(t)�JMJMD(t) = JN ;and D(t)�JMD(t + i2) = D(t)�JMJMD(t)JN = JN :This shows (6). For proving (7) we use Eqs. (2.1) and (2.3) and getAd fD(t)D( i2 )�gM = Ad f��itM�itNJNJMgM:Because of N � M we know Ad JMM = M0 � N 0. Hence Ad fJNJMgM � N whichimplies Ad f�itNJNJMgM � N . Since N �M statement (7) is proved.2.3 Remarks:1: The functions DM;N (t) ful�l the following chain rule: If P � N �M thenDM;P(t) = DM;N (t)DN ;P (t): (2:4)2: With N 0 �M0 one obtains DN 0;M0(t) = DM;N (�t)�: (2:5)3



HJB|Oct./98The function DM;N (�z)� is analytic in the conjugate complex domain, i.e. in S(� 12 ; 0).Therefore, (2:5) reads in the complexDN 0;M0(z) = DM;N (��z)�: (2:50)Notice that the properties ofD(t) described in Lemma 2.1 do not contain any referenceto the algebra N . Therefore, we introduce the following notation:2.4 De�nition:An operator{valued function D(t) which ful�ls the properties (1){(7) of Lemma 2.2 willbe called a characteristic function of M. The set of charasteristic functions belonging toM will be denoted by Char(M).2.5 Theorem:Let M be a von Neumann algebra with a cyclic and separating vector 
. Then to everycharacteristic function D(t) of M exists a von Neumann subalgebra N 2 Sub(M) suchthat D(t) = ��itM�itN . The correspondenceSub(M)() Char(M)is one to one.The proof of this theorem will be splitted into several steps. We start with2.6 Lemma:De�ne U(t) = �itMD(t) and K = JMD( i2 ) (2:6)then there holds:(1) U(t) is a strongly continuous unitary group.(2) K is a conjugation i.e. K = K� = K�1.(3) K commutes with U(t), which implies that one can write U(t) = �it with an invertibleoperator �.(4) The function D(t) can be reconstructed if we know U(t) and K.D(t) = ��itM U(t); D(t + i2) = JMD(t)K: (2:7)Proof : Since D(t) and �itM are both unitary and strongly continuous it follows thatU(t) is unitary and weakly continuous. The unitarity implies that U(t) is strongly con-tinuous. From the cocycle relation (2.2) it follows that U(t) is a unitary group. Therelation K = K� is a consequence of property Lemma 1.2 (6). Using this again we �nd4



HJB|Oct./98KK = D( i2)�JMJMD( i2) = 1l. For proving (3) we reformulate the cocycle relation (2.2).It reads ��itM D(s)�itM = D(t + s)D(t)� . If we replace t by �t and s by t we get�itMD(t)��itM = D(�t)�: (2:8)If we analytically continue the last but one equation in s then we �nd ��itMD( i2 )�itM =D(t + i2 )D(t)�. Using this equation and Lemma 2.2 (6) we obtain:KU(t) = JMD( i2 )�itMD(t) = JM�itMD(t + i2)D(t)�D(t)= �itMD(t)D(t)�JMD(t + i2) = �itMD(t)JMD( i2 ) = U(t)K:Finally the �rst relation of Lemma 2.6,(4) follows from the de�nition of U(t). The secondrelation will be derived by using condition (6) of Lemma 2.2.D(t + i2) = JMD(t)D(t)�JMD(t + i2) = JMD(t)JMD( i2 ) = JMD(t)K:This shows the lemma.Next we want to construct the von Neumann algebra N or better the algebra N 0which we de�ne N 0 = _t2IRAdU(t)M0: (2:9)This algebra is invariant under AdU(t). Now we show that 
 is separating for N 0. Forthis and the following calculation we set AdU(t) = �t.2.7 Lemma:The algebra KJMMJMK commutes with �t(M0) and hence with N 0. Since KJM isunitary and maps 
 onto itself it follows that 
 is cyclic for N .Proof : Let A 2 M and B 2 M0. By using Eq.(2.8) we obtain:U(t)BU(t)�KJMAJMK = �itMD(t)BD(t)���itMD( i2 )�JMJMAJMJMD( i2 )= D(�t)��itMB��itMD(�t)D( i2 )�AD( i2 )D(�t)�D(�t):Property (7) of Lemma 2.2 and (2.8) leads to= D(�t)�D(�t)D( i2 )�AD( i2 )D(�t)��itMB��itM D(�t)= D( i2 )�JMJMAJMJMD( i2 )�itMD(t)BD(t)���itM= KJMAJMKU(t)BU(�t):This shows the lemma. 5



HJB|Oct./98>From the invariance of N 0 and the last lemma we notice for later use[�t1(A01);K�t2 (A02)K] = 0; A01; A02 2 M0; t1; t2 2 IR: (2:10)This follows from [K;�it] = 0 and M0 = JMMJM. Next we want to show that U(t) isthe modular group of N . We start with the observation2.8 Lemma:With U(t) = �it we obtain for A0 2 M0��12 �t(A0)
 = K�t(A0�)
:Proof : Using Eqs. (2.6) and (2.8) we get �{tA0
 = �{tMD(t)A0
 = D(�t)��{tMA0
.This expression has an analytic continuation into the strip S(0; 12 ) and we obtain with Eq.(2.7) �it�1=2A0
 = D(�t + i2)��it�1=2M A0
 = KD(�t)�JM�itMJMA0�
= KD(�t)��itMA0�
 = K�itMD(t)A0�
 = KU(t)A0�
;and the lemma is proved.Next we want to extend Lemma 2.8 to all of N 0. To this end we start with thefollowing remark: Since �t(A0) is weakly continuous in t we can de�ne for f(t) 2 L1(IR)the weak integral �f (A0) = Z �t(A0)f(t) dt:If we take for f(t) a function which is entire analytic in t then �s(�f (A0)) is entire analyticin s. Notice that every �t(A0) is the strong limit of elements of the form �f (A0). Withthis remark we obtain:2.9 Lemma:Let C 0 2 N 0 then we get �it� 12C 0
 = K�itC 0�
:Proof : Choose Ai 2 M0 and fi 2 L1(IR) entire analytic, i = 1; :::; n. Then�it�f1 (A1):::�fn(An)
 = �t��f1(A1)�:::�t��fn(An)�
can be analytically continued and we obtain with Lemma 2.8 and Eq. (2.10):�it� 12�f1 (A1):::�fn (An)
 = �t+ i2 ��f1 (A1):::�fn (An)�
= �t+ i2 ��f1 (A1)�:::�t+ i2 ��fn�1(An�1)��t+ i2 ��fn (An)�
= �t+ i2 ��f1 (A1)�:::�t+ i2 ��fn�1(An�1)�K�t��fn(A�n)�K
= K�t��fn (A�n)�K�t+ i2 ��f1 (A1)�:::�t+ i2 ��fn�1(An�1)�
:6



HJB|Oct./98Repeating this manipulation we �nd= K�t��fn (A�n):::�f1(A�1)�
:Since the set f�f1 (A1):::�fn(An); n 2 IN; f 2 L1(IR) entire analyticg is weakly dense inN 0 and the �{operation is weakly continuous the lemma is proved.Proof of the theorem: In order that U(t) is the modular group of N we have toshow that U(�t) ful�ls the KMS{condition for N 0. Let C 01; C 02 2 N 0 then by Lemma 2.9(
; C 01U(t)C 02
) has an analytic continuation into the strip S(0; 12 ) and we obtain(
; C 01�i(t+ i2 )C 02
) = (C 0�1
;K�t(C 0�2)
) = (�t(C 0�2)
;KC 0�1
) =(
; C 02��itKC 0�1
) = (
; C 02��it� 12C 01
):The last expression can again be analytically continued into S(0; 12 ) and we obtain at theupper boundary (
; C 02��itC 01
). This shows the KMS{condition. It remains to showthe uniqueness of the mapping. If D1(t) and D2(t) are di�erent then follows from theconstruction used above that the algebras are di�erent. Conversely assume N1;N2 2Sub(M) and D1(t) and D2(t) coincide. Then �it1 and �it2 coincide and also J1 and J2coincide by Eq. (2.6). This implies that N1 \ N2 is invariant under �it1 = �it2 . SinceJ1M0J1 is contained in the intersection it follows that 
 is cyclic for N1 \ N2. HenceN1 and also N2 coincide with N1 \ N2. (See [KR86] Thm. 9.2.36.) Hence the mapSub(M), Char(M) is one to one.3. Topology for the set of characteristic functionsThe set Char(M) can easily be furnished with a topology.3.1 De�nition:Let M be a von Neumann algebra with a cyclic and separating vector 
. We introduceon Char(M) the topology � of simultanious �{strong convergence of D�(t) and D�(t+ i2 )and this uniformly on every compact K of the real line. The neighbourhoods of an elementD(t) are given byU( 1;:::;  n;K;D(t)) = fD0(t) 2 Char(M); k(D(t) �D0(t)) ik+k(D(t)� �D0(t)�) k+ k(D(t + i2) �D0(t+ i2)) k+k(D(t + i2)� �D0(t+ i2)�) k � 1; i = 1; :::; n t 2 Kg: (3:1)The importance of this de�nition is due to the observation that Char(M) is completein this topology. 7



HJB|Oct./983.2 Theorem:The space Char(M) is � complete.Proof : Let D�(t) be a Cauchy net in Char(M) with limitD(t). SinceD�(t) converges�{strong it follows that D�(t)�D�(t) converges weakly. This implies that D(t) is unitaryand the convergence of D�(t) is strong. As the convergence is uniform on every compactit follows that D(t) is continuous. D�(0) = 1l implies D(0) = 1l and D�(t)
 = 
 yieldsthe same relation for D(t). Before discussing the property (3) of Lemma 2.2 let us showthe other properties.Since D�(t + i2 ) converges �{strongly on every compact it follows that D(t + i2) isalso unitary and continuous. Writing the cocycle relation in the form �isMD�(s + t) =D�(s)�isMD�(t) we see that the righthand side converges weakly and since all opera-tors involved are unitary the convergence is strong. Hence the limit function ful�ls thecocycle relation. The same arguments are applicable for the property (6) of Lemma2.2. To show (7) let A 2 M then D�(t)D�( i2 )�AD�( i2 )D�(t)� 2 M. Since D�(t)and D�( i2 ) converge �{strongly to unitary operators it follows that also the productsD�(t)D�( i2 )� and D�( i2 )D�(t)� converge strongly to D(t)D( i2)� and D( i2 )D(t)� . Conse-quently D�(t)D�( i2 )�AD�( i2)D�(t)� converges weakly to D(t)D( i2 )�AD( i2 )D(t)�. As Mis weakly closed the limit belongs to M.For the proof of property (3) of Lemma 2.2 exist two di�erent procedures. One of themuses methods of bounded analytic functions and the other is based on operator theoretictechnics. We will use the second method. Since D�(t) converges �{strongly we concludethat also the unitary groups �it� = �itMD�(t) converge to a unitary group �it. (We writethe index � instead of N�.) Since the convergence of D�(t) is uniform on every compactand since �it is strongly continuous in t it follows that also �it is strongly continuous int. On the other hand we know that J� = JMD( i2 ) converges strongly to a conjugationJ . From J��it� = �it�J� we conclude J�it = �itJ . This implies that � is an invertibleoperator.>From the uniform strong convergence of the unitary groups �it� on every compactit follows that log�� converges to log� in the strong resolvent sense. (See, e.g. [RSi72]Thm. VIII.21.) Since SM is an extension of S� one has (1 + �M)�1 � (1 + ��)�1. (Seealso the beginning of section 4.) Since (1 +�)�1 is a bounded function of log� it followsthat (1 + ��)�1 converges strongly to (1 + �)�1. (See [RSi72] Thm. VIII.20.) >From(1 +�M)�1 � (1+��)�1 follows (1+�M)�1 � (1 +�)�1 and we conclude by standardarguments that D(t) has an analytic extension into S(0; 12 ) wich is norm{bounded by 1.[If X;Y are selfadjoint operators with X2 � Y 2 then this implies D(Y ) � D(X) and for 2 D(Y ) holds kX k � kY  k. If Y is an invertible operator then one has D(Y ) =rangeY �1 and for ' 2 D(Y �1) it follows kXY �1'k � kY Y �1'k = k'k. Hence XY �1has an extension which is bounded in norm by 1. Since for 0 � � � 1 the functionx! x� is operator{monoton on positive operators one easily shows that also X�Y �� hasan extension which is norm{bounded by 1.] This proves the theorem.8



HJB|Oct./984. Conclusions, examplesThe two spaces Sub(M) and Char(M) are isomorphic. The �rst carries a semi{ordering (by inclusion) and the second a topology. Therefore, it is natural to try to makeuse of the semi{order also for convergence problems. For example the following problem iseasier to answer with help of the �{topology: Let Nn � Sub(M) be a decreasing sequenceof subalgebras and let �n be their associated modular operators. Does this sequenceconverge and if the limit exists, is it the modular operator of a subalgebra?Since Tomita conjugations are a decreasing sequence (in the sense of the extensiontheory) of closed operators, it follows by standard arguments that (1+�n)�1 is a decresingsequence of positive bounded operators. Hence exists a strong limit (1+�)�1. But is � themodular operator of some subalgebra ofM? Since the multiplication of a sequence �itn by��itM does not change the convergence property the answer is positive if Dn(t) = ��itM �itnconverges in the �{topology. That this is true if the intersection of the Nn belongs also toSub(M) coincides with a result of D'Antoni, Doplicher, Fredenhagen and Longo [DDFL87].4.1 Corollary:Let M be a von Neumann algebra with cyclic and separating vector 
. LetNn 2 Sub(M); n 2 IN be a decreasing sequence of von Neumann subalgebras of M. If 
is still cyclic for N := Tn Nn, then Dn(t) = ��itM �itn converges to D(t) = ��itM �it in the�{topology.Proof : From (1 +�M)�1 � (1 + �n)�1 � (1 + �n+1)�1 (4:1)one obtains �M � �n � �n+1: (4:1a)>From Eq. (4.1a) we conclude that the domain of �1=2n is contained in the domain of �1=2M .Since the domain of �1=2N is the range of ��1=2N , the expression��1=2N �M��1=2Nis a densely de�ned bounded and hence a closable operator, and one getsclosure ��1=2N �M��1=2N � 1l: (4:2)The map A! A�; 0 � � � 1 is an operator monotone function on positive operators (seee.g. G.K. Pedersen [Ped79] Prop. 1.3.8.). Hence we obtain from Eq. (4.2)��n � ��M; 0 � � � 1and consequently closure f���n �2�M���n g � 1l; 0 � � � 12 :This implies kclosure ��M���n k � 1; 0 � � � 129



HJB|Oct./98(1+�n)�1 is a decreasing sequence of positive bounded operators which converges stronglyto (1 +D)�1. Since all these operators are bounded below by (1 + �)�1 where � is themodular operator of the intersection, we conclude, that D is an invertible operator. As(1 +��n)�1 are bounded functions of log�n it follows that (1 +��n)�1 converges stronglyto (1 + D�)�1. (See e.g. [RSi72] Thm. VIII.21.) This implies that ��M���n convergesstrongly to ��MD��. The convergence of (1 + �n)�1 implies the convergence of theresolvent and hence the unitary groups �itn converge �{strong to Dit, and this uniformlyon every compact of the real line. This implies Dn(t + i�) = ��itM ��M���n �itn converges�{strongly to ��itM��MD��Dit. This shows that we have convergence in the �{topology.Hence exists a von Neumann algebra Nl 2 Sub(M) which represents this limit. FromNn � Nl � Tn Nn we conclude that Nl coincides with the intersection.In order to get a better understanding of the �{topology of Char(M) let us look attwo examples of decreasing families of von Neumann subalgebras, wher 
 is no longercyclic for the intersection.4.2 Examples:(1) Let W be a wedge and Wx be the shifted wedge. Then �x, the modular operator ofM(Wx), can be expressed as follows:�itx = T (x)�it0 T (�x)where T (x) is the representation of the translations. By a well known result [Bch92] we�nd Dx(t) = ��it0 �itx = T ((�(�t) � 1)x)where �(t) are the Lorentz boosts associated with W . If now x tends to spacelike in�nityinside the wedge, then M(Wx) tends to the global center. But one sees that in thissituation Dx(t) does not converge on the real axis and hence not in the �{topology.(2) Let Dr; r ! 0 be a decreasing family of double cones. It is known that \rM(Dr) iscontained in the center of the global algebra. (See e.g. [Bch96] Thm. 4.6.) In order tobe able to compute Dr(t) we use a conformal �eld theory. In this case the modular groupof the algebra of the double cone has been computed by Hislop and Longo [HL82]. Theresult is the following:Let D be the double cone D = fx : jx0j+ k~xk < 1gand denote x� = x0 � k~xk:Then the modular group of the pair (M(D);
) induces on D a geometric transfor-mation given by the formula:x�(�) = �(1� x�) + e�2��(1 + x�)(1 + x�) + e�2��(1 + x�) :10



HJB|Oct./98The formula for Dr is obtained if one replaces x� by x�r . Both modular groups are givenby conformal transformations, hence Dr(t) = ��it1 �itr ; 0 < r < 1 is given by the conformaltransformationx�1 (�t) � x�r (t) = �r2 � r(1 � r) sinh 2�t+ x�(1 � (1 � r) cosh 2�t)r � r(1 � r) cosh 2�t+ x�(�r + (1� r) sinh 2�t :For r = 0 we obtain 1� cosh 2�tsinh2�t :This expression is well de�ned on the real axis also for r ! 0. If we replace t by t+i=2 thenthe hyperbolic functions pick up a factor �1 which has a singularity at t = 0. Therefore,Dr(t) does not converge in the �{topology.We end this paper with some remaks and questions.Using the modular automorphisms of M one sees that Sub(M) contains a continuousfamily of di�erent elements if it contains a non-trivial element. With help of the Longoendomorphism one can construct a decreasing family (by inclusion) of elements. (ForN 2 Sub(M) the Longo endomorphism applied to N is Ad (JNJM)N .)If N 2 Sub(M), then there is a natural injection of Sub(N ) into Sub(M). Hence ifSub(M) is non{trivial it must have a rich structure.Problems: (�) If U 2 M is unitary and  = U
 then one has Sub (M) = USub
(M)U�.If one has  = A
 with A and A�1 both in M then one obtains Sub (M) = Sub
(M).This implies that for a dense set of cyclic and separating vectors the set Sub (M) ishomeomorphic to Sub
(M). Is this true for all  which are cyclic and separating forM?(�) If M is a �nite algebra then Sub(M) consists only of one point, namely M itself. If(�) is true then for every in�nite algebra the set Sub(M) contains non{trivial points.() Using the Longo endomorphisms one observes that at least every second element inSub(M) is obtained by applying an endomorphism to M. Is this true for every elementin Sub(M)?AcknowledgementsI thank A. Uhlmann for helpful discussions. Hospitality of the University Leipzig and theErwin Schr�odinger Institute in Vienna is gratefully acknowledged.
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