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1 Introduction

We shall study in this note the following conjecture, to which we shall refer
as the “Geometric Lemma”; we state it first in a somewhat imprecise form.

Let n, N be positive integers with k :=logN < n. If S C IR" is a
finite set whose cardinality doesn’t exceed N and such that its convex hull

K :=conv S admits an equally small Fuclidean 1-net (i.e., K can be covered
by no more than N translates of the unit Fuclidean ball D), then %D ¢ K.

At the first glance a statement of that nature may appear “trivial”. In-
deed, on some meta-mathematical level, we are asking whether a Fuclidean
ball may be described by less than exponential in n “bits of information” (by
< we mean above “much smaller than”) . And our intuition says “NO”, no
matter what exactly those “bits” are supposed to mean. However, the more
exact formulation brings together two very different assumptions: small num-
ber of vertices of the polytope K and small cardinality of the Euclidean “net”
for K. As we shall see in this note, these data are not easy to “combine”;
that creates difficulties and, at the same time, interest.

Our interest in the Lemma came as an outgrowth of the study of the
following problem, which originally has been promoted by Carl and Pietsch
and is well known in Geometric Functional Analysis (and in the Geometric
Operator Theory), usually referred to as “the duality conjecture for entropy
numbers of operators”. Recall that if X,Y are Banach spaces, u: X — Y a
compact operator and ¢ > 0, we denote by N(u,¢) the minimal cardinality



of an e-net of the image u(Bx) of the unit ball By of X (in the metric of Y
in other words, N(u,¢) is the smallest number of balls in ¥ of radius ¢ that
together cover u(By)). The conjecture referred to above asserts that there
exist universal constants a,b > 0 such that

a”'log N(u,be) <log N(u*,c) < alog N(u,b'¢) (1)

for any compact operator u and ¢ > 0. (Here and in what follows, all
logarithms are to the base 2.) In terms of the so-called entropy numbers (for
basic results concerning them and related concepts see [3] and [19]), defined
for an operator u by

ex(u) :=inf{e > 0: N(u,e) < 2"},
the assertion of the conjecture (roughly) becomes
bV ean() < ex(u) < bersalue), 2)

which is its more standard formulation. (For the most part we shall be
working with the form (1).) Note that even though ak and k/a are not
necessarily integers, (2) makes sense as the definition of e;(u) works also for
noninteger k. Additionally, due to the asymptotic nature of the questions we
investigate, the difference between the number and its integer part (or the
nearest integer, or, usually, even its double) is immaterial, and so we shall
pretend that all numbers are integers as necessary; see also Remark 8.3.

We point out here that, for an operator u, the sequence (e(u)) tends to
0 as n — oo if and only if (ex(u*)) does (and if and only if u is compact). In
such a weak sense the qualitative character of the two sequences is the same.
The “Duality Conjecture”, if true, would imply that the two sequences are
equivalent “distributionally”, i.e., in the strongest quantitative sense that we
may reasonably expect. To the best of our knowledge, it is still not known
whether (1) or (2) has a chance to hold with a = 1, as inquired originally by
Pietsch (for sure not with @ = b = 1); nevertheless, the above formulation
seems to be the most natural one. See also Remark 4.2.

Up to now, the Duality Conjecture in the form stated here has been
verified only under very strong assumptions on both spaces (see, e.g., [7],
[18]), or under some regularity assumptions on the sequences (ex(u)), (ex(u*))
([29], [2]). Our Geometric Lemma is relevant to the case when one of the



spaces, say Y, is a Hilbert space, and X 1is arbitrary; more specifically, it
implies then the second inequality in (1). However, we believe that once a
proper argument (assuming there is any) is found, a sort of a “dual” version
for the other inequality will be figured out and, possibly, one will also be able
to relax the assumptions on Y (paralleling the developments of ideas in [29]
and [2], where “weaker” — but quantitative — equivalences were established).

There has been a substantial body of work on the Duality Conjecture.
Rather than present the current state of the knowledge on the matter, we refer
the reader to [2], [18], [21], their references and the survey [6] (in preparation).

As we indicated, the Geometric Lemma remains a conjecture. We did
check it for various (classes of) convex bodies, including £7-balls of various
radii (cf. one of the comments preceding Proposition 7.2) and some “ran-
dom bodies” (specifically, “generic” projections of (Y-balls — a “canonical”
counterexample to many problems in high dimensional convexity, cf. [12]).
In the general setting, we were able to prove it “up to a logarithmic factor”.
In particular, we did show in Theorem 9.3 :

The assertion of the Geometric Lemma holds if we replace the assumption
k< nbyk <c(l+logn)®n, where ¢ > 0 is some universal numerical
constant.

The corresponding “entropy duality” result is Theorem 9.4 :

There are numerical constants a,C > 0 such that if u is a compact Hilbert
space valued operator and k € IN, then eu(u*) < C(1 + logk)?er(u).

Thus, even though the principal appeal of the Geometric Lemma stems
from its potential to resolve the Duality Conjecture in the relevant case, the
partial solution indicated above already has nontrivial consequences. To the
best of our knowledge, in absence of strong assumptions on both spaces or on
“regularity” of the sequences, no result of the above type (i.e., with a factor,
which is a function of k) appears in the literature (see also the comments
following Theorem 9.4).

Finally, let us mention that Theorem 9.3 and, overall, an important part
of the discussion deal with formally stronger statements: upper estimates
on the mean width of the part of the body in question that is inside the
Euclidean ball D. Theorem 9.3 asserts, in particular :

If K is as in the Geometric Lemma, then the mean width of K N D does
not exceed C(1+ logk)®\/k/n, where C is a universal numerical constant.
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2 Geometric Lemma — precise statements

In this section we shall state a geometric version of (the case of ) the Duality
Conjecture that is implied by the Geometric Lemma. We shall also give pre-
cise formulation(s) of the lemma and indicate the relations between various
statements. Let us start with the Duality Conjecture, the relevant case of
which is

If X is a Banach space, H — a Hilbert space, and w: X — H a compact
operator, then, for any & > 0, log N(u*,be) < alog N(u,¢), where a,b >0
are universal constants.

Note that one can restrict oneself to the case € = 1 in the above (rescaling
if necessary). Additionally, one may assume (by approximation) that the
spaces in question are finite dimensional, and the operator u is one-to-one.
In this context it is convenient to define the covering number N(U,V) for
U, V-subsets of IR" (say, with V a closed convex body) by

NU, V) :=min{N : U may be covered by N translates of V'}.

If we set U = uBx, V = By, we get N(U,V) = N(u,e). Similarly
N(u*,e) = N(V°,U°), where K° denotes the polar body of K (say, with re-
spect to the canonical Euclidean structure). Accordingly, denoting again by
D = D, the standard Euclidean ball (we shall use this convention throughout
this note), we see that the above assertion is equivalent to

Conjecture 2.1 If U C IR" is a symmetric compact convexr body, then
log N(D,bU®) < alog N(U, D) where, a,b > 0 are universal constants.

For future reference we point out that if V' is a FEuclidean ball (or, more
generally, an ellipsoid), the translates of V in the definition of N(U, V) may
be further assumed to have centers contained in U (as required — in the
general case — by some authors). This makes them insensitive to enlarging
the ambient space, while the present definition ensures that they are always
increasing in the first argument.

Conjecture 2.1 is the one we are really going to work with. In the next

several sections we shall show how it is implied by the following version of
the Geometric Lemma.



Conjecture 2.2 For any v > 0 there exists ¢y = c1(y) > 0 such that if
K C IR™ verifies

(i) K =conv S, log|S| <e¢in and

(ii) log N(K, D) < e1n
then vD ¢ K.

Remark 2.3. In fact, Conjecture 2.1 (and Conjecture 2.4 below, see Propo-
sition 5.1 and the comments preceding it) can be derived from the validity
of Conjecture 2.2 for just one v < 1, the constants involved (a,b, resp. C)
depending on that v and the corresponding ¢;. O

It is possible to derive from Conjecture 2.2 a formally stronger statement,
for which we need to introduce some notation. First, if ' C IR" is a compact
symmetric convex body containing the origin in the interior, one denotes by
| - |lu its Minkowski functional, i.e. the norm, for which U is the unit ball.
We shall use the same notation for gauges of nonsymmetric sets. We set also

MUY= [ sup () dynale) = [ alloe dpa(a)

Sn—l yEU

where 1, is the normalized (i.e., probability) Lebesgue measure on S"~*. The
second equality — without the integration signs — is in fact a definition of the
polar U°. Both quantities on the right define M*(-) also for nonsymmetric
sets, and the first one even for nonconvex and not containing the origin
(we will need that degree of generality later). We mention in passing that
M*(U) equals the mean half-width of U, a well known geometric parameter.
For future reference, we also set

MWy = [ Nalludnn (@)

In the sequel we will seldom formulate explicitly the hypotheses (convexity,
symmetry or origin in the interior) on the arguments of M*(-) and M(-); un-
less some hypotheses are stated, we shall implicitly assume the bare minimum
for the formulae to make sense.

We are now ready to state the stronger version of Conjecture 2.2.



Conjecture 2.4 Let K = conv S C IR" and set k = max{log|S|,log N(K,D)}.
Then

M*(Kn D)< Cﬁ, (3)

where C' s a universal constant.

Clearly Conjecture 2.4 = Conjecture 2.2: if yD C K, then M*(K' N D) >
M*(yD) = ~, which is inconsistent with (3) if k/n is small.

In the next section we introduce more notation and recall some (more or
less) known results about M*(-), a few of them quite deep. In section 4 we
prove the implications Conjecture 2.4 = Conjecture 2.1 and Conjecture 2.2
= Conjecture 2.4. (We do not know whether Conjecture 2.1 implies formally
Conjecture 2.2, that is, whether the Geometric Lemma is in fact equivalent to
“our” case of the Duality Conjecture. We devoted that matter some, but not
too much, thought; the implication in question could be imaginably useful for
constructing a possible counterexample to the Duality Conjecture.) Then,
in section 5, we present some “almost isometric” refinements of arguments
from section 4, in particular the one suggested in Remark 2.3. In sections
6 through 8 of we develop the ideas and tools needed for our study of the
conjectures. That study culminates in section 9, where we formulate and
prove the results sketched at the end of the introduction.

3 More notation, known results

As general references for notation and basic results of local theory of Banach
spaces we suggest the books [16], [22] and [30] or the survey paper [5]; a
handy source for “probability in Banach spaces” is the monograph [10].

For a subspace £ C IR", we shall denote by Pg the orthogonal projec-
tion onto F. Given positive integer k& < n, Gy, 1s the Grassmann manifold
(of k-dimensional subspaces of R") endowed with the canonical rotationally
invariant probability measure P = Pi,. We shall say that a “generic k-
dimensional subspace” F of IR™ has certain property if the measure of E’s
with that property is close to 1 provided n is large (or k, n are large, depend-
ing on the context). Similarly, we shall talk about “generic rank k& orthogonal
projections”.



The first auxiliary result is the following “relative” of the Dvoretzky The-
orem (see, e.g., [14], Lemma 2.1 and its proof). Such results are usually
stated for the symmetric case, but the arguments, based on the “concen-
tration of measure phenomenon”, do not really require that hypothesis
(nor even, in our formulation, that the body in question contains 0, the
assertion being insensitive to a “small” translation of the body, cf. Fact
3.2). Let us also remark here that even though in the context of the Du-
ality Conjecture, as usually stated, only the case of symmetric sets is rele-
vant, in the present note we drop the symmetry assumption whenever fea-
sible.  We believe that the setting of general convex bodies is the natu-
ral one, part of the motivation for their study coming from geometry and
optimization, where the symmetry hypothesis is often artificial. Addition-
ally, in our arguments nonsymmetric sets actually have to appear (e.g., as
intersections of two symmetric sets with different centers). On the other
hand, lack of symmetry is seldom a source of difficulties, and often — but
not always — the passage to the more general framework is merely “for-
mal”. Such is, for example, the case of our Conjectures 2.2 and 2.4 from the
preceding section: for a possibly nonsymmetric K, apply the statement to
(K — K)/2 (noting that, e.g., log N((K — K)/2,D) < 2log N(K, D) while
M*(KND) < M*((K—K)/2N D); there is also an inequality sort of inverse
to the latter for the sets we are interested in, see Remark 8.3). Similarly, if K’
is symmetric and S is its net, one can always assume that S is also symmetric
and contains 0: replace S by S U (—S5)U {0}, the resulting roughly two-fold
increase in the cardinality of S is nonessential in our setting (see Remark

8.3).

Fact 3.1 Let V C D C IR" be a convex set and let m < n. Let P be a
generic orthogonal projection of rank m. Then

() if \J > eoM*(V), then PV C O\ /% PD
(b) if /% < eoM*(V), then eM*(V)PD C PV C CM*(V)PD
(¢) moreover, if for some ¢ < g9 we have \/% < eM*(V), then
(1 =Ce)M*(V)PD C PV C (1 +Ce)M*(V)PD.
Above, ¢, C and gy are universal positive constants, independent of n, V and

e. In all cases “generic” means “except on a set (of projections) of measure

< exp(—cm)”, where ¢ > 0 is a universal numerical constant.



The next result is closely related to the fact that, for a fixed rank m
projection P on IR", the Euclidean norm of Pz is “strongly concentrated”
around the value /™ as x varies over 5™~ (clearly, the average of |Px|?

equals m/n; here and throughout the paper we use the notation |- | for the
FEuclidean norm || -||p). This well-known phenomenon has been often derived
from the isoperimetric inequality for the sphere, but it can be approached
also via a direct calculation. Here we choose an equivalent point of view :
the point x stays fixed, while the projection P varies over GG, ,, endowed with
the probability measure P = P, ,, .

Fact 3.2 Let x € S™ L, let m < n and let P be a generic orthogonal projec-
tion of rank m (i.e., considered as an element of (G, P)). Then |Px| is

strongly concentrated around the value /™. More precisely,
(a) if € >0, then

P (| |Px]| = omu| >¢e) < exp(—sQn/Q),

where o, , is the median of |Px| and ‘O'mm — \/%‘ < %
(b) consequently, if X > 1, then

P <|P:1;| > )\E) < exp(—c(A —1)*m)

(¢) and, additionally, for o > 0,

P <|P:1;| < a@) < (Vea)" .

Above, C' and ¢ are universal positive constants.

Part (a) of Fact 3.2 is just the isoperimetric inequality applied to the function
x — |Px| (cf. [8], where it was employed in the spirit close to that of our
paper). Part (c), better known in the case of the Gaussian measure (see, for
example, [25]), can be recovered, e.g., from Lemma 6 in [15].

From Facts 3.1 and 3.2 we derive the following Milman-Pajor-Tomczak-

Talagrand (cf. [13], [17], [28]) type result.



Proposition 3.3 Let k < n, let A > 0 and let K C IR" be a symmetric
convex body with log N(K, D) < Ak. Set w := max{M*(KND), \/E} Then,

for a generic rank k orthogonal projection P, we have

[k
cor/— x| < max{wl|z||k, |Pz|} forall € IR", (4)
n

where ¢g > 0 s a constant depending only on A. The assertion holds also
for not-necessarily-symmetric bodies K 5 0 after one replaces M*(K N D) by
max zepn M*((K — 2) N D) in the definition of w.

Proof. For a smoother exposition we provide first a detailed proof in the
(central) symmetric case and then sketch modifications needed to handle the
general setting.

Noting that max{|| - ||, ] - [[v} = || - [lunv and rescaling, we see that (4)
is equivalent to

KNwP'D C ¢'w JZD
or

:L'GK\calwgD = |Pz| > w. (5)

Let S be a set with |S] < 24% such that K C S+ D. A standard argument
shows that then in fact K C S + (D N2K) (it is here that the symmetry is
used; in general we would have K" — K in place of 2K). Moreover, if 5y =

SN\ (cg'w \/%— 1)D, then

K\cglwgD C S +(DN2K).

Accordingly, to prove (5), hence (4), it suffices to show that, for a generic P,
|P(s+y)| > w simultaneously for all s € Sy and all y € DN2K. To that end
observe that, first, by Fact 3.1(a) or (b), |Py| < 2Cw for a generic P and all
y € DN 2K. On the other hand, by Fact 3.2(c), for any fixed € IR",

P (IPxI §5ﬁlxl) < (Ved)*



for any § > 0. Choosing ¢ small enough (say, § = (y/e2471)71) we get
that, for a generic projection P, all s € S; (note |S;| < 24%) verify |Ps| >

5(cglw\/%— 1)\/5 > §(cy'w — 1), and so, for x € S; + (D N 2K),
|Pz| > (5(cg'w —1) — 20w)

which yields (5) if ¢g is chosen small enough.

If K is not symmetric, a more careful look shows that, in fact, one needs
to control simultaneously (generic) projections of K N (D + s) for all s € Sy
or, equivalently, the projection of W := U,es (K — s) N D. The argu-
ment used in the symmetric case carries over directly if A is small (specif-
ically, if A < ¢, where ¢ is the constant from Fact 3.1; cf. the proof of
Proposition 5.1). For general A, it is more efficient to estimate M*(W) by

max zepn M*(K—2)ND)+ CO\/E via Lemma 8.1 and then “pipe in” conv W
in place of DN 2K in the argument above (the reader will readily verify that
Lemma 8.1 depends only on Fact 3.8 and, morever, if all y;’s are 0 — the case

which is relevant here — is independent from the rest of the paper). a

We will need an estimate of “covering numbers” known as “Sudakov’s
inequality”.

Fact 3.4 ([10], Theorem 3.18) If U C IR" and £ > 0, then

log N(U,eD) < C(@)zn

where C' s a universal constant.

Recall also that the problem of duality of entropy numbers (say, in the
form (2)) is solved for k > rank u ([9], see also [21]). We have

Fact 3.5 Let U,V C IR" be convex bodies such that U > 0 and V is 0-
symmetric. If k> n, then

log N(U,V) <k = log N(V°,BU°) < ak

for some universal constants o, 3 > 1 (resp. o = o(7) if we just assume that
k> 7n for some 7 € (0,1)). Moreover, the above inequality holds — at least
if U is also symmetric — with 8 = B(a), for any o > 1 (resp. = ((a, 1),
fora>1and 7t € (0,1)).
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The Fact was stated in [9] just in the case when both U and V are symmetric,
but the present variant follows formally: just apply the symmetric version
to (U — U)/2 (and 2k in place of k) and note that (U — U)/2)° C 2U°. We
do not know whether the symmetry of U is needed in the last statement;
in absence of that hypothesis the present argument yields o > 2 in place of
a > 1. Let us also note that, at least for the first statement and with proper
care, one may dispose of the symmetry assumptions altogether (see [15]).

We shall need a few more properties of the functional M*(-).
Fact 3.6 If U,V C IR" are convex sets, then the function defined on IR" by
¢(z) = M*((« +U)NV)

is concave. In particular, if both U and V' are 0-symmetric, then ¢(x) < ¢(0)
forx e IR".

This follows from the facts that, under Minkowski addition, the set-valued
map ¢ — (@ 4+ U) NV is concave, while M*(-) is additive and positively
homogeneous.

Let v, be the standard Gaussian measure on IR" (i.e., the one with density
(2m)~"/? e_|x|2/2). The next result describes the very well known relationship
between spherical averages and those with respect to 7, and is easily estab-
lished by integrating the latter in spherical coordinates.

Fact 3.7 For U C IR", the Gausstan average
nw) = | dv,
1(U) = | Nl dya(z)

is “essentially the same as” n'/2?M(U). More precisely, there are constants
o, < 1 with 0, — 1 as n — oo such that, for all U as above, (;(U) =
o.n'PM(U). The same is true if we replace (,(U) by £,(U°) and M(U) by
M*(U).

For the record, o, = ﬂF(%)/F(% +1) € (/1 = 2,1). We could have dis-
pensed with ¢,,’s in Fact 3.7 if we had defined both the Gaussian average and
M(U) via second moments of || - ||, a rather insignificant modification by
the Kahane-Khinchine inequality (see [1], Lemma 3.3, for the nonsymmetric
case). However, that would not conform to the standard terminology.

Finally, we mention the following well known
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Fact 3.8 If S C D C IR" is a finite set, then

M*(conv S)=M*(5)<C log |5 ,

n

where C' s a numerical constant.

Fact 3.8 is proved most easily by passing to the Gaussian average (Fact
3.7) and a direct computation using tail estimates for the Gaussian density; in
the Gaussian setting it is a special case of a much more general phenomenon
(see [10], (3.6) or our Lemma 8.1). Alternatively, it is implicit in our Fact
3.1. By Fact 3.4, the estimate is exact if the set S is uniformly separated.
We recall that a set is called d-separated if each two its different members are
more than ¢ apart; this leads to the concept of packing numbers — equivalent,
up to a factor of 2 (in the argument), to that of covering numbers.

In the sequel we shall occasionally write ® < W meaning that there exists
a universal numerical constant €' such that, for all values of the parame-
ters involved in the definitions of (normally nonnegative) quantities ® and
U, one has ® < CVU. E.g., the assertion of Fact 3.8 can be written as

M*(S) < lognﬁ. (We point out that this convention differs from the one
employed often in, e.g., combinatorics, and using for that concept the sym-
bol <, reserved in this note for “much smaller than” or “sufficiently smaller
than”.) Similarly, ® ~ ¥ will indicate two-sided estimates C~'¥ < & < C'U.
We will not use that convention when we want to make the dependence on
other constants or parameters explicit. Unless stated otherwise, C, ¢, Cy, ¢
etc. will stand for numerical constants independent of the dimension or any

other parameters, whose exact values may vary between occurrences.

4 The implications 2.4 = 2.1 & 2.2 = 24

The implication Conjecture 2.4 = Conjecture 2.1. We shall assume the
validity of Conjecture 2.4 and show how the results of the preceding section
imply then Conjecture 2.1. More precisely, we prove

Proposition 4.1 Let k € IN. Let w > 1 be such that, for all n,S, K
verifying the assumptions of Conjecture 2.4 for that particular k, one has

12



M*(KND)< w\/g. Then, for all n and for all convexr sets U C IR",
log N(U,D) <k = logN(D,CwU°) < ak, (6)
where a,C' > 0 are universal constants.

Proof. Let S C U with |S| = N(U, D) < 2% be such that S+ D D U. Denote
K = conv S. We first observe that, for p > 0,

N(D,(p+2)U°) < N(D,pK®)

In fact, any p-net of D(= D°) with respect to || - ||xe is a (p 4+ 2)-net with
respect to || - ||ue. To see that, observe that if z,y € D and ||@ — y||xo < p,
then

le = yllve = max{z —y,u)
< max (z-y,s+2)
< e —yllee + e —yl < p+2.

(We are being slightly careless here as, in principle, it is possible that 0 ¢ K
and so one can not really speak about ||-||x.. However, this is easily remedied
by adding to S a single point, c¢f. Remark 8.3. Another potential difficulty,
K being degenerate, is handled by passing to a lower dimension.)

To derive Conjecture 2.1, it is now enough to appropriately estimate
N(D,pK®°) by N(K, D) for some p < w; notice that N(K, D) < N(U, D)
(cf. the comment following Conjecture 2.1). To that end, apply Proposition
3.3 with the present choice of k,n, K (hence A = 1). Let P = Pp be a
(generic rank k) projection such that

ﬁ| < max{wﬁu i PG

After dividing out by \/g, this dualizes to

coD C conv{w K°U g (DNF)} (C wK°+ g(l) N F)).

13



Hence
N(D,pK°) = N(coD,copK®)
< w[&o—l—fDﬁF ), copK°) (7)
N FD 0 ), cop — w) )

(where we tacitly assumed cop — w > 0). Observe that the polar of K° N F
(inside the k-dimensional space F') is Pr K. Accordingly, if we knew that

IA

log N(PrK, 3 (cop — w)ﬁl)) <k, (8)

we could conclude from Fact 3.5 that the last member of (7) is bounded by
N(K,D)> < N(U, D)* < 2% as required (above a, 3 are the constants from
Fact 3.5). We now argue as in the proof of Proposition 3.3. If K is symmetric,
K C S+D implies K C S+(2KND). Accordingly, Pr K C PrS+Pr(2KND)
(for any P = Pr), while, for a generic Pp, Pr(2K N D) C QCw\/gD by Fact
3.1(a) or (b) and so we get (8) as long as 2Cw < 37 (cgp— w). In particular,
p=cy (208 + 1)w ~ w works, as required. In the general case (i.e., K not
necessarily symmetric), (2K N D) has to be replaced by U,es(K — s) N D; cf.
the end of the proof of Proposition 3.3. O

Remark 4.2. Assuming Conjecture 2.4 (or, by what follows, just Conjec-
ture 2.2), the argument above yields (6), hence Conjecture 2.1, with ¢ = «a,
where o comes from Fact 3.5. In particular, we would obtain then the valid-
ity of the case of the Duality Conjecture stated at the beginning of section
2 for any a > 1, the price being paid in the magnitude of b = b(a). We also
emphasize the that the symmetry hypothesis in Conjecture 2.1 is not used
(at least if one doesn’t worry about the exact value of the constant a), we
leave it there just “for historical reasons.” (In any case, that hypothesis can
be “disposed of” formally, see the comments following Fact 3.5.) O

The implication Congecture 2.2 = Conjecture 2.4. Let n,k, S, K be as in
Conjecture 2.4. Assuming the validity of Conjecture 2.2, we must show
that \/%M*(K N D) can not be arbitrarily large. Accordingly, throughout

the argument we may assume that that quantity is larger than an arbitrary
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preassigned numerical constant (as otherwise we would have been done). Let
us denote ny = (eoM*(K N D))*n (where g9 comes from Fact 3.1; as usual,
we pretend that ny is an integer), then \/%M*(K nD)= 551\/%; clearly
we may assume that ng /k is “large”. Apply Fact 3.1 with m replaced by n;.
This yields Ky = PK, of which we may think to be contained in IR™, such
that (by the part (b) of the Fact) Ko D P(K N D,) D ¢ /™ D,, while at
the same time, by the part (a) of the Fact, log N(Ko,2C /™ D,,) < k (as
in earlier arguments, we use here the equality K = U,ess + (K —sN D)
and, in the symmetric case, the inclusion (K —s)N D C 2K N D, with
appropriate modifications if K is not symmetric; see the end of the proof of
Proposition 3.3). Now applying Conjecture 2.2 to Ky = (2C /%)~ Ky and
v = ¢(2C)~! (this can be done since the cardinality of the set of extreme
points of Ky doesn’t exceed that of K') we see that we must have k > ¢1(v)ny
or \/%M*(K ND) =e5" /™ < epler(y)72, as required. O

Remark 4.3. As was the case with the prior implication, the above argu-
ment is done “for fixed k7, i.e., the validity od Conjecture 2.4 for given k., n is
derived from the validity of Conjecture 2.2 for the same k and some other n.
The same is (more explicitly) true for Proposition 5.1 from the next section.

5 The “almost 1sometric” variants

In this section we shall present some refinements of arguments from the
preceding section allowing to prove stronger versions of the implication Con-
jecture 2.2 = Conjecture 2.4, in particular the one announced in Remark
2.3, i.e. requiring the validity of the former for just one ~ < 1.

We note first that in the preceding section we did not use the validity
of Conjecture 2.2 for all v > 0, but just for some specific (possibly rather
small) v > 0, depending on the absolute constants ¢, C' from Fact 3.1(a),
(b). Moreover, if we use Fact 3.1(c) instead of (b), an easy modification of
the argument shows that we may derive Conjecture 2.4 from Conjecture 2.2
being valid for some fixed v < %

To get the “almost isometric” variant (any fired v < 1) we must work
slightly harder; let us state it here for future reference.

Proposition 5.1 Suppose that there exist constants v,7 € (0,1) such that,
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for everyn € IN and K = conv .S C IR" verifying max{log|S|, log N(K, D)}
< 7tn one hasyD ¢ K. Then, for alln € IN and K = conv S C IR" we have

M*(Kn D)< wﬁ, (9)

where k = max{log | S|, log N(K, D)} and w is a constant depending only on
~v and T.

More precisely, if for some v, 7 € (0,1), some ng € IN, and all K =
conv.S C IR™ (resp., for all K = convS C RD C IR™; for some R > 0) the
inequality ko := max{log|S|, log N(K, D)} < tng implies vD ¢ K, then,
for all n € IN and all K = convS C IR" (resp., for all K = convS C
RD C IR"; same R) such that max{log|S|, log N(K,D)} < ko, one has

M*(K N D) < w2, with w < 77121 — )71,

Proof. 1t is enough to prove the second statement. Observe first that if, for all
K = conv S C IR"™ with max{log |S]|, log N(K, D)} < ko, we have vD ¢ K,
then the same is true with ng replaced by any n > ng : any counterexample
K C IR" can be projected back on an ng-dimensional subspace.

Now choose ¢ > 0 so that v < (1 — Ce)/(1 + C¢) and ¢ < min{eg, 1/2},
where C' and ¢q are as in Fact 3.1(c). (Note that the first restriction translates
into ¢ < C‘ﬂ;—l ~1—~.) Let ny = *M*(K N D)*n and apply Fact 3.1(c)
with m replaced by ny and K by K N D to obtain, for a generic projection
P of rank nq,

P(KND)

(1 Co)MA(K) ~

Without loss of generality we may assume that max,epr M*((z+D)NK)

PD D

~YPD.

is attained at 0 (by Fact 3.6, this is automatically true if K is 0-symmetric)
and so, again, generically P((x + D) N K) is contained in a ball of radius
(1+Ce)M*(DNK). This follows from Fact 3.1(c) if eM*((x+ D)NK) > \/7;:
(observe that, by the definition of e, we have equality if @ = 0) and holds «
fortiori if the reverse inequality holds: just enlarge (z + D) N K to a convex
set — still contained in @ + D — for which one has the equality.

We now claim that we must have kg > min{c'/2,7}ny (where ¢’ is as
in Fact 3.1), from which — in combination with the definition of n; — the
inequality in the assertion immediately follows. Indeed, if that was not the
case, i.e., if kg < ¢'ny/2 and ko < 7Tny, the first of these inequalities would
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imply that, for a generic projection P (of rank ny), P((x + D) N K) was
contained in a ball of radius (1 + Ce)M*(D N K) simultaneously for all x in
a D-net of K. Setting Ky = W C IR™ we see that then (generi-
cally) K, is contained in an union of less than 2% balls of radius 1, hence
log N(K, D) < ko, while, on the other hand, K; contains (again generically)
a ball of radius v centered at the origin. (Alternatively, we could have ap-
plied P to W = U,es((K — s) N D), M*(W) having been estimated using
Lemma 8.1; cf. the end of the proof of Proposition 3.3.) Since the number
of extreme points of K, never exceeds that of K (and hence is < 2%) and
since kg < mny and Tng = kg imply ng < ny, the hypothesis of our state-
ment applies to K (cf. the remark at the beginning of the proof) yielding
Ky D vPD, a contradiction.

To obtain the version of the statement involving R, we observe that, by
Fact 3.2(b), |Ps| < 2¢/ny/n |s| simultaneously for all s € S provided that
ni1/k is larger than some numerical constant C; (to ensure the latter, we
replace the condition & > min{c//2, 7}n; above by k > min{c//2, 7, C{ ' }n;).

The radius Ry of K is then generically less than (iVC:)l]\/;(Iz) — (124-6101) <R
and so the hypothesis applies to K;. (In fact we do have a “gain” in the
radius as R; ~ ¢R, but since we are going to apply the Proposition for a

“fixed” v anyway, this is not going to be exploited.) a

Remark 5.2. The Proposition above states, in essence, that in order to
prove the inequality (3) for a fixed k, it is enough to verify whether it holds
for the smallest n for which it is non-trivial, i.e., for which the right hand side
is less than, say, % (or even whether in that case K 5 %D, a weaker condition;
same with % replaced by any v < 1). Going in the opposite direction, from
smaller to larger n, is easy: any counterexample in IR™ can be considered as
a subset of IR™ for m > n; the geometric parameters stay the same (see the
comment following Conjecture 2.1), while the functionals M*(-) in dimen-

sions m and n differ (essentially) by a factor y/n/m (this can be seen most
easily by replacing, via Fact 3.7, spherical averages with Gaussian means and
noting that the latter do not change if we increase dimension). Thus, for a
fixed k, the statements of type (3) for various n’s are equivalent (in the range
of n where the right hand side is uniformly non-trivial). a
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Remark 5.3. By applying a procedure similar to the proof of Proposition
5.1 for sufficiently small ¢, one can show that to deduce Conjecture 2.2 or
Conjecture 2.4 it is enough to have a “y =1 — § version” of Conjecture 2.2,
where ¢ is an “arbitrarily good” function of (say) % A sample form:

Conjecture 2.2 (or Conjecture 2.4 ) is equivalent to the following:
If kyn, S, K, are as in Conjecture 2.4 , then (1 — (k/n)>)D ¢ K. (10)

Indeed, suppose the above holds and we have a configuration which violates
Conjecture 2.2 for some fixed v < 1. Apply the previous argument with
e = a(%)2/5, where a is a small constant. This leads to a Ky C IR™,n ~
e?n which admits a D-net of cardinality < 2%, (and is spanned by < 2*
points)with (1 — Ce)D,, C K. One routinely verifies that Ce < (%)2 if
is properly chosen (n; is now the “new” n).

Replacing oz(%)z/5 by an appropriate expression, one can obtain an ana-
logue of (10) with (%)2 replaced by an arbitrary preassigned function of (%)

Let us remark here that, on the other hand, K cannot contain a ball
of radius substantially larger than 1. Indeed, a simple volume comparison

argument shows that if yD C K, then 4v* < 2¥ and so v < 1 + % O

6 Preliminary estimates for M*(K N D)

Our setup is as in Conjecture 2.4, i.e. K = convS C IR", k =log N(K, D),
ki = log |S|; we shall normally assume that k; < k. We recall that, when
needed, we may always assume that n/k is “large”.

The first estimate is just a rewording of Fact 3.8.

Proposition 6.1 If K C RD, then
* e kl
M*(K) < CRy/—
n
where C' s a numerical constant.

The next estimate is much harder, even though the improvement seems
rather minor.
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Proposition 6.2 If K C RD, then

1/2
M*(K N D)< Cy (Rﬁ\/k—l) :
n n

where Cy 1s a universal constant.

Proof. The conclusion of the Proposition can be rewritten as
n

VEkik

for all § € (0,1), where ¢y = Cy%. We show first that, in fact, the Proposition
is implied by a formally weaker statement

R < ¢é? = M*(KND)<4d

n

VEkik

(some ¢; > 0, with Cy depending on ¢;) and that, moreover, it suffices to
obtain (11) just for some firzed ¢ € (0,1), for example for § = 1/6. To
that end, set M*(K N D) =n. Let ¢ = (2C)~!, where C' comes from Fact
3.1(c), and set n; = e*p*n. We may assume that n; > k, k; (as otherwise

R S 0152

= §D ¢ K. (11)

Proposition 6.2 clearly holds). Consider, as in prior arguments, a generic
ni-dimensional projection PK of K. We get, by Fact 3.1(c),

3
gDm CcP(KND,)cC 7771)7“.

Rescaling PK by a factor 3n we get an n;-dimensional body K; D D, /6, for
which the respective parameters k, ky could only decrease. Now, if (11) held
for § = 1/6, it would follow that the radius R; of K7 would have to verify

1 2

_ nn
Jiik  CVkE

Now a priori we know only that Ry = (3n)~! - radius (PK) < (3n)"'R.
However, for a generic rank m projection P and for any fixed set ¥ with
log |X| < m, one has |Pz| ~ \/%|:1;| simultaneously for all @ € ¥ (by Fact

]
R > — 12
V> (12)

3.2; this can be made “almost isometric” if log |X|/m is “small”). Since the
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radius of PK is witnessed by |Ps|, s € S, and since log|S| = k < ny, it
would follow that in fact generically

radius (PK) ~ ,/ER ~nR
n

and so Ry ~ R, which combined with (12) and the definition of n yields the
assertion of Proposition 6.2.

It thus remains to show (11) (in fact just for 6 = 1/6, but since that
doesn’t really simplify the proof, we shall argue the general case). To that
end, we need the following special case of “Maurey’s Lemma” (see [20]).

Lemma 6.3 If S C RD and K = conv S, then, for every ¢ > 0, setting
s = [(R/e)*], we get that the set
{$1+x2+...+x5
s
is an e-net for K. In particular, if ki = log|S|, then log N(K,eD)
<Ak (B 4+1)2

cxj eS8, j=1,...,s}

Now, to prove (11), assume that 6D C K. Set ky = 2k; we shall show
that K contains a 2-separated set of cardinality > 2*2 which will contradict
log N(K, D) < k.

Consider a generic ky-dimensional projection PK of K. Since we are
assuming that 6D C K, we also have § Dy, C PK. Let A be a §/4-net of PK
consisting (for appropriate s) of points of the form s™'(Pxy+ Pxs+. ..+ Pxy),
where z; € S, 7 =1,...,s. Since, by the same argument as in the paragraph

following (12) and based on Fact 3.2, radius(PK) < \/];ZR in the generic case,

Lemma 6.3 implies that it is enough to take s ~ 4(\/%3/(5/4))2 ~ k1

n 52 b
hence log |[A] < ?—;%. Now, let A be a maximal §/4-separated subset of

A; noticing that A is a $-net for PK D 6Dy, we infer that |A| > 2%2. Set
A= {sMay+...4as):2;€85,5=1,...,s} C K, in particular
~ . R koky
1 Al < —
and let A be the subset of A corresponding to elements of A. We shall show
that the elements of A are generically 2-separated; as |A| = |A|, this will
yield the desired contradiction.

(13)
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By Fact 3.2, a generic P shortens a given distance by the factor \/’;—2 and
so, typically, the distance between two elements of A will be > . /5—2% > 2.

Accordingly, we can afford to settle for a factor smaller than o but we

need to control all distances between elements of A. To this end, observe

that, by Fact 3.2(b), for a fixed € IR"\ {0} and for A > 2,

P (|P:1;| > A/ %|x|) < exp (—c'Nky). (14)

Choose A = /2= -2 (we may assume A > 2). If we knew that, for all

ks 8
ks
|Pr| < M/ —|x| (15)
n

v e (A= 2)\ {0},

we could infer that, for all such z, one has |x| > 2, as required (recall that
|Pz| > /4, the elements of A being ¢/4-separated). However, we do not
know a priori which elements of A will end up in A, and so we need to require
(15) for a generic P and for all x € (/N\ — /N\) By (13) and (14), this can be
assured provided that

R? koky

IA—A|-exp (—/Nky) < exp (Cﬁ " ) cexp (= Nhy) <« 1

or, say,

2 /
C%kfl < %)\zkg ="'né? .

Considering that ky = 2k, the above is equivalent, for a properly chosen

¢ > 0, to the estimate on R assumed in (11). This concludes the proof of

Proposition 6.2. O

7 “Boxing in” the set K.

In the preceding section we did obtain some estimates for M*(K N D) pro-
vided the set K was “nicely” bounded. Observe that, e.g..the estimate from
Proposition 6.2 is nontrivial (i.e., < 1) if K C RD with R < ¢ (ki < k is
tacitly assumed). However, a priori no reasonable bound on the radius of
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K is given (one only has, clearly, R < 2¢+1). We shall show now that in fact
it is enough to prove Conjecture 2.2 or Conjecture 2.4 in the case when K is
“reasonably” bounded. The approach rests again on considering projections
of K, this time deterministic ones. For simplicity, in this section we shall
restrict our analysis to the 0-symmetric case.

Recall that, as explained in the last paragraph of section 5, no K verifying
our assumptions can contain (1 + %)D, i.e., there exist uy, |u;| = 1 such that

k
KC e <14t
Let K' := P, -K (the projection onto orthogonal complement of wu;).

Clearly K’ verifies our standard assumptions in {u;}~ and so we can find
uy — ug, |uz| = 1, such that

K, C {|<,u2>| <1+ %} N {ug )~

and hence
k
K C | ug)| <1 .
it <1+ 21
Continuing in this way we get an orthonormal sequence uy, ... u,, ,ny =n/2,
such that if £ = [uy,...,u,,] (where [-] denotes the linear span), then

k
Ky = Py C {|<-,uj>| <14 j= 1,2,...,n1}.

nq
We did thus show

Proposition 7.1 If, for some n, ki, k € IN and a > 0 there exists a sym-
metric set K = conv S C IR" such that

log N(K, D) <k and log|S| < ky, while aD C K,
then, for ny = n/2, there exists (a symmetric set) Ky C IR™ satisfying
log N(K1,D) <k, Ki=conv5i, log|5| < ky,
aD, C Ky and Ky C 2B} C2\/niD,,,

where B™ = [—1,1]™ is the (7! ball.
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It follows that for our purposes (i.e. proving Conjecture 2.2 or Conjecture
2.4, or (10)) it is enough to consider sets K C RD, where R < 2y/n, or even
K C2BL.

A more precise analysis yields a slightly better bound on R; we do not
really use it in the sequel but present here as the argument seems to be of
some interest, in particular it can be adapted to show that Conjecture 2.4
holds for multiples of the unit ball of /7 (and similar sets). Again, only the
estimate on log N(K, D) is used, and, again, it is enough to produce an n/2-
dimensional projection of K" which is contained in RD. The starting point is
a well known formula for the asymptotic order of “covering numbers” of the

t-ball B} C IR". We have, for R € [1,/n] (see [24])

. n
log N(RBI', D) ~ R? <1og o 1) (16)
It follows from (16) by a direct calculation that if log N(RB}, D) < k, we

logﬂ. This example is representative for the general case,

k

must have R <
we have

Proposition 7.2 In the notation and under the assumptions of Proposition
7.1, we have

k
[(1 - Cl — Dn1

log I

where C is a universal constant.

Proof. Let R = (1, /ﬁ, the constant €y > 0 to be determined later. By
k

a reasoning analogous to the one which led to Proposition 7.1, we see that
either there is an n; = n/2-dimensional projection of K contained in RD (in
which case we are done), or there exists a sequence vy, vz, ..., v,, of elements
of K such that

dist(vj, v, <J]) > R, 7=1,...,n1.

For simplicity, let us assume (as we may) that the Gramm-Schmidt orthonor-
malization applied to (v;) yields the standard basis (e;), and so

(vj,6,) =0 and (v, e;) > R if 1 <j<i<ny. (17)
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Set T := conv{+wv;} C K. We shall show that the covering numbers of T
are “roughly” at least as large as those of RBj" : first for the /,,-norm and,
as a consequence, for the Euclidean norm. We start by recalling an estimate

“dual” to (16)

log(r?n + 1)

2 b

log N(D,rB.) ~
-

valid for r € [ﬁ, 1], and a related one

log N(B?, B ) ~ ¢ <log S 1)

for ¢t € [1,n], both obtained by, roughly speaking, counting the lattice points
contained in respective bodies (in a quite general setting, an essentially equiv-
alent problem to that of calculating the covering numbers N(-, B2 )), cf.
[24]. Let ¢t € [1,n]; it is elementary to show that (17) implies that the linear
map u defined by ue; = 7 1v; sends the integer lattice Z™* to a set which is
R/t-separated in the {,,-norm. At the same time, u(¢tBy"*) C T and so

R
log N (T, ng;) > log N(1B, B") > et log (? + 1) ,

where ¢ > 0 is a numerical constant. On the other hand, denoting r = %,

one has

log N(T,rB") < log N(T, D) +log N(D,rB™)
log(r?n + 1)

= ’
7“2

< log N(T,D) + Cy

whence
log(r?n + 1)

2

7

log N(T, D) > ctlog (% + 1) — (s

Choosing t so that the first term on the right is twice bigger than the second
(in particular ¢ ~ R?), we get an estimate (16) with RB} replaced by T'. As
before, this can be reconciled with log N(T', D) < log N(K, D) < k only if

R<Cy @, (1 depending only on ¢ and Cs. a

Remark 7.3. The argument above is based on the fact that
log N(K,D) < k= log N(K,rB>) < k
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log -

if r o~ £, Accordingly, if we were able to obtain from K, say, by pro-
jections, a body K7y, for which log N(Ky,rB) > Ak for large A, this would
yield a contradiction. a

The last result of this section tells us that, for our purposes, we may
additionally assume that M*(K) is “fairly small” (at least, temporarily, in
the symmetric case). We have

Proposition 7.4 Let ki, k € IN and o > 0. Suppose that, for some n € IN,
there exists a symmetric set K = conv S C IR" (resp. additionally K C RD
for some R > 0) such that

log N(K, D) <k and log|S| < ky, while aD C K,
then, for ny = n/2, there exists (a symmetric set) Ky C IR™ satisfying
log N(K1,D,,) <k, K =conv 5y, log|Si| < ki, aD,, CK;

and

M*(Ky) < C(1 +logn),
(resp. M*(K;) < C(1 + log g} and Ky C RD,, ), where C is a universal

numerical constant.

If one replaces the hypothesis aD C K by a weaker one, M*(KND) > «,
one gets a similar conclusion, the only changes being that in the new setting
ny ~ a’n, %Dnl C Ky and M*(Ky) < C(1 + log (a?n)) (resp. M*(K,) <
C(l+1logR)).

Proof. By [4] and [22],Theorem 2.5, there exists u € GL(n) such that
M(uK) - M*(uK) < C(1+logn), (18)

where €' is a universal numerical constant or, more precisely, such that
M(uK) - M*(uK) does not exceed the so-called K-convexity constant of
(IR™,||z||k); uk is often referred to as the (-position of K. It is well-known
and easily seen that if £ C IR™ is an m-dimensional subspace, then M(BNE)
exceeds M(B) by at most (asymptotically) \/g (Indeed, for Gaussian aver-
ages we have, identifying F with IR™, [ |||l dvm(x) < [gn||2||B dya(2) —
essentially by the triangle inequality — and it remains to apply Fact 3.7.) A
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fortiori, the same is true with B N E replaced by Pr(B) and, by duality, for
M*(-). Let us choose F, dim E = ny > n/2, such that Pg(uD) is a ball, say
Pg(uD) = AD,, (we identify F with IR""). We then have

aiD,, C Pg(uK)
log N(Pgp(uk'),AD,} < k

and so, if we set K; = A™' Pg(uk) (again considered as a subset of IR™, we
also drop the subscript ny in D, in what follows), then

oD C K,
log N(K\,D) < k (19)
M(I(l) . M*([(l) S 00(1 —|—10g n)

The entropy estimate in (19) implies that the volume of K does not exceed
2% times the volume of D. As a consequence,

2

M(K) > 277 >

DN | —

(this follows just from the Holder inequality) and so

M*([(l) S 01(1 + log n)

as required. To settle the variant involving the condition K’ C RD we observe
that in that case we obtain (additionally) first Pg(uK) C RAD and then,
after rescaling, Ky C RD, as required.

To get the assertion when just M*(K N D) > « is assumed, we argue
as in the proof of the implication 2.2 = 2.4 or, more precisely, the proof
of Proposition 5.1, cf. Remark 5.2): we first apply to our configuration a
generic projection of rank ng ~ a*n to obtain Kj, %Dno C Ko C R™, and
then repeat the procedure described above. a

Remark 7.5. Proposition 7.4 is the only point where symmetry inter-
venes in a significant way (the arguments of Propositions 7.1 and 7.2 can be
routinely modified to yield nonsymmetric variants). Indeed, it is not known
whether (18) can be achieved for a general convex body K (via an affine
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map u; see [1] and [23] for results to date). We could have approached the
issue by using [11] to pass to an n/2-dimensional projection of K verifying
(18). However, as mentioned already in the paragraph preceding Fact 3.1,
our final estimates can be formally derived from the symmetric case, and so
we decided to take the easy way here. See also Remark 8.3.

8 “Combining” the sets.

We start with the following lemma, which is a variant of Theorem 2 of [27]

(cf. [10], (3.6)).

Lemma 8.1 Let (y;),(A;),7 =1,...,N, and R > 0, be such that y; € RD
and A; C RD for all 7 < N. Then

log N
M (U (i —I_Aj)) < max M"(A;) + CoRt B (20)

J<N "

Proof. Rescaling reduces the Lemma to the case when R = 1, which we shall
assume from now on. We have

M (U(yj —I_Aj)) < max M~ ({y;}) + M (UA]) :

J

Since the first term on the right does not exceed C\/@ by Proposition
6.1, it is enough to prove (20) when all y;’s are 0. This in turn follows from
the isoperimetric inequality (see [16]) : as A; C D, the function || - HA; is
1-Lipschitz and so, for ¢ > 0,

n(llellag = M7(A;) > 8) < e,

where (1, is the normalized Lebesgue measure on S™~! (note a slight abuse
of notation: we write ||z||4c = max{(z,y) : y € A} even though this is not
necessarily a norm or even a seminorm; it would be more proper to employ
the term “the support function of A” used in geometry). Hence

pra(max ] 45 — max M(4;) > 1)

< palmax(flellas — M*(A)) > 1) € min{N - =21} (21)
7 J
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WAy = [ maxe]agdp (x)

< max M™(A;) + /Oo o (max ||| 4o — max M™(A;) > t)dt
0 J J J

J

log N
< max M*(A;) + Cy °8 ,
j n
where the last inequality follows easily from (21). O

JFrom the Lemma we derive the following

Proposition 8.2 Let K1, Ky C IR" be conver sets such that log N(K;, D) <
k for 3 =1,2. If K\, Ky are symmetric, then

k
M*((Ky + ;)N D) < M*(K; N D)+ M*(K, N D)+ Cy/~
n

In the general case, the functional M*(- N D) needs to be replaced every-
where by max,epm M*((-—2)N D).

Proof. Let (x;) and (y;) be D-nets of Ky and K respectively. Then
[(1 + [(2 = U((Q?Z + D) N [(1) + ((y] + D) N [(2)
]
= Jawity + (K1 —2)n D+ (K2 —y;) N D).
]
In particular, (K; + K3) N D is contained in the “subunion” restricted to

x; +y; C 3D. Hence, if Ky, K; are symmetric, then, by Lemma 8.1 and
Fact 3.6,

M((Ky + K;) N D)

3oy 24 e MK = 2) 1 D)+ (= 1)1 D)

<
Qk % - * e
= 3Co\/— + max M*"((K; — ;) N D) + max M*((Ky —y;) N D)
n i J
k . .
< 5+ MK, 0 D)+ M (K, N D),
n
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as required. The not-necessarily-symmetric case is proved the same way. O

Remark 8.3. The special case of the Proposition with K7 = K, Ky = — K
shows that if log N(K, D) < k, then

M (K-K)nD)<2 max M*(K—2)nD)+ Cﬁ
(a variant with K" — K replaced by (K — K)/2 and without factor 2 on the
right hand side also holds, e.g., by the argument of Proposition 8.5 below).
As already mentioned in the paragraph preceding Fact 3.1, inequalities go-
ing in the opposite direction are even easier. Consequently, when estimating
M*(K N D), there is no major difference between a symmetric and a non-
symmetric setting. More generally, Propositions 8.2 and 8.5 show that the
functional in question is stable with respect to doubling the set S or the
cardinality of the 1-net, and justify our occasional lack of rigor when adding
a few points to S or not diferentiating between k and k + 1. O

Clearly, there is a lot of flexibility in applying Lemma 8.1, e.g. for “com-
bining” more than two sets. For example, by iteration one gets (for the sake
of brevity, we state this and the next result just in the symmetric case)

Corollary 8.4 Let Ky, Ky, ..., K; C IR" be symmetric convex sets verifying
the assumptions from Proposition 8.2. Then

k
MA(Ki+ Ko+ ...+ K,)OD) < MY (K, N D)+...+ M*(K,n D)+ CsJ:

n

For completeness, we also state a variant of Proposition 8.2 for convex
hulls (rather than Minkowski sums), which we do not need for the direct
purposes of this paper. Its appeal lies in the fact that the multiplicative
constant on the right hand side is 1, a feature that is important in some
contexts.

Proposition 8.5 Let K, Ky, C IR" be symmetric convex sets such that
log N(K;, D) <k for j=1,2. Then

koI
M (conv (KyUK3)ND) < max{M*(K,ND), M*(K2nD)}+C1/ ~+Cy /22
n n
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Proof. Set M = max{M*(Ky N D), M*(KyN D)}. Arguing as in the proof
of Proposition 8.2, we get

conv (K71 U Ky) = U (I=t)((x; + D)N K1)+ t((y; + D) N Ky)

4,5,t€[0,1]

= U =ttty + (1= 1)K — ) 0 D) + (K2 = y;) N D))
i,4,t€[0,1]
Similarly as in Proposition 8.2, to analyze conv (K; U K3) N D it is enough
to consider only the subsegments of the segments (1 — t)x; 4 ty; that lie in

2D. Given ¢ > 0, let S” be an e-net for the union of such subsegments with
|S] < (1 +4/2)2%. Applying Lemma 8.1 gives

log (1 4+4/¢) + 2k

n

M*(conv (K1 UK)N D)< M+¢e+ Co¢

Optimizing over ¢ > () we get the assertion. O

9 Further estimates for M*(K N D)

Similarly as in section 6, the setup is as in Conjecture 2.4, i.e.
K =conv S, k= max{log|S|,log N(K,D)} (22)

(we did supress above the dimension n of the ambient space as it may vary
from point to point; cf. Remark 5.2). We recall that the objective is to show
that M*(KND)is “small” if n/k is “large”. Thus far we did prove (in section
6, Proposition 6.2) that this holds provided K C RD with R < %, while (in
section 7, Proposition 7.2) it is shown that one may assume, without loss of

generality, that R < C ﬁ, where (' is a numerical constant. Admittedly,
k

the gap between the two estimates is significant. Still, they do allow to

deduce our “objective” if k < le/?) In this section we shall narrow the
gap substantially by proving

(logn)

Proposition 9.1 There exists a constant ¢ > 0 such that whenever S, K C
IR" and k verify (22) and K C RD, with R < exp (c(%)l/G), then 1D ¢ K.
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Corollary 9.2 If n, S, K and k are as in Proposition 9.1 and, for some
R>1, K C RD, then

k
M*(K N D)< C(1+log R/~
n

where C' s a universal constant.

Proof. More generally, any condition of the type R < ;/)(\/%) (for ¢ : IRt —
IR*, ¢,/ +o0) in the theorem translates into an estimate M*(K N D) <
Clg/)_l(R)\/g (here of course ¥(z) = exp (cx'/?)). This follows from the sec-
ond statement of Proposition 5.1 (with v = 1): the condition R < ;/)(\/%)

(which assures 1D ¢ K) translates into & < (¢7'(R))™?n and so the hy-
pothesis of that statement is satisfied with 7 = (¢7}(R))™?, which yields
w < Cyp~™H(R) in (9), as required. O

The next two corollaries summarize the progress obtained in this note
towards the Geometric Lemma and the Duality Conjecture, and so we state
them as theorems.

Theorem 9.3 There exists a constant C' > 0 such that if S, K C IR" and
k are as in (22), then M*(K N D) < C(1 + log k)3\/§ In particular, there
exisls a constant ¢ > 0 such that if k < ¢(1+logn)°n, then M*(KND) < %
(and, consequently, 1D ¢ K ).

Proof. Consider first the case when K is symmetric. Let w = w(k) be

the smallest constant such that the inequality M*(K N D) < w\/g hold for
all n > k and for all S, K verifying the hypothesis (22) with K symmetric.

M*(KND)/\/+

that fact). By the last part of Proposition 7.4, this yields a set K; C IR" with
ny ~ w?k, verifying (22) for the same value of k&, and such that $D,, C K.
After further halving the dimension (via Proposition 7.1) we may additionally
attain R < 2,/n; ~ wv/k. Corollary 9.2 yields then

Consider K, for which M*(KND) = w\/g (by compactness, the supremum of
\/k is achieved; one could of course devise an argument not using

< (1 +log (w\/E))SJnEI ~ (1 +log (Wk))?’%a

[N
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hence w < (1 + log (wk))?, which is only possible if w < (1 + logk)?, as

required. The not-necessarily-symmetric case follows formally, see the com-
ments preceding Fact 3.1. O

Finally, let us restate Theorem 9.3 in terms of covering numbers and
entropy numbers (the restating requires only the definitions and a direct
application of Proposition 4.1).

Theorem 9.4 There exist numerical constants a,C' > 0 such that, for all n,
all convex sets K C IR™ and all k,

log N(K,D) <k = log N(D,CwK®) < ak.

where w = (1 4 logk)>. Similarly, for a compact operator u, whose range is
a Hilbert space,
eqn(u”) < Cweg(u),

with the same w. Moreover, the second statement (and the first in the sym-

metric case) holds for any given a > 1, with the price being paid then in the
magnitude of C' = C(a).

This could be compared with the “best to date” duality results for general
operators of rank < n (see Corollary 2.4 of [21]), where an analogous estimate
with w = (1 + (%)z)ﬂog (24 %))2 is obtained (our estimate is superior for
k < n(logn)~*?loglogn).

Proof of Proposition 9.1. Let n,k € IN, R € [1,00) and assume that K =
conv S C IR" is such that max{log |S|,log N(K,D)} < k and :D C K C
RD. Since the symmetric set (K — K)/2 verifies the same hypotheses with
k replaced by 2k, we may and shall assume that K and S were symmetric
to begin with, and that S 5 0 (c¢f. Remark 8.3 and the comments in the
paragraph preceding Fact 3.1). By Proposition 7.4, at the price of halving
the dimension we may further assume that

M*(K) < C'(1 +log R). (23)

To take advantage of various estimates we obtained for M*(- N D) we will,
roughly speaking, decompose the set K into a Minkowski sum of “more
easily manageable” sets. Let us first demonstrate a single step of such a
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decomposition. Let t € [1, R); by Fact 3.4 (Sudakov’s inequality) combined
with (23) we have
ki :=log N(K,tD) < ( ). (24)

Consider the corresponding ¢-net of K, i.e. the set A verifying

1+logR
t

S, +tD D K,log |N1| < k.

Assign to each s € S an s’ € N} such that s € s’ + 1D and let Sy consist of
all the differences s — &', then log |S3| < k. (K and S being symmetric with
S 3 0, we may arrange that the same is true for NV} and Sy; these conditions
are not indispensable for the argument, but they do clarify the picture.) Set
K, = conv N] and K, = conv Sy, then

K C K+ K, (25)

and

Ky CtD. (26)

Now, by (25), Proposition 8.2 and the estimates for cardinalities of A} and
Sa,

1 k
5 < MK 0 D)< M*(Ky (D) + M (K (1 D) + Oy~
n

The first term on the right can be now efficiently handled via Proposition
6.2 (k1 being rather small if ¢ is “large”), while the second term is more
susceptible to majorizing even via Proposition 6.1, the radius of K, being,
by (26), significantly smaller than that of K if ¢ is not “too large”. To be
absolutely precise, in the process we lost control of N(K, D); we only know
that log N(K,2D) < k (which follows trivially from Ky C K — K = 2K).

This is readily remedied by considering instead the chain of inequalities

1 1 1 1 | k
- < M~ (—Kﬂ D) < M~ (—Kl N D) + M (—Kg N D) +Ci/—. (27)
4 2 2 2 n

Now, by Proposition 6.2 and (24),

1/2
e (bwno) = (BEfE)" < (afiremen)
2 n i
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and similarly (as log N($ K3, D) < k)

1 A
*_ e < _ _
M (5K D) £ (t\/n\/n) :

Combining these with (27) and optimizing over ¢ € [1, R) we obtain

1

k
7 S (R(1+log R)(—)")'%

This inequality (obtained assuming that %D C K C RD) is impossible if
k< em/(R(1 4+ log R))*? for sufficiently small ¢; > 0, leading (cf. the proof
of Corollary 9.2) to the estimate

[k
M*(K 0 D) < (R(1+log R)Y? /=,
n

which already is an improvement over Proposition 6.2 and (cf. the remarks
at the beginning of this section) allows to deduce that M*(K N D) is “small”

. " n . n3/4
provided R < (;)3/2/10g rorif £ < Tog) 77"
To obtain a better estimate, we — roughly speaking — “decompose” K

into a Minkowski sum of log R sets. Let us return to the setup described in
(23) and the paragraph preceding it. To simplify the notation assume that
R = 2" for some m € IN. For j = 1,2,...,m set R; = 277 and let A; be
an R;-net of K’; by (23) and Fact 3.4 one may assume that

R,
This estimate is clearly not optimal for the last few j’s, we improve it by

setting A; = S when the right hand side exceeds k. In particular we get
N, =5 and

1 +log R\’
log || < C (i) "

1 +log R\
log N(K, R; D) < k; :=log|N;| < min{02 (Tg) n, k} . (28)
J
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As in the “two term decomposition”, we set S; = A, while for ;7 > 1 we
assign to each s € N an s’ € N;_; such that s € s’ + R;_1D and let S
consist of all the differences s — s’; then

log [5;] < k. (29)

(For a more transparent argument, we may again arrange that all 5;’s are
symmetric and contain 0, and that A; C Nj41.) Set K; = conv S}, then

K c K, N K N N K., (30)

2 S T T T

and [,7 1 [,7
21 C SR = B, log N(S2,D) < k. (31)

Similarly as before, by (30), Proposition 8.4 and (28),

1 n K. 1k
— < * _‘7 ) —.
1 E M ( 5 ND)+Csm -

J=1

On the other hand, by Proposition 6.2, (29), (31) and (28),
K k)
2 nyn
klrlog R\ [ [k v
i fEet) ()
n  R; n

for 3 =1,2,...,m. Combining the last two inequalities gives

1 - p 1/2 1\ /4
L K K < 3/2 |
e mﬁ—l— m (ﬁ(l + log R)) < (log R) (n) ) (33)

which is impossible if % < cy(log R)™® (for a properly chosen ¢, > 0) or,
equivalently, R < exp (c(%)l/G) with ¢ = ¢3/loge, as required. This com-

N

pletes the proof of Proposition 9.1. O
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Remark 9.5. A significant step in the proof of Proposition 9.1 involved
reducing the argument — via Proposition 7.4 — to the case when M*(K) is
“controlled”. We wish to point out that even if M*(K) is bounded by a
universal constant, our argument doesn’t give estimates substantially better
than those contained in Proposition 9.1 (and Corollaries 9.2, 9.3) for the
general case. The only improvement is that the exponents 1/6,3 and —6 in
the respective statements are then replaced by 1/4,2 and —4. a

Remark 9.6. Another reason for the logarithmic factor in, say, Corollary
9.2, is that we use a Sudakov type inequality (Fact 3.4) to estimate the car-
dinality of nets of K for different “degrees of resolution” and then put these
estimates together to majorize M*(K N D). This has an inherent error as it
doesn’t capture the possible difference between the "Dudley majoration” and
the “Sudakov minoration” (cf. [10], (12.2) and (12.3)) for the expectation
of a supremum of a Gaussian process. The “obvious” way to (attempt to)
remedy this problem would be to try to use the majorizing measures ([26]) as
the basis for calculation. However, even if we were successful in implement-
ing this program, it appears that we couldn’t remove all logarithmic factors:
the quantities k; in (32) appear with the exponent 1/4 as opposed to 1/2 in
the standard “entropy integral” and so the most improvement we could hope
for would be replacing m by m'/? in the term Cgm(\/g(l +log R))'/? in (33),
resulting in the same “gain” in the exponents as in the previous Remark.
Moreover, even if we were able to simultaneously “force” the boundedness
of M*(K), avoid the “Sudakov-Dudley discrepancy” and somehow handle

better the term Cgm\/g in (33) (coming from Proposition 8.4), we would

still be left with a m'/? ~ (log R)"/? factor at the right end of (33), leading
to exponents 1/2,1 and —2 in Proposition 9.1 and Corollaries 9.2, 9.3. O

Remark 9.7. The procedure of decomposing the set K into a Minkowski
sum of “manageable” sets is actually somewhat noncanonical. Let us explain
that point in the simpler case of “splitting” into a sum of just two terms (by
demonstrating which we started our proof of Proposition 9.1). What happens
is that the construction of the set Ky is based on a kind of “ retraction” of
S to Sy given by the correspondence s — s — s', which a priori can be a
rather irregular map. The following approach is more natural. For a closed
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convex body B C IR" let Rp be the metric projection of IR* onto B (i.e.,
the “nearest point” map); then Rp and Qp := [ — Rp are contractions
(all operations being considered with respect to the Euclidean metric). Now
redefine Sy as Q, (.5). The prior argument carries over to this setting, in fact
we do even have N(S;, D) < |S] < 2%, S, being a contraction of S. However,
later in the process we use Proposition 6.2 to estimate M*(Ky N D) and for
that we need to control N(Ks, D), which is not easily attainable : the maps
Qp being nonlinear, there is no reason why the set Qk, (K) = Qg, (conv 5)
would contain K3 := convSy = convQp, (5). Accordingly, this modification
of the argument does not improve the estimates obtained in any substantial
way. a
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