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A Geometric Lemma and Duality of EntropyNumbersV. D. Milman (Tel Aviv)S. J. Szarek (Cleveland & Paris)1 IntroductionWe shall study in this note the following conjecture, to which we shall referas the \Geometric Lemma"; we state it �rst in a somewhat imprecise form.Let n;N be positive integers with k := logN � n. If S � IRn is a�nite set whose cardinality doesn't exceed N and such that its convex hullK := convS admits an equally small Euclidean 1-net (i.e., K can be coveredby no more than N translates of the unit Euclidean ball D), then 12D 6� K.At the �rst glance a statement of that nature may appear \trivial". In-deed, on some meta-mathematical level, we are asking whether a Euclideanball may be described by less than exponential in n \bits of information" (by� we mean above \much smaller than") . And our intuition says \NO", nomatter what exactly those \bits" are supposed to mean. However, the moreexact formulation brings together two very di�erent assumptions: small num-ber of vertices of the polytope K and small cardinality of the Euclidean \net"for K. As we shall see in this note, these data are not easy to \combine";that creates di�culties and, at the same time, interest.Our interest in the Lemma came as an outgrowth of the study of thefollowing problem, which originally has been promoted by Carl and Pietschand is well known in Geometric Functional Analysis (and in the GeometricOperator Theory), usually referred to as \the duality conjecture for entropynumbers of operators". Recall that if X;Y are Banach spaces, u : X ! Y acompact operator and " > 0, we denote by N(u; ") the minimal cardinality1



of an "-net of the image u(BX) of the unit ball BX of X (in the metric of Y ;in other words, N(u; ") is the smallest number of balls in Y of radius " thattogether cover u(BX)). The conjecture referred to above asserts that thereexist universal constants a; b > 0 such thata�1 logN(u; b") � logN(u�; ") � a logN(u; b�1") (1)for any compact operator u and " > 0. (Here and in what follows, alllogarithms are to the base 2.) In terms of the so-called entropy numbers (forbasic results concerning them and related concepts see [3] and [19]), de�nedfor an operator u by ek(u) := inff" > 0 : N(u; ") � 2kg;the assertion of the conjecture (roughly) becomesb�1eak(u) � ek(u�) � bek=a(u); (2)which is its more standard formulation. (For the most part we shall beworking with the form (1).) Note that even though ak and k=a are notnecessarily integers, (2) makes sense as the de�nition of ek(u) works also fornoninteger k. Additionally, due to the asymptotic nature of the questions weinvestigate, the di�erence between the number and its integer part (or thenearest integer, or, usually, even its double) is immaterial, and so we shallpretend that all numbers are integers as necessary; see also Remark 8.3.We point out here that, for an operator u, the sequence (ek(u)) tends to0 as n!1 if and only if (ek(u�)) does (and if and only if u is compact). Insuch a weak sense the qualitative character of the two sequences is the same.The \Duality Conjecture", if true, would imply that the two sequences areequivalent \distributionally", i.e., in the strongest quantitative sense that wemay reasonably expect. To the best of our knowledge, it is still not knownwhether (1) or (2) has a chance to hold with a = 1, as inquired originally byPietsch (for sure not with a = b = 1); nevertheless, the above formulationseems to be the most natural one. See also Remark 4.2.Up to now, the Duality Conjecture in the form stated here has beenveri�ed only under very strong assumptions on both spaces (see, e.g., [7],[18]), or under some regularity assumptions on the sequences (ek(u)), (ek(u�))([29], [2]). Our Geometric Lemma is relevant to the case when one of the2



spaces, say Y , is a Hilbert space, and X is arbitrary; more speci�cally, itimplies then the second inequality in (1). However, we believe that once aproper argument (assuming there is any) is found, a sort of a \dual" versionfor the other inequality will be �gured out and, possibly, one will also be ableto relax the assumptions on Y (paralleling the developments of ideas in [29]and [2], where \weaker" { but quantitative { equivalences were established).There has been a substantial body of work on the Duality Conjecture.Rather than present the current state of the knowledge on the matter, we referthe reader to [2], [18], [21], their references and the survey [6] (in preparation).As we indicated, the Geometric Lemma remains a conjecture. We didcheck it for various (classes of) convex bodies, including `np -balls of variousradii (cf. one of the comments preceding Proposition 7.2) and some \ran-dom bodies" (speci�cally, \generic" projections of `N1 -balls { a \canonical"counterexample to many problems in high dimensional convexity, cf. [12]).In the general setting, we were able to prove it \up to a logarithmic factor".In particular, we did show in Theorem 9.3 :The assertion of the Geometric Lemma holds if we replace the assumptionk � n by k � c(1 + log n)�6n, where c > 0 is some universal numericalconstant.The corresponding \entropy duality" result is Theorem 9.4 :There are numerical constants a;C > 0 such that if u is a compact Hilbertspace valued operator and k 2 IN , then eak(u�) � C(1 + log k)3ek(u).Thus, even though the principal appeal of the Geometric Lemma stemsfrom its potential to resolve the Duality Conjecture in the relevant case, thepartial solution indicated above already has nontrivial consequences. To thebest of our knowledge, in absence of strong assumptions on both spaces or on\regularity" of the sequences, no result of the above type (i.e., with a factor,which is a function of k) appears in the literature (see also the commentsfollowing Theorem 9.4).Finally, let us mention that Theorem 9.3 and, overall, an important partof the discussion deal with formally stronger statements: upper estimateson the mean width of the part of the body in question that is inside theEuclidean ball D. Theorem 9.3 asserts, in particular :If K is as in the Geometric Lemma, then the mean width of K \D doesnot exceed C(1 + log k)3qk=n; where C is a universal numerical constant.3



2 Geometric Lemma { precise statementsIn this section we shall state a geometric version of (the case of) the DualityConjecture that is implied by the Geometric Lemma. We shall also give pre-cise formulation(s) of the lemma and indicate the relations between variousstatements. Let us start with the Duality Conjecture, the relevant case ofwhich isIf X is a Banach space, H { a Hilbert space, and u : X ! H a compactoperator, then, for any " > 0, logN(u�; b") � a logN(u; "), where a; b > 0are universal constants.Note that one can restrict oneself to the case " = 1 in the above (rescalingif necessary). Additionally, one may assume (by approximation) that thespaces in question are �nite dimensional, and the operator u is one-to-one.In this context it is convenient to de�ne the covering number N(U; V ) forU; V -subsets of IRn (say, with V a closed convex body) byN(U; V ) := minfN : U may be covered by N translates of V g:If we set U = uBX , V = "BY , we get N(U; V ) = N(u; "). SimilarlyN(u�; ") = N(V �; U�), where K� denotes the polar body of K (say, with re-spect to the canonical Euclidean structure). Accordingly, denoting again byD = Dn the standard Euclidean ball (we shall use this convention throughoutthis note), we see that the above assertion is equivalent toConjecture 2.1 If U � IRn is a symmetric compact convex body, thenlogN(D; bU�) � a logN(U;D) where, a; b > 0 are universal constants.For future reference we point out that if V is a Euclidean ball (or, moregenerally, an ellipsoid), the translates of V in the de�nition of N(U; V ) maybe further assumed to have centers contained in U (as required { in thegeneral case { by some authors). This makes them insensitive to enlargingthe ambient space, while the present de�nition ensures that they are alwaysincreasing in the �rst argument.Conjecture 2.1 is the one we are really going to work with. In the nextseveral sections we shall show how it is implied by the following version ofthe Geometric Lemma. 4



Conjecture 2.2 For any 
 > 0 there exists c1 = c1(
) > 0 such that ifK � IRn veri�es(i) K = convS, log jSj � c1n and(ii) logN(K;D) � c1n ,then 
D 6� K.Remark 2.3. In fact, Conjecture 2.1 (and Conjecture 2.4 below, see Propo-sition 5.1 and the comments preceding it) can be derived from the validityof Conjecture 2.2 for just one 
 < 1, the constants involved (a; b, resp. C)depending on that 
 and the corresponding c1. 2It is possible to derive from Conjecture 2.2 a formally stronger statement,for which we need to introduce some notation. First, if U � IRn is a compactsymmetric convex body containing the origin in the interior, one denotes byk � kU its Minkowski functional, i.e. the norm, for which U is the unit ball.We shall use the same notation for gauges of nonsymmetric sets. We set alsoM�(U) := ZSn�1 supy2U hx; yi d�n(x) = ZSn�1 kxkU� d�n(x)where �n is the normalized (i.e., probability) Lebesgue measure on Sn�1. Thesecond equality { without the integration signs { is in fact a de�nition of thepolar U�. Both quantities on the right de�ne M�(�) also for nonsymmetricsets, and the �rst one even for nonconvex and not containing the origin(we will need that degree of generality later). We mention in passing thatM�(U) equals the mean half-width of U , a well known geometric parameter.For future reference, we also setM(U) := ZSn�1 kxkUd�n(x):In the sequel we will seldom formulate explicitly the hypotheses (convexity,symmetry or origin in the interior) on the arguments ofM�(�) and M(�); un-less some hypotheses are stated, we shall implicitly assume the bare minimumfor the formulae to make sense.We are now ready to state the stronger version of Conjecture 2.2.5



Conjecture 2.4 LetK = convS � IRn and set k = maxflog jSj; logN(K;D)g.Then M�(K \D) � Cskn ; (3)where C is a universal constant.Clearly Conjecture 2.4) Conjecture 2.2: if 
D � K, thenM�(K \D) �M�(
D) = 
, which is inconsistent with (3) if k=n is small.In the next section we introduce more notation and recall some (more orless) known results about M�(�), a few of them quite deep. In section 4 weprove the implications Conjecture 2.4 ) Conjecture 2.1 and Conjecture 2.2) Conjecture 2.4. (We do not know whether Conjecture 2.1 implies formallyConjecture 2.2, that is, whether the Geometric Lemma is in fact equivalent to\our" case of the Duality Conjecture. We devoted that matter some, but nottoo much, thought; the implication in question could be imaginably useful forconstructing a possible counterexample to the Duality Conjecture.) Then,in section 5, we present some \almost isometric" re�nements of argumentsfrom section 4, in particular the one suggested in Remark 2.3. In sections6 through 8 of we develop the ideas and tools needed for our study of theconjectures. That study culminates in section 9, where we formulate andprove the results sketched at the end of the introduction.3 More notation, known resultsAs general references for notation and basic results of local theory of Banachspaces we suggest the books [16], [22] and [30] or the survey paper [5]; ahandy source for \probability in Banach spaces" is the monograph [10].For a subspace E � IRn, we shall denote by PE the orthogonal projec-tion onto E. Given positive integer k < n, Gk;n is the Grassmann manifold(of k-dimensional subspaces of Rn) endowed with the canonical rotationallyinvariant probability measure P = Pk;n. We shall say that a \generic k-dimensional subspace" E of IRn has certain property if the measure of E'swith that property is close to 1 provided n is large (or k; n are large, depend-ing on the context). Similarly, we shall talk about \generic rank k orthogonalprojections". 6



The �rst auxiliary result is the following \relative" of the Dvoretzky The-orem (see, e.g., [14], Lemma 2.1 and its proof). Such results are usuallystated for the symmetric case, but the arguments, based on the \concen-tration of measure phenomenon", do not really require that hypothesis(nor even, in our formulation, that the body in question contains 0, theassertion being insensitive to a \small" translation of the body, cf. Fact3.2). Let us also remark here that even though in the context of the Du-ality Conjecture, as usually stated, only the case of symmetric sets is rele-vant, in the present note we drop the symmetry assumption whenever fea-sible. We believe that the setting of general convex bodies is the natu-ral one, part of the motivation for their study coming from geometry andoptimization, where the symmetry hypothesis is often arti�cial. Addition-ally, in our arguments nonsymmetric sets actually have to appear (e.g., asintersections of two symmetric sets with di�erent centers). On the otherhand, lack of symmetry is seldom a source of di�culties, and often { butnot always { the passage to the more general framework is merely \for-mal". Such is, for example, the case of our Conjectures 2.2 and 2.4 from thepreceding section: for a possibly nonsymmetric K, apply the statement to(K � K)=2 (noting that, e.g., logN((K �K)=2;D) � 2 logN(K;D) whileM�(K \D) �M�((K�K)=2\D); there is also an inequality sort of inverseto the latter for the sets we are interested in, see Remark 8.3). Similarly, if Kis symmetric and S is its net, one can always assume that S is also symmetricand contains 0: replace S by S [ (�S) [ f0g, the resulting roughly two-foldincrease in the cardinality of S is nonessential in our setting (see Remark8.3).Fact 3.1 Let V � D � IRn be a convex set and let m � n. Let P be ageneric orthogonal projection of rank m. Then(a) if qmn � "0M�(V ), then PV � Cqmn PD(b) if qmn � "0M�(V ), then cM�(V )PD � PV � CM�(V )PD(c) moreover, if for some " � "0 we have qmn � "M�(V ), then(1 � C")M�(V )PD � PV � (1 + C")M�(V )PD.Above, c, C and "0 are universal positive constants, independent of n, V and". In all cases \generic" means \except on a set (of projections) of measure� exp(�c0m)", where c0 > 0 is a universal numerical constant.7



The next result is closely related to the fact that, for a �xed rank mprojection P on IRn, the Euclidean norm of Px is \strongly concentrated"around the value qmn as x varies over Sn�1 (clearly, the average of jPxj2equals m=n; here and throughout the paper we use the notation j � j for theEuclidean norm k�kD). This well-known phenomenon has been often derivedfrom the isoperimetric inequality for the sphere, but it can be approachedalso via a direct calculation. Here we choose an equivalent point of view :the point x stays �xed, while the projection P varies over Gm;n endowed withthe probability measure P = Pm;n .Fact 3.2 Let x 2 Sn�1, let m � n and let P be a generic orthogonal projec-tion of rank m (i.e., considered as an element of (Gm;n ;P)). Then jPxj isstrongly concentrated around the value qmn . More precisely,(a) if " > 0, thenP (j jPxj � �m;nj > ") < exp (�"2n=2);where �m;n is the median of jPxj and ����m;n �qmn ��� � Cpn(b) consequently, if � > 1, thenP �jPxj > �rmn � < exp (�c(�� 1)2m)(c) and, additionally, for � > 0,P �jPxj < �rmn � < (pe�)m :Above, C and c are universal positive constants.Part (a) of Fact 3.2 is just the isoperimetric inequality applied to the functionx ! jPxj (cf. [8], where it was employed in the spirit close to that of ourpaper). Part (c), better known in the case of the Gaussian measure (see, forexample, [25]), can be recovered, e.g., from Lemma 6 in [15].From Facts 3.1 and 3.2 we derive the following Milman-Pajor-Tomczak-Talagrand (cf. [13], [17], [28]) type result.8



Proposition 3.3 Let k � n, let A > 0 and let K � IRn be a symmetricconvex body with logN(K;D) � Ak. Set ! := maxfM�(K \D);q kng. Then,for a generic rank k orthogonal projection P , we havec0skn jxj � maxf!kxkK; jPxjg for all x 2 IRn; (4)where c0 > 0 is a constant depending only on A. The assertion holds alsofor not-necessarily-symmetric bodies K 3 0 after one replaces M�(K \D) bymaxx2IRnM�((K � x) \D) in the de�nition of !.Proof. For a smoother exposition we provide �rst a detailed proof in the(central) symmetric case and then sketch modi�cations needed to handle thegeneral setting.Noting that maxfk � kU ; k � kV g = k � kU\V and rescaling, we see that (4)is equivalent to K \ ! P�1D � c�10 !rnk Dor x 2 K n c�10 !rnk D ) jPxj > !: (5)Let S be a set with jSj � 2Ak such that K � S +D. A standard argumentshows that then in fact K � S + (D \ 2K) (it is here that the symmetry isused; in general we would have K �K in place of 2K). Moreover, if S1 =S n (c�10 !qnk � 1)D, thenK n c�10 !rnkD � S1 + (D \ 2K):Accordingly, to prove (5), hence (4), it su�ces to show that, for a generic P ,jP (s+ y)j > ! simultaneously for all s 2 S1 and all y 2 D \ 2K. To that endobserve that, �rst, by Fact 3.1(a) or (b), jPyj � 2C! for a generic P and ally 2 D \ 2K. On the other hand, by Fact 3.2(c), for any �xed x 2 IRn,P 0@jPxj � �skn jxj1A < (pe�)k9



for any � > 0. Choosing � small enough (say, � = (pe2A+1)�1) we getthat, for a generic projection P , all s 2 S1 (note jS1j � 2Ak) verify jPsj ��(c�10 !qnk � 1)q kn > �(c�10 ! � 1), and so, for x 2 S1 + (D \ 2K),jPxj � (�(c�10 ! � 1)� 2C!)which yields (5) if c0 is chosen small enough.If K is not symmetric, a more careful look shows that, in fact, one needsto control simultaneously (generic) projections of K \ (D + s) for all s 2 S1or, equivalently, the projection of W := Ss2S1(K � s) \ D. The argu-ment used in the symmetric case carries over directly if A is small (specif-ically, if A < c0, where c0 is the constant from Fact 3.1; cf. the proof ofProposition 5.1). For general A, it is more e�cient to estimate M�(W ) bymaxx2IRnM�((K�x)\D)+C0qkn via Lemma 8.1 and then \pipe in" convWin place of D \ 2K in the argument above (the reader will readily verify thatLemma 8.1 depends only on Fact 3.8 and, morever, if all yj's are 0 { the casewhich is relevant here { is independent from the rest of the paper). 2We will need an estimate of \covering numbers" known as \Sudakov'sinequality".Fact 3.4 ([10], Theorem 3.18) If U � IRn and " > 0, thenlogN(U; "D) � C(M�(U)" )2nwhere C is a universal constant.Recall also that the problem of duality of entropy numbers (say, in theform (2)) is solved for k � rank u ([9], see also [21]). We haveFact 3.5 Let U; V � IRn be convex bodies such that U 3 0 and V is 0-symmetric. If k � n, thenlogN(U; V ) � k ) logN(V �; �U�) � �kfor some universal constants �; � � 1 (resp. � = �(� ) if we just assume thatk � �n for some � 2 (0; 1)). Moreover, the above inequality holds { at leastif U is also symmetric { with � = �(�), for any � > 1 (resp. � = �(�; � ),for � > 1 and � 2 (0; 1)). 10



The Fact was stated in [9] just in the case when both U and V are symmetric,but the present variant follows formally: just apply the symmetric versionto (U � U)=2 (and 2k in place of k) and note that ((U � U)=2)� � 2U�. Wedo not know whether the symmetry of U is needed in the last statement;in absence of that hypothesis the present argument yields � > 2 in place of� > 1. Let us also note that, at least for the �rst statement and with propercare, one may dispose of the symmetry assumptions altogether (see [15]).We shall need a few more properties of the functional M�(�).Fact 3.6 If U; V � IRn are convex sets, then the function de�ned on IRn by�(x) =M�((x+ U) \ V )is concave. In particular, if both U and V are 0-symmetric, then �(x) � �(0)for x 2 IRn.This follows from the facts that, under Minkowski addition, the set-valuedmap x ! (x + U) \ V is concave, while M�(�) is additive and positivelyhomogeneous.Let 
n be the standard Gaussian measure on IRn (i.e., the one with density(2�)�n=2 e�jxj2=2). The next result describes the very well known relationshipbetween spherical averages and those with respect to 
n, and is easily estab-lished by integrating the latter in spherical coordinates.Fact 3.7 For U � IRn, the Gaussian average`1(U) := ZIRn kxkU d
n(x)is \essentially the same as" n1=2M(U). More precisely, there are constants�n < 1 with �n ! 1 as n ! 1 such that, for all U as above, `1(U) =�nn1=2M(U). The same is true if we replace `1(U) by `1(U�) and M(U) byM�(U).For the record, �n = p2�(n2 )=�(n2 + 1) 2 (q1� 1n ; 1). We could have dis-pensed with �n's in Fact 3.7 if we had de�ned both the Gaussian average andM(U) via second moments of k � kU , a rather insigni�cant modi�cation bythe Kahane-Khinchine inequality (see [1], Lemma 3.3, for the nonsymmetriccase). However, that would not conform to the standard terminology.Finally, we mention the following well known11



Fact 3.8 If S � D � IRn is a �nite set, thenM�(convS) =M�(S) � Cslog jSjn ;where C is a numerical constant.Fact 3.8 is proved most easily by passing to the Gaussian average (Fact3.7) and a direct computation using tail estimates for the Gaussian density; inthe Gaussian setting it is a special case of a much more general phenomenon(see [10], (3.6) or our Lemma 8.1). Alternatively, it is implicit in our Fact3.1. By Fact 3.4, the estimate is exact if the set S is uniformly separated.We recall that a set is called �-separated if each two its di�erent members aremore than � apart; this leads to the concept of packing numbers { equivalent,up to a factor of 2 (in the argument), to that of covering numbers.In the sequel we shall occasionally write � <� 	 meaning that there existsa universal numerical constant C such that, for all values of the parame-ters involved in the de�nitions of (normally nonnegative) quantities � and	, one has � � C	. E.g., the assertion of Fact 3.8 can be written asM�(S) <� q log jSjn . (We point out that this convention di�ers from the oneemployed often in, e.g., combinatorics, and using for that concept the sym-bol �, reserved in this note for \much smaller than" or \su�ciently smallerthan".) Similarly, � ' 	 will indicate two-sided estimates C�1	 � � � C	.We will not use that convention when we want to make the dependence onother constants or parameters explicit. Unless stated otherwise, C, c, C1, c0etc. will stand for numerical constants independent of the dimension or anyother parameters, whose exact values may vary between occurrences.4 The implications 2.4 ) 2.1 & 2.2 ) 2.4The implication Conjecture 2.4 ) Conjecture 2.1. We shall assume thevalidity of Conjecture 2.4 and show how the results of the preceding sectionimply then Conjecture 2.1. More precisely, we proveProposition 4.1 Let k 2 IN . Let w � 1 be such that, for all n; S;Kverifying the assumptions of Conjecture 2.4 for that particular k, one has12



M�(K \D) � wqkn . Then, for all n and for all convex sets U � IRn,logN(U;D) � k ) logN(D;CwU�) � ak; (6)where a;C > 0 are universal constants.Proof. Let S � U with jSj = N(U;D) � 2k be such that S+D � U . DenoteK = convS. We �rst observe that, for � > 0,N(D; (� + 2)U�) � N(D; �K�)In fact, any �-net of D(= D�) with respect to k � kK� is a (� + 2)-net withrespect to k � kU�. To see that, observe that if x; y 2 D and kx� ykK� � �,then kx� ykU� = maxu2U hx� y; ui� maxs2S;z2D hx� y; s+ zi� kx� ykK� + jx� yj � �+ 2:(We are being slightly careless here as, in principle, it is possible that 0 62 Kand so one can not really speak about k�kK�. However, this is easily remediedby adding to S a single point, cf. Remark 8.3. Another potential di�culty,K being degenerate, is handled by passing to a lower dimension.)To derive Conjecture 2.1, it is now enough to appropriately estimateN(D; �K�) by N(K;D) for some � <� w; notice that N(K;D) � N(U;D)(cf. the comment following Conjecture 2.1). To that end, apply Proposition3.3 with the present choice of k; n; K (hence A = 1). Let P = PF be a(generic rank k) projection such thatc0skn j � j � maxfwsknk � kK; jP (�)jg :After dividing out by q kn , this dualizes toc0D � conv fwK� [rnk (D \ F )g (� wK� +rnk (D \ F )):13



Hence N(D; �K�) = N(c0D; c0�K�)� N(wK� +rnk (D \ F ); c0�K�) (7)� N(rnk (D \ F ); (c0�� w)K�)(where we tacitly assumed c0� � w > 0). Observe that the polar of K� \ F(inside the k-dimensional space F ) is PFK. Accordingly, if we knew thatlogN(PFK;��1(c0�� w)sknD) � k; (8)we could conclude from Fact 3.5 that the last member of (7) is bounded byN(K;D)� � N(U;D)� � 2�k, as required (above �; � are the constants fromFact 3.5). We now argue as in the proof of Proposition 3.3. IfK is symmetric,K � S+D impliesK � S+(2K\D). Accordingly, PFK � PFS+PF (2K\D)(for any P = PF ), while, for a generic PF , PF (2K \D) � 2Cwq knD by Fact3.1(a) or (b) and so we get (8) as long as 2Cw � ��1(c0��w). In particular,� = c�10 (2C� + 1)w ' w works, as required. In the general case (i.e., K notnecessarily symmetric), (2K \D) has to be replaced by Ss2S(K � s)\D; cf.the end of the proof of Proposition 3.3. 2Remark 4.2. Assuming Conjecture 2.4 (or, by what follows, just Conjec-ture 2.2), the argument above yields (6), hence Conjecture 2.1, with a = �,where � comes from Fact 3.5. In particular, we would obtain then the valid-ity of the case of the Duality Conjecture stated at the beginning of section2 for any a > 1, the price being paid in the magnitude of b = b(a). We alsoemphasize the that the symmetry hypothesis in Conjecture 2.1 is not used(at least if one doesn't worry about the exact value of the constant a), weleave it there just \for historical reasons." (In any case, that hypothesis canbe \disposed of" formally, see the comments following Fact 3.5.) 2The implication Conjecture 2.2 ) Conjecture 2.4. Let n; k; S;K be as inConjecture 2.4. Assuming the validity of Conjecture 2.2, we must showthat qnkM�(K \ D) can not be arbitrarily large. Accordingly, throughoutthe argument we may assume that that quantity is larger than an arbitrary14



preassigned numerical constant (as otherwise we would have been done). Letus denote n1 = ("0M�(K \D))2n (where "0 comes from Fact 3.1; as usual,we pretend that n1 is an integer), then qnkM�(K \ D) = "�10 qn1k ; clearlywe may assume that n1=k is \large". Apply Fact 3.1 with m replaced by n1.This yields K0 = PK, of which we may think to be contained in IRn1 , suchthat (by the part (b) of the Fact) K0 � P (K \ Dn) � cqn1n Dn1 while atthe same time, by the part (a) of the Fact, logN(K0; 2Cqn1n Dn1) � k (asin earlier arguments, we use here the equality K = Ss2S s + (K � s \ D)and, in the symmetric case, the inclusion (K � s) \ D � 2K \ D, withappropriate modi�cations if K is not symmetric; see the end of the proof ofProposition 3.3). Now applying Conjecture 2.2 to K1 = (2Cqn1n )�1K0 and
 = c(2C)�1 (this can be done since the cardinality of the set of extremepoints of K1 doesn't exceed that of K) we see that we must have k > c1(
)n1or qnkM�(K \D) = "�10 qn1k < "�10 c1(
)�1=2, as required. 2Remark 4.3. As was the case with the prior implication, the above argu-ment is done \for �xed k", i.e., the validity od Conjecture 2.4 for given k; n isderived from the validity of Conjecture 2.2 for the same k and some other n.The same is (more explicitly) true for Proposition 5.1 from the next section.5 The \almost isometric" variantsIn this section we shall present some re�nements of arguments from thepreceding section allowing to prove stronger versions of the implication Con-jecture 2.2 ) Conjecture 2.4, in particular the one announced in Remark2.3, i.e. requiring the validity of the former for just one 
 < 1.We note �rst that in the preceding section we did not use the validityof Conjecture 2.2 for all 
 > 0, but just for some speci�c (possibly rathersmall) 
 > 0, depending on the absolute constants c, C from Fact 3.1(a),(b). Moreover, if we use Fact 3.1(c) instead of (b), an easy modi�cation ofthe argument shows that we may derive Conjecture 2.4 from Conjecture 2.2being valid for some �xed 
 < 12 .To get the \almost isometric" variant (any �xed 
 < 1) we must workslightly harder; let us state it here for future reference.Proposition 5.1 Suppose that there exist constants 
; � 2 (0; 1) such that,15



for every n 2 IN and K = convS � IRn verifying maxflog jSj; logN(K;D)g� �n one has 
D 6� K. Then, for all n 2 IN and K = convS � IRn we haveM�(K \D) � wskn; (9)where k = maxflog jSj; logN(K;D)g and w is a constant depending only on
 and � .More precisely, if for some 
; � 2 (0; 1), some n0 2 IN , and all K =convS � IRn0 (resp., for all K = convS � RD � IRn0 ; for some R > 0) theinequality k0 := maxflog jSj; logN(K;D)g � �n0 implies 
D 6� K, then,for all n 2 IN and all K = convS � IRn (resp., for all K = convS �RD � IRn; same R) such that maxflog jSj; logN(K;D)g � k0, one hasM�(K \D) � wqk0n ; with w <� ��1=2(1� 
)�1.Proof. It is enough to prove the second statement. Observe �rst that if, for allK = convS � IRn0 with maxflog jSj; logN(K;D)g � k0, we have 
D 6� K,then the same is true with n0 replaced by any n � n0 : any counterexampleK � IRn can be projected back on an n0-dimensional subspace.Now choose " > 0 so that 
 � (1 � C")=(1 + C") and " � minf"0; 1=2g,where C and "0 are as in Fact 3.1(c). (Note that the �rst restriction translatesinto " � C�1 1�
1+
 ' 1 � 
.) Let n1 = "2M�(K \D)2n and apply Fact 3.1(c)with m replaced by n1 and K by K \D to obtain, for a generic projectionP of rank n1, PD � P (K \D)(1 + C")M�(K) � 
PD:Without loss of generality we may assume that maxx2IRn M�((x+D)\K)is attained at 0 (by Fact 3.6, this is automatically true if K is 0-symmetric)and so, again, generically P ((x + D) \ K) is contained in a ball of radius(1+C")M�(D\K). This follows from Fact 3.1(c) if "M�((x+D)\K) � qn1n(observe that, by the de�nition of ", we have equality if x = 0) and holds afortiori if the reverse inequality holds: just enlarge (x+D) \K to a convexset { still contained in x+D { for which one has the equality.We now claim that we must have k0 > minfc0=2; �gn1 (where c0 is asin Fact 3.1), from which { in combination with the de�nition of n1 { theinequality in the assertion immediately follows. Indeed, if that was not thecase, i.e., if k0 � c0n1=2 and k0 � �n1, the �rst of these inequalities would16



imply that, for a generic projection P (of rank n1), P ((x + D) \ K) wascontained in a ball of radius (1 + C")M�(D \K) simultaneously for all x ina D-net of K. Setting K1 = PK(1+C")M�(K) � IRn1 we see that then (generi-cally) K1 is contained in an union of less than 2k0 balls of radius 1, hencelogN(K;D) � k0, while, on the other hand, K1 contains (again generically)a ball of radius 
 centered at the origin. (Alternatively, we could have ap-plied P to W = Ss2S((K � s) \ D), M�(W ) having been estimated usingLemma 8.1; cf. the end of the proof of Proposition 3.3.) Since the numberof extreme points of K1 never exceeds that of K (and hence is � 2k0), andsince k0 � �n1 and �n0 � k0 imply n0 � n1, the hypothesis of our state-ment applies to K1 (cf. the remark at the beginning of the proof) yieldingK1 6� 
PD, a contradiction.To obtain the version of the statement involving R, we observe that, byFact 3.2(b), jPsj � 2qn1=n jsj simultaneously for all s 2 S provided thatn1=k is larger than some numerical constant C1 (to ensure the latter, wereplace the condition k > minfc0=2; �gn1 above by k > minfc0=2; �; C�11 gn1).The radius R1 of K1 is then generically less than 2pn1=n R(1+C")M�(K) = 2"R(1+C") < Rand so the hypothesis applies to K1. (In fact we do have a \gain" in theradius as R1 ' "R, but since we are going to apply the Proposition for a\�xed" 
 anyway, this is not going to be exploited.) 2Remark 5.2. The Proposition above states, in essence, that in order toprove the inequality (3) for a �xed k, it is enough to verify whether it holdsfor the smallest n for which it is non-trivial, i.e., for which the right hand sideis less than, say, 12 (or even whether in that case K 6� 12D, a weaker condition;same with 12 replaced by any 
 < 1). Going in the opposite direction, fromsmaller to larger n, is easy: any counterexample in IRn can be considered asa subset of IRm for m > n; the geometric parameters stay the same (see thecomment following Conjecture 2.1), while the functionals M�(�) in dimen-sions m and n di�er (essentially) by a factor qn=m (this can be seen mosteasily by replacing, via Fact 3.7, spherical averages with Gaussian means andnoting that the latter do not change if we increase dimension). Thus, for a�xed k, the statements of type (3) for various n's are equivalent (in the rangeof n where the right hand side is uniformly non-trivial). 217



Remark 5.3. By applying a procedure similar to the proof of Proposition5.1 for su�ciently small ", one can show that to deduce Conjecture 2.2 orConjecture 2.4 it is enough to have a \
 = 1 � � version" of Conjecture 2.2,where � is an \arbitrarily good" function of (say) kn . A sample form:Conjecture 2.2 (or Conjecture 2.4 ) is equivalent to the following:If k; n; S;K; are as in Conjecture 2.4 , then (1 � (k=n)2)D 6� K: (10)Indeed, suppose the above holds and we have a con�guration which violatesConjecture 2.2 for some �xed 
 < 1. Apply the previous argument with" = �( kn )2=5, where � is a small constant. This leads to a K0 � IRn1 ; n1 '"2n which admits a D-net of cardinality � 2k, (and is spanned by � 2kpoints)with (1 � C")Dn1 � K0. One routinely veri�es that C" < ( kn1 )2 if �is properly chosen (n1 is now the \new" n).Replacing �( kn)2=5 by an appropriate expression, one can obtain an ana-logue of (10) with ( kn)2 replaced by an arbitrary preassigned function of ( kn).Let us remark here that, on the other hand, K cannot contain a ballof radius substantially larger than 1. Indeed, a simple volume comparisonargument shows that if 
D � K, then 
n < 2k and so 
 � 1 + kn . 26 Preliminary estimates for M�(K \D)Our setup is as in Conjecture 2.4, i.e. K = convS � IRn, k = logN(K;D),k1 = log jSj; we shall normally assume that k1 � k. We recall that, whenneeded, we may always assume that n=k is \large".The �rst estimate is just a rewording of Fact 3.8.Proposition 6.1 If K � RD, thenM�(K) � CRsk1nwhere C is a numerical constant.The next estimate is much harder, even though the improvement seemsrather minor. 18



Proposition 6.2 If K � RD, thenM�(K \D) � C00@Rsknsk1n 1A1=2 ;where C0 is a universal constant.Proof. The conclusion of the Proposition can be rewritten asR < c0�2 npk1k )M�(K \D) < �for all � 2 (0; 1), where c0 = C�20 . We show �rst that, in fact, the Propositionis implied by a formally weaker statementR � c1�2 npk1k ) �D 6� K: (11)(some c1 > 0, with C0 depending on c1) and that, moreover, it su�ces toobtain (11) just for some �xed � 2 (0; 1), for example for � = 1=6. Tothat end, set M�(K \ D) = �. Let " = (2C)�1, where C comes from Fact3.1(c), and set n1 = "2�2n. We may assume that n1 � k; k1 (as otherwiseProposition 6.2 clearly holds). Consider, as in prior arguments, a genericn1-dimensional projection PK of K. We get, by Fact 3.1(c),�2Dn1 � P (K \Dn) � 3�2 Dn1 :Rescaling PK by a factor 3� we get an n1-dimensional body K1 � Dn1=6, forwhich the respective parameters k; k1 could only decrease. Now, if (11) heldfor � = 1=6, it would follow that the radius R1 of K1 would have to verifyR1 � c136 n1pk1k = c2 �2npk1k : (12)Now a priori we know only that R1 = (3�)�1 � radius (PK) � (3�)�1R.However, for a generic rank m projection P and for any �xed set � withlog j�j � m, one has jPxj ' qmn jxj simultaneously for all x 2 � (by Fact3.2; this can be made \almost isometric" if log j�j=m is \small"). Since the19



radius of PK is witnessed by jPsj, s 2 S, and since log jSj = k � n1, itwould follow that in fact genericallyradius (PK) ' rn1n R ' �Rand so R1 ' R, which combined with (12) and the de�nition of � yields theassertion of Proposition 6.2.It thus remains to show (11) (in fact just for � = 1=6, but since thatdoesn't really simplify the proof, we shall argue the general case). To thatend, we need the following special case of \Maurey's Lemma" (see [20]).Lemma 6.3 If S � RD and K = convS, then, for every " > 0, settings = d(R=")2e, we get that the setfx1 + x2 + : : :+ xss : xj 2 S; j = 1; : : : ; sgis an "-net for K. In particular, if k1 = log jSj, then logN(K; "D)� 4k1(R" + 1)2.Now, to prove (11), assume that �D � K. Set k2 = 2k; we shall showthat K contains a 2-separated set of cardinality � 2k2 , which will contradictlogN(K;D) � k.Consider a generic k2-dimensional projection PK of K. Since we areassuming that �D � K, we also have �Dk2 � PK. Let � be a �=4-net of PKconsisting (for appropriate s) of points of the form s�1(Px1+Px2+: : :+Pxs),where xj 2 S, j = 1; : : : ; s. Since, by the same argument as in the paragraphfollowing (12) and based on Fact 3.2, radius(PK) <� qk2n R in the generic case,Lemma 6.3 implies that it is enough to take s � 4(qk2n R=(�=4))2 ' k2n R2�2 ,hence log j�j <� R2�2 k2k1n . Now, let 4 be a maximal �=4-separated subset of�; noticing that 4 is a �2-net for PK � �Dk2 we infer that j4j � 2k2 . Set~� = fs�1(x1 + : : :+ xs) : xj 2 S; j = 1; : : : ; sg � K, in particularlog j~�j <� R2�2 k2k1n (13)and let ~4 be the subset of ~� corresponding to elements of 4. We shall showthat the elements of ~4 are generically 2-separated; as j ~4j = j4j, this willyield the desired contradiction. 20



By Fact 3.2, a generic P shortens a given distance by the factor qk2n andso, typically, the distance between two elements of ~4 will be >� q nk2 �4 � 2.Accordingly, we can a�ord to settle for a factor smaller than q nk2 , but weneed to control all distances between elements of ~4. To this end, observethat, by Fact 3.2(b), for a �xed x 2 IRn n f0g and for � > 2,P 0@jPxj > �sk2n jxj1A < exp (�c0�2k2): (14)Choose � = q nk2 � �8 (we may assume � > 2). If we knew that, for allx 2 ( ~4� ~4) n f0g, jPxj � �sk2n jxj (15)we could infer that, for all such x, one has jxj > 2, as required (recall thatjPxj > �=4, the elements of 4 being �=4-separated). However, we do notknow a priori which elements of ~� will end up in ~4, and so we need to require(15) for a generic P and for all x 2 (~� � ~�). By (13) and (14), this can beassured provided thatj~�� ~�j � exp (�c0�2k2) � exp CR2�2 k2k1n ! � exp (�c0�2k2)� 1or, say, CR2�2 k2k1n � c02 �2k2 = c00n�2 :Considering that k2 = 2k, the above is equivalent, for a properly chosenc > 0, to the estimate on R assumed in (11). This concludes the proof ofProposition 6.2. 27 \Boxing in" the set K.In the preceding section we did obtain some estimates for M�(K \ D) pro-vided the set K was \nicely" bounded. Observe that, e.g.,the estimate fromProposition 6.2 is nontrivial (i.e., � 1) if K � RD with R � nk (k1 � k istacitly assumed). However, a priori no reasonable bound on the radius of21



K is given (one only has, clearly, R � 2k+1). We shall show now that in factit is enough to prove Conjecture 2.2 or Conjecture 2.4 in the case when K is\reasonably" bounded. The approach rests again on considering projectionsof K, this time deterministic ones. For simplicity, in this section we shallrestrict our analysis to the 0-symmetric case.Recall that, as explained in the last paragraph of section 5, noK verifyingour assumptions can contain (1+ kn )D, i.e., there exist u1; ju1j = 1 such thatK � fjh�; u1ij � 1 + kn:Let K 0 := Pfu1g?K (the projection onto orthogonal complement of u1).Clearly K 0 veri�es our standard assumptions in fu1g? and so we can �ndu2 ? u1, ju2j = 1, such thatK1 � (jh�; u2ij � 1 + kn� 1) \ fu1g?and hence K � (jh�; u2ij � 1 + kn� 1) :Continuing in this way we get an orthonormal sequence u1; : : : ; un1; n1 = n=2;such that if E = [u1; : : : ; un1 ] (where [ � ] denotes the linear span), thenK1 = PEK � (jh�; ujij � 1 + kn1 ; j = 1; 2; : : : ; n1) :We did thus showProposition 7.1 If, for some n; k1; k 2 IN and � > 0 there exists a sym-metric set K = convS � IRn such thatlogN(K;D) � k and log jSj � k1; while �D � K;then, for n1 = n=2, there exists (a symmetric set) K1 � IRn1 satisfyinglogN(K1;D) � k; K1 = convS1; log jS1j � k1;�Dn1 � K1 and K1 � 2Bn11 � 2pn1Dn1 ;where Bn11 = [�1; 1]n1 is the `n11 ball. 22



It follows that for our purposes (i.e. proving Conjecture 2.2 or Conjecture2.4, or (10)) it is enough to consider sets K � RD, where R � 2pn, or evenK � 2Bn1.A more precise analysis yields a slightly better bound on R; we do notreally use it in the sequel but present here as the argument seems to be ofsome interest, in particular it can be adapted to show that Conjecture 2.4holds for multiples of the unit ball of `n1 (and similar sets). Again, only theestimate on logN(K;D) is used, and, again, it is enough to produce an n=2-dimensional projection of K which is contained in RD. The starting point isa well known formula for the asymptotic order of \covering numbers" of the`n1 -ball Bn1 � IRn. We have, for R 2 [1;pn] (see [24])logN(RBn1 ;D) ' R2 �log nR2 + 1� (16)It follows from (16) by a direct calculation that if logN(RBn1 ;D) � k, wemust have R <� r klog nk . This example is representative for the general case,we haveProposition 7.2 In the notation and under the assumptions of Proposition7.1, we have K1 � C1vuut klog nkDn1where C1 is a universal constant.Proof. Let R = C1r klog nk , the constant C1 > 0 to be determined later. Bya reasoning analogous to the one which led to Proposition 7.1, we see thateither there is an n1 = n=2-dimensional projection of K contained in RD (inwhich case we are done), or there exists a sequence v1; v2; : : : ; vn1 of elementsof K such that dist(vj; [vi : i < j]) > R; j = 1; : : : ; n1:For simplicity, let us assume (as we may) that the Gramm-Schmidt orthonor-malization applied to (vj) yields the standard basis (ej), and sohvj; eii = 0 and hvi; eii > R if 1 � j < i � n1: (17)23



Set T := conv f�vjg � K. We shall show that the covering numbers of Tare \roughly" at least as large as those of RBn11 : �rst for the `1-norm and,as a consequence, for the Euclidean norm. We start by recalling an estimate\dual" to (16) logN(D; rBn1) ' log(r2n+ 1)r2 ;valid for r 2 [ 1pn ; 1], and a related onelogN(tBn1 ; Bn1) ' t�log nt + 1�for t 2 [1; n], both obtained by, roughly speaking, counting the lattice pointscontained in respective bodies (in a quite general setting, an essentially equiv-alent problem to that of calculating the covering numbers N( � ; Bn1)), cf.[24]. Let t 2 [1; n]; it is elementary to show that (17) implies that the linearmap u de�ned by uei = t�1vi sends the integer lattice Zn1 to a set which isR=t-separated in the `1-norm. At the same time, u(tBn11 ) � T and sologN �T; R2tBn11� � logN(tBn1 ; Bn1) � ct log�nt + 1� ;where c > 0 is a numerical constant. On the other hand, denoting r = R2t,one has logN(T; rBn11 ) � logN(T;D) + logN(D; rBn11 )� logN(T;D) + C2 log(r2n+ 1)r2 ;whence logN(T;D) � ct log�nt + 1�� C2 log(r2n+ 1)r2 :Choosing t so that the �rst term on the right is twice bigger than the second(in particular t ' R2), we get an estimate (16) with RBn1 replaced by T . Asbefore, this can be reconciled with logN(T;D) � logN(K;D) � k only ifR � C1r klog nk , C1 depending only on c and C2. 2Remark 7.3. The argument above is based on the fact thatlogN(K;D) � k) logN(K; rBn1) <� k24



if r ' q log nkk . Accordingly, if we were able to obtain from K, say, by pro-jections, a body K1, for which logN(K1; rBn11 ) � Ak for large A, this wouldyield a contradiction. 2The last result of this section tells us that, for our purposes, we mayadditionally assume that M�(K) is \fairly small" (at least, temporarily, inthe symmetric case). We haveProposition 7.4 Let k1; k 2 IN and � > 0. Suppose that, for some n 2 IN ,there exists a symmetric set K = convS � IRn (resp. additionally K � RDfor some R > 0) such thatlogN(K;D) � k and log jSj � k1; while �D � K;then, for n1 = n=2, there exists (a symmetric set) K1 � IRn1 satisfyinglogN(K1;Dn1) � k; K = convS1; log jS1j � k1; �Dn1 � K1and M�(K1) � C(1 + log n);(resp. M�(K1) � C(1 + log R� ) and K1 � RDn1), where C is a universalnumerical constant.If one replaces the hypothesis �D � K by a weaker one, M�(K \D) � �,one gets a similar conclusion, the only changes being that in the new settingn1 ' �2n, 12Dn1 � K1 and M�(K1) � C(1 + log (�2n)) (resp. M�(K1) �C(1 + logR)).Proof. By [4] and [22],Theorem 2.5, there exists u 2 GL(n) such thatM(uK) �M�(uK) � C(1 + log n); (18)where C is a universal numerical constant or, more precisely, such thatM(uK) � M�(uK) does not exceed the so-called K-convexity constant of(IRn; kxkK); uK is often referred to as the `-position of K. It is well-knownand easily seen that if E � IRn is an m-dimensional subspace, thenM(B\E)exceedsM(B) by at most (asymptotically) q nm . (Indeed, for Gaussian aver-ages we have, identifying E with IRm, RE kxkB d
m(x) � RIRn kxkB d
n(x) {essentially by the triangle inequality { and it remains to apply Fact 3.7.) A25



fortiori, the same is true with B \E replaced by PE(B) and, by duality, forM�(�). Let us choose E, dimE = n1 � n=2, such that PE(uD) is a ball, sayPE(uD) = �Dn1 (we identify E with IRn1). We then have��Dn1 � PE(uK)logN(PE(uK); �Dn1)g � kand so, if we set K1 = ��1PE(uK) (again considered as a subset of IRn1 , wealso drop the subscript n1 in Dn1 in what follows), then�D � K1logN(K1;D) � k (19)M(K1) �M�(K1) � C0(1 + log n):The entropy estimate in (19) implies that the volume of K1 does not exceed2k times the volume of D. As a consequence,M(K1) � 2� kn1 � 12(this follows just from the H�older inequality) and soM�(K1) � C1(1 + log n):as required. To settle the variant involving the conditionK � RD we observethat in that case we obtain (additionally) �rst PE(uK) � R�D and then,after rescaling, K1 � RD, as required.To get the assertion when just M�(K \ D) � � is assumed, we argueas in the proof of the implication 2.2 ) 2.4 or, more precisely, the proofof Proposition 5.1, cf. Remark 5.2): we �rst apply to our con�guration ageneric projection of rank n0 ' �2n to obtain K0, 12Dn0 � K0 � IRn0 , andthen repeat the procedure described above. 2Remark 7.5. Proposition 7.4 is the only point where symmetry inter-venes in a signi�cant way (the arguments of Propositions 7.1 and 7.2 can beroutinely modi�ed to yield nonsymmetric variants). Indeed, it is not knownwhether (18) can be achieved for a general convex body K (via an a�ne26



map u; see [1] and [23] for results to date). We could have approached theissue by using [11] to pass to an n=2-dimensional projection of K verifying(18). However, as mentioned already in the paragraph preceding Fact 3.1,our �nal estimates can be formally derived from the symmetric case, and sowe decided to take the easy way here. See also Remark 8.3.8 \Combining" the sets.We start with the following lemma, which is a variant of Theorem 2 of [27](cf. [10], (3.6)).Lemma 8.1 Let (yj); (Aj); j = 1; : : : ; N , and R > 0, be such that yj 2 RDand Aj � RD for all j � N . ThenM� 0@ [j�N(yj +Aj)1A � maxj�N M�(Aj) + C0Rs logNn : (20)Proof. Rescaling reduces the Lemma to the case when R = 1, which we shallassume from now on. We haveM�0@[j (yj +Aj)1A � maxj�N M�(fyjg) +M� 0@[j Aj1A :Since the �rst term on the right does not exceed Cq logNn by Proposition6.1, it is enough to prove (20) when all yj's are 0. This in turn follows fromthe isoperimetric inequality (see [16]) : as Aj � D, the function k � kA�j is1-Lipschitz and so, for t > 0,�n(kxkA�j �M�(Aj) > t) � e�nt2=2;where �n is the normalized Lebesgue measure on Sn�1 (note a slight abuseof notation: we write kxkA� = maxfhx; yi : y 2 Ag even though this is notnecessarily a norm or even a seminorm; it would be more proper to employthe term \the support function of A" used in geometry). Hence�n(maxj kxkA�j �maxj M�(Aj) > t)� �n(maxj (kxkA�j �M�(Aj)) > t) � minfN � e�nt2=2; 1g (21)27



and soM�([j Aj) = Z maxj kxkA�jd�n(x)� maxj M�(Aj) + Z 10 �n(maxj kxkA�j �maxj M�(Aj) > t)dt� maxj M�(Aj) + C2slogNn ;where the last inequality follows easily from (21). 2>From the Lemma we derive the followingProposition 8.2 Let K1;K2 � IRn be convex sets such that logN(Kj ;D) �k for j = 1; 2. If K1;K2 are symmetric, thenM�((K1 +K2) \D) �M�(K1 \D) +M�(K2 \D) + Cskn:In the general case, the functional M�( � \ D) needs to be replaced every-where by maxx2IRn M�(( � � x) \D).Proof. Let (xi) and (yj) be D-nets of K1 and K2 respectively. ThenK1 +K2 = [i;j ((xi +D) \K1) + ((yj +D) \K2)= [i;j xi + yj + ((K1 � xi) \D + ((K2 � yj) \D):In particular, (K1 + K2) \ D is contained in the \subunion" restricted toxi + yj � 3D. Hence, if K1;K2 are symmetric, then, by Lemma 8.1 andFact 3.6, M�((K1 +K2) \D)� 3C0s2kn +maxi;j M�(((K1 � xi) \D) + ((K2 � yj) \D))= 3C0s2kn +maxi M�((K1 � xi) \D) + maxj M�((K2 � yj) \D)� Cskn +M�(K1 \D) +M�(K2 \D);28



as required. The not-necessarily-symmetric case is proved the same way. 2Remark 8.3. The special case of the Proposition with K1 = K;K2 = �Kshows that if logN(K;D) � k, thenM�((K �K) \D) � 2 maxx2IRnM�((K � x) \D) + Cskn(a variant with K �K replaced by (K �K)=2 and without factor 2 on theright hand side also holds, e.g., by the argument of Proposition 8.5 below).As already mentioned in the paragraph preceding Fact 3.1, inequalities go-ing in the opposite direction are even easier. Consequently, when estimatingM�(K \ D), there is no major di�erence between a symmetric and a non-symmetric setting. More generally, Propositions 8.2 and 8.5 show that thefunctional in question is stable with respect to doubling the set S or thecardinality of the 1-net, and justify our occasional lack of rigor when addinga few points to S or not diferentiating between k and k + 1. 2Clearly, there is a lot of 
exibility in applying Lemma 8.1, e.g. for \com-bining" more than two sets. For example, by iteration one gets (for the sakeof brevity, we state this and the next result just in the symmetric case)Corollary 8.4 Let K1;K2; : : : ;Ks � IRn be symmetric convex sets verifyingthe assumptions from Proposition 8.2. ThenM�((K1+K2+ : : :+Ks)\D) �M�(K1 \D) + : : :+M�(Ks \D) +Csskn:For completeness, we also state a variant of Proposition 8.2 for convexhulls (rather than Minkowski sums), which we do not need for the directpurposes of this paper. Its appeal lies in the fact that the multiplicativeconstant on the right hand side is 1, a feature that is important in somecontexts.Proposition 8.5 Let K1;K2 � IRn be symmetric convex sets such thatlogN(Kj ;D) � k for j = 1; 2. ThenM�(conv (K1[K2)\D) � maxfM�(K1\D);M�(K2\D)g+Cskn+Cslog nn :29



Proof. Set M = maxfM�(K1 \ D);M�(K2 \ D)g. Arguing as in the proofof Proposition 8.2, we getconv (K1 [K2) = [i;j;t2[0;1](1� t)((xi +D) \K1) + t((yj +D) \K2)= [i;j;t2[0;1](1 � t)xi + tyj + ((1� t)((K1 � xi) \D) + t((K2 � yj) \D))Similarly as in Proposition 8.2, to analyze conv (K1 [ K2) \D it is enoughto consider only the subsegments of the segments (1 � t)xi + tyj that lie in2D. Given " > 0, let S 0 be an "-net for the union of such subsegments withjS 0j � (1 + 4=")22k. Applying Lemma 8.1 givesM�(conv (K1 [K2) \D) �M + "+ C0s log (1 + 4=") + 2kn :Optimizing over " > 0 we get the assertion. 29 Further estimates for M�(K \D)Similarly as in section 6, the setup is as in Conjecture 2.4, i.e.K = convS, k = maxflog jSj; logN(K;D)g (22)(we did supress above the dimension n of the ambient space as it may varyfrom point to point; cf. Remark 5.2). We recall that the objective is to showthatM�(K\D) is \small" if n=k is \large". Thus far we did prove (in section6, Proposition 6.2) that this holds provided K � RD with R� nk , while (insection 7, Proposition 7.2) it is shown that one may assume, without loss ofgenerality, that R � Cr klog nk , where C is a numerical constant. Admittedly,the gap between the two estimates is signi�cant. Still, they do allow todeduce our \objective" if k � n2=3(logn)1=3 . In this section we shall narrow thegap substantially by provingProposition 9.1 There exists a constant c > 0 such that whenever S;K �IRn and k verify (22) and K � RD, with R � exp (c(nk )1=6), then 12D 6� K.30



Corollary 9.2 If n; S;K and k are as in Proposition 9.1 and, for someR � 1, K � RD, thenM�(K \D) � C(1 + logR)3skn;where C is a universal constant.Proof. More generally, any condition of the type R �  (qnk ) (for  : IR+ !IR+,  %+1) in the theorem translates into an estimate M�(K \ D) �C1 �1(R)q kn (here of course  (x) = exp (cx1=3)). This follows from the sec-ond statement of Proposition 5.1 (with 
 = 12): the condition R �  (qnk )(which assures 12D 6� K) translates into k � ( �1(R))�2n and so the hy-pothesis of that statement is satis�ed with � = ( �1(R))�2, which yieldsw � C1 �1(R) in (9), as required. 2The next two corollaries summarize the progress obtained in this notetowards the Geometric Lemma and the Duality Conjecture, and so we statethem as theorems.Theorem 9.3 There exists a constant C > 0 such that if S;K � IRn andk are as in (22), then M�(K \D) � C(1 + log k)3qkn . In particular, thereexists a constant c > 0 such that if k � c(1+log n)�6n, then M�(K \D) < 12(and, consequently, 12D 6� K).Proof. Consider �rst the case when K is symmetric. Let w = w(k) bethe smallest constant such that the inequality M�(K \D) � wq kn hold forall n � k and for all S;K verifying the hypothesis (22) with K symmetric.ConsiderK, for whichM�(K\D) = wq kn (by compactness, the supremum ofM�(K\D)=q kn is achieved; one could of course devise an argument not usingthat fact). By the last part of Proposition 7.4, this yields a setK1 � IRn1 withn1 ' w2k, verifying (22) for the same value of k, and such that 12Dn1 � K1.After further halving the dimension (via Proposition 7.1) we may additionallyattain R � 2pn1 ' wpk. Corollary 9.2 yields then12 � C(1 + log (wpk))3s kn1 ' (1 + log (wk))3 1w;31



hence w <� (1 + log (wk))3, which is only possible if w <� (1 + log k)3, asrequired. The not-necessarily-symmetric case follows formally, see the com-ments preceding Fact 3.1. 2Finally, let us restate Theorem 9.3 in terms of covering numbers andentropy numbers (the restating requires only the de�nitions and a directapplication of Proposition 4.1).Theorem 9.4 There exist numerical constants a;C > 0 such that, for all n,all convex sets K � IRn and all k,logN(K;D) � k ) logN(D;CwK�) � ak:where w = (1 + log k)3. Similarly, for a compact operator u, whose range isa Hilbert space, eak(u�) � Cwek(u);with the same w. Moreover, the second statement (and the �rst in the sym-metric case) holds for any given a > 1, with the price being paid then in themagnitude of C = C(a).This could be compared with the \best to date" duality results for generaloperators of rank � n (see Corollary 2.4 of [21]), where an analogous estimatewith w = (1 + (nk )2)(log (2 + nk ))2 is obtained (our estimate is superior fork � n(log n)�3=2 log log n).Proof of Proposition 9.1. Let n; k 2 IN , R 2 [1;1) and assume that K =convS � IRn is such that maxflog jSj; logN(K;D)g � k and 12D � K �RD. Since the symmetric set (K �K)=2 veri�es the same hypotheses withk replaced by 2k, we may and shall assume that K and S were symmetricto begin with, and that S 3 0 (cf. Remark 8.3 and the comments in theparagraph preceding Fact 3.1). By Proposition 7.4, at the price of halvingthe dimension we may further assume thatM�(K) � C 0(1 + logR): (23)To take advantage of various estimates we obtained for M�(� \ D) we will,roughly speaking, decompose the set K into a Minkowski sum of \moreeasily manageable" sets. Let us �rst demonstrate a single step of such a32



decomposition. Let t 2 [1; R); by Fact 3.4 (Sudakov's inequality) combinedwith (23) we have k1 := logN(K; tD) <� (1 + logRt )2n: (24)Consider the corresponding t-net of K, i.e. the set N1 verifyingS1 + tD � K; log jN1j � k1:Assign to each s 2 S an s0 2 N1 such that s 2 s0 + tD and let S2 consist ofall the di�erences s� s0, then log jS2j � k. (K and S being symmetric withS 3 0, we may arrange that the same is true for N1 and S2; these conditionsare not indispensable for the argument, but they do clarify the picture.) SetK1 = convN1 and K2 = convS2, thenK � K1 +K2 (25)and K2 � tD: (26)Now, by (25), Proposition 8.2 and the estimates for cardinalities of N1 andS2, 12 �M�(K \D) �M�(K1 \D) +M�(K2 \D) + C1skn:The �rst term on the right can be now e�ciently handled via Proposition6.2 (k1 being rather small if t is \large"), while the second term is moresusceptible to majorizing even via Proposition 6.1, the radius of K2 being,by (26), signi�cantly smaller than that of K if t is not \too large". To beabsolutely precise, in the process we lost control of N(K;D); we only knowthat logN(K; 2D) � k (which follows trivially from K2 � K � K = 2K).This is readily remedied by considering instead the chain of inequalities14 �M� �12K \D� �M� �12K1 \D�+M� �12K2 \D� + C1skn : (27)Now, by Proposition 6.2 and (24),M� �12K1 \D� <� 0@R2sknsk1n 1A1=2 <� 0@Rskn 1 + logRt 1A1=233



and similarly (as logN(12K2;D) � k)M�(12K2 \D) <� 0@tsknskn1A1=2 :Combining these with (27) and optimizing over t 2 [1; R) we obtain14 <� (R(1 + logR)(kn )3=2)1=4:This inequality (obtained assuming that 12D � K � RD) is impossible ifk � c1n=(R(1 + logR))2=3 for su�ciently small c1 > 0, leading (cf. the proofof Corollary 9.2) to the estimateM�(K \D) <� (R(1 + logR))1=3skn;which already is an improvement over Proposition 6.2 and (cf. the remarksat the beginning of this section) allows to deduce that M�(K \D) is \small"provided R� (nk )3=2= log nk or if k � n3=4(logn)1=4 .To obtain a better estimate, we { roughly speaking { \decompose" Kinto a Minkowski sum of logR sets. Let us return to the setup described in(23) and the paragraph preceding it. To simplify the notation assume thatR = 2m for some m 2 IN . For j = 1; 2; : : : ;m set Rj = 2m�j and let Nj bean Rj-net of K; by (23) and Fact 3.4 one may assume thatlog jNjj � C2  1 + logRRj !2 n:This estimate is clearly not optimal for the last few j's, we improve it bysetting Nj = S when the right hand side exceeds k. In particular we getNm = S andlogN(K;RjD) � kj := log jNjj � min8<:C2  1 + logRRj !2 n ; k9=; : (28)34



As in the \two term decomposition", we set S1 = N1, while for j > 1 weassign to each s 2 Nj an s0 2 Nj�1 such that s 2 s0 + Rj�1D and let Sjconsist of all the di�erences s� s0; thenlog jSjj � kj: (29)(For a more transparent argument, we may again arrange that all Sj's aresymmetric and contain 0, and that Nj � Nj+1.) Set Kj = convSj, thenK2 � K12 + K22 + : : :+ Km2 (30)and Kj2 � 12Rj�1D = RjD; logN(Kj2 ;D) � k: (31)Similarly as before, by (30), Proposition 8.4 and (28),14 � mXj=1M� �Kj2 \D�+ C3mskn:On the other hand, by Proposition 6.2, (29), (31) and (28),M� �Kj2 \D� <� 0@Rjsknskjn 1A1=2<� 0@Rjskn 1 + logRRj 1A1=2 = 0@skn(1 + logR)1A1=2 (32)for j = 1; 2; : : : ;m. Combining the last two inequalities gives14 <� mskn +m0@skn(1 + logR)1A1=2 <� (logR)3=2  kn!1=4 ; (33)which is impossible if kn < c2(logR)�6 (for a properly chosen c2 > 0) or,equivalently, R < exp (c(nk )1=6) with c = c2= log e, as required. This com-pletes the proof of Proposition 9.1. 235



Remark 9.5. A signi�cant step in the proof of Proposition 9.1 involvedreducing the argument { via Proposition 7.4 { to the case when M�(K) is\controlled". We wish to point out that even if M�(K) is bounded by auniversal constant, our argument doesn't give estimates substantially betterthan those contained in Proposition 9.1 (and Corollaries 9.2, 9.3) for thegeneral case. The only improvement is that the exponents 1=6; 3 and �6 inthe respective statements are then replaced by 1=4; 2 and �4. 2Remark 9.6. Another reason for the logarithmic factor in, say, Corollary9.2, is that we use a Sudakov type inequality (Fact 3.4) to estimate the car-dinality of nets of K for di�erent \degrees of resolution" and then put theseestimates together to majorizeM�(K \D). This has an inherent error as itdoesn't capture the possible di�erence between the "Dudley majoration" andthe \Sudakov minoration" (cf. [10], (12.2) and (12.3)) for the expectationof a supremum of a Gaussian process. The \obvious" way to (attempt to)remedy this problem would be to try to use the majorizing measures ([26]) asthe basis for calculation. However, even if we were successful in implement-ing this program, it appears that we couldn't remove all logarithmic factors:the quantities kj in (32) appear with the exponent 1=4 as opposed to 1=2 inthe standard \entropy integral" and so the most improvement we could hopefor would be replacing m by m1=2 in the term C9m(q kn(1+logR))1=2 in (33),resulting in the same \gain" in the exponents as in the previous Remark.Moreover, even if we were able to simultaneously \force" the boundednessof M�(K), avoid the \Sudakov-Dudley discrepancy" and somehow handlebetter the term C3mq kn in (33) (coming from Proposition 8.4), we wouldstill be left with a m1=2 ' (logR)1=2 factor at the right end of (33), leadingto exponents 1=2; 1 and �2 in Proposition 9.1 and Corollaries 9.2, 9.3. 2Remark 9.7. The procedure of decomposing the set K into a Minkowskisum of \manageable" sets is actually somewhat noncanonical. Let us explainthat point in the simpler case of \splitting" into a sum of just two terms (bydemonstrating which we started our proof of Proposition 9.1). What happensis that the construction of the set K2 is based on a kind of \ retraction" ofS to S2 given by the correspondence s ! s � s0, which a priori can be arather irregular map. The following approach is more natural. For a closed36



convex body B � IRn let RB be the metric projection of IRn onto B (i.e.,the \nearest point" map); then RB and QB := I � RB are contractions(all operations being considered with respect to the Euclidean metric). Nowrede�ne S2 as QK1(S). The prior argument carries over to this setting, in factwe do even have N(S2;D) � jSj � 2k, S2 being a contraction of S. However,later in the process we use Proposition 6.2 to estimate M�(K2 \D) and forthat we need to control N(K2;D), which is not easily attainable : the mapsQB being nonlinear, there is no reason why the set QK1(K) = QK1(convS)would contain K2 := convS2 = convQK1(S). Accordingly, this modi�cationof the argument does not improve the estimates obtained in any substantialway. 2References[1] W. Banaszczyk, A. Litvak, A. Pajor and S. J. Szarek, The 
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