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EUCLIDEAN STRUCTURE IN FINITE DIMENSIONALNORMED SPACESA.A. Giannopoulos and V.D. Milman11. IntroductionIn this article we discuss results which stand between Geometry, Convex Geom-etry, and Functional Analysis. We consider the family of n-dimensional normedspaces and study the asymptotic behavior of their parameters as the dimensionn grows to in�nity. Analogously, we study asymptotic phenomena for convexbodies in high dimensional spaces.The theory grew out of Functional Analysis. It was realized in the 60's that,in order to approach several unsolved problems of Geometric Functional Anal-ysis, it was necessary to study the quantitative theory of n-dimensional spaceswith n tending to in�nity. This study led to a new and deep theory with manysurprising consequences in both Analysis and Geometry. When viewed as part ofFunctional Analysis, this theory is often called the Local Theory (or the Asymp-totic Theory of Finite Dimensional Normed Spaces). However, it adopted asigni�cant part of the Classical Convexity Theory and used many of its methodsand techniques. Classical geometric inequalities such as the Brunn-Minkowskiinequality, isoperimetric inequalities and many others were extensively used andestablished themselves as main technical tools in the development of the LocalTheory. Conversely, the study of geometric problems from a Functional Analysispoint of view enriched Classical Convexity with a new approach and a varietyof problems: The \isometric" problems which were typical in Convex Geometrywere substituted by \isomorphic" ones, with the emphasis on the role of the di-mension. This natural melting of two theories should be perhaps correctly calledConvex Geometric Analysis.The paper represents only some aspects of this Asymptotic Theory. We leaveaside type-cotype theory and other connections with probability theory, factor-ization results, covering and entropy (besides a few results we are going to use),connections with in�nite dimension theory, random normed spaces, and so on.Other articles in this collection will cover these topics and complement theseomissions. On the other hand, we feel it is necessary to give some backgroundon Convex Geometry: This is done in Sections 2 and 3.The theory as we build it below \rotates" around di�erent Euclidean structuresassociated with a given norm or convex body. This is in fact a reection ofdi�erent traces of hidden symmetries every high dimensional body possesses. To1The authors acknowledge the hospitality of the Erwin Schroedinger InternationalInstitute for Mathematical Physics in Vienna, where this work has been completed.1



recover these symmetries is one of the goals of the theory. A new point whichappears in this article is that all these Euclidean structures that are in use in theLocal Theory have precise geometric descriptions in terms of Classical ConvexityTheory: they may be viewed as \isotropic" ones.The traditional Local Theory concentrates its attention on the study of thestructure of the subspaces and quotient spaces of the original space (the \lo-cal structure" of the space). The connection with Classical Convexity is goingthrough the translation of these results to a \global" language, that is, to equiv-alent statements pertaining to the structure of the whole body or space. Such acomparison of \local" and \global" results is very useful, opens a new dimensionin our study and will lead our presentation throughout the paper.We refer the reader to the books of Schneider [Sc1] and of Burago and Zalgaller[BZ] for the Classical Convexity Theory. Books mainly devoted to the LocalTheory are the ones by: Milman and Schechtman [MS1], Pisier [Pi5], Tomczak-Jaegermann [TJ5].2. Classical inequalities and isotropic positions2.1. Notation2.1.1. We study �nite-dimensional real normed spaces X = (Rn; k � k). Theunit ball KX of such a space is an origin-symmetric convex body in Rn whichwe agree to call a body. There is a one to one correspondence between normsand bodies in Rn: If K is a body, then kxk = minf� > 0 : x 2 �Kg is a normde�ning a space XK with K as its unit ball. In this way bodies arise naturallyin functional analysis and will be our main object of study.If K and T are bodies in Rn we can de�ne a multiplicative distance d(K;T )by d(K;T ) = inffab : a; b > 0;K � bT; T � aKg:The natural distance between the n-dimensional spaces XK and XT is theBanach-Mazur distance. Since we want to identify isometric spaces, we allow alinear transformation and setd(XK ; XT ) = inffd(K;uT ) : u 2 GLng:In other words, d(XK ; XT ) is the smallest positive number d for which we can�nd u 2 GLn such that K � uT � dK. We clearly have d(XK ; XT ) � 1with equality if and only if XK and XT are isometric. Note the multiplicativetriangle inequality d(X;Z) � d(X;Y )d(Y; Z) which holds true for every triple ofn-dimensional spaces.2.1.2. We assume that Rn is equipped with a Euclidean structure h�; �i anddenote the corresponding Euclidean norm by j � j. Dn will be the Euclidean unitball and Sn�1 will be the unit sphere. We also write j � j for the volume (Lebesgue2



measure) in Rn, and � for the Haar probability measure on the orthogonal groupO(n).Let Gn;k denote the Grassmannian of all k-dimensional subspaces ofRn. Then,O(n) equips Gn;k with a Haar probability measure �n;k satisfying�n;k(A) = �fu 2 O(n) : uEk 2 Agfor every Borel subset A of Gn;k and every �xed element Ek of Gn;k. The rota-tionally invariant probability measure on Sn�1 will be denoted by �.2.1.3. Duality plays an important role in the theory. If K is a body in Rn,its polar body is de�ned byK� = fy 2 Rn : jhx; yij � 1 for all x 2 Kg:That is, kykK� = maxx2K jhx; yij. Note that XK� = X�K : K� is the unit ball ofthe dual space of X. It is easy to check that d(X;Y ) = d(X�; Y �).2.2. Classical Inequalities(a) The Brunn-Minkowski inequality. Let K and T be two convex bodiesin Rn. If K + T denotes the Minkowski sum fx+ y : x 2 K; y 2 Tg of K and T ,the Brunn-Minkowski inequality states that(1) jK + T j1=n � jKj1=n + jT j1=n;with equality if and only if K and T are homothetical. Actually, the sameinequality holds for arbitrary non empty compact subsets of Rn.One can rewrite (1) in the following form: For every � 2 (0; 1),(2) j�K + (1� �)T j1=n � �jKj1=n + (1� �)jT j1=n:Then, the arithmetic-geometric means inequality gives a dimension free version:(3) j�K + (1 � �)T j � jKj�jT j1��:There are several proofs of the Brunn-Minkowski inequality, all of them relatedto important ideas. We shall sketch only two lines of proof.The �rst (historically as well) proof is based on the Brunn concavity principle:Let K be a convex body in Rn and F be a k-dimensional subspace. Then, thefunction f : F? 7! R de�ned by f(x) = jK\(F+x)j1=k is concave on its support.The proof is by symmetrization. Recall that the Steiner symmetrization of Kin the direction of � 2 Sn�1 is the convex body S�(K) consisting of all pointsof the form x+ ��, where x is in the projection P�(K) of K onto �? and j�j �12 � length(x + R�) \ K. Steiner symmetrization preserves convexity: in fact,this is the Brunn concavity principle for k = 1. The proof is elementary and3



essentially two dimensional. A well known fact which goes back to Steiner andSchwarz but was later rigorously proved in [CaS] (see [BZ]) is that for everyconvex body K one can �nd a sequence of successive Steiner symmetrizations indirections � 2 F so that the resulting convex body K has the following property:K \ (F + x) is a ball with radius r(x), and jK \ (F + x)j = jK \ (F + x)j forevery x 2 F?. Convexity of K implies that r is concave on its support, and thisshows that f is also concave. 2The Brunn concavity principle implies the Brunn-Minkowski inequality. IfK;T are convex bodies in Rn, we de�ne K1 = K � f0g, T1 = T � f1g in Rn+1and consider their convex hull L. If L(t) = fx 2 Rn : (x; t) 2 Lg, t 2 R, we easilycheck that L(0) = K;L(1) = T , and L(1=2) = K+T2 . Then, the Brunn concavityprinciple for F = Rn shows that(4) ���K + T2 ���1=n � 12 jKj1=n + 12 jT j1=n: 2A second proof of the Brunn-Minkowski inequality may be given via the Kn�othemap: Assume that K and T are open convex bodies. Then, there exists a one toone and onto map � : K ! T with the following properties:(i) � is triangular: the i-th coordinate function of � depends only on x1; : : : ; xi.That is,(5) �(x1; : : : ; xn) = (�1(x1); �2(x1; x2); : : : ; �n(x1; : : : ; xn)):(ii) The partial derivatives @�i@xi are nonnegative on K, and the determinant ofthe Jacobian of � is constant. More precisely, for every x 2 K(6) (detJ�)(x) = nYi=1 @�i@xi (x) = jT jjKj :The map � is called the Kn�othe map fromK onto T . Its existence was establishedin [Kn] (see also [MS1], Appendix 1). Observe that each choice of coordinatesystem in Rn produces a di�erent Kn�othe map from K onto T .It is clear that (I + �)(K) � K + T , therefore we can estimate jK + T j usingthe arithmetic-geometric means inequality as follows:(7) jK + T j � Z(I+�)(K) dx = ZK jdetJI+�(x)jdx = ZK nYi=1�1 + @�i@xi� dx� ZK(1 + detJ1=n� )ndx = jKj�1 + jT j1=njKj1=n�n = �jKj1=n+ jT j1=n�n :This proves the Brunn-Minkowski inequality. 2Alternatively, instead of the Kn�othe map one may use the Brenier map  :K ! T , where K and T are open convex bodies. This is also a one to one, onto4



and \ratio of volumes" preserving map (i.e. its Jacobian has constant determi-nant), with the following property: There is a convex function f 2 C2(K) de�nedon K such that  = rf . A remarkable property of the Brenier map is that it isuniquely determined. Existence and uniqueness of the Brenier map were provedin [Br] (see also [McC] for a di�erent proof and important generalizations).It is clear that the Jacobian J = Hessf is a symmetric positive de�nite matrix.Again we have (I +  )(K) � K + T , hence(8)jK + T j � ZK jdetJI+ (x)jdx = ZK det (I +Hessf) dx = ZK nYi=1(1 + �i(x))dx;where �i(x) are the non negative eigenvalues of Hessf . Moreover, by the ratioof volumes preserving property of  , we have Qni=1 �i(x) = jT j=jKj for everyx 2 K. Therefore, the arithmetic-geometric means inequality gives(9) jK + T j � ZK  1 + [ nYi=1�i(x)]1=n!n dx = �jKj1=n + jT j1=n�n : 2This proof has the advantage of providing a description for the equality cases:either K or T must be a point, or K must be homothetical to T .Let us describe here the generalization of Brenier's work due to McCann: Let�; � be probability measures on Rn such that � is absolutely continuous withrespect to the Lebesgue measure. Then, there exists a convex function f suchthat rf : Rn! Rn is de�ned �-almost everywhere, and �(A) = �((rf)�1(A)))for every Borel subset A of Rn (rf pushes forward � to �). If both �; � areabsolutely continuous with respect to the Lebesgue measure, then the Breniermap rf has an inverse (rf)�1 which is de�ned �-almost everywhere and is alsoa Brenier map, pushing forward � to �. A regularity result of Ca�arelli [Ca] (see[ADM]) states that if T is a convex bounded open set, f is a probability densityon Rn, and g is a probability density on T such that(i) f is locally bounded and bounded away from zero on compact sets, and(ii) there exist c1; c2 > 0 such that c1 � g(y) � c2 for every y 2 T ,then, the Brenier map rf : (Rn; fdx) ! (Rn; gdx) is continuous and belongslocally to the H�older class C� for some � > 0. The following recent result [ADM]makes use of all this information:Fact 1: Let K1 and K2 be open convex bounded subsets of Rn with jK1j = jK2j =1. There exists a C1-di�eomorphism  : K1 ! K2 which is volume preservingand satis�es(10) K1 + �K2 = fx+ � (x) : x 2 K1g ; � > 0:Proof: Let � be any smooth strictly positive density on Rn. Consider the Breniermaps(11)  i = rfi : (Rn; �dx)! (Ki; dx) ; i = 1; 2:5



Ca�arelli's result shows that they are C1-smooth. We now apply the followingtheorem of Gromov [Gr] (for a proof, see also [ADM]):Fact 2: (i) Let f : Rn! R be a C2-smooth convex function with strictly positiveHessian. Then, the image of the gradient map Imrf is an open convex set.(ii) If f1; f2 are two such functions, thenIm(rf1 +rf2) = Im(rf1) + Im(rf2): 2It follows that, for every � > 0,(12) K1 + �K2 = frf1(x) + �rf2(x) : x 2 Rng:Then, one can check that the map  =  2 � ( 1)�1 : K1 ! K2 satis�es all theconditions of Fact 1. 2The existence of a volume preserving  : K1 ! K2 such that (I +  )(K1) =K1 + K2 covers a \weak point" of the Kn�othe map and should have importantapplications to Convex Geometry. We discuss some of them in Section 2.5.(b) Consequences of the Brunn-Minkowski inequality.(b1) The isoperimetric inequality for convex bodies. The surface area @(K) of aconvex body K is de�ned by(13) @(K) = lim"!0+ jK + "Dnj � jKj" :It is a well-known fact that among all convex bodies of a given volume the ball hasminimal surface area. This is an immediate consequence of the Brunn-Minkowskiinequality: If K is a convex body in Rn with jKj = jrDnj, then for every " > 0(14) jK + "Dnj1=n � jKj1=n + "jDnj1=n = (r + ")jDnj1=n:It follows that the surface area @(K) of K satis�es(15)@(K) = lim"!0+ jK + "Dnj � jKj" � lim"!0+ (r + ")n � rn" jDnj = njDnj 1n jKjn�1nwith equality if K = rDn. The question of uniqueness in the equality case ismore delicate.(b2) The spherical isoperimetric inequality. Consider the unit sphere Sn�1 withthe geodesic distance � and the rotationally invariant probability measure �. Forevery Borel subset A of Sn�1 and for every " > 0, we de�ne the "-extension ofA:(16) A" = fx 2 Sn�1 : �(x;A) � "g:6



Then, the isoperimetric inequality for the sphere is the following statement:Among all Borel subsets A of Sn�1 with given measure � 2 (0; 1), a sphericalcap B(x; r) of radius r > 0 such that �(B(x; r)) = � has minimal "-extension forevery " > 0.This means that if A � Sn�1 and �(A) = �(B(x0; r)) for some x0 2 Sn�1 andr > 0, then(17) �(A") � �(B(x0; r)")for every " > 0. Since the �-measure of a cap is easily computable, one can givea lower bound for the measure of the "-extension of any subset of the sphere. Weare mainly interested in the case �(A) = 12 , and a straightforward computation(see [MS1]) shows the following:Theorem 2.2.1. If A is a Borel subset of Sn+1 and �(A) = 1=2, then(18) �(A") � 1�p�=8 exp(�"2n=2)for every " > 0. 2[The constant p�=8 may be replaced by a sequence of constants an tendingto 12 as n!1.]The spherical isoperimetric inequality can be proved by spherical symmetriza-tion techniques (see [Schm] or [FLM]). However, it was recently observed [ABV]that one can give a very simple proof of an estimate analogous to (18) using theBrunn-Minkowski inequality. The key point is the following lemma:Lemma. Consider the probability measure �(A) = jAj=jDnj on the Euclideanunit ball Dn. If A;B are subsets of Dn with �(A) � �, �(B) � �, and if�(A;B) = inffja� bj : a 2 A; b 2 Bg = � > 0, then� � exp(��2n=8):[In other words, if two disjoint subsets of Dn have positive distance �, then atleast one of them must have small volume (depending on �) when the dimensionn is high.]Proof: We may assume that A and B are closed. By the Brunn-Minkowskiinequality, �(A+B2 ) � �. On the other hand, the parallelogram law shows that ifa 2 A; b 2 B then ja+ bj2 = 2jaj2 + 2jbj2 � ja� bj2 � 4� �2:It follows that A+B2 � (1� �24 )1=2Dn, hence��A +B2 � � �1� �24 �n=2 � exp(��2n=8): 27



Proof of Theorem 2.2.1 (with weaker constants). Assume that A � Sn�1 with�(A) = 1=2. Let " > 0 and de�ne B = (A")c � Sn�1. We �x � 2 (0; 1) andconsider the subsets A = [ftA : � � t � 1g and B = [ftB : � � t � 1g ofDn. These are disjoint with distance ' �". The Lemma shows that �(B) �exp(�c�2"2n=8), and since �(B) = (1� �n)�(B) we obtain(19) �(A") � 1� 11� �n exp(�c�2"2n=8):We conclude the proof by choosing suitable � 2 (0; 1). 2(b3) C. Borell's Lemma and Khinchine type inequalities. Let � be a Borel prob-ability measure on Rn. We say that � is log-concave if whenever A;B are Borelsubsets of Rn and � 2 (0; 1) we have(20) �(�A + (1� �)B) � �(A)��(B)1��:The following lemma of C. Borell [Bor] holds for all log-concave probability mea-sures:Lemma. Let � be a log-concave Borel probability measure on Rn, and A be asymmetric convex subset of Rn. If �(A) = � > 1=2, then for every t � 1 we have(21) � ((tA)c) � ��1� �� � t+12 :Proof: Immediate by the log-concavity of �, after one observes that(22) RnnA � 2t+ 1(RnntA) + t� 1t+ 1A: 2Let K be a convex body in Rn. By the Brunn-Minkowski inequality we seethat the measure �K de�ned by �K(A) = jA\Kj=jKj is a log-concave probabilitymeasure. In this context, Borell's lemma tells us that if A is convex symmetricand if A \K contains more than half of the volume of K, then the proportionof K which stays outside tA decreases exponentially in t as t ! +1 in a rateindependent of the convex body K and the dimension n.This observation has important applications to the study of linear functionsf(x) = hx; yi, y 2 Rn, de�ned on convex bodies. Let us denote by kfkp the Lpnorm with respect to the probability measure �K . Then, for every linear functionf : K ! Rwe have(23) kfkq � kfkp � cpkfkq ; 0 < q < pwhere cp are universal constants depending only on p. The left hand side inequal-ity is just H�older's inequality, while the right hand side (in the case 1 � q < p)is a consequence of Borell's lemma (see [GrM1]). One writes(24) 1jKj ZK jf(x)jpdx = Z +10 ptp�1�K (fx 2 K : jf(x)j � tg) dt8



and estimates �K(fx 2 K : jf(x)j � tg) for large values of t using Borell's lemmawith say A = fx 2 Rn : jf(x)j � 3kfkqg. The dependence of cp on p is linear asp!1. This is equivalent to the fact that the L 1 (K) norm of f(25) kfkL 1 (K) = infn� > 0 : 1jKj ZK exp(jf(x)j=�) � 2ois equivalent to kfk1. The question to determine the cases where c(p) ' pp asp ! 1 in (23) is very important for the theory. This is certainly true for somebodies (e.g. the cube), but the example of the cross-polytope shows that it is notalways so.Inverse H�older inequalities of this type are very similar in nature to the classicalKhinchine inequality (and are sometimes called Khinchine type inequalities). Infact, the argument described above may be used to give proofs of the Kahane-Khinchine inequality (see [MS1], Appendix III).Khinchine type inequalities do not hold only for linear functions. For example,Bourgain [Bou3] has shown that if f : K ! R is a polynomial of degree m, then(26) kfkp � c(p;m)kfk2for every p > 2, where c(p;m) depends only on p and the degree m of f (For thispurpose, the Brunn-Minkowski inequality was not enough, and a suitable directuse of the Kn�othe map was necessary). It was also recently proved [La] that (23)holds true for any norm f on Rn. Finally the interval of values of p and q in (23)can be extended to (�1;+1) (see [MP1] for linear functions, [Gu2] for norms).2.3. Extremal problems and isotropic positionsIn the study of �nite dimensional normed spaces one often faces the problemof choosing a suitable Euclidean structure related to the question in hand. In thegeometric language, we are given the symmetric convex body K in Rn and wantto �nd a speci�c Euclidean norm in Rn which is naturally connected with ourquestion about K. An equivalent (and sometimes more convenient) approach isthe following: we �x the Euclidean structure in Rn, and given K we ask for asuitable \position" uK of K, where u is a linear isomorphism of Rn. That is,instead of keeping the body �xed and choosing the \right ellipsoid" we �x theEuclidean norm and choose the \right position" of the body.Most of the times the starting point is a question of the following type: we aregiven a functional f on convex bodies and a convex body K and we ask for themaximum or minimum of f(uK) over all volume preserving transformations u.We shall describe some very important positions of K which solve such extremalproblems. What is interesting is that there is a simple variational method whichleads to a description of the solution, and that in most cases the resulting posi-tion of K is isotropic. Moreover, isotropic conditions are closely related to theBrascamp-Lieb inequality [BrL] and its reverse [Bar], a fact that was discovered9



and used by K. Ball in the case of John's representation of the identity. Formore information on this very important connection, see the article [Ba5] in thiscollection.(a) John's position. A classical result of F. John [Jo] states that d(X; `n2 ) � pnfor every n-dimensional normed space X. This estimate is a by-product of thestudy of the following extremal problem:Let K be a body in Rn. Maximize jdetuj over all u : `n2 ! XK with kuk = 1.If u0 is a solution of this problem, then u0Dn is the ellipsoid of maximal volumewhich is inscribed in K. Existence and uniqueness of such an ellipsoid are easyto check. An equivalent formulation of the problem is the following:Let K be a body in Rn. Minimize ku : `n2 ! XKk over all volume preservingtransformations u.We assume that the identity map I is a solution of this problem, and normalizeso that(1) kI : `n2 ! XKk = 1 = minfku : `n2 ! XKk : jdetuj = 1g:This means that the Euclidean unit ballDn is the maximal volume ellipsoid ofK.We shall use a simple variational argument [GMi5] to give necessary conditionson K:Theorem 2.3.1. Let Dn be the maximal volume ellipsoid of K. Then, for everyT 2 L(Rn;Rn) we can �nd a contact point x of K and Dn such that(2) hx; Txi � trTn :Proof: We may assume that K is smooth enough. Let S 2 L(Rn;Rn). We �rstclaim that(3) kSxk � trSnfor some contact point x of K and Dn. Let " > 0 be small enough. From (1) wehave(4) kI + "Sk � [det(I + "S)]1=n = 1 + " trSn +O("2):Let x" 2 Sn�1 be such that kx" + Sx"k = kI + "Sk. Since Dn � K, we havekx"k � 1. Then, the triangle inequality for k � k shows that(5) kSx"k � trSn +O("):10



We can �nd x 2 Sn�1 and a sequence "m ! 0 such that x"m ! x. By (5) weobviously have kSxk � trSn . Also, kxk = limkx"m + "mSx"mk = kIk = 1. Thisproves (3).Now, let T 2 L(Rn;Rn) and write S = I + "T , " > 0. We can �nd x" suchthat kx"k = jx"j = 1 and(6) kx" + "Tx"k � tr(I + "T )n = 1 + " trTn :Since kx" + "Tx"k = 1 + "hrkx"k; Tx"i + O("2), we obtain hrkx"k; Tx"i �trTn + O("). Choosing again "m ! 0 such that x"m ! x 2 Sn�1, we readily seethat x is a contact point of K and Dn, and(7) hrkxk; Txi � trTn :But, rkxk is the point on the boundary of K� at which the outer unit normalis parallel to x (see [Sc1], pp. 44). Since x is a contact point of K and Dn, wemust have rkxk = x. This proves the theorem. 2As a consequence of Theorem 2.3.1 we get John's upper bound for d(X; `n2 ):Theorem 2.3.2. Let X be an n-dimensional normed space. Then,d(X; `n2 ) � pn:Proof: By the de�nition of the Banach-Mazur distance we may clearly assumethat the unit ball K of X satis�es the assumptions of Theorem 2.3.1. In partic-ular, kxk � jxj for every x 2 Rn.Let x 2 Rn and consider the map Ty = hy; xix. Theorem 2.3.1 gives us acontact point z of K and Dn such that(8) hz; T zi � trTn = jxj2n :On the other hand,(9) hz; T zi = hz; xi2 � kzk2�kxk2 = kxk2:Therefore, kxk � jxj � pnkxk. This shows that Dn � K � pnDn. 2Remark. The estimate given by John's theorem is sharp. If X = `n1 or `n1, onecan check that d(X; `n2 ) = pn.Theorem 2.3.1 gives very precise information on the distribution of contactpoints of K and Dn on the sphere Sn�1, which can be put in a quantitativeform: 11



Theorem 2.3.3. (Dvoretzky-Rogers Lemma). Let Dn be the maximal volumeellipsoid of K. Then, there exist pairwise orthogonal vectors y1; : : : ; yn in Rnsuch that(10) �n� i+ 1n �1=2 � kyik � jyij = 1 ; i = 1; : : : ; n:Proof: We de�ne the yi's inductively. The �rst vector y1 can be any contactpoint of K and Dn. Assume that y1; : : : ; yi�1 have been de�ned. Let Fi =spanfy1; : : : ; yi�1g. Then, tr(PF?i ) = n� i + 1 and using Theorem 2.3.1 we can�nd a contact point xi for which(11) jPF?i xij2 = hxi; PF?i xii � n� i + 1n :It follows that kPFixik � jPFixij �q i�1n . We set yi = PF?i xi=jPF?i xij. Then,(12) 1 = jyij � kyik � hxi; yii = jPF?i xij � �n� i + 1n �1=2 : 2Finally, a separation argument and Theorem 2.3.1 give us John's representationof the identity:Theorem 2.3.4. Let Dn be the maximal volume ellipsoid of K. There existcontact points x1; : : : ; xm of K and Dn, and positive real numbers �1; : : : ; �msuch that I = mXi=1 �ixi 
 xi:Proof: Consider the convex hull C of all operators x 
 x, where x is a contactpoint of K and Dn. We need to prove that I=n 2 C. If this is not the case, thereexists T 2 L(Rn;Rn) such that(13) hT; In i > hx
 x; T ifor every contact point x. But, hT; In i = trTn and hx 
 x; T i = hx; Txi. Thiswould contradict Theorem 2.3.1. 2De�nition. A Borel measure � on Sn�1 is called isotropic if(14) ZSn�1 hx; �i2d�(x) = �(Sn�1)nfor every � 2 Sn�1. 12



John's representation of the identity implies thatmXi=1 �ihxi; �i2 = 1for every � 2 Sn�1. This means that if we consider the measure � on Sn�1which gives mass �i at the point xi, i = 1; : : : ;m, then � is isotropic. In thissense, John's position is an isotropic position. One can actually prove that theexistence of an isotropic measure supported by the contact points of K and Dncharacterizes John's position in the following sense:\Assume that Dn is contained in the body K. Then, Dn is the maximal volumeellipsoid of K if and only if there exists an isotropic measure � supported by thecontact points of K and Dn."Note. The argument given for the proof of Theorem 2.3.1 can be applied in amore general context: If K and L are (not necessarily symmetric) convex bodiesin Rn, we say that L is of maximal volume in K if L � K and, for every w 2 Rnand T 2 SLn, the a�ne imagew+T (L) of L is not contained in the interior ofK.Then, one has a description of this maximal volume position, which generalizesJohn's representation of the identity:Theorem 2.3.5. Let L be of maximal volume in K. For every z 2 int(L), wecan �nd contact points v1; : : : ; vm of K � z and L� z, contact points u1; : : : ; umof (K � z)� and (L � z)�, and positive reals �1; : : : ; �m, such that P�juj = o,huj ; vji = 1, and I = mXj=1�juj 
 vj: 2This was observed by Milman in the symmetric case with z = o (see [TJ5],Theorem 14.5). The extension to the non-symmetric case can be useful in distanceand volume ratio estimates (see [GPT]).(b) Isotropic position { Hyperplane conjecture. A notion coming from classicalmechanics is that of the Binet ellipsoid of a symmetric convex body K (actually,of any compact set with positive Lebesgue measure). The norm of this ellipsoidEB(K) is de�ned by(15) kxk2EB(K) = 1jKj ZK jhx; yij2dy:The Legendre ellipsoid EL(K) of K is de�ned by(16) ZEL(K)hx; yi2dy = ZKhx; yi2dy13



for every x 2 Rn, and satis�es (see [MP2])(17) EB(K) = (n + 2)1=2jEL(K)j�1(EL(K))�:That is, EL(K) has the same moments of inertia as K with respect to the axes.A symmetric convex body K is said to be in isotropic position if jKj = 1 and itsLegendre ellipsoid EL(K) (equivalently, its Binet ellipsoid EB(K)) is homothet-ical to Dn. This means that there exists a constant LK such that(18) ZKh�; yi2dy = L2Kfor every � 2 Sn�1 (K has the same moment of inertia in every direction �). It isnot hard to see that every body K has a position uK which is isotropic. More-over, this position is uniquely determined up to an orthogonal transformation.Therefore, LK is an a�ne invariant which is called the isotropic constant of K.An alternative way to see this isotropic position in the spirit of our presentdiscussion is to consider the following minimization problem:Let K be a body in Rn. Minimize RuK jxj2dx over all volume preserving trans-formations u.Then, we have the following theorem [MP2]:Theorem 2.3.6. Let K be a body in Rn with jKj = 1. The identity mapminimizes RuK jxj2dx over all volume preserving transformations u if and onlyif K is isotropic. Moreover, this isotropic position is unique up to orthogonaltransformations.Proof: We shall use the same variational argument as for John's position. LetT 2 L(Rn;Rn) and " > 0 be small enough. Then, u = (I + "T )=[det(I + "T )]1=nis volume preserving, and since RuK jxj2dx � RK jxj2dx we get(19) ZK jx+ "Txj2dx � [det(I + "T )] 2n ZK jxj2dx:But, jx+"Txj2 = jxj2+2"hx; Txi+O("2) and [det(I+"T )] 2n = 1+2" trTn +O("2).Therefore, (19) implies(20) ZKhx; Txidx � trTn ZK jxj2dx:By symmetry we see that(21) ZKhx; Txidx = trTn ZK jxj2dx14



for every T 2 L(Rn;Rn). This is equivalent to(22) ZKhx; �i2dx = 1n ZK jxj2dx ; � 2 Sn�1:Conversely, if K is isotropic and if T is any volume preserving transformation,then(23)ZTK jxj2dx = ZK jTxj2dx = ZKhx; T �Txidx = tr(T �T )n ZK jxj2dx � ZK jxj2dx;which shows that K solves our minimization problem. We can have equality in(23) if and only if T 2 O(n). 2It is easily proved that LK � LDn � c > 0 for every body K in Rn, wherec > 0 is an absolute constant. An important open question having its origin in[Bou1] is the following:Problem. Does there exist an absolute constant C > 0 such that LK � C forevery body K?A simple argument based on John's theorem shows that LK � cpn for everybody K. Uniform boundedness of LK is known for some classes of bodies: unitballs of spaces with a 1-unconditional basis, zonoids and their polars, etc. Forpartial answers to the question, see [Ba2], [Ju], [Da2], [Da3], [MP2], [KMP]. Thebest known general upper estimate is due to Bourgain [Bou3]: LK � c 4pn logn forevery body K in Rn. In the Appendix we give a brief presentation of Bourgain'sresult.The problem we have just stated has many equivalent reformulations, whichare deeply connected with problems from classical convexity. For a detaileddiscussion, see [MP2]. An interesting property of the isotropic position is that ifK is isotropic then all central sections K \ �?, � 2 Sn�1 are equivalent up to anabsolute constant. This comes from the fact that(24) ZKhx; �i2dx = L2K ' 1jK \ �?j2 ; � 2 Sn�1a consequence of the log-concavity of �K . This was �rst observed in [Hen]. Then,uniform boundedness of LK is equivalent to the statement that an isotropic bodyhas all its (n � 1)-dimensional central sections bounded below by an absoluteconstant. This is equivalent to theHyperplane Conjecture: Is it true that a body K of volume 1 must have an(n � 1)-dimensional central section with volume bounded below by an absoluteconstant?(c) Minimal surface position. Let K be a convex body in Rn with normalizedvolume jKj = 1. We now consider the following minimization problem:15



Find the minimum of @(uK) over all volume preserving transformations u.This minimum is attained for some u0 and will be denoted by @K (the minimalsurface invariant ofK). We say thatK has minimal surface if @(K) = @K jKjn�1n .Recall that the area measure �K of K is de�ned on Sn�1 and corresponds tothe usual surface measure on K via the Gauss map: For every Borel A � Sn�1,we have(25) �K(A) = � (fx 2 bd(K) : the outer normal to K at x is in Ag) ;where � is the (n � 1)-dimensional surface measure on K. We obviously have@(K) = �K(Sn�1).A characterization of the minimal surface position through the area measurewas given by Petty [Pe]:Theorem 2.3.7. Let K be a convex body in Rn with jKj = 1. Then, @(K) = @Kif and only if �K is isotropic. Moreover, this minimal surface position is uniqueup to orthogonal transformations.The proof makes use of the same variational argument. The basic observation isthat if u is any volume preserving transformation, then(26) @((u�1)�K) = ZSn�1 juxj�K(dx):K. Ball [Ba4] has proved that the minimal surface invariant @K is maximalwhen K is a cube in the symmetric case, and when K is a simplex in the generalcase. It follows that @K � 2n for every symmetric convex body K in Rn. Forapplications of the minimal surface position to the study of hyperplane projec-tions of convex bodies, see [GPa] (also, [Ba3] for an approach through the notionof volume ratio).(d) Minimal mean width position. Let K be a symmetric convex body in Rn.The mean width of K is de�ned by(27) w(K) = 2 ZSn�1 hK(u)�(du);where hK(x) = kxk� is the support function of K. We say that K has minimalmean width if w(TK) � w(K) for every volume preserving linear transformationT of Rn. Our standard variational argument gives the following characterizationof the minimal mean width position:Proposition 2.3.8. A smooth body K in Rn has minimal mean width if andonly if(28) ZSn�1 hrhK(u); Tui�(du) = trTn w(K)216



for every linear transformation T . Moreover, this minimal mean width positionis uniquely determined up to orthogonal transformations. 2Consider the measure wK on Sn�1 with density hK with respect to �. If wede�ne(29) IK(�) = ZSn�1 hrhK(u); �ihu; �i�(du) ; � 2 Sn�1;an application of Green's formula shows that(30) w(K)2 + IK(�) = (n + 1) ZSn�1 hK(u)hu; �i2�(du):Combining this identity with Proposition 2.3.8, we obtain an isotropic character-ization of the minimal mean width position (see [GMi5], the symmetry of K isnot needed):Theorem 2.3.9. A body K in Rn has minimal mean width if and only if wK isisotropic. Moreover, the position is uniquely determined up to orthogonal trans-formations. 2Note. It is natural to ask for an upper bound for the minimalwidth parameter, ifwe restrict ourselves to bodies of �xed volume. It is known that every symmetricconvex body K has a linear image K with jKj = jDnj such that(33) w(K) � c log(2d(XK ; `n2 )) � c log(2n);where c > 0 is an absolute constant. This statement follows from an inequalityof Pisier [Pi2] after work of Lewis [Lew], Figiel and Tomczak-Jaegermann [FT],and plays a central role in the theory. We shall use the minimal mean widthposition and come back to the estimate (33) in Section 4.3. Background from classical convexity3.1. Steiner's formula and Urysohn's inequality3.1.1. Let Kn denote the set of all non-empty, compact convex subsets of Rn.We may view Kn as a convex cone under Minkowski addition and multiplicationby nonnegative real numbers. Minkowski's theorem (and the de�nition of themixed volumes) asserts that if K1; : : : ;Km 2 Kn, m 2 N, then the volume oft1K1 + : : :+ tmKm is a homogeneous polynomial of degree n in ti � 0 (see [BZ],[Sc1]). That is,jt1K1 + : : :+ tmKmj = X1�i1;:::;in�mV (Ki1 ; : : : ;Kin)ti1 : : : tin ;17



where the coe�cients V (Ki1 ; : : : ;Kin) are chosen to be invariant under permu-tations of their arguments. The coe�cient V (K1; : : : ;Kn) is called the mixedvolume of K1; : : : ;Kn.Steiner's formula, which was already considered in 1840, may be seen as aspecial case of Minkowski's theorem. The volume of K + tDn, t > 0, can beexpanded as a polynomial in t:(1) jK + tDnj = nXi=0 �ni�Wi(K)ti;where Wi(K) = V (K;n � i;Dn; i) is the i-th Quermassintegral of K. It is easyto see that the surface area of K is given by(2) @(K) = nW1(K):Kubota's integral formula(3) Wi(K) = jDnjjDn�ijn�i ZGn;n�i jP�Kjn�id�n;n�i(�)applied for i = n� 1 shows that(4) Wn�1(K) = jDnj2 w(K):3.1.2. The Alexandrov-Fenchel inequalities constitute a far reaching general-ization of the Brunn-Minkowski inequality and its consequences:If K;L;K3; : : : ;Kn 2 Kn, then(5) V (K;L;K3; : : : ;Kn)2 � V (K;K;K3; : : : ;Kn)V (L;L;K3; : : : ;Kn):The proof is due to Alexandrov [A1], [A2] (Fenchel sketched an alternative proof,see [Fe]). From (5) one can recover the Brunn-Minkowski inequality as well asthe following generalization for the quermassintegrals:(6) Wi(K + L)1=i � Wi(K)1=i +Wi(L)1=i ; i = 1; : : : ; nfor any pair of convex bodies in Rn.If we take L = tDn, t > 0, then Steiner's formula and the Brunn-Minkowskiinequality give(7) nXi=0 �ni�Wi(K)jDnj ti = jK + tDnjjDnj �  � jKjjDnj�1=n + t!n= nXi=0 �ni�� jKjjDnj�n�in ti18



for every t > 0. Since the �rst and the last term are equal on both sides of thisinequality, we must have(8) W1(K)jDnj � � jKjjDnj�n�1nwhich is the isoperimetric inequality for convex bodies, and(9) w(K) = 2Wn�1(K)jDnj � 2� jKjjDnj� 1n ;which is Urysohn's inequality. Both inequalities are special cases of the set ofAlexandrov inequalities(10) �Wi(K)jDnj � 1n�i � �Wj(K)jDnj � 1n�j ; n > i > j � 0:3.1.3. Let K be a symmetric convex body. We de�ne(11) M�(K) = ZSn�1 kxk��(dx) = w(K)2 :The Blaschke-Santal�o inequality asserts that the volume product jKjjK�j is max-imized over all symmetric convex bodies in Rn exactly when K is an ellipsoid:(12) jKjjK�j � jDnj2:A proof of this fact via Steiner symmetrization was given in [Ba1] (see also[MeP1,2] where the non-symmetric case is treated). H�older's inequality and polarintegration show that(13) 1M�(K) � �ZSn�1 kxk�n� �1=n = � jK�jjDnj�1=n :Combining with (12) and applying (13) for K instead of K�, we obtain(14) 1M (K) � � jKjjDnj�1=n �M�(K);that is, Urysohn's inequality.3.1.4. A third proof of Urysohn's inequality can be given as follows: Letui 2 O(n), i = 1; : : : ;m and �i > 0 with Pmi=1 �i = 1. It is easily checked thatBM�(Pmi=1 �iui(K)) =M�(K). It follows that(15) M� ZO(n) u(K)d�(u)! =M�(K):19



But, T = RO(n) u(K)d�(u) is a ball of radius (jT j=jDnj)1=n, and the Brunn-Minkowski inequality implies that jT j � jKj. Therefore,(16) M�(K) = � jT jjDnj�1=n � � jKjjDnj�1=n :3.1.5. For any (n�1)-tuple C = K1; : : : ;Kn�1 2 Kn, the Riesz representationtheorem shows the existence of a Borel measure S(C; �) on the unit sphere Sn�1such that(17) V (L;K1; : : : ;Kn�1) = 1n ZSn�1 hL(u)dS(C; u)for every L 2 Kn. If K 2 Kn, the j-th area measure of K is de�ned by Sj(K; �) =S(K; j;Dn;n� j � 1; �), j = 0; 1; : : : ; n� 1. It follows that the quermassintegralsWi(K) can be written in the form(18) Wi(K) = 1n ZSn�1 hK(u)dSn�i�1(K;u) ; i = 0; 1; : : : ; n� 1or, alternatively,(19) Wi(K) = 1n ZSn�1 dSn�i(K;u) ; i = 1; : : : ; n:If we assume that hK is twice continuously di�erentiable, then Sj(K; �) has acontinuous density sj(K;u), the j-th elementary symmetric function of the eigen-values of the Hessian of hK at u.In the spirit of 2.3, we say that a body K minimizes Wi if Wi(K) � Wi(TK)for every volume preserving linear transformation T of Rn. The cases i = 1and i = n � 1 correspond to the minimal surface area and minimal mean widthrespectively. For every i = 1; : : : ; n�1 one can prove that, ifK minimizesWi thenSn�i(K; �) is isotropic (see [GMi5], where other necessary isotropic conditions arealso given).3.2. Geometric inequalities of \hyperbolic" type.The Alexandrov-Fenchel inequalities are the most advanced representativesof a series of very important inequalities. They should perhaps be called \hy-perbolic" inequalities in contrast to the more often used in analysis \elliptic"inequalities: Cauchy-Schwarz, H�older, and their consequences (various triangleinequalities). A consequence of \hyperbolic" inequalities is concavity of someimportant quantities.3.2.1. Let us start this short review by recalling some old and classical, but notwell remembered, inequalities due to Newton. Let x1; : : : ; xn be real numbers.20



We de�ne the elementary symmetric functions e0(x1; : : : ; xn) = 1, and(1) ei(x1; : : : ; xn) = X1�j1<:::<ji�nxj1xj2 : : : xji ; 1 � i � n:In particular, e1(x1; : : : ; xn) = Pni=1 xi, en(x1; : : : ; xn) = Qni=1 xi. We thenconsider the normalized functions(2) Ei(x1; : : : ; xn) = 1�ni�ei(x1; : : : ; xn):Newton proved that, for k = 1; : : : ; n� 1,(3) E2k(x1; : : : ; xn) � Ek�1(x1; : : : ; xn)Ek+1(x1; : : : ; xn);with equality if and only if all the xi's are equal. An immediate corollary of (3),observed by Newton's student Maclaurin, is the string of inequalities(4) E1(x1; : : : ; xn) � E1=22 (x1; : : : ; xn) � : : : � E1=nn (x1; : : : ; xn);which holds true for any n-tuple (x1; : : : ; xn) of positive reals. Note the similaritybetween (3), (4) and the Alexandrov-Fenchel and Alexandrov inequalities 3.1.2(5)and (10) respectively.To prove (3) we follow Newton: Consider the polynomial(5) P (x) = nYi=1(x� xi) = nXj=0(�1)j�nj�Ej(x1; : : : ; xn)xn�j;or in homogeneous form,(6) Q(t; � ) = �nP ( t� ) = nXj=0(�1)j�nj�Ej(x1; : : : ; xn)tn�j� j:Since P has only real roots, the same is true for the derivatives of P (with respectto t or � ) of any order. If we di�erentiate (6) (n� k� 1)-times with respect to tand then (k � 1)-times with respect to � , we obtain the polynomial(7) n!2 Ek�1(x1; : : : ; xn)t2 � n!Ek(x1; : : : ; xn)t� + n!2 Ek+1(x1; : : : ; xn)�2;which has two real roots for �xed � = 1. This is exactly Newton's inequality (3).We refer to [Ros] for a very nice di�erent proof and generalizations.3.2.2. Let us now turn to a multidimensional, but still numerical, analogue ofNewton's inequalities. Consider the space Sn of real symmetric n� n matrices.We polarize the function A! detA to obtain the symmetric multilinear form(8) D(A1; : : : ; An) = 1n! X"2f0;1gn(�1)n+P "idet�X "iAi� ;21



where Ai 2 Sn. Then, if t1; : : : ; tm > 0 and A1; : : : ; Am 2 Sn, the determinant oft1A1 + : : :+ tmAm is a homogeneous polynomial of degree n in ti:(9) det(t1A1 + : : :+ tmAm) = X1�i1<:::<in�mn!D(Ai1 ; : : : ; Ain)ti1 : : : tin :The coe�cientD(A1; : : : ; An) is called the mixed discriminant ofA1; : : : ; An. Thefact that the polynomial P (t) = det(A + tI) has only real roots for any A 2 Snplays the central role in the proof of a number of very interesting inequalitiesconnecting mixed discriminants, which are quite similar to Newton's inequalities.They were �rst discovered by Alexandrov [A2] in one of his approaches to whatis now called Alexandrov-Fenchel inequalities. Today, they are part of a moregeneral theory (see e.g. [H�or]). We mention some of them: If Ai; i = 1; : : : ; n arepositive, then(10) D(A1; A2; : : : ; An) � nYi=1[detA] 1n :Also, the following concavity principle (reverse triangle inequality) is true: Thefunction [detA]1=n is concave in the positive cone of Sn. This is in fact easy todemonstrate directly. We want to show that, if A1; A2 are positive then(11) [det(A1 + A2)] 1n � [detA1] 1n + [detA2] 1n :We may bring two positive matrices to diagonal form without changing theirdeterminants. Then, we should show that for �i; �i > 0,(12)  nYi=1(�i + �i)!1=n �  nYi=1�i!1=n +  nYi=1�i!1=n ;which is a consequence of the arithmetic-geometric means inequality.3.2.3. We now return to convex sets. The results of 3.2.1 and 3.2.2 have theiranalogues in this setting, but the parallel results for mixed volumes are muchmoredi�cult and look unrelated. Even the fact that the volume of t1K1+: : :+tmKm isa homogeneous polynomial in ti � 0 is a non-trivial statement, while the parallelresult for determinants follows by de�nition.To see the connection between the two theories we follow [ADM]. Consider n�xed convex open bounded bodies Ki with normalized volume jKij = 1. As inSection 2.2(a), consider the Brenier maps(13)  i : (Rn; n)! Ki;where n is the standard Gaussian probability density on Rn. We have  i = rfi,where fi are convex functions on Rn. By Ca�arelli's regularity result, all the  i's22



are smooth maps. Then, Fact 2 from 2.2(a) shows that the image of (Rn; n) byP ti i is the interior of P tiKi. Since each  i is a measure preserving map, wehave(14) det� @2fi@xk@xl� (x) = n(x) ; i = 1; : : : ; n:It follows that(15) ��� nXi=1 tiKi��� = ZRn det nXi=1 ti( @2fi@xk@xl )! dx= nXi1;:::;in=1 ti1 : : : tin ZRnD�@2fi1(x)@xk@xl ; : : : ; @2fin (x)@xk@xl �dx:In particular, we recover Minkowski's theorem on polynomiality of jP tiKij, andsee the connection between the mixed discriminantsD(Hessfi1 ; : : : ;Hessfin ) andthe mixed volumes(16) V (Ki1 ; : : : ;Kin) = ZRnD(Hessfi1(x); : : : ;Hessfin(x))dx:The Alexandrov-Fenchel inequalities do not follow from the corresponding mixeddiscriminant inequalities, but the deep connection between the two theories is ob-vious. Also, some particular cases are indeed simple consequences. For example,in [ADM] it is proved (as a consequence of (16)) that(17) V (K1; : : : ;Kn) � nYi=1 jKij1=n:3.3 Continuous valuations on compact convex sets.(a) Polynomial valuations. We denote by Kn the set of all non-empty compactconvex subsets of Rn and write L for a �nite dimensional vector space over R orC . A function ' : Kn ! L is called a valuation, if '(K1 [K2) + '(K1 \K2) ='(K1) + '(K2) whenever K1;K2 2 Kn are such that K1 [K2 2 Kn. We shallconsider only continuous valuations: valuations which are continuous with respectto the Hausdor� metric.The notion of valuation may be viewed as a generalization of the notion ofmeasure de�ned only on the class of compact convex sets. Mixed volumes providea �rst important example of valuations.A valuation ' : Kn ! L is called polynomial of degree at most l if '(K +x) isa polynomial in x of degree at most l for every K 2 Kn. The following theorem23



of Khovanskii and Pukhlikov [KP] generalizes Minkowski's theorem on mixedvolumes (see also [McM1], [Al2]):Theorem 3.3.1. Let ' : Kn! L be a continuous valuation, which is polynomialof degree at most l. Then, if K1; : : : ;Km 2 Kn, '(t1K1 + : : : + tmKm) is apolynomial in tj � 0 of degree at most n+ l. 2Let K = (K1; : : : ;Ks) be an s-tuple of compact convex sets in Rn, and F :Rn! C be a continuous function. Alesker studied the Minkowski operator MKwhich maps F to MKF : Rs+! C with(MKF )(�1; : : : ; �s) = ZPi�s �iKi F (x)dx:Let A(Cn ) be the Frechet space of entire functions of n variables and Cr(Rn)be the Frechet space of r-times di�erentiable functions on Rn, with the topologyof uniform convergence on compact sets. The following facts are established in[Al1]:(i) If F 2 A(Cn ), then MKF has a unique extension to an entire function onC s , and the operator MK : A(Cn )!A(C s) is continuous. It follows that if F isa polynomial of degree d then MKF is a polynomial of degree at most d+ n.(ii) If F 2 Cr(Rn), then MKF 2 Cr(Rs+), and MK is a continuous operator.Moreover, continuity of the map K 7! MK with respect to the Hausdor�metric is established.(b) Translation invariant valuations. A valuation of degree 0 is simply trans-lation invariant. If '(uK) = '(K) for every K 2 Kn and every u 2 SO(n), wesay that ' is SO(n)-invariant. Hadwiger [H] characterized the translation andSO(n) invariant valuations as follows (see also [Kl] for a simpler proof):Theorem 3.3.2. A valuation ' is translation and SO(n)-invariant if and onlyif there exist constants ci, i = 0; : : : ; n such that(1) '(K) = nXi=0 ciWi(K)for every K 2 Kn. 2After Hadwiger's classical result, two natural questions arise: to character-ize translation invariant valuations without any assumption on rotations, andto characterize O(n) or SO(n) invariant valuations without any assumption ontranslations. Both questions are of obvious interest in translative integral geome-try and in the asymptotic theory of �nite dimensional normed spaces respectively(consider, for example, the valuation '(K) = RK jxj2dx which was discussed in2.3(b)).It is a conjecture of McMullen [McM2] that every continuous translation in-variant valuation can be approximated (in a certain sense) by linear combinations24



of mixed volumes. This is known to be true in dimension n � 3. The generalquestion remains open, although there is recent progress. In [McM1], [McM2] itis proved that every translation invariant valuation ' can be uniquely expressedas a sum ' =Pni=0 'i, where 'i are translation invariant continuous valuationssatisfying 'i(tK) = ti'(K) (homogeneous of degree i). Moreover, in the caseL = R, homogeneous valuations 'i as above can be described in some cases: '0is always a constant, 'n is always a multiple of volume, 'n�1 is always of theform(2) 'n�1(K) = ZSn�1 f(u)dSn�1(K;u);where f : Sn�1 ! R is a continuous function (which can be chosen to be orthog-onal to every linear functional, and then it is uniquely determined).Under the additional assumption that ' is simple ('(K) = 0 if dimK < n), arecent theorem of Schneider [Sc2] completely describes ':Theorem 3.3.3. Every simple, continuous translation invariant valuation ' :Kn ! R has the form(3) '(K) = cjKj+ ZSn�1 f(u)dSn�1(K;u);where f : Sn�1 ! R is a continuous odd function. 2(c) Rotation invariant valuations. Alesker [Al2] has recently obtained a char-acterization of O(n) (respectively SO(n)) invariant continuous valuations. The�rst main point is that every such valuation can be approximated uniformly onthe compact subsets of Kn by continuous polynomial O(n) (or SO(n)) invariantvaluations.Then, one can describe polynomial rotation invariant valuations in a concreteway. To this end, let us introduce some speci�c examples of such valuations. Wewrite � for the (n� 1)-dimensional surface measure on K and n(x) for the outernormal at bd(K) (this is uniquely determined �-almost everywhere). If p; q arenon-negative integers, we consider a valuation  p;q : Kn ! Rwith(4)  p;q(K) = Zbd(K)hx; n(x)ipjxj2qd�(x):All  p;q are continuous, polynomial of degree at most p + 2q + n, and O(n)-invariant. Theorem 3.3.1 shows that, for every K 2 Kn,  p;q(K + "Dn) is apolynomial in " � 0, therefore it can be written in the form(5)  p;q(K + "Dn) = p+2q+nXi=0  (i)p;q(K)"i:25



All  (i)p;q are continuous, polynomial and O(n)-invariant. These particular val-uations su�ce for a description of all rotation invariant polynomial valuations[Al2]:Theorem 3.3.4. If n � 3, then every SO(n)-invariant continuous polynomialvaluation ' : Kn ! R is a linear combination of the  (i)p;q. 2Since  (i)p;q are O(n)-invariant, Theorem 3.3.4 describes O(n)-invariant valua-tions as well. The case n = 2 is also completely described in [Al2] (and the samestatements hold true if R is replaced by C ).4. Dvoretzky's theorem and concentration of measure4.1. IntroductionAssume that Dn is the maximal volume ellipsoid of the body K. A versionof the Dvoretzky-Rogers Lemma [DR] asserts that there exist k ' pn and ak-dimensional subspace Ek of Rn such that Dn \ Ek � K \ Ek � 2Qn \ Ek,where Qn = [�1; 1]n is the unit cube (the unit ball of `n1). Inspired by this,Grothendieck asked whether Qn can be replaced by Dn in the statement. He didnot specify what the dependence of k on n might be, asking just that k shouldincrease to in�nity with n. A short time after, Dvoretzky [Dv1], [Dv2] provedGrothendieck's conjecture:Theorem 4.1.1. Let " > 0 and k be a positive integer. There exists N = N (k; ")with the following property: Whenever X is a normed space of dimension n � Nwe can �nd a k-dimensional subspace Ek of X with d(Ek; `k2) � 1 + ".Geometrically speaking, every high-dimensional body has central sections ofhigh dimension which are almost ellipsoidal. The dependence of N (k; ") on kand " became a very important question, and Dvoretzky's theorem took a muchmore precise quantitative form:Theorem 4.1.2. Let X be an n-dimensional normed space and " > 0. There ex-ist an integer k � c"2 logn and a k-dimensional subspace Ek of X which satis�esd(Ek; `k2) � 1 + ".This means that Theorem 4.1.1 holds true with N (k; ") = exp(c"�2k). Dvoret-zky's original proof was giving an estimate N (k; ") = exp(c"�2k2 logk). Later,Milman [Mi1] established the estimate N (k; ") = exp(c"�2j log "jk) with a dif-ferent approach. The logarithmic in " term was removed by Gordon [Go1], andthen by Schechtman [Sch3]. Other proofs and extensions of Dvoretzky's theoremin di�erent directions were given in [Fi], [Sza], [LM] (see also the surveys [Li],[LiM], [Mi12]).The logarithmic dependence of k on n is best possible for small values of ".One can see this by analyzing the example of `n1. Every k-dimensional central26



section of Qn is a polytope with at most 2n facets. If we assume that we can�nd a subspace Ek of `n1 with d(Ek; `k2) � 1 + ", then there exists a polytopePk in Rk with m � 2n facets satisfying Dk � Pk � (1 + ")Dk. The hyperplanessupporting the facets of Pk create m spherical caps J1; : : : ; Jm on (1 + ")Sk�1such that (1+")Sk�1 � [mi=1Ji. On the other hand, since Dk � Pk, if we assumethat " is small, then each Ji has angular radius of the order ofp". An elementarycomputation shows that the normalized measure of such a cap does not exceed(c") k�12 . Therefore, we must have 2n � (c")� k�12 which shows that(1) k � c logn= log(1="):The same argument shows that if P is a symmetric polytope and f(P ) is thenumber of its facets, then k � c(") log f(P ).The right dependence of N (k; ") on " for a �xed (even small) positive inte-ger k is not clear. It seems reasonable that `n1 is the worst case and that thecomputation we have just made gives the correct order:Question 4.1.3. Can we take N (k; ") = c(k)"� k�12 in Theorem 4.1.1?Using ideas from the theory of irregularities of distribution, Bourgain andLindenstrauss [BL2] have shown that the choice N (k; ") = c(k)"� k�12 j log "j ispossible for spaces X with a 1-symmetric basis. There are numerous connectionsof this question with other branches of mathematics (algebraic topology, numbertheory, harmonic analysis). For instance, an a�rmative answer to Question 4.1.3would be a consequence of the following hypothesis of Knaster: Let f : Sk�1 ! Rbe a continuous function and x1; : : : ; xk be points on Sk�1. Does there exist arotation u such that f is constant on the set fuxi : i � kg? This hypothesishas been settled only in special cases (see [Mi7] for a discussion of this and otherproblems related to Question 4.1.3).Note. Bourgain and Szarek [BS] proved a stronger form of the Dvoretzky-RogersLemma: If Dn is the ellipsoid of minimal volume containing K, then for every� 2 (0; 1) one can choose x1; : : : ; xm, m � (1� �)n, among the contact points ofK and Dn such that for every choice of scalars (ti)i�m,(2) f(�) mXi=1 t2i!1=2 ���� mXi=1 tixi ����www mXi=1 tixi wwwK� mXi=1 jtij:This is a Dvoretzky-Rogers Lemma for arbitrary proportion of the dimension.It can also be stated as a factorization result: For any n-dimensional normedspace X and any � 2 (0; 1), one can �nd m � (1 � �)n and two operators� : `m2 ! X, � : X ! `n1 such that the identity id2;1 : `m2 ! `m1 can be writtenas id2;1 = � � � and k�kk�k � 1=f(�). For an extension to the non-symmetriccase see [LTJ].Using this result, Bourgain and Szarek answered the question of uniqueness, upto a constant, of the centre of the Banach-Mazur compactum, and gave the �rst27



non-trivial estimate o(n) for the Banach-Mazur distance from an n-dimensionalspace X to `n1. It is now known [ST], [Gi2] that (2) holds true with f(�) =c�. The question of the best possible exponent of � in the Dvoretzky-Rogersfactorization is also open. By [Gi2], [Ru2] it must lie between 1/2 and 1.In the Appendix we give a brief account on these and other questions relatedto the geometry of the Banach-Mazur compactum.4.2. Concentration of measure on the sphere and a proof of Dvoretzky's theoBremWe shall outline the approach of [Mi1] to Dvoretzky's theorem. The methoduses the concentration of measure on the sphere and was further developped in[FLM]. We need to introduce the average parameter(1) M =M (XK) = ZSn�1 kxk �(dx);the average on the sphere Sn�1 of the norm that K induces to Rn.Remarks on M . (i) It is clear from the de�nition of M that it depends not onlyon the body K but also on the Euclidean structure we have chosen in Rn. If weassume that 1a jxj � kxk � bjxj and that a; b > 0 are the smallest constants forwhich this is true for all x 2 Rn, then we have the trivial bounds 1a �M � b.(ii) For every p > 0 we de�ne(2) Mp =Mp(XK ) = �ZSn�1 kxkp�(dx)� 1p :In this notation M = M1 and as a consequence of the Kahane-Khinchine in-equality one can check thatM1 'M2 independently from the dimension and thenorm. It can be actually shown [LMS] that, for every 1 � p � n,(3) maxnM1; c1 bpppn o �Mp � maxn2M1; c2 bpppn o;where c1; c2 > 0 are absolute constants.(iii) Let g1; : : : ; gn be independent standard Gaussian random variables onsome probability space 
 and fe01; : : : ; e0ng be any orthonormal basis in Rn. In-tegration in polar coordinates establishes the identity(4)  Z
 www nXi=1 gi(!)e0i www2 d!!1=2 = pnM2:Using the symmetry of the gi's and the triangle inequality for k � k we get(5) Z
 www kXi=1 gi(!)e0i www d! � Z
 www nXi=1 gi(!)e0i www d!;28



for every 1 � k � n, and combining with the previous observations we have(6) M (Ek) � cpn=kMfor every k-dimensional subspace Ek of XK .� The main step for our proof of Theorem 4.1.2 will be the following [Mi1]:Theorem 4.2.1. Let X be an n-dimensional normed space satisfying 1a jxj �kxk � bjxj. For every " 2 (0; 1) there exist k � c"2n(M=b)2 and a k-dimensionalsubspace Ek of Rn such that11 + "Ljxj � kxk � (1 + ")Ljxj ; x 2 Ek:The constant L appearing in the statement above is the L�evy mean (or median)of the function f(x) = kxk on Sn�1. This is the unique real number L = Lf forwhich �(fx : f(x) � Lg) � 12 and �(fx : f(x) � Lg) � 12 :A few observations arise directly from this statement: Assume that x 2 Sn�1has maximal norm kxk = b. Consider the one-dimensional subspace E1 spannedby x. We have b = M (E1) � cpnM , and this shows that n(M=b)2 � c > 0 forevery norm. This is of course not enough for a proof of Dvoretzky's theorem.On the other hand, recall that M � 1=a. By Theorem 4.2.1, every X hasa subspace of dimension k � c"2n=(ab)2 on which k � k is (1 + ")-equivalent tothe Euclidean norm. Since we can choose a linear transformation of KX so thatab � d(X; `n2 ), we obtain the following corollary [Mi1]:Corollary 4.2.2. For every n-dimensional space X and every " 2 (0; 1) we can�nd a subspace Ek of X with dimEk = k � c"2n=d2(X; `n2 ) such that d(Ek; `k2) �1 + ". 2This already shows that spaces with small Banach-Mazur distance from `n2have Euclidean sections of dimension much larger than logn (even proportionalto n). However, since John's theorem is sharp this observation is not enough forthe general case.� The proof of Theorem 4.2.1 is based on the concentration of measure on thesphere. Recall that as a consequence of the spherical isoperimetric inequality wehave the following fact:If A � Sn�1 and �(A) = 12 , then �(A") � 1� c1 exp(�c2"2n).This inequality explains the term \concentration of measure": However small" > 0 may be, the measure of the set outside a \strip" of width " around theboundary of any subset of the sphere of half measure is less than 2c1 exp(�c2"2n),which decreases exponentially fast to 0 as the dimension n grows to in�nity. Thissurprising fact was observed and used by P. L�evy:29



Let f be a continuous function on the sphere. By !f (�) we denote the modulusof continuity of f :!f (t) = maxfjf(x)� f(y)j : �(x; y) � t; x; y 2 Sn�1g:Consider the L�evy mean Lf of f . It is not hard to see thatfx : f = Lfg" = (fx : f � Lfg)" \ (fx : f � Lfg)":Since jf(x)�Lf j � !f (") on fx : f = Lfg", the spherical isoperimetric inequalityhas the following direct consequence:Fact 1. For every continuous function f : Sn�1 ! R and every " > 0,(7) � �x 2 Sn�1 : jf(x)� Lf j � !f (")� � c1 exp(�c2"2n): 2If the modulus of continuity of f behaves well, then Fact 1 implies strongconcentration of the values of f around its median. Moreover, from a set ofbig measure on which f is almost constant we can extract a subspace of highdimension, on the sphere of which f is almost constant:Fact 2. Let f : Sn�1 ! R be a continuous function and �; � > 0. There exists asubspace F of Rn with dimF = k � c�2n= log(3=�) such thatjf(x) � Lf j � !f (�) + !f (�)for every x 2 S(F ) := Sn�1 \ F .Proof: Fix k < n (to be determined) and Fk 2 Gn;k. A standard argumentshows that there exists a �-net N of S(Fk) with cardinality jN j � (1 + 2� )k �exp(k log(3=�)). If x 2 N , then(8) � (u 2 O(n) : jf(ux) � Lf j > !f (�)) � c1 exp(�c2�2n):Therefore, if c1jN j exp(�c2�2n) < 1 then most u 2 O(n) satisfy(9) jf(ux)� Lf j � !f (�)for every x 2 N . It follows that jf(x)�Lf j � !f (�)+!f (�) for every x 2 S(uFk).A simple computation shows that the necessary condition will be satis�ed forsome k � c�2n= log(3=�). 2For the proof of Theorem 4.2.1 we are going to apply this fact to the normf(x) = kxk. In this case, one can say even more (see [MS1]):Fact 3. Let X = (Rn; k � k) and assume that kxk � bjxj. For every " 2 (0; 1)there exists a subspace Ek with dimEk = k � c"2log(1=")n(Lfb )2 such that11 + "Lf jxj � kxk � (1 + ")Lf jxj30



for every x 2 Ek. 2The proof of Theorem 4.2.1 is now complete. We just have to observe that iff(x) = kxk on Sn�1, then Lf 'M . By Markov's inequality, �(x : f(x) � 2M ) �12 and this shows that Lf � 2M . It can be checked that Lf � cM as well, wherec > 0 is an absolute constant [MS1]. It follows that we can have almost sphericalsections of dimension k � c"2log(1=")n(Mb )2 in Theorem 4.2.1. In order to removethe logarithmic in " term, one needs to put additional e�ort (see [Go1], [Sch1]).2 >From Theorem 4.2.1 we may deduce Dvoretzky's theorem (Theorem 4.1.2):For every n-dimensional space X and any " 2 (0; 1) there exists a subspace Ekof X with dimEk = k � c"2 logn, such that d(Ek; `k2) � 1 + ".Proof: We may assume that Dn is the maximal volume ellipsoid of KX . Then,kxk � jxj on Rn and in view of Theorem 4.2.1 we only need to show that M2 �c logn=n. This is a consequence of the Dvoretzky-Rogers lemma: There existsan orthonormal basis y1; : : : ; yn in Rn with kyik � (n�i+1n )1=2. In particular,kyik � 12 , i = 1; : : : ; n4 .>From the equivalence of M1 and M2 we see that(10) M � cpn Z
 www nXi=1 gi(!)yi www d! � cpn Z
 www n=4Xi=1 gi(!)yi www d!� cpn Z
 maxi�n=4 www gi(!)yi www d! � c0pn Z
 maxi�n=4 jgi(!)jd! � c00plognpn ;where we have used the well-known fact (see e.g. [LT]) that if g1; : : : ; gm areindependent standard Gaussian random variables on 
 then R
maxi�m jgij 'plogm. 24.3. Probabilistic and global form of Dvoretzky's TheoremThe proof of Theorem 4.2.1 is probabilistic in nature and gives that a subspaceEk of X with dimEk = [c"2n(M=b)2] is (1 + ")-Euclidean with high probability.This leads to the de�nition of the following characteristic of X:De�nition. Let X be an n-dimensional normed space. We set k(X) to be thelargest positive integer k � n for which(1) Prob�Ek 2 Gn;k : 12M jxj � kxk � 2M jxj; x 2 Ek� � 1� kn+ k :In other words, k(X) is the largest possible dimension k � n for which themajority of k-dimensional subspaces ofX are 4-Euclidean. Note that the presenceof M in the de�nition corresponds to the right normalization, since the averageof M (Ek) over Gn;k is equal to M for all 1 � k � n.31



Theorem 4.2.1 implies that k(X) � cn(M=b)2. What is surprisingly simpleis the observation [MS3] that an inverse inequality holds true. The estimate inTheorem 4.2.1 is sharp in full generality:Theorem 4.3.1. k(X) � 4n(M=b)2.Proof: Fix orthogonal subspaces E1; : : : ; Et of dimension k(X) such that Rn =Pti=1Ei (there is no big loss in assuming that k(X) divides n). By the de�nitionof k(X), most orthogonal images of each Ei are 4-Euclidean, so we can �ndu 2 O(n) such that(2) 12M jxj � kxk � 2M jxj ; x 2 uEifor every i = 1; : : : ; t. Every x 2 Rn can be written in the form x = Pti=1 xi,where xi 2 uEi. Since the xi's are orthogonal, we get(3) kxk � 2M tXi=1 jxij � 2Mptjxj:This means that b � 2Mpt, and since t = n=k(X) we see that k(X) � 4n(M=b)2.2In other words, the following asymptotic formula holds true:Theorem 4.3.2. Let X be an n-dimensional normed space. Then,k(X) ' n(M=b)2: 2Dvoretzky's theorem gives information about the central sections of a symmet-ric convex body, or equivalently, about the local structure of the correspondingnormed space. By a global result we mean a statement about the full body orspace. In order to describe the global version of Dvoretzky's theorem, we needto introduce a new quantity:De�nition. Let X = (Rn; k�k). We de�ne t(X) to be the smallest positive integert for which there exist u1; : : : ; ut 2 O(n) such that12M jxj � 1t tXi=1 kuixk � 2M jxjfor every x 2 Rn.Geometrically speaking, t(X) is the smallest integer t for which there existrotations v1; : : : ; vt such that the average Minkowski sum of viK� is 4-Euclidean.Once again, the presence of M in the de�nition corresponds to the correct nor-malization. 32



It is proved in [BLM1] that t(X) � c(b=M )2 (we postpone a proof of this factuntil Section 4.5). It was recently observed in [MS3] that a reverse inequality istrue in full generality:Theorem 4.3.3. t(X) � 14(b=M )2.For the proof of this assertion we shall make use of the following lemma:Lemma. Let x1; : : : ; xt 2 Sn�1. There exists y 2 Sn�1 such thatPti=1 jhy; xiij �pt.Proof: We consider all the vectors of the form z(") =Pti=1 "ixi, where "i = �1.If z = z(") has maximal length among them, the parallelogram law shows thatjzj � pt. Also,(4) tXi=1 jhz; xiij � tXi=1hz; "ixii = jzj2 � jzjpt:Choosing y = z=jzj we conclude the proof. 2Proof of Theorem 4.3.3: Assume that we can �nd t orthogonal transformationsu1; : : : ; ut such that 1tPti=1 kuixk � 2M jxj for every x 2 Rn. We �nd x0 2Sn�1 with kx0k = b (minimal distance from the origin). It is clear that 1 =kx0k�kx0k = bkx0k�. We set xi = u�1i x0 and use the Lemma to �nd y 2 Sn�1such that Pti=1 jhy; xiij � pt. Then, we have(5) pt � tXi=1 jhy; u�1i x0ij = tXi=1 jhuiy; x0ij � kx0k� tXi=1 kuiyk � 2Mtb :This shows that 4t � (b=M )2. 2Combining Theorem 4.3.3 with the upper bound for t(X) we obtain a secondasymptotic formula:Theorem 4.3.4. For every �nite dimensional normed space X we havet(X) ' (b=M )2: 2Theorems 4.3.2 and 4.3.4 give a very precise asymptotic relation between alocal and a global parameter of X [MS3]:Fact. There exists an absolute constant c > 0 such that1c n � k(X)t(X) � cnfor every n-dimensional normed space X. 233



4.4. Applications of the concentration of measure on the sphereWe used the concentration of measure on Sn�1 for the proof of Dvoretzky'stheorem. The same principle applies in very di�erent situations. We shall demon-strate this by two more examples.(a) Banach-Mazur distance. Recall that by John's theorem d(X; `n2 ) � pnfor every n-dimensional space X. Then, the multiplicative triangle inequalityfor d shows that d(X;Y ) � n for every pair of spaces X and Y . On the otherhand, E.D. Gluskin [Gl1] has proved that the diameter of the Banach-Mazurcompactum is roughly equal to n:There exists an absolute constant c > 0 such that for every n we can �nd twon-dimensional spaces Xn; Yn with d(Xn; Yn) � cn.The spaces Xn; Yn in Gluskin's example are random and of the same nature:random symmetric polytopes with �n vertices. We shall show that spaces whoseunit balls are geometrically quite di�erent objects have \small" distance [DMT]:Theorem 4.4.1. Let X and Y be two n-dimensional normed spaces such that#Extr(KX ) � n� and #Extr(KY �) � n� for some �; � > 0, where #Extr(�)denotes the number of extreme points. Then,d(X;Y ) � cp�+ �pn logn:[In other words, if a body has few extreme points and a second body has fewfaces, then their distance is not more than pn logn.]Proof: We may assume that 1pnDn � KX � Dn � KY � pnDn. Then,KY � � Dn. If u 2 O(n), it is clear that ku�1 : Y ! Xk � n. We are going toshow that ku : X ! Y k is small for a random u.We estimate the norm of u as follows:ku : X ! Y k = supx2KX kuxkY = maxx2Extr(KX ) maxy�2Extr(KY � ) jhux; y�ij:Observe that if x 2 Extr(KX ) and y� 2 Extr(KY � ), then ux; y� 2 Dn. It followsthat �(u 2 O(n) : jhux; y�ij � ") � c exp(�"2n=2):Therefore, if cn�+� exp(�"2n=2) < 1, we can �nd u 2 O(n) such that ku : X !Y k � ". Solving for " we see that we can choose" 'p�+ �plogn=n:Hence, there exists u 2 O(n) for whichd(X;Y ) � ku : X ! Y k ku�1 : Y ! Xk � cp�+ �pn logn: 234



(b) Random projections. Let 1 � k � n, and E 2 Gn;k. A simple computationshows that ZSn�1 jPE(x)j2�(dx) = kn;and since PE is a 1-Lipschitz function, concentration of measure on the sphereshows that � �x 2 Sn�1 : j jPE(x)j �pk=n j > "� � c1 exp(�c2"2n)for every " > 0. Double integration and the choice " = �pk=n show that for any�xed subset fy1; : : : ; yNg of Sn�1 and any � 2 (0; 1) we have�n;k �E 2 Gn;k : (1� �)pk=n < jPE(yj)j < (1 + �)pk=n ; j � N�> 1� c1N exp(�c2�2k):If N � c�11 exp(c2�2k), then we can �nd a k-dimensional subspace E such thatjPE(yj)j 'q kn for every j � N . It can also be arranged that the distances of theyj 's will shrink in a uniform way under PE (this application comes from [JL]).4.5. The concentration phenomenon: L�evy familiesThe concentration of measure on the sphere is just an example of the con-centration phenomenon of invariant measures on high-dimensional structures.Assume that (X; d; �) is a compact metric space with metric d and diameterdiam(X) � 1, which is also equipped with a Borel probability measure �. Wethen de�ne the concentration function (or \isoperimetric constant") of X by�(X; ") = 1� inf��(A") : A Borel subset of X;�(A) � 12	;where A" = fx 2 X : d(x;A) � "g is the "-extension of A. As a consequence ofthe isoperimetric inequality on Sn+1 we saw that�(Sn+1; ") �p�=8 exp(�"2n=2);an estimate which was crucial for the proof of Dvoretzky's theorem and theapplications in Section 4.4.P. L�evy [Le] �rst observed the role of the dimension in this particular example.For this reason, a family (Xn; dn; �n) of metric probability spaces is called anormal L�evy family with constants (c1; c2) (see [GrM2] and [AM2]) if�(Xn; ") � c1 exp(�c2"2n);or, more generally, a L�evy family if for every " > 0�(Xn; ")! 035



as n!1. There are many examples of L�evy families which have been discoveredand used for Local Theory purposes. In most cases, new and very interestingtechniques were invented in order to estimate the concentration function �(X; ").We list some of them (and refer the reader to [Sch4] in this volume for moreinformation):(1) The family of the orthogonal groups (SO(n); �n; �n) equipped with theHilbert-Schmidt metric and the Haar probability measure is a L�evy family withconstants c1 =p�=8 and c2 = 1=8.(2) The family Xn = Qmni=1 Sn with the natural Riemannian metric and theproduct probability measure is a L�evy family with constants c1 = p�=8 andc2 = 1=2.(3) All homogeneous spaces of SO(n) inherit the property of forming L�evyfamilies. In particular, any family of Stiefel manifolds Wn;kn or any family ofGrassman manifolds Gn;kn is a L�evy family with the same constants as in (1).[All these examples of normal L�evy families come from [GrM2].](4) The space Fn2 = f�1; 1gn with the normalized Hamming distance d(�; �0) =#fi � n : �i 6= �0ig=n and the normalized counting measure is a L�evy family withconstants c1 = 1=2 and c2 = 2. This follows from an isoperimetric inequality ofHarper [Ha], and was �rst put in such form and used in [AM1].(5) The group �n of permutations of f1; : : : ; ng with the normalized Hammingdistance d(�; � ) = #fi � n : �(i) 6= � (i)g=n and the normalized counting measuresatis�es �(�n; ") � 2 exp(�"2n=64). This was proved by Maurey [Mau1] with amartingale method, which was further developped in [Sch1].�We shall give two more examples of situations where L�evy families are used.In particular, we shall complete the proof of the global form of Dvoretzky'stheorem using the concentration phenomenon for products of spheres.(a) A topological application. Let 1 � k � n and Vk = f(�; x) : � 2 Gn;k; x 2S(�)g be the canonical sphere bundle over Gn;k. Assume that f : Sn�1 ! R is aLipschitz function with the following property:For every � 2 Gn;k we can �nd x 2 S(�) such that f(x) = 0.One can easily check that Vk is a homogeneous space of SO(n) whose concentra-tion function satis�es �(Vk; ") �p�=8 exp(�"2n=8):A standard argument shows that given � > 0, if k � c�2n= log(3=�) then we can�nd a subspace � 2 Gn;k and a �-net N of S(�) such that f(x) = 0 for everyx 2 N . Assuming that the Lipschitz constant of f is not large, we get [GrM2]:There exists � 2 Gn;k such that jf(x)j � c� for every x 2 S(�).36



(b) Global form of Dvoretzky's Theorem. Recall that t(X) is the leastpositive integer for which there exist u1; : : : ; ut 2 O(n) such that 12M jxj �1t Pti=1 kuixk � 2M jxj for every x 2 Rn.We saw that 4t(X) � (b=M )2. We shall now prove the reverse inequality(which is stated in Theorem 4.3.4) following [LMS]:Consider the space St = fx = (x1; : : : ; xt) : xi 2 Sn�1g. De�ne f(x) =1t Pti=1 kxik. Then, for every x; y 2 St we have:jf(x)� f(y)j � 1t tXi=1 kxi � yik �  1t tXi=1 kxi � yik2!1=2 � bpt�(x; y):The concentration estimate for products of spheres givesProb ��� 1t tXi=1 kxik � Lf ���> �Lf! � exp(�c�2tL2fn=b2)for every � 2 (0; 1). Equivalently, if x 2 Sn�1 then(1� �)Lf � 1t tXi=1 kuixk � (1 + �)Lffor all (ui)i�t in a subset of [O(n)]t of measure greater than 1�exp(�c�2tL2fn=b2).If N is a �-net for Sn�1, we can �nd u1; : : : ; ut 2 O(n) such that 1tP kuixk ' Lffor all x 2 N , provided that n= log(3=�) � c�2tL2fn=b2. We choose � > 0 smallenough so that successive approximation will give 1t Pkuixk ' Lf for all x 2Sn�1, and we verify that the condition will be satis�ed for some t � c0(b=Lf )2.Since M ' Lf up to a multiplicative constant, the proof is complete. 24.6. Dvoretzky's theorem and duality4.6.1. Recall that if X = (Rn; k � k) is a normed space, then the dual normis de�ned by kxk� = supfjhx; yij : kyk � 1g. It is clear that 1b jxj � kxk� � ajxj,hence if we de�ne k� = k(X�) andM� =M (X�) then Theorem 4.3.2 shows thatk� ' n(M�=a)2:On the other hand, it is a trivial consequence of the Cauchy-Schwarz inequalitythat(1) MM� � �ZSn�1 kxk 12� kxk 12�(dx)�2 � �ZSn�1 jhx; xij 12�(dx)�2 = 1:Multiplying the estimates for k and k� we obtain(2) kk� � cn2 (MM�)2(ab)2 � cn2=(ab)2:37



Since we can always assume that ab � pn, we have proved:Theorem 4.6.1. [FLM] Let X be an n-dimensional normed space. Then,k(X)k(X�) � cn: 2This already shows that for every pair (X;X�) at least one of the quantitiesk; k� is greater than cpn. Recall that for X = `n1 we have k(`n1) ' logn, there-fore k(`n1 ) � cn= logn { almost proportional to n. In fact, a direct computationshows that M (`n1 ) ' b(`n1 ) ' pn, therefore k(`n1 ) ' n. Although d(X; `n1 ) is themaximal possible, `n1 has Euclidean sections of dimension proportional to n.4.6.2. Let k = minfk; k�g. Since Dvoretzky's theorem holds for randomsubspaces of the appropriate dimension, we can �nd a subspace E 2 Gn;k onwhich we have(3) 12M jxj � kxk � 2M jxj ; 12M�jxj � kxk� � 2M�jxjsimultaneously. This implies that kPE : X ! Ek � 4MM�. We see this asfollows: let x 2 Rn. Then,(4) jPE(x)j2 = hPE(x); xi � kPE(x)k�kxk � 2M�jPE(x)j kxk;since PE(x) 2 E. For the same reason,(5) kPE(x)k � 2M jPE(x)j � 4MM�kxk:But then,(6) kk� ' n2 (MM�)2(ab)2 � cn2kPEk2(ab)2 ;which is a strengthening of Theorem 4.6.1 [FLM]. In the example of X = `n1 weknow that k ' logn, therefore our estimate shows that for a random subspaceE(logn) of dimension roughly equal to logn we must havek(`n1 ) logn � cnkPE(logn)k2:On the other hand, the norm of a random projection of `n1 of rank logn is knownto exceed plogn, so we get the correct estimate k(`n1 ) � cn.4.6.3. Another example where the preceding computation gives precise infor-mation on several parameters of X is the case X = `np ; 1 < p < 2. Let q be theconjugate exponent of p. We need the following result [BDGJN] (see also [MS1]):Theorem 4.6.2. k(`nq ) � c(q)n2=q. 2 38



It is a simple consequence of H�older's inequality that (ab)2 � n1� 2q forX = `np .Our computation in 4.6.2 and Theorem 4.6.2 show that if k = minfk(`np ); k(`nq )g,then(7) c(q)n2=qk(`np ) � n1+ 2q kPE(k)k2:Since k(`np ) � n (!), we immediately get:Theorem 4.6.3. Let 1 < p < 2 and q be its conjugate exponent. Then,k(`np ) ' n ; k(`nq ) ' n2=q ; d(`np ; `n2 ) = d(`nq ; `n2 ) ' n 12� 1q : 24.6.4. A combinatorial application. We saw that the logn estimate inDvoretzky's theorem is optimal by studying the example of `n1. The argumentwe used for the cube shows something more general: Let P be a symmetricpolytope, and denote its number of facets by f(P ) and its number of vertices byv(P ). Then, k � logf(P ) and since v(P ) = f(P �) we also get k� � logv(P ).We have seen that kk� � cn, and this proves the following fact [FLM]:Theorem 4.6.4. Let P be a symmetric polytope in Rn. Then,logf(P ) log v(P ) � cn: 24.7. Isomorphic versions of Dvoretzky's Theorem4.7.1. Bounded volume ratio. Let K be a symmetric convex body in Rn.The volume ratio of K is the quantityvr(K) = infn� jKjjEj�1=n : E � Ko;where the inf is over all ellipsoids contained in K. It is easily checked that vr(K)is an a�ne invariant.We shall show that if a body K has small volume ratio, then the space XKhas subspaces F of dimension proportional to n which are \well-isomorphic" to`dimF2 :Theorem 4.7.2. Let K be a symmetric convex body in Rn with vr(K) = A.Then, for every k � n there exists a k-dimensional subspace F of XK such thatd(F; `k2) � (cA) nn�k :Proof: We may assume that Dn is the maximal volume ellipsoid of K. Then,kxk � jxj for every x 2 Rn. Given k � n, double integration shows that thereexists F 2 Gn;k satisfying(1) ZSn�1\F kxk�n�k(dx) � vr(K)n = An:39



Then, Markov's inequality shows that for any r > 0, �kfx 2 Sn�1 \ F :kxk < rg � (rA)n. If we consider just one point x in Sn�1 \ F , then ther=2 neighbourhood of x with respect to j � j has �k measure greater than (cr)k,for some absolute constant c > 0. This means that if (rA)n < (cr)k then the setfx 2 Sn�1 \ F : kxk � rg is an r=2 net for Sn�1 \ F : if y 2 Sn�1 \ F , we can�nd x with jx� yj � r=2 and kxk � r, and the triangle inequality shows that(2) kyk � kxk � kx� yk � r � jx� yj � r=2:This shows that d(F; `k2) � 2r . Analyzing the necessary condition on r we obtain(3) d(F; `k2) � (cA) nn�k : 2Theorem 4.7.2 has its origin in the work of Kashin [Ka], who proved thatthere exist c(�)-Euclidean subspaces of `n1 of dimension [�n], for every � 2 (0; 1).Szarek [Sz1] realized the fact that bounded volume ratio is responsible for thisproperty of `n1 , while the notion of volume ratio was formally introduced some-what later in [STJ].4.7.3. A natural question related to Dvoretzky's theorem is to give an estimatefor maxdimX=nminfd(F; `k2) : F � X; dimF = kg:for each 1 � k � n. Such an \isomorphic" version was proved by Milman andSchechtman [MS2] who showed the following:Theorem 4.7.4. There exists an absolute constant C > 0 such that, for everyn and every k � C logn, every n-dimensional normed space X contains a k-dimensional subspace F for whichd(F; `k2) � Cpk= log(n=k): 2For an extension to the non-symmetric case, see [Gu1], [GGM].5. The Low M�-estimate and the Quotient of Subspace Theorem5.1. The Low M�-estimateDvoretzky's theorem gives very strong information about the Euclidean struc-ture of k-dimensional subspaces of an arbitrary n-dimensional space when theirdimension k is up to the order of logn. In some cases one can �nd Euclideansubspaces of dimension even proportional to n, but no \proportional theory" canbe expected in such a strong sense. However, surprisingly enough, there is nontrivial Euclidean structure in subspaces of dimension �n, � 2 (0; 1), even for �very close to 1. The �rst step in this direction is the Low M�-estimate:40



Theorem 5.1.1. There exists a function f : (0; 1)! R+ such that for every � 2(0; 1) and every n-dimensional normed space X a random subspace E 2 Gn;[�n]satis�es(1) f(�)M� jxj � kxk ; x 2 E;where c > 0 is an absolute constant.Theorem 5.1.1 was originally proved in [Mi2] and a second proof using theisoperimetric inequality on Sn�1 was given in [Mi3], where (1) was shown to holdwith f(�) � c(1 � �) for some absolute constant c > 0 (and with an estimatef(�) � 1 � � + o(�) as � ! 0+). This was later improved to f(�) � c(1 ��) 12 in [PT2] (see also [Mi9] for a di�erent proof with this best possible p1� �dependence). Finally, it was proved in [Go2] that one can have(2) f(�) � p1� ��1 + O( 1(1� �)n )� :Geometrically speaking, Theorem 5.1.1 says that for a random �n-dimensionalsection of KX we have(3) KX \E � M�f(�)Dn \E;that is, the diameter of a random section of a symmetric convex body of dimensionproportional to n is controlled by the mean width M� of the body (a randomsection does not feel the diameter a of KX but the radius M� which is roughlythe level r at which half of the supporting hyperplanes of rDn cut the body KX ).The dual formulation of the theorem has an interesting geometric interpreta-tion. A random �n-dimensional projection of KX contains a ball of radius of theorder of 1=M . More precisely, for a random E 2 Gn;�n we have(4) PE(KX ) � f(�)M Dn \E:We shall present the proof from [Mi3] which gives linear dependence in � andis based on the isoperimetric inequality for Sn�1:Proof of the Low M�-estimate: Consider the set A = fy 2 Sn�1 : kyk� � 2M�g.We obviously have �(A) � 12 .Claim:For every � 2 (0; 1) there exists a subspace E of dimension k = [�n] suchthat(5) E \ Sn�1 � A(�2��);where � � c(1� �). 41



Proof of the claim: We have �(A�=4) � 1 � cpn R �=40 sinn�2 tdt, and doubleintegration through Gn;k shows that a random E 2 Gn;k satis�es(6) �k(A�=4 \E) � 1� cpn Z �=40 sinn�2 tdt:On the other hand, for every x 2 Sn�1 \E we have(7) �k(B(x; �4 � �)) ' pk Z �4��0 sink�2 tdt:This means that if(8) p� Z �4��0 sink�2 tdt ' Z �40 sinn�2 tdt;then A�=4 \ B(x; �4 � �) 6= ;, and hence x 2 A�2��. Analyzing the su�cientcondition (8) we see that we can choose � � c(1� �). 2We complete the proof of Theorem 5.1.1 as follows: Let x 2 Sn�1 \E. Thereexists y 2 A such that(9) sin � � jhx; yij � kyk�kxk � 2M�kxk;and since sin � � 2� � � c0(1� �), the theorem follows. 25.2. The `-position.Let X be an n-dimensional normed space. Figiel and Tomczak-Jaegermann[FT] de�ned the `-norm of T 2 L(`n2 ; X) by(1) `(T ) = pn�ZSn�1 kTyk2�(dy)�1=2 :Alternatively, if fejg is any orthonormal basis in Rn, and if g1; : : : ; gn are inde-pendent standard Gaussian random variables on some probability space 
, wehave(2) `(T ) =  E ww nXi=1 giT (ei) ww!1=2 ;where E denotes expectation.Let now RadnX be the subspace of L2(
; X) consisting of functions of theform Pni=1 gi(!)xi where xi 2 X (the notation here is perhaps not canonical,but convenient). The natural projection from L2(
; X) onto RadnX is de�nedby(3) Radnf = nXi=1 �Z
 gif� gi:42



We write kRadnkX for the norm of this projection as an operator in L2(
; X).The dual norm `� is de�ned on L(X; `n2 ) by(4) `�(S) = supf tr(ST ) : T 2 L(`n2 ; X); `(T ) � 1g:From a general result of Lewis [Le] it follows that for some T 2 L(`n2 ; X) one has`(T )`�(T�1) = n. Using this fact, Figiel and Tomczak-Jaegermann proved thatfor every n-dimensional space X there exists T : `n2 ! X such that(5) `(T )`((T�1)�) � nkRadnkX :The norm of the projection Radn was estimated by Pisier [Pi2]: For every n-dimensional space X,(6) kRadnkX � c log[d(X; `n2 ) + 1]:This implies that for every X = (Rn; k � k) we can de�ne a Euclidean structureh�; �i (called the `-structure) on Rn, for which(7) M (X)M�(X) � c log[d(X; `n2 ) + 1]:Equivalently, we can state the following theorem:Theorem 5.2.1. Let K be a symmetric convex body in Rn. There exists aposition ~K of K for which(8) M ( ~K)M�( ~K) � c log[d(XK ; `n2 ) + 1];where c > 0 is an absolute constant. 2Pisier's argument uses symmetry in an essential way, therefore one cannottransfer directly this line of thinking to the non-symmetric case. For recentprogress on the non-symmetricMM�-estimate, see Appendix 7.2.5.3. The quotient of subspace theoremThe quotient of subspace theorem [Mi4] states that by performing two opera-tions on an n-dimensional space, taking �rst a subspace and then a quotient ofit, we can always arrive at a new space of dimension proportional to n which is(independently of n) close to Euclidean:Theorem 5.3.1.(Milman) Let X be an n-dimensional normed space and � 2[12 ; 1). Then, there exist subspaces E � F of X for which(1) k = dim(E=F ) � �n ; d(E=F; `k2) � c(1� �)�1j log(1� �)j:Geometrically, this means that for every body K in Rn and any � 2 [12 ; 1), wecan �nd subspaces G � E with dimG � �n and an ellipsoid E such that(2) E � PG(K \E) � c(1� �)�1j log(1� �)jE :43



The proof of the theorem is based on the Low M�-estimate and an iterationprocedure which makes essential use of the `-position.Proof: We may assume that KX is in `-position: then, by Theorem 5.2.1 we haveM (X)M�(X) � c log[d(X; `n2 ) + 1].Step 1: Let � 2 (0; 1). We shall show that there exist a subspace E of X,dimE � �n, and a subspace F of E�, dimF = k � �2n, such that d(F; `k2) �c(1� �)�1 log[d(X; `n2 ) + 1].The proof of this fact is a double application of the Low M�-estimate. ByTheorem 5.1.1, a random �n-dimensional subspace E of X satis�es(3) c1p1� �M�(X) jxj � kxk � bjxj ; x 2 E:Moreover, since (3) holds for a random E 2 Gn;�n, we may also assume thatM (E) � c2M (X). Therefore, repeating the same argument for E�, we may �nda subspace F of E� with dimF = k � �2n and(4) c3p1� �M (X) jxj � c1p1� �M�(E�) jxj � kxkE� � M�(X)c1p1� � jxjfor every x 2 F . Since KX is in `-position, we obtain(5) d(F; `k2) � c4(1� �)�1M (X)M�(X) � c(1� �)�1 log[d(X; `n2 ) + 1]:Step 2: Denote by QS(X) the class of all quotient spaces of a subspace of X,and de�ne a function f : (0; 1)! R+ by(6) f(�) = inffd(F; `k2) : F 2 QS(X); dimF � �ng:Then, what we have really proved in Step 1 is the estimate(7) f(�2�) � c(1� �)�1 log f(�):An iteration lemma (see [Mi4] or [Pi5]) allows us to conclude thatf(�) � c(1� �)�1j log(1� �)j: 25.4. Variants and applications of the Low M�-estimate1. An almost direct consequence of the LowM�-estimate is the existence of afunction f : (0; 1)! R+ with the following property [Mi11]:If K is a symmetric convex body in Rn and if � 2 (0; 1), then a random �n-dimensional section K \ F of K satis�es diam(K \ F ) � 2r, where r is thesolution of the equation(1) M�(K \ rDn) = f(�)r:44



One can choose f(�) = (1�")p1� � for any " 2 (0; 1), and then (1) is satis�edfor all F in a subset of Gn;[�n] of measure greater than 1�c1 exp(�c2"2(1��)n).2. Let t(r) = t(XK ; r) be the greatest integer k for which a random subspaceF 2 Gn;k satis�es diam(K \ F ) � 2r. The following linear duality relation wasproved in [Mi10]:If t�(r) = t(X�; r), then for any � > 0 and any r > 0 we have(2) t(r) + t�� 1�r� � (1 � �)n �C;where C > 0 is an absolute constant.This surprisingly precise connection of the structure of proportional sectionsof a body and its polar is also expressed as follows:Let � > 0 and k; l be integers with k + l � (1 � �)n. Then, for every body Kin Rn we have(3) ZGn;kM�(K \ F )d�n;k(F ) ZGn;lM�(K \ F 0)d�n;l(F 0) � C� ;where C > 0 is an absolute constant.3. An estimate dual to (1) was established in [GMi2]. There exists a secondfunction g : (0; 1)! R such that: for every body K in Rn and every � 2 (12 ; 1),a random �n-dimensional section K \F of K satis�es diam(K \F ) � 2r, wherer is the solution of the equation(4) M�(K \ rDn) = g(�)r:This double sided estimate provided by (1) and (4) may be viewed as an (incom-plete) asymptotic formula for the diameter of random proportional sections ofK, which is of interest from the computational geometry point of view since thefunction r!M�(K \ rDn) is easily computable.4. The diameter of proportional dimensional sections of K is connected withthe following global parameter of K: For every integer t � 2 we de�ne rt(K)to be the smallest r > 0 for which there exist rotations u1; : : : ; ut such thatu1(K) \ : : :\ ut(K) � rDn.If Rt(K) is the smallest R > 0 for which most of the [n=t]-dimensional sectionsof K satisfy diam(K \ F ) � 2R, then it is proved in [Mi11] that r2t(K) �ptRt(K). The fact that a reverse comparison of these two parameters is possiblewas established in [GMi3]: There exists an absolute constant C > 1 such that(5) RCt(K) � Ctrt(K)for every t � 2. 45



5. Fix an orthonormal basis fe1; : : : ; eng Bof Rn. Then, for every non empty� � f1; : : : ; ng we de�ne the coordinate subspace R� = spanfej : j 2 �g.We are often interested in analogues of the Low M�-estimate with the addi-tional restriction that the subspace E should be a coordinate subspace of a givenproportional dimension (see [Gi2] for applications to Dvoretzky-Rogers factoriza-tion questions). Such estimates are sometimes possible [GMi1]:If K is an ellipsoid in Rn, then for every � 2 (0; 1) we can �nd � � f1; : : : ; ngof cardinality j�j � (1� �)n such that(6) PR�(K) � [�= log(1=�)]1=2MK Dn \R�:Analogues of this hold true if the volume ratio of K or the cotype-2 constant ofXK is small.Finally, let us mention that Bourgain's solution of the �(p) problem [Bou2](see also [T1]) is closely related to the following \coordinate" result:Let (�i)i�n be a sequence of functions on [0; 1] which is orthogonal in L2. Ifk�ik1 � 1 and k�ik2 � c > 0 for every i � n, then for every p > 2 most of thesubsets � � f1; : : : ; ng of cardinality [n2=p] satisfy(7) c Xi2� t2i!1=2 �wwwXi2� ti�i wwwp� K(p) Xi2� t2i!1=2for every choice of reals (ti)i2� . We refer the reader to the article [JS2] in thiscollection for the Bourgain-Tzafriri theory of restricted invertibility, which isclosely related with the above results.6. Isomorphic symmetrization and applications to classical convexity6.1. Estimates on covering numbersLet K1 and K2 be convex bodies in Rn. The covering number N (K1;K2) ofK1 by K2 is the least positive integer N for which there exist x1; : : : ; xN 2 Rnsuch that(1) K1 � [Ni=1(xi +K2):We shall formulate and sketch the proofs of a few important results on coveringnumbers which we need in the next sections. See the article [GGP] in this volumefor more information.The well known Sudakov's inequality estimates N (K; tDn):Theorem 6.1.1. Let K be a symmetric convex body in Rn. Then,(2) N (K; tDn) � exp(cn(M�=t)2)46



for every t > 0, where c > 0 is an absolute constant.The dual Sudakov's inequality, proved by Pajor and Tomczak-Jaegermann[PT2], gives an upper bound for N (Dn; tK):Theorem 6.1.2. Let K be a symmetric convex body in Rn. Then,(3) N (Dn; tK) � exp(cn(M=t)2)for every t > 0, where c > 0 is an absolute constant.We shall give a simple proof of Theorem 6.1.2 which is due to Talagrand (see[LT]).Proof of Theorem 6.1.2: We consider the standard Gaussian probability measuren on Rn, with density dn = (2�)�n=2 exp(�jxj2=2)dx:A direct computation shows that R kxkdn(x) = �nM , where �n=pn ! 1 asn!1. Markov's inequality shows that(4) n(x : kxk � 2M�n) � 12 :Let fx1; : : : ; xNg be a subset of Dn which is maximal under the requirement thatkxi � xjk � t, i 6= j. Then, the sets xi + t2K have disjoint interiors. The sameholds true for the sets yi + 2M�nK, yi = (4M�n=t)xi. Therefore,(5) NXi=1 n(yi + 2M�nK) � 1:Using the convexity of e�s, the symmetry of K and (4), we can then estimaten(yi + 2M�nK) from below as follows:(6) n(yi + 2M�nK) � 12 exp(�(4M�n=t)2):Now, (5) shows that(7) N � 2 exp((4M�n=t)2);and since �n ' pn we conclude the proof. 2Sudakov's inequality (Theorem 6.1.1) can be deduced fromTheorem 6.1.2 witha duality argument of Tomczak-Jaegermann: Let(8) A = supt>0 t(logN (Dn; tK�))1=2:47



We check that 2K \ ( t22K�) � tDn for every t > 0, and this implies that(9) N (K; tDn) � N (K; 2K \ ( t22 K�)) = N (K; t24 K�)� N (K; 2tDn)N (Dn; t8K�):This shows that(10) t(logN (K; tDn))1=2 � t(logN (K; 2tDn))1=2 + 8A;from which we easily get(11) supt>0 t(logN (K; tDn))1=2 � 16A:This is equivalent to the assertion of Theorem 6.1.1 (just observe that M�(K) =M (K�)). 2A weaker version of Sudakov's inequality can be proved if we use Urysohn'sinequality: For every symmetric convex body K and any t > 0, we have(12) N (K; tDn) � exp(2nM�=t):Proof: Consider a set fx1; : : : ; xNg � K which is maximal under the requirementint(xi + t2Dn) \ int(xj + t2Dn) = ;. Then,(13) N (K; tDn) � N � jK + t2Dnjj t2Dnj = �2t�n jK + t2DnjjDnj ;and Urysohn's inequality shows that(14) N (K; tDn) � �2t�n (M�(K + (t=2)Dn))n= �2t�n�M� + t2�n = �1 + 2M�t �n � exp(2nM�=t): 2Using the covering numbers one can compare volumes of convex bodies invarious situations. A main ingredient of the proof of the lemmas below (whichmay be found in [Mi8]) is the Brunn-Minkowski inequality:Lemma 1. Let K;T , and P be symmetric convex bodies in Rn. Then,(15) jK \ (T + x) + P j � jK \ T + P jfor every x 2 Rn. 48



Proof: Let Tx = K \ (T + x) + P . We easily check that Tx + T�x � 2T0, andthen apply the Brunn-Minkowski inequality. 2Lemma 2. Let K and P be symmetric convex bodies in Rn. If t > 0, then(16) jK + P j � N (K; tDn)j(K \ tDn) + P j:Proof: If K � [i�NK \ (xi + tDn), then K + P � [i�N [(xi + tDn) \K + P ].We compare volumes using the information from Lemma 1. 2Lemma 3. Let K and L be symmetric convex bodies in Rn. Assume that L � bKfor some b � 1. Then,(17) N �co(K [ L); (1 + 1n )K� � 2bnN (L;K): 2Using Lemma 3 with L = 1tDn and combining with Lemma 2, we have:Lemma 4. Let K and P be symmetric convex bodies in Rn. Assume thatDn � tbK for some t > 0. Then,(18) jco(K [ (1=t)Dn) + P ) � 2ebnjK + P j: 26.2. Isomorphic symmetrization and applications to classical convexity.The functional analytic approach and the methods of the local theory lead tonew isomorphic geometric inequalities. In this way, the ideas we described inprevious sections �nd applications to the classical convexity theory in Rn. Weshall describe two results in this direction:6.2.1. The inverse Blaschke-Santal�o inequality[BM1] There exists an ab-solute constant c > 0 such that(1) 0 < c � � jKjjK�jjDnjjDnj� 1n � 1for every symmetric convex body in Rn.Inequality on the right is the Blaschke-Santal�o inequality: the volume products(K) = jKjjK�j is maximized exactly when K is an ellipsoid. A well-knownconjecture of Mahler states that s(K) � 4n=n! for every K. This has beenveri�ed for some classes of bodies, e.g. zonoids and 1-unconditional bodies (see[Re], [Me], [SR], [GMR]). The left handside inequality comes from [BM1] andanswers the question of Mahler: For every body K, the a�ne invariant s(K)1=nis of the order of 1=n. 49



6.2.2. The inverse Brunn-Minkowski inequality[Mi5] There exists an ab-solute constant C > 0 with the following property: For every body K in Rn thereexists an ellipsoid MK such that jKj = jMKj and for every body T in Rn(2) 1C ��MK + T ��1=n � ��K + T ��1=n � C��MK + T ��1=n:This implies that for every body K in Rn there exists a position ~K = uK(K)of volume j ~Kj = jKj such that the following reverse Brunn-Minkowski inequalityholds true:\If K1 and K2 are bodies in Rn, then(3) jt1 ~K1 + t2 ~K2j1=n � C �t1j ~K1j1=n + t2j ~K2j1=n� ;for all t1; t2 > 0, where C > 0 is an absolute constant".The ellipsoidMK in 6.2.2 is called anM -ellipsoid forK. Analogously, the body~K = uK(K) is called an M -position of K (and then, one may take M ~K = �Dn).Both results were originally proved by a dimension descending procedure whichwas based on the quotient of subspace theorem. We shall present a second ap-proach, which appeared in [Mi8] and introduced an \isomorphic symmetrization"technique. This is a symmetrization scheme which is in many ways di�erent fromthe classical symmetrizations. In each step, none of the natural parameters of thebody is being preserved, but the ones which are of interest remain under control.After a �nite number of steps, the body has come close to an ellipsoid and thisis su�cient for our purposes, but there is no natural notion of convergence to anellipsoid.6.2.3. Remarks. Applying (2) for T =MK we get(4) jK +MK j1=n � CjKj1=n:This is equivalent to Theorem 6.2.2 and to each one of the following statements:(i) There exists a constant C > 0 such that for every body K we can �nd anellipsoid MK with jMK j = jKj andN (K;MK) � exp(Cn):(ii) There exists a constant C > 0 such that for every body K we can �nd anellipsoid MK with jMK j = jKj andN (MK ;K) � exp(Cn):We can also pass to polars and show that for every body T in Rn,1C jM�K + T j1=n � jK� + T j1=n � CjM�K + T j1=n:50



Since the M -position is isomorphically de�ned, one may ask for stronger reg-ularity on the covering numbers estimates (i) and (ii): Pisier proved (see [Pi5],Chapter 7) that, for every � > 1=2 and every body K there exists an a�ne image~K of K which satis�es j ~Kj = jDnj andmaxfN (K; tDn); N (Dn; tK); N (K�; tDn); N (Dn; tK�)g � exp(c(�)nt�1=�)for every t � 1, where c(�) is a constant depending only on �, with c(�) =O((� � 12)�1=2) as � ! 12 . We then say that K is in M -position of order �(�-regular in the terminology of [Pi5]).Proof of the Theorems: Since s(K) is an a�ne invariant, we may assume thatK is in a position such that M (K)M�(K) � c log[d(XK; `n2 ) + 1]. We may alsonormalize so that M (K) = 1. We de�ne(5) �1 =M�(K)a1 ; �01 =M (K)a1;for some a1 > 1, and we de�ne the new body(6) K1 = co[(K \ �1Dn) [ 1�01Dn]:Using Sudakov's inequality and Lemma 2 with P = f0g, we see that(7) jK1j � jK \ �1Dnj � jKj=N (K;�1Dn) � jKj exp(�cn=a21);while using the dual Sudakov inequality and Lemma 3 we get(8) jK1j � jco(K [ 1�01Dn)j � 2e b�01nN (Dn; �01K)jKj � exp(cn=a21):The same computation can be applied to K�1 , and this shows that(9) exp(�cn=a21) � s(K1)s(K) � exp(cn=a21):We continue in the same way. We now know that d(XK1 ; `n2 ) �M (K)M�(K)a21and, since s(K1) is an a�ne invariant, we may assume that M (K1)M�(K1) �c log[d(XK1 ; `n2 ) + 1] and M (K1) = 1. We then de�ne(10) �2 =M�(K1)a2 ; �02 =M (K1)a2;and consider the body K2 = co[(K1 \ �2Dn) [ 1�02Dn]. Estimating volumes, wesee that(11) exp(�cn=a22) � s(K2)s(K1) � exp(cn=a22):51



We iterate this scheme, choosing a1 = logn, a2 = log logn; : : : ; at = log(t) n { thet-iterated logarithm of n, and stop the procedure at the �rst t for which at < 2.It is easy to check that d(XKt ; `n2 ) � C, therefore(12) 1C � s(Kt)1=n � C:On the other hand, combining our volume estimates we see that(13) c1 � exp(�c( 1a21 + : : :+ 1a2t )) � s(Kt)1=ns(K)1=n � exp(c( 1a21 + : : :+ 1a2t )) � c2;which proves Theorem 6.1.1 since the series 1a21 +: : :+ 1a2t +: : : obviously converges.2 The proof of Theorem 6.2.2 follows the same pattern. In each step, we verifythat for every convex body T(14) exp(�cn=a2s) � jKs + T jjKs�1 + T j � exp(cn=a2s);and the same holds true for K�s . At the t-th step, we arrive at a body Kt which isC-isomorphic to an ellipsoid M , and (14) shows that jKtj1=n ' jKj1=n up to anabsolute constant. If we de�ne MK = �M where � > 0 is such that jMK j = jKj,then � ' 1 and using (14) we conclude the proof. 2Note. The existence of the M -ellipsoidMK of K in the non-symmetric case wasestablished in [MP3]. The key lemma is the observation that if o is the centroidof the convex body K, then jK \ (�K)j � 2�njKj.We close this section with a few geometric consequences of the M -position:1. Every body K has a position ~K with the following property: there existu; v 2 SO(n) such that if we set P = ~K + u( ~K) and Q = P � + v(P �), thenQ is equivalent to a Euclidean ball up to an absolute constant. Actually, thisstatement is satis�ed for a random pair (u; v) 2 SO(n) � SO(n). This doubleoperation may be called isomorphic Euclidean regularization.Compare with the following examples: If K is the unit cube, then P is alreadyequivalent to a ball for most u 2 SO(n) (this follows from [Ka], see 4.7.1). If Kis the unit ball of `n1 , the second operation is certainly needed.A closely related result from [Mi11] is the following isomorphic inequality con-necting K with K�:Let �t(K) = maxf� > 0 : �Dn � 1tPti=1 ui(K) ; ui 2 O(n)g. Then, thereexists an absolute constant c > 0 such that�2(K)�3(K�) � c52



for every body K in Rn. Observe that Kashin's result is a consequence of thisfact: if K is the cube, then �3(K�) � c=pn. Therefore, K + u(K) � cpnDnfor some u 2 O(n). It is not clear if two rotations of K� su�ce for a similarstatement.2. One may use the M -position in order to obtain a random version of thequotient of subspace theorem: If K is inM -position, then using Remark 6.2.3(i)we see that every �n-dimensional projection PE(K) of K has �nite volume ratio(which depends on �). We can therefore apply Theorem 4.7.1 to conclude thata random �2n-dimensional section PF (K)\E of PF (K) has distance dependingonly on � from the corresponding Euclidean ball.7. Appendix7.1. The hyperplane conjecture.In 2.3 we saw that every body in Rn has an isotropic position K with jKj = 1,which satis�es(1) ZKhx; �i2dx = L2Kfor every � 2 Sn�1. This position is uniquely determined up to orthogonaltransformations, and the a�ne invariant LK is called the isotropic constant ofK. It is an open problem whether there exists an absolute constant C > 0 suchthat LK � C for every body K.Let K be a body in Rn. Using Theorem 2.3.6, one can easily check that(2) nL2K � jdetujjuKj1+ 2n ZK juxj2dxfor every invertible linear transformation u. For the same reason,(3) nL2K� � jdet(u�1)�jj(u�1)�(K�)j1+ 2n ZK� j(u�1)�(x)j2dx:We may choose u : XK ! `n2 such that d(XK ; `n2 ) = kuk ku�1k. Then, (2) and(3) imply that(4) n2L2KL2K� � d2(XK ; `n2 ) �juKj j(u�1)�(K�)j��2=n ;and an application of the inverse Santal�o inequality shows that(5) LKLK� � cd(XK ; `n2 ):Therefore, duality gives the following �rst estimates on the isotropic constant:53



Theorem 7.1.1. [Da1] Let K be a body in Rn. Then, LK � cd(XK ; `n2 ) � cpn.Moreover, either LK � c 4pn or LK� � c 4pn. 2Bourgain [Bou3] has proved that LK � c 4pn logn, where c > 0 is an absoluteconstant, for every body K. We shall give a proof of this fact following Dar'spresentation in [Da1]. Recall that for every � 2 Sn�1 and p > 1 we have(6) � 1jKj ZK jhx; �ijpdx�1=p � cp 1jKj ZK jhx; �ijdx;where c > 0 is an absolute constant. This is a consequence of Borell's lemma(see 2.3). It follows from 2.3 (25) that if K is isotropic, then(7) ZK exp(jhx; �ij=cLK)dx � 2;for every � 2 Sn�1, where c > 0 is an absolute constant. We shall use thisinformation in the following form:Lemma 1. Let K be an isotropic body. If N is a �nite subset of Sn�1, then(8) ZK max�2N jhx; �ijdx � cLK log jN j: 2Starting with an isotropic body K, we see from Theorem 2.3.6 that(9) nL2K � trTn ZK jxj2dx = ZKhx; Txidx� ZK kTxkK�dx = ZK maxy2TK jhx; yijdxfor every symmetric, positive-de�nite volume preserving transformation T of Rn.In order to estimate this last integral, we �rst reduce the problem to a discreteone using the Dudley-Fernique decomposition:Lemma 2. Let A be a body in Rn, and R be its diameter. For every r andj = 1; : : : ; r, we can �nd �nite subsets Nj of A with log jNj j � cn(w(A)2j=R)2with the following property: every x 2 A can be written in the formx = z1 + : : :+ zr +wr;where zj 2 Zj = (Nj�Nj�1)\(3R=2j)Dn and wr 2 (R=2r)Dn (we set N0 = fog).2 The proof of this decomposition is simple. The estimate on the cardinality ofNj comes from Sudakov's inequality (Theorem 6.1.1). We now choose T in (9) sothat A = TK will have minimal mean width: Theorem 5.2.1 allows us to assumethat w(TK) � cpn logn. 54



>From Lemma 2, we see that for every x 2 K,(10) maxy2TK jhy; xij � rXj=1maxz2Zj jhz; xij+ maxw2(R=2r)Dn jhw; xij� rXj=1 3R2j maxz2Zj jhz; xij+ R2r jxj;where z = z=jzj 2 Sn�1. Now, Lemma 1 and the estimate on jNj j imply that(11) ZK maxz2Zj jhz; xijdx � cLK log jZj j � cnLK �w(TK)2jR �2for every j = 1; : : : ; r. Going back to (9), we conclude that(12) nL2K � cLK 0@ rXj=1 nw2(TK)2jR + R2rpn1A� c0LK �nw2(TK)2rR + R2rpn� ;and the optimal choice for r gives(13) nL2K � c 4pnw(TK)pnLK :Since w(TK) � cpn logn, the proof is complete:Theorem 7.1.2. For every body K in Rn we have LK � c 4pn logn. 27.2. Geometry of the Banach-Mazur compactum.1. Consider the set Bn of all equivalence classes of n-dimensional normedspaces X = (Rn; k � k), where X is equivalent to X 0 if and only if X and X 0are isometric. Then, Bn becomes a compact metric space with the metric log d,where d is the Banach-Mazur distance (the Banach-Mazur compactum).There are many interesting questions about the structure of the Banach-Mazurcompactum, and most of them remain open. Below, we describe some funda-mental results and problems in this area. The interested reader will �nd moreinformation in the book [TJ5] and the surveys [Gl4], [Sz4].2. John's theorem shows that d(X;Y ) � n for every X;Y 2 Bn. Therefore,diam(Bn) � n. The natural question of the exact order of diam(Bn) remainedopen for many years and was �nally answered by Gluskin [Gl1]: diam(Bn) � cn.Gluskin does not describe a pair X;Y 2 Bn with d(X;Y ) � cn explicitely(in fact, there is no concrete example of spaces with distance of order greater55



than pn). The idea of the proof is probabilistic: a random T : `n1 ! `n1 satis�eskTk kT�1k � cn, and this suggests that by \spoiling" `n1 it is possible to obtainX and Y with distance cn. The spaces which were used in [Gl1] have as theirunit ball a body of the form K = cof�ei;�xj : 1 � j � 2ng, where feig isthe standard orthonormal basis of Rn and the xj 's are chosen uniformly andindependently from the unit sphere Sn�1. A random pair of such spaces has thedesired property.This method of considering random spaces proved to be very fruitful in prob-lems where \pathological behavior" was needed to establish. We mention Szarek's�nite dimensional analogue of Eno's example [E1] of a space failing the approx-imation property: there exist n-dimensional normed spaces whose basis constantis of the order of pn [Sz2]. See also [Gl2], [Mank] and subsequent work of Szarekand Mankiewicz where random spaces play a central role. The article [MTJ] inthis collection covers this topic.3. Another natural question on the geometry of the Banach-Mazur compactumis that of the uniqueness of its center: If dimX = n and d(X;Y ) � cpn forevery Y 2 Bn, is it then true that X is \close" (depending on c) to `n2? Thisquestion was answered in the negative by Bourgain and Szarek [BS]: Let X0 =`s2�`n�s1 , where s = [n=2]. Then, d(X0; Y ) � cpn for every Y 2 Bn (and, clearly,d(X0; `n2 ) � c0pn). The proof of the fact that X0 is an asymptotic center of thecompactum is based on the proportional version of the Dvoretzky-Rogers lemma(see 4.1).4. Fix X 2 Bn. Then, one can de�ne the radius of Bn with respect to X byR(X) = maxfd(X;Y ) : Y 2 Bng. Many problems of obvious geometric interestarise if one wants to give the order of the radius with respect to importantconcrete centers. For example, the problem of the distance to the cube R(`n1)remains open. It is known that R(`n1) � cn5=6 (see [BS], [ST] and [Gi1]). Onthe other hand, Szarek has proved [Sz3] that R(`n1) � cpn logn, therefore `n1and `n1 are not asymptotic centers of the compactum (these are actually the onlyconcrete examples of spaces for which this property has been established).5. If we restrict ourselves to subclasses of Bn, then the diameter may besigni�cantly smaller than n: Let An be the family of all 1-symmetric spaces.Tomczak-Jaegermann [TJ3] (see also [Gl3]) proved that d(X;Y ) � cpn when-ever X;Y 2 An. This result is clearly optimal: recall that d(`n1 ; `n2 ) = pn. Theanalogous problem for the family of 1-unconditional spaces remains open. Lin-denstrauss and Szankowski [LS] have shown that in this case d(X;Y ) � c(�)n�+�for every � > 0, where c(�) > 0 is a constant depending only on �, and � � 2=3.It is conjectured that the right order is close to pn.The diameter of other subclasses of Bn was estimated with the method ofrandom orthogonal factorizations. The idea (which has its origin in work ofTomczak-Jaegermann [TJ1] and of Benyamini and Gordon [BG]) is to use theaverage of kTkX!Y kT�1kY!X with respect to the probability Haar measure on56



SO(n) as an upper bound for d(X;Y ). Using this method one can prove a generalinequality in terms of the type-2 constants of the spaces [BG], [DMT]:d(X;Y ) � cpn[T2(X) + T2(Y �)]for every X;Y 2 Bn. This was further improved by Bourgain and Milman [BM1]to d(X;Y ) � c�d(Y; `n2 )T2(X) + d(X; `n2 )T2(Y �)�:In [BM1] it is also shown that d(X;X�) � c(logn)n5=6 for every X 2 Bn. Allthese results indicate that the distance between spaces whose unit balls are \quitedi�erent" should be signi�cantly smaller than diam(Bn).6. The Banach-Mazur distance d(K;L) between two not necessarily symmetricconvex bodies K and L is the smallest d > 0 for which there exist z1; z2 2 Rnand T 2 GLn such that K � z1 � T (L� z2) � d(K � z1).The question of the maximal distance between non-symmetric bodies is open.John's theorem implies that d(K;L) � n2. Better estimates were obtainedwith the method of random orthogonal factorizations and recent progress onthe non-symmetric analogue of the MM�-estimate (Theorem 5.2.1). In [BLPS]it was proved that every convex body K has an a�ne image K1 such thatM (K1)M�(K1) � cpn, a bound which was improved to cn1=3 log� n, � > 0in [Ru3]. Using this fact, Rudelson showed that d(K;L) � cn4=3 log� n for anyK;L 2 Kn. See also recent work of Litvak and Tomczak-Jaegermann [LTJ] forrelated estimates in the non-symmetric case.7. Milman and Wolfson [MW] studied spaces X whose distance from `n2 isextremal. They showed that if d(X; `n2 ) = pn, then X has a k-dimensionalsubspace F with k � c logn which is isometric to `k1 . The example of X = `n1shows that this estimate is exact.An isomorphic version of this result is also possible [MW]: If d(X; `n2 ) � �pnfor some � 2 (0; 1), then X has a k-dimensional subspace F (with k = h(n)!1as n ! 1) which satis�es d(F; `k1) � c(�), where c(�) depends only on �. Theoriginal estimate for k in [MW] was later improved to k � c1(�) logn throughwork of Kashin, Bourgain and Tomczak-Jaegermann (see [TJ5] for details).An extension of this fact appears in [Pi1]: Recall that a Banach space Xcontains `n1 's uniformly if X contains a sequence of subspaces Fn; n 2 N withd(Fn; `n1 ) � C. Then, the following are equivalent:(i) X does not contain `n1 's uniformly.(ii) supfd(F; `n2 ) : F � X ; dimF = ng = o(pn).(iii) There exists a sequence �n = o(pn) with the following property: If Fis an n-dimensional subspace of X, there exists a projection P : X ! F withkPk � �n.In the non-symmetric case the extremal distance to the ball is n. Palmon [Pa]showed that d(K;Dn) = n if and only if K is a simplex.57



8. Tomczak-Jaegermann [TJ4] de�ned the weak distance wd(X;Y ) of twon-dimensional normed spaces X and Y by wd(X;Y ) = maxfq(X;Y ); q(Y;X)g,where q(X;Y ) = inf Z
 kS(!)k kT (!)k d!;and the inf is taken over all measure spaces 
 and all maps T : 
 ! L(X;Y ),S : 
 ! L(Y;X) such that R
 S(!) � T (!)d! = idX . It is not hard to checkthat wd(X;Y ) � d(X;Y ) and that with high probability the distance betweentwo Gluskin spaces is bounded by cpn. In fact, Rudelson [Ru1] has proved thatwd(X;Y ) � cn13=14 log15=7 n for all X;Y 2 Bn. It is conjectured that the weakdistance in Bn is always bounded by cpn.7.3. Symmetrization and approximation.Symmetrization procedures play an important role in Classical Convexity. Thequestion of how many successive symmetrizations of a certain type are neededin order to obtain from a given body K a body ~K which is close to a ball wasextensively studied with the methods of the local theory. This study led to thesurprising fact that only few such operations su�ce:Let K 2 Kn and u 2 Sn�1. Consider the reection �u with respect to thehyperplane orthogonal to u. The Minkowski symmetrization of K with respectto u is the convex body 12(K + �uK). Observe that this operation is linear andpreserves mean width. A randomMinkowski symmetrization ofK is a body �uK,where u is chosen randomly on Sn�1 with respect to the probability measure �.In [BLM1] it was proved that for every " > 0 there exists n0(") such that forevery n � n0 and K 2 Kn, if we perform N = Cn logn + c(")n independentrandom Minkowski symmetrizations on K we receive a convex body ~K such that(1� ")w(K)Dn � ~K � (1 + ")w(K)Dnwith probability greater than 1� exp(�c1(")n). The method of proof is closelyrelated to the concentration phenomenon for SO(n).The same question for Steiner symmetrization was studied in [BLM2]. Mani[Man] has proved that, starting with a body K 2 Kn, if we choose an in�niterandom sequence of directions uj 2 Sn�1 and apply successive Steiner sym-metrizations �uj of K in these directions, then we almost surely get a sequenceof convex bodies converging to a ball. The number of steps needed in order tobring K at a �xed distance from a ball is much smaller [BLM2]: If K 2 Kn withjKj = jDnj, we can �nd N � c1n logn and u1; : : : ; uN 2 Sn�1 such that(1) c�12 Dn � (�uN � : : : � �u1)(K) � c2Dn;where c1; c2 > 0 are absolute constants. It is not clear what the bound f(n; ")on N would be if we wanted to replace c2 by 1 � ", " 2 (0; 1). The proof of (1)is based on the previous result about Minkowski symmetrizations.58



Results of the same nature concern questions about approximation of con-vex bodies by Minkowski sums. The global form of Dvoretzky's theorem is anisomorphic statement of this type.Recall that a zonotope is a Minkowski sum of line segments, and a zonoid is abody in Rn which the Hausdor� limit of a sequence of zonotopes. A body is azonoid if and only if its polar body is the unit ball of an n-dimensional subspaceof L1(0; 1) (for this and other characterizations of zonoids, see [Bol]).The unit ball of `np is a zonoid if and only if 2 � p � 1 (see [Do]). Inparticular, the Euclidean unit ball Dn can be approximated arbitrarily well bysums of segments. The question of how many segments are needed in order tocome (1 + ")-close to Dn is equivalent to the problem of embedding `n2 into `N1 .From the results in [FLM] it follows that N � c(")n segments are enough. In[BLM3] it was shown, that the same bound on N allows us to choose the segmentshaving the same length. The linear dependence of N on n is optimal, but thebest possible answer if we view N as a function of both n and " is not known(see [BL1], [BL3], [BLM3], [Lin], [W]).If we replace the ball Dn by an arbitrary zonoid Z, then the same approxima-tion problem is equivalent to the question of embedding an n-dimensional sub-space of L1(0; 1) into `N1 . Bourgain, Lindenstrauss and Milman [BLM3] proved,by an adaptation of the empirical distribution method of Schechtman [Sch2], thatfor every " 2 (0; 1) there exist N � c"�2n logn and segments I1; : : : ; IN such that(1�")Z �P Ij � (1+")Z. Moreover, if the norm of Z is strictly convex then Ncan be chosen to be of the order of n up to a factor which depends on " and themodulus of convexity of k�kZ. Later, Talagrand [T1] showed (with a considerablysimpler approach) that one can have N � ckRadnk2X"�2n.For more information on this topic, we refer the reader to the surveys [Li],[LiM].7.4. Quasi-convex bodies.Many of the results that we presented about symmetric convex bodies can beextended to a much wider class of bodies. We have already discussed extensionsof the main facts to the non-symmetric convex case. We now briey discussextensions to the class of quasi-convex bodies.Recall that a star body K is called quasi-convex if K + K � cK for someconstant c > 0. Equivalently, if the gauge f of K satis�es (i) f(x) > 0 if x 6= o,(ii) f(�x) = j�jf(x) for any x 2 Rn, and (iii) f 2 C(�) i.e. there exists � 2 (0; 1]such that�f(x) � (f � f)(x) := infff(x1) + f(x2) ; x1 + x2 = xg ; x 2 Rn:A body K is called p-convex, p 2 (0; 1), if for any x; y 2 K and �; � > 0 with�p + �p = 1 we have �x+ �y 2 K. Every p-convex body K is quasi-convex, andK +K � 21=pK. Conversely, for every quasi-convex body K (with constant C)59



we can �nd a q-convex body K1 such that K � K1 � 2K, where 21=q = 2C (see[Rol]).Most of the basic results we described in the previous sections were extendedto this case. A version of the Dvoretzky-Rogers lemma and Dvoretzky's theoremwas proved by Dilworth [Di]. For the low M�-estimate and the quotient ofsubspace theorem in the quasi-convex setting, see [LMP] and [GK] respectively(see also [Mi13] for an isomorphic Euclidean regularization result and the randomversion of the QS-theorem). The reverse Brunn-Minkowski inequality is shown in[BBP]. For results on existence ofM -ellipsoids, entropy estimates and asymptoticformulas, see [LMP], [LMS] and [MP3]. In most of the cases, the tools which wereavailable from the convex case were not enough, and new techniques had to beinvented: some of them provided interesting alternative proofs of the known\convex results".7.5 Type and cotypeThe notions of type and cotype were introduced by Ho�mann-Jorgensen [HJ]in connection with limit theorems for independent Banach space valued randomvariables. Their importance for the study of geometric properties of Banachspaces was realized through the work of Maurey and Pisier (see the article [Mau2]in this collection for a discussion of the development of this theory).Given an n-dimensional normed space X, and 1 � p � 2 (2 � q <1, respec-tively), the type-p (cotype-q) constant Tp(X) (Cq(X)) of X is the smallest T > 0(C > 0) such that: for every m 2 N and x1; : : : ; xm 2 X, Z 10 www mXi=1 ri(t)xi ???2 dt!1=2 � T  mXi=1 kxikp!1=p :0@respectively;  mXi=1 kxikq!1=q � C Z 10 www mXi=1 ri(t)xi www2!1=2 : 1AIn [TJ2] it is shown that in order to determine Tp(X) and Cq(X) up to a factor4, it is enough to consider m � n. It is clear that T2(`n2 ) = C2(`n2 ) = 1 and,conversely, Kwapien [Kw] proved that d(X; `n2 ) � C2(X)T2(X).Let kp(X; "), 1 � p � 1, be the largest integer k � n for which `kp is 1 + "-isomorphic to a subspace of X (in this terminology, k(X) = k2(X; 4)). Thefollowing results show how type and cotype enter in the study of the linearstructure of a space:(i) In [FLM] it is shown that k2(X) � cn=C22(X) and k2(X) � cn2=q=C2q (X).This gives another proof of the facts k2(`np ) � cn; 1 � p � 2, and k2(`nq ) 'n2=q; q � 2. 60



(ii) In [Pi3] it is proved that kp(X; ") � c(p; ")Tp(X)q , where 1 < p < 2 and1p + 1q = 1. This generalizes the estimate kp(`n1 ; ") � c(p; ")n, 1 � p � 2, ofJohnson and Schechtman [JS1].(iii) A quantitative version of Krivine's theorem [AM2] states that, for everyA � ", kp(X; ") � c("; A)[kp(X;A)]c1("=A)p :Gowers [Gow1,2] obtained related estimates on the length of (1 + ")-symmetricbasic sequences in X.(iv) In [FLM] it is shown that if no cotype-q constant of X is bounded bya number independent of n, then X contains (1 + ")-isomorphic copies of `k1for large k. Alon and Milman [AlM], using combinatorial methods, provided aquantitative form of this fact: k2(X; 1)k1(X; 1) � exp(cplogn).Bourgain and Milman [BM2] proved that vr(KX ) � f(C2(X)). Thus, spaceswith bounded cotype-2 constant satisfy all consequences of bounded volume ratio(this had been independently observed, see e.g. [FLM],[DS]). Milman and Pisier[MPi] introduced the class of spaces with the weak cotype 2 property: X is weakcotype 2 if there exists � > 0 such that k2(E) � �dimE for every E � X. Onecan then prove that vr(E) � C(�) for every E � X [MPi].In 6.2 we saw that every n-dimensional normed space X has a subspace E withdimE � n=2 such that vr(KE� ) � C. This su�ces for a proof of the quotient ofsubspace theorem. However, the following question remains open: does every Xcontain a subspace E with dimE � n=2 such that C2(E�) � C? This problem isrelated to many open questions in the local theory (for a discussion see [Mi6,14]).Finally, let us mention the connection between Gaussian and Rademacheraverages [MaP]: Let X be an n-dimensional normed space, and fxjg be a �nitesequence in X. Then,r 2� 0@Z 10 wwwXj rj(t)xj www2 dt1A1=2 � 0@Z
 wwwXj gj(!)xj www2 d!1A1=2� c(1 + logn)1=20@Z 10 wwwXj rj(t)xj www2 dt1A1=2 :If X has bounded cotype-q constant Cq(X) for some q � 2, then the constant inthe right hand side inequality may be replaced by cpqCq(X).7.6. Non-linear type theoryLet (T; d) be a metric space, and Fn = f�1; 1gn with the normalized countingmeasure �n. An n-dimensional cube in T is a function f : Fn! T . For any suchf and i 2 f1; : : : ; ng, we de�ne(�if)(") = d(f("1; : : : ; "i; : : : ; "n); f("1; : : : ;�"i; : : : ; "n)):61



A metric space (T; d) has metric type p, 1 � p � 2, if there exists a constantC > 0 such that, for every n 2 N and every f : Fn ! T we have�ZFn d(f("); f(�"))2d�n�1=2 � Cn 1p�12 0@ nXj=1 ZFn (�jf("))2d�n1A1=2 :Every metric space has type 1, and if 1 � p1 � p2 � 2, metric type p2 impliesmetric type p1.Let � : (T1; d1) ! (T2; d2) be a map between metric spaces. The Lipschitznorm of � is de�ned by k�kLip = supt6=s d2(�(t); �(s))d1(t; s) :Let Fnp be the space Fn equipped with the metric induced by `np . We say that ametric space (T; d) contains Fnp 's (1+")-uniformly if for every n 2 N there exist asubset Tn � T and a bijection �n : Fnp ! Tn such that k�nkLipk��1n kLip � 1+ ".Bourgain, Milman and Wolfson [BMW] proved the following:Theorem 7.6.1. A metric space (T; d) has metric type p for some p > 1 if andonly if there exists " > 0 such that T does not contain Fn1 's (1 + ")-uniformly.A natural question which arises is to compare the notions of metric type andtype in the case where T is a normed space. An answer to this question wasgiven in [BMW], see also [Pi4]:Theorem 7.6.2. Let X be a Banach space and let 1 < p < 2.(i) If X has type (respectively, metric type) p, then X has metric type (respec-tively, type) p1 for all 1 � p1 < p.(ii) X contains Fn1 's uniformly if and only if X contains `n1 's uniformly.We refer the interested reader to [BMW], [Pi4] for the proofs of these facts,and a comparison with another notion of metric type which was earlier proposedby Eno [E2]. In [BMW] and [BFM] one can �nd a generalization of Dvoretzky'stheorem for metric spaces: For every " > 0 there exists a constant c(") > 0 withthe following property: every metric space T of cardinality N contains a subspaceS with cardinality at least c(") logN such that for some ~S � `2 with jSj = j ~Sjwe can �nd a bijection � : S ! ~S with k�kLipk��1kLip � 1 + " (this means thatS is (1 + ")-isomorphic to a subset of a Hilbert space).62
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