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DERIVATION OF THE EULER EQUATIONSFROM A CARICATURE OF COULOMBINTERACTIONYann Brenier�AbstractA caricature of collisionless plasma involving 2N particles of opposite chargeis introduced. The N �rst particles are called 'ions' and don't move. TheN other particles are called 'electrons'. At each time, there is a one-to-onematching between electrons and ions and each pair is linked by a 'spring' sothat each electron oscillates with �xed frequency ��1. The essential point isthat the matching between electrons and ions is updated at every discretetime n� , n = 0; 1; 2; :::, so that the total potential energy of the systemstays minimal. This leads to a non trivial interaction which turns out tobe a caricature of Coulomb interaction. It is proven that, provided the Nions are equally spaced in a bounded domain D and �, � and N�1 tendto zero at appropriate rates, the electrons behave as the uid parcels ofan incompressible inviscid liquid moving inside D according to the Eulerequations. Our proof relies on a result of P.Lax on the approximation ofvolume-preserving transformations by permutations.AMS classi�cation 35Q35-76C(82C22)Keywords : particles, permutations, Coulomb interaction, Plasma Physics,Fluid Mechanics, Euler equation, Poisson and Monge-Amp�ere equations.�Institut Universitaire de France, et Laboratoire d'analyse num�erique, Universit�e Paris6, France, brenier@ann.jussieu.fr 1



EULER EQUATIONS AND COULOMB INTERACTION1 Description of the dynamical systemConsider a smooth compact domain D in Rd with unit volume and setN particles inside D. These particles are called 'ions' and their positionsA1; :::; AN 2 D are supposed to be �xed. Now, consider N other particles,called 'electrons', moving in the Euclidean space Rd, with label � = 1; :::; Nand position X�(t) 2 Rd at time t. A time step � > 0 is �xed. In eachtime interval n� � t < (n + 1)� , there is a one-to-one pairing � ! ��between each electron X� and a corresponding ion A�� . A spring links eachpair so that each electron oscillates around the corresponding ion with �xedfrequency ��1 : �2X 00� +X� = A�� : (1)Of course, during the time interval n� < t < (n+ 1)� , the total energyE(t) = 12 jjX 0(t)jj2 + 12�2 jjX(t)� �Ajj2; (2)is preserved. (In this equation, the following notations have been used :X(t) = (X�(t))N�=1 ; A = (A�)N�=1 ;jjY jj2 = 1N X� jY�j2; �Y = (Y��)N�=1 ;for all Y = (Y�)N�=1 2 (Rd)N .)At each discrete time t = n� , the pairing is subject to change and � isupdated to keep minimal the potential energy, namely12�2 jjX(n�)� �Ajj2; (3)among all permutations. (Notice that they may be several solutions, inwhich case we arbitrarily choose one of them.) So, � is time dependent,piecewise constant, and denoted by �(t). Of course, we assume both posi-tions and velocities of each particle to be continuous at each discrete time n�and we prescribe their values at time 0. This gives a complete descriptionof the dynamical system. Notice that the total energy, de�ned by (2), ispreserved on each interval n� < t < (n + 1)� , and can only decay at eachtime n� , by de�nition of �(n�). So the total energy is a non-increasing func-tion of time. The possible dissipation is due to the fact that �(t) is updatedonly at t = n� , and not continuously in time (in which case, the systemwould be formally conservative). We have chosen to introduce the time step2



EULER EQUATIONS AND COULOMB INTERACTION� in order to have a non ambiguous de�nition of the dynamical system andalso to get a system that can be exactly integrated on a computer, withoutfurther approximation.2 Derivation of the Euler equationsThe motion of an incompressible inviscid liquid moving inside D is classicallydescribed by the Euler equations (see [AK], [MP], for example)@tv + (v:r)v+rp = 0; r:v = 0; (4)where p = p(t; x) 2 R is the pressure �eld, v = v(t; x) 2 Rd is the velocity�eld, which is supposed to be parallel to the boundary @D, so that thereis no material ux across the boundary. If the initial value v(0; x) 2 Rd issmooth, then the Euler equations have a unique smooth solution, which isglobally de�ned in time if d = 2 and locally if d = 3. Let us consider such asolution and �x a time interval [0; T ] on which v is well de�ned and denoteby C any constant depending only on D, T , v and p.Theorem 2.1 Assume that D can be split into N disjoint subdomains D�of equal volume and diameter not larger than Ch, where h = N�1=d, each ofthem containing one and only one ion A�. Assume that the initial positionsand velocities of the particles are given byX�(t = 0) = A�; X 0�(t = 0) = v(t = 0; A�); (5)for � = 1; :::; N. Scale the parameters �, � and h = N�1=d so thath � C�8; � � C�4: (6)Then 1N X� jX 0�(t)� v(t; X�(t))j2 � C�2: (7)Before giving the proof, we provide in the next section a geometricalinterpretation of the theorem and we explain why the interaction of theparticles can be seen as a caricature of Coulomb interaction. Of course, thereader only interested in the proof of the derivation of the Euler equationsmay go directly to section 4. 3



EULER EQUATIONS AND COULOMB INTERACTION3 Geometric and physical interpretations3.1 A geometric approximation to the Euler equationsLet us recall that the Euler equations, describing the motion of an inviscidincompressible uid moving inside a smooth bounded domain D of the Eu-clidean space Rd, have a nice geometric interpretation, for which we refer to[AK]. They describe the geodesics on the group G of all volume-preservingdi�eomorphisms of D, where length are measured in the L2 sense, G beingviewed as a subset of the Hilbert space H = L2(D;Rd). Of course, thiscorrespondence is somewhat formal and a lot of analytical di�culties areleft behind [Sh], one of them, for example, being that, for all d � 2, the L2closure of G is the (much larger) semi-group S of all Borel Lebesgue-measurepreserving map from D into itself.So, it is natural to look for either generalized ([Sh], [Br2]) or approximategeodesics. A simple way to de�ne approximate geodesics is to consider theformal dynamical systemX 00 +rX (d2H(X;G)2�2 ) = 0; (8)in the con�guration space H , where rX is the functional gradient in H andthe potential involves the distance in H between X and G (or, equivalently,between X and S, the L2 closure of G), namely :dH (X;G) = infg2G jjX � gjjH = infg2S jjX � gjjH = dH(X;S); (9)where jj:jjH is the Hilbert norm of H . (This approach is similar-but notidentical- to Ebin's slightly incompressible ow theory [Eb], see also [RU]for �nite dimensional mechanical systems.) To get an approximate �nite-dimensional Hamiltonian system, we set N points A1; :::; AN equally spacedin D, we substitute for H and G respectively (Rd)N and the �nite group ofall permutations of the A�f(A�1 ; :::; A�N) 2 (Rd)Ng;where � is any permutation of f1; :::; Ng, and we keep unchanged (8), (9).Finally, a more tractable dynamical system is obtained by introducing a timestep � and updating the potential energy only at discrete times n� . Thisexactly leads back to our system of particles and it is no longer surprisingthat the Euler equations can be recovered as �, n�1 and � go to zero.4



EULER EQUATIONS AND COULOMB INTERACTION3.2 A caricature of Coulomb interactionIn this subsection, we give a formal argument to show that our dynamicalsystem evolves according to a caricature of Coulomb interaction, which isnot so obvious. We �rst go back to formulation (8), where X should beconsidered as a time dependent square integrable map from D into Rd. Weintroduce �(t; x) = ZD �(x�X(t; a))da; (10)and we claim that, for each time t such that �(t; :) is absolutely continuouswith respect to the Lebesgue measure, equation (8) is equivalent to :X 00(t; a) = E(t; X(t; a)); 8a 2 D; (11)where the acceleration �eld E is given byE(t; x) = r	(t; x)� x�2 (12)and 	 is a solution of the Monge-Amp�ere equationdet(D2	(t; x)) = �(t; x); (13)where det(D2	) stands for the determinant of the second derivatives of	(t; x) with respect to x. To justify this claim, we refer to the polar fac-torization theorem for maps (see [Br],[Ca]). At each time t for which �(t; :)is absolutely continuous with respect to the Lebesgue measure, we write(Theorem 1.2, p.377 in [Br])X(t) = r�(t) � g(t); (14)where �(t) is a function on D, with convex extension to the convex hull ofD, and g(t) 2 S is a Lebesgue measure-preserving map from D into itself.The factor g(t) has additional properties (deduced from Theorem 1.2 andProposition 2.2, p.390, in [Br]). First, g(t) is the unique point in S thatminimizes the L2 distance to X(t). Next, X(t)� g(t) is the gradient ofX 2 H ! 12d2H(X;S))at point X = X(t). Finally, g(t) can be writteng(t) = r	(t) �X(t); (15)5



EULER EQUATIONS AND COULOMB INTERACTIONwhere 	 (the Legendre-Fenchel transform of � with respect to x 2 D) is aconvex solution (in a suitable sense [Br],[Ca]) of the Monge-Amp�ere equation(13). So, we have obtained from the polar factorization theorem thatrX (d2H (X(t); S)2 ) = X(t)�r	(t) �X(t) (16)and our claim is now justi�ed.So, we have obtained for the approximate geodesic equation (8) a Monge-Amp�ere formulation with (10), (13), (11) and (12).Now, as � is small, a natural ansatz for 	 is,	(t; x) = jxj22 � �2r�(t; x); (17)which, inserted in (12) and (13), respectively leads toE(t; x) = �r�(t; x); (18)�(t; x) = 1� �2��(t; x) + O(�4): (19)Dropping the O(�4) term in the last equation exactly gives the Poissonequation �(t; x) = 1� �2��(t; x); (20)which involves the Coulomb potential. Since equations (10), (11), (18),(20) correctly describe a collisionless plasma of electrons with a uniformion background and Coulomb interaction, we can say that our dynamicalsystem of particles (which is an approximation as h; � ! 0, � being �xed, ofequation (8)) is just a caricature which gets �ner as � tends to zero. Let us�nally observe that, in the very special case d = 1, there is no discrepancybetween the Monge-Amp�ere equation (13) and the Poisson equation (20)(because of (17)). Then, our dynamical system turns out to be an exactmodel of collisionless plasma, as shown in the Appendix.3.3 The semi-geostrophic equationsOur dynamical system has an interesting connection with another physicalmodel, namely Hoskins' frontogenesis model and the related semi-geostrophicequations in atmospheric sciences ([Ho], see also [CNP], [BB]). A discreteversion of this model has been discussed in [BN] and the correspondingparticle system (in two dimensions) is given byi:X 0�(t) +X�(t) = A��(t) (21)6



EULER EQUATIONS AND COULOMB INTERACTIONwhere i is the rotation matrix of angle �=2 in R2 and �(t) is de�ned exactlyin the same way as for our system of particles. In some vague sense, thisHamiltonian system has the same structural relationship with our systemthan the dynamical system for N vortex points in R2 [MP] has with thedynamical system of N electrons with Coulomb interaction in Rd.4 Proof of the main result4.1 NotationsIf Y 2 (Rd)N , v(t; Y ) stands for (v(t; Y�))N�=1 and notations v(t; X(t)),v(t; �(t)A) etc...will be used. Partial derivatives in @tf and @xif are de-noted by f;t and f;i. There will be automatic summation on repeated latinindices i; j and notation X�� = 1N X�will be used. When possible, the explicit dependence on t of X and � willbe omitted and capital letter will be used for functions of X , such as V pourv(t; X). For instance P��X�jV�i;j means1N NX�=1 dXj=1(X�)j(t)(@xjvi)(t; X�(t)):4.2 BoundsAccording to de�nition (2) and assumption (5), we have2E(0) = jjv(t = 0; A)jj2 � C:Since the total energy is non increasing, we deducejjX 0(t)jj � C; jjX(t)� �(t)Ajj � C�; jjX(t)jj � C: (22)4.3 Modulated energyLet us introduceEv(t) = 12 jjX 0(t)� v(t; X(t))jj2+ 12�2 jjX(t)� �(t)Ajj2; (23)7



EULER EQUATIONS AND COULOMB INTERACTIONwhich can be seen as a modulated energy depending on v. Let us computeits time derivative on each interval n� < t < (n+ 1)� , where we know thatthe total energy E(t) is preserved. We �ndddtEv(t) =X�� (�X 00�iV�i + (V�i �X 0�i)(V�i;t+ V�i;jX 0�j)) (24)from which we get, using (1),ddtEv(t) +X�� V�i;j(V�i �X 0�i)(V�j �X 0�j) (25)=X�� (V�i �X 0�i)(V�i;t+ V�jV�i;j) + V�iX�i � �A�i�2Rearranging (25), we obtainddtEv(t) +Q(t) = I1 + I2; (26)where Q is de�ned byX�� V�i;j(V�i�X 0�i)(V�j�X 0�j)� X�i � �A�i�2 (vi(t; X�)� vi(t; �A�)) (27)and I1, I2 by I1 =X�� ��2(X�i � �A�i)vi(t; �A�); (28)I2 =X�� (V�i �X 0�i)(V�i;t+ V�jV�i;j): (29)>From the Euler equations (4), we getV�i;t + V�jV�i;j = �(p;i)(t; X�) (30)After setting Dtp = p;t + vip;i; (31)we see that(Dtp)(t; X�) = ddt(p(t; X�)) + (p;i)(t; X�)(V�i �X 0�i):8



EULER EQUATIONS AND COULOMB INTERACTIONThus I2 becomes I2 = � ddtJ(t) + I3 + I4; (32)where J(t) = �X�� p(t; X�(t)); (33)I3 = �X�� (Dtp)(t; A�); (34)I4 =X�� (Dtp)(t; A�)� (Dtp)(t; X�)which is also I4 =X�� (Dtp)(t; �A�)� (Dtp)(t; X�): (35)We split I1 = I5 + I6 with I5 = �X�� ��2A�iV�i; (36)I6 =X�� ��2X�ivi(t; �A�) (37)and (26) becomesddt(Ev(t) + J(t)) +Q(t) = I3 + I4 + I5 + I6: (38)Since v is smooth, by de�nitions (23) and (27), we have�Q � CEv(t) (39)and therefore (38) impliesddt(Ev + J) � CEv + I3 + I4 + I5 + I6; (40)on each time interval n� < t < (n + 1)� . Since E(t) is preserved oneach of these intervals with non-positive jumps at each t = n� , we deducefrom de�nition (23) that Ev(t) have the same jumps at t = n� as E(t) and,therefore, (40) is valid for all 0 < t < T (in the sense of distributions).9



EULER EQUATIONS AND COULOMB INTERACTION4.4 Error estimatesLet us �rst observe that, because of the assumption on the location of theA�, we have, for all Lipschitz continuous function fj 1N X� f(A�)� ZD f(x)dxj � CLip(f)h: (41)(Indeed, each A� is assumed to belong to a D�, where each D� has volumeN�1 and diameter no larger than Ch.)We �rst consider I3 + I5, de�ned by (34), (36), that can be seen as a\quadrature formula" for the integral� ZD((@t + v(t; x):r)p(t; x)+ ��2x:v(t; x))dx: (42)Since v is divergence-free and parallel to @D, this integral is simplyddt Z p(t; x)dx: (43)But, the pressure can be normalized so thatZD p(t; x)dx = 0 (44)at each time t and jI3 + I5j � Ch��2 (45)follows from (41). We immediately obtain for I4, de�ned by (35),I4 � CjjX � �Ajj � C�E1=2v � 12Ev + C�2: (46)To deal with J , de�ned by (33), we observe on one hand thatjJ +X�� p(t; �A�)j � CjjX � �Ajj � 12Ev + C�2:and on the other hand thatX�� p(t; �A�) =X�� p(t; A�)is a quadrature formula for RD p(t; x)dx which is null by (44). ThereforejJ(t)j � 12Ev(t) + C(�2 + h): (47)10



EULER EQUATIONS AND COULOMB INTERACTIONMoreover, at t = 0, J(0) = �X�� p(t; A�) (48)is a quadrature for RD p(t; x)dx andjJ(0)j � Ch; (49)follows from (44) and (41). Let us �nally consider I6, the most interestingterm, de�ned by (37). Let us introduceI7 =X�� ��2X�i(t� )vi(t; �(t�)A�); (50)where where t� stands for the integer part of t=� , multiplied by � . Thus,I7 � I6 =X�� ��2(X�i(t� )�X�i(t))vi(t; �(t�)A�); (51)where the dependence in t and t� is explicitly written.We immediately get that I8 = I7 � I6 satis�esI8 � C��2jt� t� j sup0���T jjX 0(�)jjand, therefore, jI6 � I7j � C��2�; (52)follows from (22). Let us introduce an arti�cial time step � > 0 so thatsupa2D jv(t; a)� M(t; t+ �; a)� a� j � C�; (53)where we denote by M(t0; t1; a) the location in D at time t1 of a pointadvected by the velocity �eld v(t; x) and located at a at time t0. Let usintroduce I9 =X�� ��2X�i(t� )Mi(t; t+ �; �(t�)A�)� �(t�)A�i� (54)which is an approximation of I7, de�ned by (50). Indeed,jI7 � I9j � C���2jjX(t�)jj � C���2 (55)follows from (53) and (22). Since v is a smooth divergence-free vector �eld,parallel to @D, the mapping a ! M(t; t + �; :) is a Lebesgue measure-preserving Lipschitz transformation of D. Following a result of Lax [La], we11



EULER EQUATIONS AND COULOMB INTERACTIONobserve that such a transformation can be approximated, in sup norm withan error of order h, by a permutation of the A�. More precisely, there existsa permutation � such thatsup�=1;:::;N jM(t; t+ �; A�)� �A�j � Ch: (56)Thus jI9 � I10j � Ch� ��2 (57)where I10 =X�� ��2X�i(t�)�A�i � �(t�)A�i� : (58)This last expression is always non-positive, since, by construction (3), �(t�)satis�es jjX(t�)� �(t� )A�jj2 � jjX(t�)� �A�jj2:So, from (52), (55), (57) we deduceI6 � C(h� + � + �)��2: (59)Using (47), (45), (46) and (59) in the right-hand side of (40), we getddt (Ev + J) � C(Ev + J) + C(h� + � + �)��2 + C(�2 + h): (60)By setting the arti�cial parameter � equal to h1=2 and using assumption (6),we get (Ev + J)(t) � C(Ev + J)(0) + C�2:Since Ev(0) = 0 follows from assumption (5), we deduce from (47) and (49)that Ev(t) � C�2;which concludes the proof, by de�nition (23).Appendix : the one-dimensional caseAs already mentioned in subsection 3.2, we can expect, in the special cased = 1, that our dynamical system is an exact description of a collisionlessplasma of electrons with a �xed and uniform ion background (see [BR], [ZM],[MMZ], for some mathematical and numerical aspects of this model). Tocheck this statement, let us consider a uniform background of non-moving12



EULER EQUATIONS AND COULOMB INTERACTIONions in R3 and N layers of electrons, all of them being orthogonal to a �xedaxis. Each layer can be considered as a particle moving along this axis, withposition X�(t) 2 R at time t, for � = 1; :::; N . The electric �eld is scalar,depends on one space variable x 2 R and satis�es@xE(t; x) = 1� 1N X� �(x�X�(t)); (61)Thus we get for each particleX 00�(t) +X�(t) = 1N NX�=1H(X�(t)�X�(t))� E0(t); (62)where H stands for the Heaviside function, with conventionally H(0) = 1=2,and E0(t) depends on the boundary conditions we choose. Let us nowconsider each time t when all particles have di�erent locations, sort theirpositions by increasing order and denote by ��(t) the rank of the particlewith label �, for � = 1; :::; N: This de�nes a (time-dependent) permutation� = �(t) that can be easily seen as the one that minimizesX� jX�(t)� A�� j2 (63)where A� = (�� 1=2)=N , for � = 1; :::; N . Thus (62) becomesX 00�(t) +X�(t) = A��(t) � E0(t): (64)So, up to the choice of suitable boundary conditions to enforce E0(t) = 0, wehave recovered our system of particles (up to the further time discretizationwith time-step � > 0) with D = [0; 1] and the �ctitious 'ions' A� standingfor the ion background.AcknowledgmentsThe author thanks the Erwin Schr�odinger Institute (ESI), the Universityof Toronto and the Courant Institute where this work has been completed.This work has also been supported by TMR "asymptotic methods in kineticequations" and the program on Charged Particle Kinetics at the ESI.13
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