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Abstract

A caricature of collisionless plasma involving 2N particles of opposite charge
is introduced. The N first particles are called ’ions’ and don’t move. The
N other particles are called ’electrons’. At each time, there is a one-to-one
matching between electrons and ions and each pair is linked by a ’spring’ so
that each electron oscillates with fixed frequency e~'. The essential point is
that the matching between electrons and ions is updated at every discrete
time nr, n = 0,1,2,..., so that the total potential energy of the system
stays minimal. This leads to a non trivial interaction which turns out to
be a caricature of Coulomb interaction. It is proven that, provided the N
ions are equally spaced in a bounded domain D and €, 7 and N~' tend
to zero at appropriate rates, the electrons behave as the fluid parcels of
an incompressible inviscid liquid moving inside D according to the Euler
equations. Qur proof relies on a result of P.Lax on the approximation of
volume-preserving transformations by permutations.
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1 Description of the dynamical system

Consider a smooth compact domain D in R? with unit volume and set
N particles inside D). These particles are called ’ions’ and their positions
Ay, ..., Ay € D are supposed to be fixed. Now, consider N other particles,
called ’electrons’, moving in the Euclidean space R?, with label a = 1,..., N
and position X, (t) € R? at time t. A time step 7 > 0 is fixed. In each
time interval nt < t < (n 4 1)7, there is a one-to-one pairing o — o,
between each electron X, and a corresponding ion A,_. A spring links each
pair so that each electron oscillates around the corresponding ion with fixed
frequency €1 :

X+ Xy = A, (1)
Of course, during the time interval nT < ¢t < (n 4 1)7, the total energy
L2 1 2
B(#) = SIX 0P + 51X (1)~ oAl )

is preserved. (In this equation, the following notations have been used :

X(t) = (Xa (1)

=1’

A= (Aa))

a=1"

1
(U S ATE S (AN
for all Y = (Y)Y € (RH)V)
At each discrete time ¢ = nr, the pairing is subject to change and o is
updated to keep minimal the potential energy, namely

1
S llX () = oAl 3)

among all permutations. (Notice that they may be several solutions, in
which case we arbitrarily choose one of them.) So, ¢ is time dependent,
piecewise constant, and denoted by o(t). Of course, we assume both posi-
tions and velocities of each particle to be continuous at each discrete time nr
and we prescribe their values at time 0. This gives a complete description
of the dynamical system. Notice that the total energy, defined by (2), is
preserved on each interval nt < t < (n+ 1)1, and can only decay at each
time n7, by definition of o(n7). So the total energy is a non-increasing func-
tion of time. The possible dissipation is due to the fact that o(¢) is updated
only at t = n7, and not continuously in time (in which case, the system
would be formally conservative). We have chosen to introduce the time step
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7 in order to have a non ambiguous definition of the dynamical system and
also to get a system that can be exactly integrated on a computer, without
further approximation.

2 Derivation of the Euler equations

The motion of an incompressible inviscid liquid moving inside D is classically
described by the Euler equations (see [AK], [MP], for example)

v+ (v.Vuv+Vp=0, V.u=0, (4)

where p =p(t,z) € R is the pressure field, v =v(t,z) € R? is the velocity
field, which is supposed to be parallel to the boundary @D, so that there
is no material flux across the boundary. If the initial value v(0,z) € R? is
smooth, then the Euler equations have a unique smooth solution, which is
globally defined in time if d = 2 and locally if d = 3. Let us consider such a
solution and fix a time interval [0, 7] on which v is well defined and denote
by C any constant depending only on D, T, v and p.

Theorem 2.1 Assume that D can be split into N disjoint subdomains D,,
of equal volume and diameter not larger than Ch, where h = N~V each of
them containing one and only one ion A,. Assume that the initial positions
and velocities of the particles are given by

Xo(t=0)=A4,, X, (t=0)=0v(t=0,4,), (5)
for ao=1,...,N. Scale the parameters ¢, T and h = N~Y4 so that

h<Ceé, <O (6)

Then
%Zp{&(t) — ot Xa ()2 < Ce2. (7)

Before giving the proof, we provide in the next section a geometrical
interpretation of the theorem and we explain why the interaction of the
particles can be seen as a caricature of Coulomb interaction. Of course, the
reader only interested in the proof of the derivation of the Euler equations
may go directly to section 4.
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3 Geometric and physical interpretations

3.1 A geometric approximation to the Euler equations

Let us recall that the Euler equations, describing the motion of an inviscid
incompressible fluid moving inside a smooth bounded domain D of the Eu-
clidean space R?, have a nice geometric interpretation, for which we refer to
[AK]. They describe the geodesics on the group G of all volume-preserving
diffeomorphisms of D, where length are measured in the L? sense, G being
viewed as a subset of the Hilbert space H = LQ(D,Rd). Of course, this
correspondence is somewhat formal and a lot of analytical difficulties are
left behind [Sh], one of them, for example, being that, for all d > 2, the L?
closure of (7 is the (much larger) semi-group S of all Borel Lebesgue-measure
preserving map from D into itself.

So, it is natural to look for either generalized ([Sh], [Br2]) or approximate
geodesics. A simple way to define approximate geodesics is to consider the
formal dynamical system

&2 (X, G
xt v (5G9 ®)

2¢2 )=
in the configuration space I, where Vx is the functional gradient in [ and
the potential involves the distance in H between X and G (or, equivalently,
between X and S, the L? closure of ), namely :

0,(X.G) = nf X = gll, = L [1X = gll, =, (X.9). ()

where ||.]|; is the Hilbert norm of H. (This approach is similar-but not
identical- to Ebin’s slightly incompressible flow theory [Eb], see also [RU]
for finite dimensional mechanical systems.) To get an approximate finite-
dimensional Hamiltonian system, we set N points Ay, ..., Ay equally spaced
in D, we substitute for H and G respectively (Rd)N and the finite group of
all permutations of the A,

{(AUN e AC"N) € (Rd)N}7

where o is any permutation of {1,..., N}, and we keep unchanged (8), (9).
Finally, a more tractable dynamical system is obtained by introducing a time
step 7 and updating the potential energy only at discrete times nr. This
exactly leads back to our system of particles and it is no longer surprising
that the Euler equations can be recovered as e, n~! and 7 go to zero.
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3.2 A caricature of Coulomb interaction

In this subsection, we give a formal argument to show that our dynamical
system evolves according to a caricature of Coulomb interaction, which is
not so obvious. We first go back to formulation (8), where X should be
considered as a time dependent square integrable map from D into R?. We
introduce

p@xp3é5@—xuﬂ»m, (10)

and we claim that, for each time ¢ such that p(¢,.) is absolutely continuous
with respect to the Lebesgue measure, equation (8) is equivalent to :

X"(t,a) = E(t, X (t,a)), Ya € D, (11)

where the acceleration field F is given by

Wt x) —
E(t,z) = Lf)gc (12)
€
and W is a solution of the Monge-Ampere equation
det(DXW(t,2)) = plt, o), (13)

where det(D?*W) stands for the determinant of the second derivatives of
W(t, z) with respect to z. To justify this claim, we refer to the polar fac-
torization theorem for maps (see [Br],[Ca]). At each time ¢ for which p(¢, .)
is absolutely continuous with respect to the Lebesgue measure, we write
(Theorem 1.2, p.377 in [Br])

X(t)=Vo(t)og(t), (14)

where ®(t) is a function on D, with convex extension to the convex hull of
D, and ¢g(t) € S is a Lebesgue measure-preserving map from D into itself.
The factor g(¢) has additional properties (deduced from Theorem 1.2 and
Proposition 2.2, p.390, in [Br]). First, ¢(¢) is the unique point in S that
minimizes the L? distance to X (¢). Next, X (t) — g(¢) is the gradient of

1
XeH~— 5@(}(, S))
at point X = X (¢). Finally, ¢(f) can be written

g(t) =VU(t) o X(1), (15)
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where U (the Legendre-Fenchel transform of ® with respect to # € D) is a
convex solution (in a suitable sense [Br],[Cal) of the Monge-Ampeére equation
(13). So, we have obtained from the polar factorization theorem that

& (X (1), 5)

x () =X () = VI 0 X (1) (16)

and our claim is now justified.
So, we have obtained for the approximate geodesic equation (8) a Monge-
Ampere formulation with (10), (13), (11) and (12).
Now, as ¢ is small, a natural ansatz for ¥ is,
_ P
Ut ,z)= eVol(t, x), (17)
which, inserted in (12) and (13), respectively leads to
E(t,2) = ~Vo(t,a), (18)
plt,2) = 1— EAb(t,2) + O(cY). (19)

Dropping the O(e*) term in the last equation exactly gives the Poisson
equation

p(t,x) =1—EA¢(t, z), (20)

which involves the Coulomb potential. Since equations (10), (11), (18),
(20) correctly describe a collisionless plasma of electrons with a uniform
ion background and Coulomb interaction, we can say that our dynamical
system of particles (which is an approximation as h, 7 — 0, € being fixed, of
equation (8)) is just a caricature which gets finer as ¢ tends to zero. Let us
finally observe that, in the very special case d = 1, there is no discrepancy
between the Monge-Ampere equation (13) and the Poisson equation (20)
(because of (17)). Then, our dynamical system turns out to be an exact
model of collisionless plasma, as shown in the Appendix.

3.3 The semi-geostrophic equations

Our dynamical system has an interesting connection with another physical
model, namely Hoskins’ frontogenesis model and the related semi-geostrophic
equations in atmospheric sciences ([Ho], see also [CNP], [BB]). A discrete
version of this model has been discussed in [BN] and the corresponding
particle system (in two dimensions) is given by

LX) + Xolt) = Auyy (21)



EULER EQUATIONS AND COULOMB INTERACTION

where 7 is the rotation matrix of angle 7/2 in R? and o(¢) is defined exactly
in the same way as for our system of particles. In some vague sense, this
Hamiltonian system has the same structural relationship with our system
than the dynamical system for N vortex points in R* [MP] has with the
dynamical system of N electrons with Coulomb interaction in R%.

4 Proof of the main result

4.1 Notations

IfY € (RYN, v(t,Y) stands for (v(t,Y,))Y | and notations v(t, X (1)),
v(t,0(t)A) ete...will be used. Partial derivatives in 0;f and 0, f are de-
noted by f; and f;. There will be automatic summation on repeated latin

indices 7, 7 and notation

o

O

will be used. When possible, the explicit dependence on t of X and o will
be omitted and capital letter will be used for functions of X, such as V' pour
v(t, X). For instance }°", X,;V,i; means

1N
PP

a=1j

(Xa)§ (1) (0, 00) (t; Xa(t))-

d
=1

4.2 Bounds

According to definition (2) and assumption (5), we have
212(0) = [lo(t = 0, A)|[* < C.
Since the total energy is non increasing, we deduce
XA <C, IX([H) —o@®Al] < Ce, |IX@) < C. (22)
4.3 Modulated energy

Let us introduce

Euf) = SIX(0) — ot XONP+ 55X () oA, (23)

7
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which can be seen as a modulated energy depending on v. Let us compute
its time derivative on each interval nt < ¢ < (n 4 1)1, where we know that
the total energy E'(t) is preserved. We find

d

g o) = 30T (= XV (Vo = X0 Vot + Var jX0,)) - (24)

from which we get, using (1),

d <
B D Vai (Vai = X0i) (Vo — X5y) (25)
* oni - UAai
= (Vai = X50) (Vaie + Vi Vaig) + Voim——7——
Rearranging (25), we obtain
d
L0+ Q) =L+ b, (26)

where () is defined by

oni - UAai

T (1, X ) = wilt, 0 AL)) (27)

> Vi (Vai = X)) (Vay = X1 —

€

and Iy, Iy by

L= 2 (Xoi — 0 AL)vilt, 0 AL), (28)

Iy = 37 Voi = X0 Vi VoV ). (29)
JFrom the Euler equations (4), we get

Vait + Vo Vais = —(p4) (8, X,) (30)

After setting
Dip=ps+vip,, (31)

we see that

(Dep) 1 Xa) = (0t X))+ () (1 X2 (Vas = X
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Thus I3 becomes

I, = —%J(t) + Is + 14, (32)
where

J(t) = =" plt, Xa(t)), (33)

13 = - Z* (Dtp) (tv Aa)7 (34)

I =Y (D) (t, Aa) — (Dip)(t, Xo)

which is also

L =Y " (Dp)(t, 0 A) — (Dip) (t, Xo). (35)

O

We split Iy = Is + Ig with

Is = — Z* 6_2Aaivozi7 (36)
I =Y €2 X vi(t, 0 AL) (37)
and (26) becomes
d
%(Ev(t)JrJ(t))JrQ(t) = I3+ 14+ Is + Is. (38)

Since v is smooth, by definitions (23) and (27), we have

and therefore (38) implies

d
B+ J) SCE + Iy + L+ I + (40)

on each time interval nt < ¢t < (n + 1)7. Since F(t) is preserved on
each of these intervals with non-positive jumps at each t = n7, we deduce
from definition (23) that F,(t) have the same jumps at t = n7 as I/(t) and,
therefore, (40) is valid for all 0 < ¢ < T (in the sense of distributions).
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4.4 Error estimates

Let us first observe that, because of the assumption on the location of the
A, , we have, for all Lipschitz continuous function f

3 S04 = [ f@)dal < CLip(Dh (1)

(Indeed, each A, is assumed to belong to a D,, where each D, has volume
N~! and diameter no larger than Ch.)

We first consider I3 + I5, defined by (34), (36), that can be seen as a
“quadrature formula” for the integral

—/ (D, + o(t, 2).V)p(t, 2) + € 2a.v(t, 2))de. (42)
D
Since v is divergence-free and parallel to 9D, this integral is simply
i/ t.x)d 43
& pit, 2y, (13)
But, the pressure can be normalized so that
/ p(t,2)dz =0 (44)
D
at each time ¢ and
|I5 4 Is| < Che™? (45)

follows from (41). We immediately obtain for I4, defined by (35),
1
I, < C||IX —0A|| < CeEN? < 5B + et (46)
To deal with J, defined by (33), we observe on one hand that
* 1
|J+Z.; p(t; o Ao)| < ClIX = oAl < S B, + O,

and on the other hand that

S plt oAl =D plt, As)

is a quadrature formula for [, p(t, z)dz which is null by (44). Therefore
1
(O] < SE(t) + C (e + h). (47)

10
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Moreover, at t = 0,

J0) = =3 p(t, Ad) (48)

O

is a quadrature for [, p(t,z)dz and
()] < Ch, (19)

follows from (44) and (41). Let us finally consider Is, the most interesting
term, defined by (37). Let us introduce

I =Y e Xt ot o (1) Aa), (50)
where where ¢, stands for the integer part of t/7, multiplied by 7. Thus,

I —Is =Y €3 (Xui(ts) — Xai(®)vilt, o () A), (51)

O

where the dependence in ¢t and ¢, is explicitly written.
We immediately get that Is = Ir — I satisfies

Is < Ce 2|t —t.| sup [|X'(0)]|
0<6<T

and, therefore,
|l — I7] < Ce?r, (52)

follows from (22). Let us introduce an artificial time step 6 > 0 so that

Mt t+6 —
sup [o(t, a) — LS

up | < C8, (53)

where we denote by M (to,t1,a) the location in D at time t; of a point
advected by the velocity field v(¢,z) and located at a at time #y. Let us
introduce

fo= Y 2 Xty ML L E P "(“QA“) A (54)

which is an approximation of I, defined by (50). Indeed,
17— Io] < COP|X (1,)]| < OB (55)

follows from (53) and (22). Since v is a smooth divergence-free vector field,
parallel to 9D, the mapping a — M(t,¢t + 6,.) is a Lebesgue measure-
preserving Lipschitz transformation of D. Following a result of Lax [La], we

11
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observe that such a transformation can be approximated, in sup norm with
an error of order h, by a permutation of the A,. More precisely, there exists
a permutation n such that

sup |[M(t,t4 0, A,) — nA,| < Ch. (56)
a=1,....,\N
Thus
h _,
|Ig—]10| SC@G (57)
where A (1)
Tio — * _QXMtTn ai — Ol\lr ozi‘
10 Z € (t7) 9 (58)

O

This last expression is always non-positive, since, by construction (3), o(¢;)
satisfies

1X () = o(t:) Aall* < [X (t7) = Al
So, from (52), (55), (57) we deduce

Is < C(%+0+r)e—2. (59)

Using (47), (45), (46) and (59) in the right-hand side of (40), we get

d h

%(EUJFJ) gC(EU+J)+C(5+0+r)e‘2+0(62+h). (60)
By setting the artificial parameter 8 equal to h'/% and using assumption (6),
we get

(B, +J)(t) < C(B, + J)(0) + Cé.

Since E,(0) = 0 follows from assumption (5), we deduce from (47) and (49)
that
E,(t) < C¢,

which concludes the proof, by definition (23).

Appendix : the one-dimensional case

As already mentioned in subsection 3.2, we can expect, in the special case
d = 1, that our dynamical system is an exact description of a collisionless
plasma of electrons with a fixed and uniform ion background (see [BR], [ZM],
[MMZ], for some mathematical and numerical aspects of this model). To
check this statement, let us consider a uniform background of non-moving

12
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ions in R® and N layers of electrons, all of them being orthogonal to a fixed
axis. Each layer can be considered as a particle moving along this axis, with
position X, (t) € R at time ¢, for a = 1,..., N. The electric field is scalar,
depends on one space variable z € R and satisfies

D E(t,a) =1 — %25@ X)), (61)

Thus we get for each particle
1 N
XU+ Xa(t) = 5 D2 H(Xa(t) = Xp(t)) = Eolt), (62)
/=1

where H stands for the Heaviside function, with conventionally H(0) = 1/2,
and FEy(t) depends on the boundary conditions we choose. Let us now
consider each time ¢ when all particles have different locations, sort their
positions by increasing order and denote by o,(¢) the rank of the particle
with label a, for & = 1, ..., N. This defines a (time-dependent) permutation
o = o(t) that can be easily seen as the one that minimizes

> Xa(t) = Al (63)

where A, = (o —1/2)/N, for a« =1, ..., N. Thus (62) becomes
Xa(8) + Xo(t) = Agoir) — Eol). (64)

So, up to the choice of suitable boundary conditions to enforce Fy(t) = 0, we
have recovered our system of particles (up to the further time discretization
with time-step 7 > 0) with D = [0, 1] and the fictitious "ions’ A, standing
for the ion background.
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