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UNIFORM ALGEBRAS AS BANACH SPACEST.W. Gamelin S.V. Kislyakov�June 25, 1999AbstractAny Banach space can be realized as a direct summand of a uniform algebra, andone does not expect an arbitrary uniform algebra to have an abundance of propertiesnot common to all Banach spaces. One general result concerning arbitrary uniformalgebras is that no proper uniform algebra is linearly homeomorphic to a C(K)-space.Nevertheless many speci�c uniform algebras arising in complex analysis share (or aresuspected to share) certain Banach space properties of C(K). We discuss the familyof tight algebras, which includes algebras of analytic functions on strictly pseudocon-vex domains and algebras associated with rational approximation theory in the plane.Tight algebras are in some sense close to C(K)-spaces, and along with C(K)-spacesthey have the Pe lczy�nski and the Dunford{Pettis properties. We also focus on certainproperties of C(K)-spaces that are inherited by the disk algebra. This includes a dis-cussion of interpolation between Hp-spaces and Bourgain's extension of Grothendieck'stheorem to the disk algebra. We conclude with a brief description of linear deformationsof uniform algebras and a brief survey of the known classi�cation results.
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1 Uniform AlgebrasA uniform algebra is a closed subalgebra A of the complex algebra C(K) that contains theconstants and separates points. HereK is a compact Hausdor� space, and A is endowed withthe supremum norm inherited from C(K). The algebra A is said to be proper if A 6= C(K).Uniform algebras arise naturally in connection with problems in approximation theory. Themain examples of proper uniform algebras come from complex analysis. The prototypicalproper uniform algebra is the disk algebra, which we denote simply by CA, consisting of theanalytic functions on the open unit disk in the complex plane that extend continuously tothe boundary �. More generally, if K is a compact subset of Cn, we denote by A(K), or byCA(K), the algebra of functions continuous on K and analytic on the interior of K. Also, wemay consider the uniform closure of the restriction to K of some algebras of \elementary"holomorphic functions, such as analytic polynomials, or rational functions with singularitieso� K. The uniform closure of the rational functions with singularities o� K is denoted byR(K). IfK is a compact subset of the complex plane, Runge's approximation theorem assertsthat R(K) includes the functions that are analytic in a neighborhood of K. It may occurthat R(K) is a proper subalgebra of C(K) even when K has empty interior. Other uniformalgebras, associated with a domain D in Cn, are the algebra A(D) of analytic functions onD that extend continuously to the closure of D, and the algebra H1(D) consisting of allbounded analytic functions on D. Endowed with the supremum norm on D, the algebraH1(D) becomes a uniform algebra on the smallest compacti�cation of D to which thefunctions extend continuously. In the case of the open unit disk � = fjzj < 1g, we mayidentify H1(�) with a closed subalgebra H1(d�) of L1(d�) via nontangential boundaryvalues, where d� is the arc-length measure on the unit circle.One of the goals in studying uniform algebras is to use the tools of functional analysisand the Gelfand theory in order to prove approximation theorems or to understand why ap-proximation fails. Mergelyan's theorem, that R(K) = A(K) wheneverK is a compact subsetof the complex plane whose complement has a �nite number of components, was eventuallygiven a proof, by Glicksberg and Wermer, that depends on uniform-algebra techniques and aless di�cult theorem of Walsh on approximation by harmonic functions. We quote two otherapproximation theorems, whose proofs depend on the algebra structure and on techniquesof functional analysis.Theorem (Wermer [We]). Let A be a (not necessarily closed) algebra of analyticfunctions on the unit circle � in the complex plane. Suppose that A separates the points of�, and that each function in A extends to be analytic in a neighborhood of �. Then either A3



is dense in C(�); or else there is a �nite bordered Riemann surface with border � such thatthe functions in A extend to be analytic on the surface.Theorem (Davie [Da]). Let �K be the area measure on a compact subset K of thecomplex plane, and let H1(�K) be the weak-star closure of R(K) in L1(�K). Then eachf 2 H1(�K) is approximable pointwise a.e. on K by a sequence of functions fn 2 R(K)such that jjfnjj � jjf jj.In some sense, uniform algebra theory can be regarded as an abstract study of themaximum principle for algebras. For an incisive account of this aspect of the theory, see[AWe]. Uniform algebra theory has also served as a source of interesting problems. One suchproblem, originally raised by S. Kakutani, asked whether the open unit disk � is dense inthe spectrum of the algebra H1(�). This problem became known as the \corona problem."It was answered a�rmatively by L. Carleson (see [Gar]). While the corona theorem per sehas not played a really signi�cant role in analysis, the techniques that were devised to solvethe problem have played an important role in function theory.The question arises as to the extent that properties of various uniform algebras dependonly on their linear structure. From the point of view of Banach spaces, how special areuniform algebras? We will see in Section 2 that generic uniform algebras are as bad asgeneric Banach spaces, in the sense that any Banach space is isometric to a complementedsubspace of a uniform algebra. On the other hand, we will show in Section 3 that a properuniform algebra is distinct as a Banach space from C(K). In fact, no proper uniform algebrais linearly isomorphic to a complemented subspace of a C(K)-space, or even to a quotientof a C(K)-space.It is of interest to know which properties of C(K) are inherited by uniform algebras.Towards answering this question, a great deal of e�ort has gone into determining whichproperties of C(�) are passed down to the disk algebra CA. Some of the known results aresummarized in the table below.At present there is no uni�ed theory but rather only fragmented results on uniformalgebras as Banach spaces. Our aim in this article is to present a selection of results in orderto give an idea of what has been studied and what problems are currently open. Sometimesproofs or indications of proofs are also given, to convey the 
avor of the techniques that areemployed.Section 2 includes a brief introduction to algebras of analytic functions on domains in4



Banach spaces. In Section 3 we show how some basic facts about p-summing and p-integraloperators lead to several characterizations of proper uniform algebras. Sections 4 and 5 aredevoted to certain properties that involve weak compactness. The properties are well-knownfor C(K)-spaces, and they are inherited by algebras generated by analytic functions onplanar sets and on strictly pseudoconvex domains, where the key ingredient is the solvabilityof a �@-problem.Property of X = C(K) or X = CA C(K) CA ReferenceX is a (linear) quotient of C(S) Yes No x3X�� is complemented in a Banach lattice Yes No x3X� has the Dunford-Pettis property Yes Yes x5X has the Pe lczy�nski property Yes Yes x5X� is weakly sequentially complete Yes Yes x5X has a basis Yes if K is metric Yes [Woj]X veri�es Grothendieck's theorem Yes Yes x6X has a complemented copy of C(�) Yes if K is metric Yes [Woj]and uncountableIn Sections 6 through 8 we talk of properties that are more speci�c to the disk algebraCA. We focus on Bourgain's extension of Grothendieck's theorem to the disk algebra obtainedin [B1, B2]. This subject was treated in detail in the survey [K2]. The exposition here willfollow the ideas of [K2] with slight simpli�cations at some points, and with emphasis on theinterpolatory nature of the proofs. The extension of Grothendieck's theorem is discussed inSection 6, and the results on interpolation used in the proofs are dealt with in Section 7.Section 8 includes a brief account of Bourgain projections, the main technical tool used byBourgain to transfer results from continuous to analytic functions.A good deal of the material presented here has already been discussed in various mono-graphs and expository papers. We mention particularly the early lecture notes of Pe lczy�nski[Pe], and the research monographs of Wojtaszczyk [Woj] and of Diestel, Jarchow, and Tonge[DJT]. For background on uniform algebra theory, see [Gam1], [Sto], and [AWe]. For Davie'stheorem, see also [Gam2]. The basic Hardy space theory that we refer to is covered in [Du],[Gar], and [Hof]. One reference for several complex variables and pseudoconvexity is [Ra].The expository papers [K2] and [K4] also cover in part the material of the present article.We collect here some standard notation and conventions. We denote by � the unitcircle fjzj = 1g in the complex plane, and by dm = d�=2� the normalized arc-length measureon �. The Hilbert transform on L1(dm) is denoted by H. We denote by CA the disk algebra,which is the uniform closure of the analytic polynomials in C(�). The algebra of boundedanalytic functions on a domain D is denoted by H1(D). If A is a linear space of functions5



on K, and � is a measure on K, then H1(A;�) will denote the weak-star closure of A inL1(�). The generic Banach space, or quasi-Banach space, is denoted by X. The closed unitball of a Banach space X is denoted by BX , and the open unit ball by B�X . The image of aBanach space X in its bidual X�� under the canonical embedding is denoted by X̂.
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2 Analytic Functions on Banach SpacesWe wish to develop some examples of algebras of analytic functions de�ned on domains in aBanach space.A complex-valued function on an open subset of a Banach space X is analytic if itis locally bounded and its restriction to every complex one-dimensional a�ne subspace ofX is analytic. In other words, f is analytic on D if f is locally bounded, and if for everyx0 2 D and direction x 2 X, the function � 7! f(x0 + �x) depends analytically on �. Sums,products, and uniform limits of analytic functions are analytic.A locally bounded function f on D is analytic just as soon as its restriction to D \Yis analytic for every �nite-dimensional subspace Y of X. Thus any statement about analyticfunctions that involves only a �nite number of points of X will hold in general once it holdsfor analytic functions of several complex variables.Let f be analytic on a domain D in a Banach space X. Suppose 0 2 D, and supposejf(x)j � C for kxk < r. For �xed x 2 X, the function � 7! f(�x) has a Taylor seriesexpansion f(�x) = 1Xm=0Am(x)�m; j�j < r=kxk:One checks easily that eachAm(x) is m-homogeneous, that is,Am(�x) = �mAm(x). From theCauchy estimates we have jAm(x)j � Ckxkm=rm, and consequentlyAm(x) is locally bounded.If we restrict the expansion f(x) =PAm(x) to a �nite dimensional subspace of X, we obtainthe usual expansion of an analytic function as a series of m-homogeneous polynomials. Inparticular, Am(x) depends analytically on x in any �nite-dimensional subspace of X, andsince it is locally bounded, it is analytic.Let Pm = Pm(X) denote the space of analytic functions onX that arem-homogeneous.We endow Pm with the supremum norm over the unit ball BX of X, and then Pm becomes aBanach space. The Cauchy estimates show that the correspondence f 7! Am is a norm-oneprojection from the space H1(B�X) of bounded analytic functions on the open unit ball ofX to Pm.The �rst Taylor coe�cient in the expansion of an analytic function f at 0 coincideswith the usual Fr�echet derivative f 0(0) of f at 0, whose de�ning property is that f(x) =f(0) + f 0(0)(x) + o(kxk) as x ! 0. The Fr�echet derivative f 0(0) is a continuous linearfunctional on X, and the space P1 coincides with the dual space X� of X.7



Theorem 2.1 (Milne [Mi]). Any Banach space is isometric to a complementedsubspace of a uniform algebra.To prove the theorem, we let K = BX� be the closed unit ball of the dual space X�of X, endowed with the weak-star topology. Recall that X̂ denotes the canonical image ofX in X��. The restriction of X̂ to K is a closed subspace of C(K). Let A be the uniformalgebra on K generated by X̂. The functions in A are analytic on the open unit ball of X�,hence have Taylor expansions f(x�) = PAm(x�). The norm-one projection f 7! A1 intoP1(X�) is the identity on X̂, and it projects any m-homogeneous polynomial in elements ofX̂ to 0 if m 6= 1. Thus if we pass to uniform limits of sums of polynomials in elements of X̂,we obtain a norm-one projection of A onto X̂ �= X.We could as well obtain the same result by considering the algebra A(BX�) of weak-star continuous functions on BX� that are analytic on the open unit ball of X�. It is notdi�cult to check that the projection of A(BX�) onto P1(X�) �= X�� maps A(BX�) ontolinear functionals that are weak-star continuous on BX�, thus onto X. However, it is shownin [ACG] that the algebra A(BX�) need not coincide with the algebra generated by theweak-star continuous linear functionals. Along these lines, it is not even known whether themaximal ideal space of A(BX�) coincides with BX�.There is an expanding literature about polynomials on Banach spaces and aboutuniform algebras associated to Banach spaces (see [Din], [GJL]). The study of polynomialsfocuses on the spaces Pm, which can be viewed as spaces of multilinear functionals on X.Every continuous m-homogeneous polynomial f on X is the restriction to the diagonal of aunique continuous symmetric m-linear functional F on X � � � � �X. This F is given by thepolarization formulaF (x1; : : : ; xm) = 1m!2m X "1 � � � "mf("1x1 + � � �+ "mxm);the summation being extended over the 2m independent choices of "j = �1 (exercise). Thesame formula shows that the norm in Pm is equivalent to the multilinear functional norm,though the spaces are not isometric in general. The space Pm can also be viewed as the dualspace of the m-fold symmetric projective tensor product of X with itself. For background,see [Mu], [Gam3]. 8



3 Characterization of Proper SubalgebrasIn this section we shall prove that if a uniform algebra is proper, then it di�ers as a Banachspace from any space C(K). The crux of the proof is that every absolutely summing operatorfrom C(K) to a re
exive space is compact, while we construct on any proper uniform algebraan operator to `2 that is absolutely summing but not compact.Let X and Y be Banach spaces, and let 0 < p � q <1. An operator T : X ! Y issaid to be (q; p)-summing if�X kTxjkq�1=q � C sup��X jx�(xj)jp�1=p : x� 2 X�; kx�k � 1� (3.1)for every �nite collection fxjg of elements of X. The best constant C is denoted by �q;p(T ).The class of such operators forms an operator ideal, in the sense that precompositions andpostcompositions with bounded operators remain within the class, and further the usualestimates for norms hold.If p = q, (3.1) coincides with the de�nition of a p-summing operator (see BasicConcepts); in this case the notation �p(T ) is used. By absolutely summing we mean 1-summing. We remind the reader that the p-summing operators are characterized as thosethat factor through a part of the inclusion L1(�) ,! Lp(�), in the sense that T can berepresented as a composition T : X U�!M ,!Mp V�! Y; (3.2)where � is a probability measure, M is a subspace of L1(�), and Mp is a subspace of Lp(�)containing M , or alternatively Mp is the closure of M in Lp(�). For p � 1, T is said tobe strictly p-integral if it factors through the entire inclusion L1(�) ,! Lp(�), that is, wecan take M = L1(�) and Mp = Lp(�) in (3.2). This notion di�ers slightly from that of ap-integral operator, as de�ned in Basic Concepts. However, the two notions coincide if, say,Y is re
exive. As explained in Basic Concepts, for p � 1 every p-summing operator on C(K)is strictly p-integral, so that the p-summing and the strictly p-integral operators on C(K)coincide.We recall that any absolutely summing operator is weakly compact. For 1-integraloperators, we can use the Dunford-Pettis property of L1(�) to say more.Lemma 3.1. A (strictly) 1-integral operator from X to a re
exive Banach space iscompact. In particular, an absolutely summing operator from C(K) to a re
exive Banachspace is compact. 9



To see this, consider the factorization (3.2) above, with p = 1, M = L1(�), Mp =Lp(�). Since Y is re
exive, V is weakly compact. By the Dunford-Pettis theorem, V mapsweakly compact subsets of L1(�) to norm-compact subsets of Y . Since bounded subsets ofL1(�) are weakly precompact in L1(�), the composed operator T maps bounded subsets ofX into norm-compact subsets of Y , and T is compact.The prototype for an absolutely summing operator that is not 1-integral is the Paleyoperator P on the disk algebra CA. The Paley operator assigns to a function f on the unitcircle � the sequence of 2kth Fourier coe�cients ff̂ (2k)g1k=1. Paley's inequality is 1Xk=1 jf̂(2k)j2!1=2 � cPkfk1; f 2 H1(m);for some constant cP > 0. In other words, the restriction of the Paley operator P to H1(m)is a bounded operator from H1(m) to `2. For the proof, see [Hof], [Z].Let M be the closed linear span in L2(m) of the exponential functions exp(i2k�),k � 1. It is a classical fact (see [Z]) that the Lp-norms on M are equivalent, for 0 < p <1.Further, for 1 < p < 1 there is a continuous projection Qp of Lp(m) onto M . Thus for1 < p <1, we can factor the Paley operator on C(�) through the inclusion L1(�) ,! Lp(�),P : C(�) ,! L1(m) ,! Lp(m) Qp�!M �! `2;and P operating on C(�) is p-integral for 1 < p <1. On the other hand, P is not compact,so P is not absolutely summing on C(�).The story is di�erent if we restrict P to CA. Paley's inequality yields the factorizationP : A ,! H1(m) V�! `2;where V is the Paley operator on H1(m). Thus P is absolutely summing on CA. On theother hand, P maps the exponential functions exp(i2k�), k � 1 to the standard basis vectorsof `2, so that P is not compact, and P is not 1-integral. This shows incidentally that CA isnot complemented in C(�), nor even isomorphic to any quotient space of a C(K)-space, orelse the composition of the projection and P would produce an absolutely summing operatoron C(K) that is not compact.Our aim is to transfer the Paley operator and this �nal observation to an arbitraryuniform algebra. Paley's inequality transfers directly, as follows.Lemma 3.2. Let A be a uniform algebra on K. Let f 2 A satisfy kfk � 1, and let10



� be any measure on K orthogonal to A. Then the sequenceP (� ) = �Z f 2kd��1k=1belongs to `2, and kP (� )k2 � cPk�k, where cP is the best constant for Paley's inequality. Theestimate persists for f 2 H1(j� j), the weak-star closure of A in L1(j� j).Proof. De�ne U : C(�) ! C(K) by (Ug)(s) = ~g(f(s)) for g 2 C(�) and s 2 K,where ~g is the Poisson integral of g. Then kUk � 1, U(zn) = fn, and U(�zn) = �fn. NowU� : M(K) ! M(�) sends A? to C?A , which by the F. and M. Riesz theorem is identi�edwith H10 (m). Thus U�(� ) = h dm for some h 2 H1(m), andZK f 2kd� = Z� z2kh(z)dm; k � 1:Paley's inequality for h yields kP (� )k2 � cPkhk1 = cPkU�(� )k � cP k�k. This proves the�rst statement of Lemma 3.2, and the second is obtained by applying the �rst to the uniformalgebra H1(j� j) and noting that � generates a functional on L1(j� j) orthogonal to H1(j� j).Theorem 3.3 (Kislyakov [K1]). If A is a proper uniform subalgebra of C(K),then there is an absolutely summing operator from A to `2 that is not compact, hence not1-integral.The proof depends on the Paley operator associated with an extremal function Ffor a certain dual extremal problem. Since A is proper, there is a measure � on K suchthat � ? A but the complex conjugate �� of � is not orthogonal to A. We assume that thefunctional f 7! R f d�� on A has unit norm. By the Hahn-Banach and Riesz representationtheorems, there is a measure � on K such that k�k = 1 and � � �� ? A. Let ffng be asequence of functions in A such that kfnk � 1 and R fnd��! 1, and let F 2 H1(j�j+ j�j) bea weak-star limit point of the sequence ffng. Then jF j � 1, and R F d� = 1, from which itfollows that jF j = 1 a.e. d�. Now f(�� ��) ? A for all f 2 A, hence for all f 2 H1(j�j+ j�j).In particular, F 2(� � ��) ? A, and � = �+ F 2(�� ��) ? A. We de�neT (g) = �Z F 2kg d��1k=1 ; g 2 A: (3.3)By Lemma 3.2, applied to F 2 H1(j�j+ j�j) and the orthogonal measure g� , the sequenceT (g) is square summable and kT (g)k2 � ckg�k = c R jgjdj� j. Thus T can be factored throughthe closure H1(j� j) of A in L1(j� j),T : A ,! H1(j� j) �! `2;11



and T is absolutely summing. To see that T is not compact, we compute the kth componentof T (F 2k�1) (to be rigorous, rather we must consider limn!1 T (f2k�1n )):T (F 2k�1)k = Z F 2k�1F 2kd� = Z F 2k+1F 2kd� + Z F 2k�1F 2kd� � Z F 2k+1F 2kd��: (3.4)Let E be the set on which jF j = 1. Since � is carried by E, the �rst integral on the right isR F d� = 1. Since jF jn ! 0 o� E as n!1, (3.4) tends to1 + ZE F d�� ZE F d�� = 1 + 2i Im �ZE F d�� ; (3.5)which is not zero. Since the kth components of the vectors T (F n), n � 1, do not tend tozero uniformly in n, the vectors T (F n) do not lie in a compact subset of `2, and then neitherdoes the image of the unit ball of A under T . Thus T is not compact, and by Lemma 3.2,T is not 1-integral on A.If we analyze the proof of Theorem 3.4, we �nd that it extends to any closed subspaceB of a uniform algebra A providing there is a function f 2 B such that fA � B while �f =2 A.Indeed, let I be the set of all f satisfying fA � B. This is a closed ideal in A. We choose� ? A such that �� generates a norm-one functional on I, and we proceed as before.For some time it was an open problem, known as the Glicksberg problem, as to whethera proper uniform algebra on a compact space K can be complemented in C(K). Theorem3.4 settles the Glicksberg problem, and it does even more.Theorem 3.4. If A is a proper uniform subalgebra of C(K), then A is not isomorphicto a quotient of a C(J) space. In particular, A is not complemented in C(K).Indeed, suppose A is the quotient of C(J). If we compose the operator T fromTheorem 3.3 with the quotient map, we obtain an operatorC(J) �! C(J)=Z �= A T�! `2that is absolutely summing, hence compact, by Lemma 3.1. Since the projection is an openmapping, the operator T must be compact, and this contradicts Theorem 3.3.We mention some further conclusions that can be drawn from this circle of ideas.Recall (see Basic Concepts) that a Banach space X has Gordon-Lewis local unconditionalstructure (GL l.u.st.) if, roughly speaking, its �nite dimensional subspaces are well embed-dable in spaces with unconditional basis. This occurs if and only if X�� is a complementedsubspace of a Banach lattice. Thus C(K) has GL l.u.st., as do all Lp-spaces, 1 � p �1.12



Theorem 3.5. If A is a proper uniform subalgebra of C(K), then A does not haveGL l.u.st.The idea of the proof is to look for a factorization of the Paley operator P : CA ! `2through A�� with the help of the second adjoint of the operator T de�ned in the proof ofTheorem 3.3, P : CA U�! A�� T ���! `2:However, in this way we only obtain an operator quite similar to P (but not P itself).We rede�ne F to be a weak-star limit point of the sequence ffng in A��, and we use therealization of A�� as a weak-star closed subspace of C�� described in the next section. Theoperator T �� may still be de�ned by (3.3), where now g belongs to A��, and the functionsbeing integrated in (3.3) are the projections of the functions in C�� into L1(j� j). Thecorrespondence p(Z) 7! p(F ) mapping a polynomial in the coordinate function Z to p(F )is of norm at most 1, hence extends to a bounded operator U from CA into A��. Now thehypothesis of GL l.u.st. implies by the Gordon-Lewis theorem (see [DJT, Theorem 17.7])that the absolutely summing operator T �� factors through an L1-space, and we obtainT ��U : CA U�! A�� V�! L1(�) W�! `2:By Bourgain's extension of the Grothendieck theorem (Theorem 6.5), the composition V Umapping CA into an L1-space is 2-summing, hence weakly compact. By the Dunford-Pettistheorem, the weakly compact operator W maps weakly compact subsets of L1(�) to norm-compact subsets of `2. Thus the composition WV U is compact, contradicting the noncom-pactness of T ��U (see (3.4{3.5)).Along similar lines, it can also be proved that if a proper uniform algebra A is aquotient of a Banach space X having GL l.u.st., then X contains a complemented copy of l1.The crucial observation here is that if X fails to have a complemented copy of l1, then everyoperator from X to L1(�) is weakly compact. To see this, combine the Pe lczy�nski propertyof L1(�) with [LT, Proposition 2.e.8].In another direction, Garling [Ga] showed that the dualA� of a proper uniform algebrais not a subspace of the dual of a C�-algebra. The proof is modeled on an earlier argumentfor CA and uses the basic objects (�, �, and F ) appearing in the proof of Theorem 3.4.13



4 Tight Subspaces and Subalgebras of C(K)The classical Hankel operator corresponding to a function g on the unit circle operates fromH2(d�) to H2(d�)?, sending f to gf � P (gf), where P is the orthogonal projection fromL2(d�) onto H2(d�). The Hankel operator is equivalent to the operator f ! gf + H2 fromH2 to the quotient space L2=H2. The analogue of these operators, acting on subspaces ofC(K), has proved a key to understanding uniform algebras.Let A be a closed subspace of C(K). To each g 2 C(K) we associate a generalizedHankel operator Sg from A to the quotient Banach space C(K)=A bySgf = gf +A; f 2 A:We say that A is a tight subspace of C(K) if the operators Sg are weakly compact for allg 2 C(K). We say that A is a compactly tight subspace of C(K) if Sg is compact for allg 2 C(K). Tightness was introduced in [CG]. Our discussion is based on that paper, and on[Sac1], [Sac2].We will use the representation of the bidual C�� of C = C(K) as a uniform algebra.This representation is realized as follows. The dual space of C is the space M(K) of �nite(regular Borel) measures on K, with the total variation norm, and this can be regardedas the direct limit of the spaces L1(�), � 2 M(K). The bidual C�� is then representedas the inverse limit of their dual spaces L1(�), � 2 M(K). A \simple-minded" way toexpress this is to say that each element F 2 C�� determines for each � 2 M(K) a functionF� 2 L1(�), and these satisfy the compatibility condition that F� = F� almost everywherewith respect to � whenever � << �. Conversely, each uniformly bounded compatible familyfF�g, F� 2 L1(�), determines an element of C��. The norm of F in C�� is the supremum ofthe norms of F� in L1(�). The multiplication in the spaces L1(�) determines an obviousmultiplication in C��.Let A be a subspace of C. Recall that H1(A;�) denotes the weak-star closure of Ain L1(�). The bidual A�� can then be identi�ed with the weak-star closed subspace of C��consisting of F 2 C�� such that F� 2 H1(A;�) for all � 2M(K). The bidual of the quotientspace C=A is isometric to C��=A��, and the canonical embedding maps C=A isometricallyonto C=A��. In particular, C=A�� is a closed subspace of C��=A��, and consequently A��+Cis a closed subspace of C��.Now the operator Sg is weakly compact if and only if the image of A�� under S��g iscontained in the canonical image of C=A. Identifying C with its canonical image in C��, we14



see that for g 2 C, Sg is weakly compact () gA�� � A�� + C. (4.1)From this it follows that the g's for which Sg is weakly compact form a closed subalgebra ofC(K). Thus A is tight just as soon as Sg is weakly compact for any collection of g's thatgenerates C(K) as a uniform algebra.If A is a subalgebra of C, then each space H1(A;�) is an algebra, and A�� is asubalgebra of C��. In this case we obtain from (4.1) the following.Theorem 4.1. A uniform algebra A on a compact space K is a tight subalgebra ofC(K) if and only if A�� + C(K) is a closed subalgebra of C(K)��.For algebras of analytic functions, tightness is related to solving a @-problem. Roughlyspeaking, the connection is as follows. Functions that belong to an algebra of analyticfunctions A are characterized as the functions f satisfying �@f = 0. Suppose that �@�1 is asolution operator for the �@-problem, which need not be linear. Let g be a smooth function.If f 2 A, then from the Leibnitz rule we obtain �@(fg) = f �@(g) + g �@(f) = f �@(g). This showsthat the one-form f �@(g) is �@-closed. We apply the solution operator and obtain a functionh = �@�1(f �@g) satisfying �@h = �@(fg), so that h� fg 2 A, and Sgf = h+A. Thus the actionof Sg on f amounts to multiplying f by �@g, applying �@�1, and projecting into the quotientspace C=A. It follows that if there is a weakly compact solution operator for the �@-problem,then each Sg is weakly compact, and A is tight. By the same token, if there is a compactsolution operator for the �@-problem, then A is compactly tight.If D is a bounded strictly pseudoconvex domain in complex n-space with smoothboundary, the �@-problem can be solved by means of integral operators, with H�older estimateson the solutions, so that there are compact solution operators; see [Ra]. The argumentoutlined above can be made precise. It shows that the algebra A(D) associated with anysuch domain is compactly tight. The connection between tightness and solving the �@-problemis not completely understood, but our line of reasoning does establish the following.Theorem 4.2. Let D be a bounded domain in complex n-space. Suppose there isa weakly compact subset E of C( �D) such that the equation �@h = ! on D has a solutionh 2 E for every �@-closed smooth (0; 1)-form ! on D that extends continuously to �D andsatis�es k!k1 � 1. Then A(D) is a tight subalgebra of C(D). If E is compact, then A(D)is compactly tight.If D is strictly pseudoconvex with smooth boundary, the �@-problem solution tech-niques can be used to show that any f 2 H1(D) can be approximated pointwise on D by15



a bounded sequence of functions in A(D) that extend analytically across @D, with uniformconvergence on �D if f 2 A(D). In the strictly pseudoconvex case, every point p in @Dis a peak point for A(D), that is, there is f 2 A(D) satisfying f(p) = 1 and jf j < 1 on�Dnfpg. Thus the following theorem applies to strictly pseudoconvex domains with smoothboundaries.Theorem 4.3. Let D be a bounded domain in complex n-space for which the �@-problem is solvable as in Theorem 4.2, and let � be the volume measure on D. Suppose thatthe functions in A(D) that extend analytically across @D are pointwise boundedly dense inH1(D). Then A(D)� is the direct sum of L1(�)=A(D)? and an L1-space, and the bidualA(D)�� is isometrically isomorphic to the direct sum of H1(D) and an L1-space. Further,if every point of @D is a peak point for A(D), then H1(D) +C( �D) is a closed subalgebra ofL1(�), and A(D)�� +C( �D) is isometrically isomorphic to the direct sum of H1(D) +C( �D)and an L1-space.The idea of the proof is as follows. Let Bs be the band of measures on �D thatare singular to every measure in A(D)?, and let Ba be the band of measures generatedby A(D)?. There is a direct sum decomposition M( �D) = Ba � Bs, with a correspondingdecomposition A(D)�� = H1(Ba) � L1(Bs). We claim that the summand H1(Ba) isisometrically isomorphic to H1(D). We regard H1(D) as a subalgebra of L1(�). If F 2A(D)��, there is a bounded net ff�g in A(D) that converges weak-star in A(D)�� to F . Thenff�g converges weak-star to F� in L1(�). Since the f�'s are uniformly bounded, they areequicontinuous at each point of D, and consequently any limit function is analytic on D.Thus F� 2 H1(D). The hypothesis of pointwise bounded density implies that the projectionF 7! F� maps A(D)�� onto H1(D). Suppose F 2 A(D)�� satis�es F� = 0. Let � 2 A(D)?.Let g be a smooth function, and let ff�g be a bounded net in A(D) that converges weak-starto F . Then f� ! 0 on D. Choose h� 2 E such that �@(f�g) = �@(h�) on D. Passing to asubnet, we may assume that h� ! h weakly, where h 2 C( �D). Then gf� � h� is analyticon D, and in the limit, h is analytic on D. Now gf� + h � h� ! gF� weak-star in L1(�).Thus � ? gF�, this for all smooth functions g, so that F� = 0. It follows that F� = 0 for allmeasures � 2 Ba, and consequently the projection of F in H1(Ba) is 0. Thus the algebrahomomorphism H1(Ba) ! H1(D) is one-to-one and onto. Since any homomorphism ofuniform algebras that is one-to-one and onto is an isometry, H1(Ba) is isometric to H1(D).The �nal statement of the theorem, that H1(D)+C( �D) is isometric to a direct summand ofA(D)��+C( �D), is equivalent to the statement that H1(Ba) ! H1(D) is a \local" isometry,in the sense that it is an isometry at every point of @D. An easy way to guarantee this is toassume that every point of @D is a peak point for A(D).16



Another class of examples of tight algebras are the algebras R(K) and A(K) associ-ated with a compact subset K of the complex plane. For these, the solution operator for the�@-problem is the Cauchy transform operator(�@�1h)(�) = � 1� Z Z h(z)z � � dxdy; � 2 K;which is a compact operator on C(K). Again the line of reasoning outlined above, togetherwith a few technical details, establishes the following.Theorem 4.4. Let K be a compact subset of the complex plane. Then the algebrasR(K) and A(K) are compactly tight. If � is the area measure on K, and A is either ofthese algebras, then A� is isometric to the direct sum of L1(�)=A? and an L1-space. Thebidual A�� is isometrically ismorphic to the direct sum of H1(�) and an L1-space. Finally,H1(�) + C(K) is a closed subalgebra of L1(�), and A�� +C(K) is isometrically ismorphicto the direct sum of H1(�) + C(K) and an L1-space.Here H1(�) is the weak-star closure of A in L1(�). In the case of A(K), the measure� can be taken to be the area measure on the interior of K, or the harmonic measure on theboundary of the interior of K. In the case of R(K), � can be taken to be the area measureon the set of nonpeak points of R(K), which serves in some sense as an interior for K withrespect to R(K). The proof of Theorem 4.4 is similar to that of Theorem 4.3, except thatDavie's theorem is used to obtain the isometric isomorphism of H1(Ba) and H1(�). Theproof of the �nal statement depends upon estimating solutions of the �@-problem for somespeci�c bump functions.Summarizing, we can say that very many standard uniform algebras of analytic func-tions are tight. We turn to an example of a tight subspace that is not an algebra and thathas a di�erent 
avor. Let UC be the space of continuous functions f(ei�) on the unit circle �for which the symmetric partial sums Tnf = Pn�n f̂(k)eik� of the Fourier series of f convergeuniformly. Normed by jjjf jjj = sup jjTnf jj1, the space UC becomes a Banach space. We mayregard UC as a subspace of a C(K)-space as follows. For each n, 0 � n � 1, let �n be a copyof the unit circle �, and let K be the disjoint union of the �n's, with the natural topologydetermined by declaring that �n ! �1 as n !1. Each f 2 UC determines F 2 C(K) bysetting F = Tnf on �n, 0 � n < 1, and F = f on �1. Then UC is isometric to a closedsubspace of C(K).Theorem 4.5. Let UC be the Banach space of functions on � with uniformly con-vergent Fourier series, regarded as a closed subspace of C(K) as above. Then UC is atight subspace of C(K), though UC is not compactly tight. Further, the weak-star closure17



H1(UC; d�) of UC in L1(d�), where d� is the arc length measure on �1, coincides with thespace of functions f 2 L1(d�) such that the symmetric partial sums of the Fourier series off are uniformly bounded. The bidual U��C is isometric to the direct sum of H1(UC ; d�) andan L1-space.If g 2 C(K) is supported on one of the circles �n for n �nite, then the operator Sgis �nite dimensional. Thus to check that UC is tight, it su�ces to show that the operatorsSz and S�z are weakly compact, where z = ei� on each circle �n. Let f 2 UC have FourierseriesP akeik�, and denote the corresponding function in C(K) by �(f) = [T0f; T1f; : : : ; f ].With this notation,z�(f)� �(zf) = [a0ei� � a�1; : : : ; akei(k+1)� � a�k�1e�ik�; : : : ; 0]:Since this expression is in C(K) for all two-tailed `2-sequences fakg, and since P jakj2 <1for f 2 UC , the operator Sz factors through `2. Thus Sz is weakly compact, as is S�z, and UCis tight. To see that Sz is not compact, apply Sz to the sequence of exponential functionsfeik�g. There is another way to see that Sz is weakly compact. Since only two Fouriercoe�cients appear in each component above, we obtainkSzfk � kz�(f)� �(zf)k1 � 2kfkL1(d�=2�):This estimate shows that Sz is an absolutely summing operator, in fact, an integral operator.Since bounded subsets of L1 are weakly compact in L1, Sz is weakly compact.A similar theorem holds for the space UA of analytic functions on the unit disk withuniformly convergent Taylor series. Again we may regard UA as a subspace of C(K) asabove, and UA is a tight subspace. In this case the weak-star closure H1(UA; d�) coincideswith the functions in f 2 H1(d�) such that the partial sums of the power series of fare uniformly bounded. The bidual U��A is isometrically isomorphic to the direct sum ofH1(UA; d�) and an L1-space. The proof (see [Sac2]) depends on a generalization of the F.and M. Riesz theorem due to Oberlin [Ob], asserting that any measure on K orthogonal toUA is absolutely continuous with respect to d� on �1.
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5 The Pe lczy�nski and Dunford-Pettis PropertiesAs Banach spaces, tight subspaces of C(K) share a number of properties of C(K). Wediscuss the Pe lczy�nski property, which is shared, and also the Dunford-Pettis property, whichis partially shared.A Banach space X has the Pe lczy�nski property if whenever T is an operator from Xto another Banach space that is not weakly compact, there is an embedding c0 ,! X suchthat the restriction of T to c0 is an isomorphism. The spaces C(K) have the Pe lczy�nskiproperty (see [Woj, III.D.x 33]). However, L1-spaces do not have the Pe lczy�nski propertyunless they are �nite-dimensional. Re
exive Banach spaces have the Pe lczy�nski property, bydefault.Theorem 5.1 (Saccone). Any tight subspace of C(K) has the Pe lczy�nski property.Before saying something about the proof, we discuss the Pe lczy�nski property in moredetail. A series Pxk in X is weakly unconditionally convergent, or a wuc series, if Px�(xk)converges unconditionally for all x� 2 X�. In this case, Px�(xk) converges absolutely foreach x� 2 X�, and the closed graph theorem shows that the operator x� 7! fx�(xk)g iscontinuous from X� to `1. In particular, there is � > 0 such that P jx�(xk)j � �kx�k forall x� 2 X�. The preadjoint operator T : c0 ! X, de�ned on the standard basis vectorsek of c0 by T (ek) = xk, is then seen to be continuous and satisfy kTk � �. Conversely,any (continuous) operator T : c0 ! X determines a wuc series PT (ek). Thus wuc seriescorrespond to operators from c0 into X.Let E be a subset of X�. If E is weakly precompact in X�, and ifPxk is a wuc seriesin X with corresponding operator T , then T �(E) is weakly precompact in `1. ConsequentlyT �(E)(ek) tends to 0 as k !1, that is,supx�2E jx�(xk)j �! 0 as k!1: (5.1)With a little more e�ort, it can be shown that if (5.1) fails, then there is an `1-basic sequencefx�kg in E, that is, a sequence that is equivalent to an `1-basis. These statements charac-terize weak compactness precisely when X has the Pe lczy�nski property. We state this resultformally.Theorem 5.2. The following statements are equivalent, for a Banach space X.(i) X has the Pe lczy�nski property. 19



(ii) If E is a subset of X� such that for any wuc series Pxk in X we have x�(xk) ! 0 (ask !1) uniformly for x� 2 E, then E is weakly precompact.(iii) If E is a subset of X� that is not weakly precompact, then there is an `1-basic sequencein E. We refer to [Woj] for the proof. A related result in this circle of ideas is that if X hasthe Pe lczy�nski property, then its dual space X� is weakly sequentially complete.Now we return to Saccone's theorem, which is proved in [Sac1]. The crux of thematter is to �nd, for a given E that is not weakly compact, a wuc series in X for which(5.1) fails. To do this, Saccone begins with a characterization of weak compactness due toR.C.James, and eventually he throws the proof back on some di�cult work of Bourgain [B3,B7], for which there is a clear treatment in [Woj, III.D. xx 29{32].Recall that an operator T : X ! Y is completely continuous if T maps weaklyconvergent sequences in X to norm convergent sequences in Y . If X is re
exive, then thecompletely continuous operators coincide with the compact operators, while every operatoron X is weakly compact. In contrast, for X = C(K), the completely continuous operatorscoincide with the weakly compact operators.An isomorphism of c0 cannot be completely continuous, as the standard basis ofc0 converges weakly to 0. Thus if X has the Pe lczy�nski property, then any completelycontinuous operator from X to another Banach space is weakly compact. As a corollary toSaccone's theorem, we then obtain the following.Corollary 5.3. If B is a tight subspace of C(K), then any completely continuousoperator T : B ! Y is weakly compact.A Banach space X has the Dunford-Pettis property if every weakly compact operatorfromX to another Banach space is completely continuous. This occurs if and only if wheneverthe sequence fxng in X converges weakly to 0, and the sequence fx�ng in X� convergesweakly to 0, then x�n(xn) ! 0. The spaces C(K), and any L1-space, have the Dunford-Pettis property. If a dual Banach space has the Dunford-Pettis property, then its predualdoes also. Re
exive Banach spaces do not have the Dunford-Pettis property unless they are�nite-dimensional. See Basic Concepts.Not every tight subspace of C(K) has the Dunford-Pettis property. In fact, anyin�nite-dimensional re
exive subspace of C(K) is tight but fails to have the Dunford-Pettisproperty. However, the Dunford-Pettis property does hold under hypotheses that are some-what stronger than tightness. The following statement can be extracted from Bourgain's20



work in [B3].Theorem 5.4 (Bourgain). Let A be a subspace of C(K). If S��g is completelycontinuous for all g 2 C, then A� and A have the Dunford-Pettis property.The collection of g 2 C such that S��g is completely continuous is a closed subalgebraof C. It is called the Bourgain algebra associated with A.We wish to develop some criteria that guarantee that S��g is completely continuous.The following condition is a variant of the notion of a rich subspace, which stems from [Woj].An operator T from A to another Banach space is nearly dominated if there is aprobability measure � on K such that if ffmg is a bounded (!) sequence inA that converges to0 in L1(�), then kTfmk ! 0. Trivially, absolutely summing operators are nearly dominated.If Tj : A! X is nearly dominated by �j , and if Tj ! T in operator norm, then T is nearlydominated by P�j=2j . It is straightforward to show that the collection of g 2 C such thatSg is nearly dominated forms a closed subalgebra of C. The pointwise bounded convergencetheorem can be used to show that nearly dominated operators are completely continuous.Theorem 5.5. Let A be a subspace of C(K). Each of the following conditionsguarantees that S��g is completely continuous for all g 2 C, hence that A� and A have theDunford-Pettis property.(i) The subspace A is compactly tight.(ii) The operators Sg are absolutely summing for a family of functions g 2 C that generatesC as a uniform algebra.(iii) The operators Sg are nearly dominated for a family of functions g 2 C that generates Cas a uniform algebra.For (i), observe that if Sg is compact, then S��g is compact hence completely continu-ous. For (ii), we use the fact that if Sg is absolutely summing, then S��g is absolutely summinghence completely continuous. The proof under the condition (iii) is straightforward.Note that either of the conditions (ii) or (iii) covers the subspaces UA and UC discussedearlier. Each of the three conditions covers the algebras R(K) and A(K) from rationalapproximation theory.
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6 Absolutely Summing and Related Operators on theDisk AlgebraNow we consider some properties of the Banach space C(�) of continuous functions on theunit circle � that are inherited by the disk algebra CA. A prototypical theorem along theselines is the following (see [Pe]).Theorem 6.1 (Mityagin-Pe lczy�nski). For 1 < p <1, every p-summing operatorfrom the disk algebra CA to a Banach space Y extends to a p-summing operator from C(�)to Y , hence is strictly p-integral.The Paley operator shows that the statement fails at the endpoint p = 1. The proof ofthe theorem depends on the boundedness of the Riesz projection R from Lp(d�) onto Hp(d�),1 < p <1, together with some Hardy space theory. Indeed, let T be a p-summing operator,and let � be the measure on � for T given by the Pietsch theorem (see Basic Concepts),so that T extends to a continuous operator from the closure Hp(�) of CA in Lp(�) to Y .Let � = wd� + �s be the Lebesgue decomposition of � with respect to Lebesgue measured�. The Hardy space theory gives Hp(�) = Hp(wd�) � Lp(�s). Further, if logw =2 L1(d�),then Hp(�) = Lp(�), and T is p-integral. On the other hand, if logw 2 L1(d�), andh = exp(logw + iH(logw)) is the \outer" function in H1(d�) such that jhj = w, thenQp(f) = h�1=pR(h1=pf) projects Lp(wd�) onto Hp(wd�), and this projection allows us tofactor T , T : CA ,! L1(�) ,! Lp(�) Qp�I�! Hp(�) �! Y;again showing that T is strictly p-integral.Our primary focus will be on Bourgain's extension of the Grothendieck theorem tothe disk algebra, with emphasis on the interpolatory nature of the proofs. We will sketchthe proofs modulo the interpolation theorems, which we defer to the next section.The Grothendieck theorem (see Basic Concepts) asserts that any operator from anL1-space to `2 is absolutely summing. A dual version of Grothendieck's theorem assertsthat any operator from a C(K)-space to `1 is 2-summing. In fact, we can replace `1 inthis statement by any space of cotype 2. In reading the following version of Grothendieck'stheorem, recall that among the spaces Lp, precisely those with 1 � p � 2 are of cotype 2.Theorem 6.2. Every operator from C(K) to a space of cotype 2 is 2-summing.Theorem 6.2 is a simple consequence of the following two lemmas.22



Lemma 6.3. If Y is of cotype 2, and if p � 2, then any p-summing operator from aBanach space X to Y is 2-summing.Lemma 6.4. For every Banach space Y and every �nite rank operator T : C(K) ! Ywe have �p(T ) � �2(T )�kTk1�� for 2 < p <1, where � = 2=p.If the lemmas are proved and Y is of cotype 2, we combine the lemmas to obtain�2(T ) � c�4(T ) � c(�2(T )kTk)1=2 for every T : C(K) ! Y of �nite rank, whence �2(T ) �c2kTk. The �nite rank assumption is easily lifted by approximation.The �rst lemma is proved by an easy concatenation of inequalities, one of which is theKhinchin inequality (see [Woj, III.F x 36], and also Basic Concepts). It yields the estimate�2(T ) � cpCq(Y )�p(T ), where Cq(Y ) is the cotype constant of Y , and cp depends only onp. To prove the second lemma, we choose by the Pietsch theorem a probability measure �on K such that the operator T acts from L2(�) to Y with norm �2(T ). Also, T acts fromC(K) to Y with the norm kTk, and consequently T extends to L1(�) with (at most) thesame norm, T : L2(�) �2(T )�! Y; (6.1)T : L1(�) kTk�! Y: (6.2)By interpolation, T acts from Lp(�) to Y with norm not exceeding �2(T )�kTk1��, where �is given by the convexity condition 1=p = �(1=2) + (1 � �)(1=1) = �=2. This proves thelemma and with it Grothendieck's theorem.Now we turn to Bourgain's version of the theorem for the disk algebra.Theorem 6.5 (Bourgain). Every operator from the disk algebra CA to a space ofcotype 2 is 2-summing.As previously, the proof is an easy consequence of Lemma 6.3 and the following analogof Lemma 6.4.Lemma 6.6. For every Banach space Y and every �nite rank operator T : CA ! Ywe have �p(T ) � c�2(T )�kTk1�� for 2 < p <1, where � = 2=p and c is a universal constant.For the proof, we start as in the proof of Lemma 6.4 with a probability measure �on the unit circle � such that T acts from the closure H2(�) of CA in L2(�) to Y with norm�2(T ). Our �rst problem is that the measure � need not be absolutely continuous withrespect to arc length d�. For this, we invoke the following.Absolute Continuity Principle. In problems like this, the singular parts of mea-23



sures can be disregarded.One way to justify this is to refer to the decomposition Hp(�) = Hp(wd�) � Lp(�s)used above and to the Hardy space theory underlying this decomposition. However, some-times other arguments are also applicable. In the case under consideration, we may workwith the operators Tnf = T (Kn�f) in place of T , where Kn is the nth Fej�er kernel. For themthe above measure becomes absolutely continuous, and moreover the Tn's may be regardeddirectly as operators on H1(d�).Thus we assume that � = wd�, where w � 0 is a weight, R wd� = 1. We arrive atthe following analogs of (6.1) and (6.2):T : H2(wd�) �2(T )�! Y; (6.3)T : H1(wd�) kTk�! Y: (6.4)The question now is whether we can interpolate between (6.3) and (6.4) as we did between(6.1) and (6.2). The answer is that we can replace w by a weight v � w, R v � C, suchthat for this new weight the above interpolation is possible. This will follow from resultsin the next section. Indeed, since L1(d�) is BMO-regular (see Proposition 7.4), there isa majorant v for w such that log v belongs to BMO, and on account of Theorem 7.7 thedesired interpolation holds for this majorant v. This proves Bourgain's theorem.In a standard way, Bourgain's theorem implies that every operator from C�A (or fromL1=H10 ) to l2 is absolutely summing. Then from the relationsCA � (CA � CA � : : : )c0 ; L1=H10 � (L1=H10 � L1=H10 � : : : )l1(see [Woj, III.E. x 12]), it is also standard to conclude that L1=H10 and C�A are of cotype 2.See [Woj, III.I, x 14] for more details.We mention another approach to the Grothendieck theorem, due to Maurey. Thismethod gives some information about operators T : C(K) ! Y , where Y is a space ofarbitrary �nite cotype. In particular, it applies to Y = Lp for any 1 � p <1. For the proofof the following theorem, see [DJT, Chapter 10] or [K2].Theorem 6.7 (Maurey). For 1 � p < q, the class of (q; p)-summing operatorsde�ned on C(K) does not depend on p and is contained in the class of (q + �)-summingoperators for any � > 0.A related result, due to Pisier (see the above references), is that T : C(K) ! Y is(q; p)-summing if and only if T factors through the inclusion C(K) ,! Lq;1(�) (the Lorentzspace) for some probability measure � on K.24



If Y is of cotype q, the identity operator of Y is (q; 1)-summing. Thus Maurey'stheorem shows that every operator from C(K) to Y is (q + �)-summing. We recover theGrothendieck theorem by setting q = 2 and applying Lemma 6.3.The following theorem allows us to transport these results to the disk algebra CA.Theorem 6.8 (Kislyakov). For an arbitrary Banach space Y and q > p � 1, every(q; p)-summing operator T : CA ! Y extends to a (q; p)-summing operator from C(�) to Y .According to the Mityagin-Pe lczy�nski theorem, the theorem remains true if q = p > 1.The remainder of this section is devoted to an outline of a proof of Theorem 6.8, withsome simpli�cations compared to the exposition in [K2].Lemma 6.9. Under the conditions of Theorem 6.8, the operator T is 10q-summing.We break the proof of Lemma 6.9 into four steps. First note that the family of (q; p)-summing operators grows as p decreases, so we may assume that p = 1. We assume alsothat �q;1(T ) = 1. When convenient, we use h�; �i to denote the pairing between vectors andfunctionals.Step 1. There is a probability measure � on � such thatkTxkq � q jh1 � '; �ij for all x; ' 2 CA satisfying jxj+ j'j � 1. (6.5)To see this, we use a trick invented by Pisier to prove his characterization of (q; p)-summingoperators on C(K) mentioned above. LetCn = sup��X kTxjkq�1=q : x1; : : : ; xn 2 CA;X jxj(t)j � 1� :Clearly Cn % �q;1(T ) = 1. We choose �n & 1 and for every n �nd x(n)1 ; : : : ; x(n)n 2 CAsuch that Pj kTx(n)j kq > 1 and Pj jx(n)j (t)j � �n=Cn. Then we choose �(n)j 2 Y � such thatPj k�(n)j kq0 � 1 and PjhTx(n)j ; �(n)j i = 1, and de�ne a functional �n on CA by the formula�n( ) = PjhT ( x(n)j ); �(n)j i. Then �n(1) = 1 and k�nk � �n. We consider a weak-starlimit point of the sequence f�ng. This is a functional on CA. We extend it to C(�) withpreservation of norm, obtaining a measure � on �. Since �(1) = 1 and k�k � lim�n = 1, �is a probability measure.Now let x, ' 2 CA satisfy jxj + j'j � 1. We de�ne y1; : : : ; yn+1 2 CA by yj = 'x(n)jfor 1 � j � n and yn+1 = x. Then�X kTyjkq�1=q � Cn+1 supt X jyj(t)j � Cn+1�n=Cn;25



which implies that jh'; �nijq+kTxkq � (Cn+1�n=Cn)q and, in the limit, jh'; �ijq+kTxkq � 1.Finally jh'; �ijq = j1 � h1 � '; �ijq � 1� qjh1� '; �ij, from which (6.5) follows.Step 2. We apply the absolute continuity principle. It may be assumed that � = vd�,R vd� = 1, and that (6.5) is valid for x, ' 2 H1(d�). (Again, we may convolve with Fej�erkernels to ensure this.)Step 3. There is a � v, R a � C, such thatkTxk � Ckxk1�1=8q1 kxk1=8qL1(a); x 2 H1:To see this, we assume that kxk1 � 1=2. It su�ces to show that kTxkq � Ckxk1=8L1(a). Weshall deduce this from (6.5) by a careful choice of '. Denote by H the harmonic conjugationoperator. As in the proof of Proposition 7.4, there exists a � v, R a � C0, such that forb = a1=2 we have jH(b)j � C0b, and jb+ iH(b)j � (1 + C0)b. We put � = � log(1 � jxj), sothat � � 0, and also � � C1jxj since jxj � 1=2. We de�ne successively = �4b+ iH(�4b)b+ iH(b) ; � =  1=4; ' = exp(�A�);where the constant A > 0 will be chosen momentarily. Since  is the quotient of functionswith values in the right half-plane, it omits the negative axis, and we choose the branch of� whose argument ranges between ��=4. Then Re � � j�j=p2 and j1 � 'j � C2j�j. Nowj j � �4=(1 + C0), so Re � � C3�. We set A = 1=C3, and then j'j = exp(�A Re �) �exp(�AC3�) = 1 � jxj. Thus we may apply (6.5) with this ' and � = v d�:kTxkq � Z j1� 'jv d� � C2 Z j�ja d� � C4�Z j�j8a d��1=8 :Now, j�j8a = j j2b2 � (�4b)2 +H(�4b)2. Using the L2-estimate for H, we obtainZ j�j8a d� � Z �(�4b)2 +H(�4b)2� d� � 2Z (�4b)2 d� � 2C81 Z jxj8a d� � C5 Z jxja d�:Taking 8th roots, we obtain the required estimate for kTxkq.Step 4. The result of the preceding step shows that T acts from the interpolationspace (H1;H1(a))1=8q;1 of the real method to Y , with an appropriate norm estimate (see acalculation in the proof of Theorem 3.5.2(b) in [BL]). If we were dealing with the Lp-scale,the interpolation space would be readily identi�able as a Lorentz space, (L1; L1(a))1=8q;1 =L8q;1(a). Even in the case at hand, on account of the above choice of a we are able tointerpolate similarly in the scale of weighted Hardy spaces, by Theorem 7.7. This leads tothe estimate kTxk � C 0kxkL8q;1(a) � CkxkL10q(a); x 2 CA :26



Thus T is 10q-summing, and Lemma 6.9 is established.Next we need to introduce \vector coe�cients." For a Banach space X, we considerthe space CA(X) of all X-valued continuous functions f on the unit circle � that extendanalytically to the unit disk, that is, that satisfy R f(z)znd� = 0 for n � 1. An operatorT : CA(X) ! Y is said to be (q; p;X)-summing if�X kTxjkq�1=q � C supt2� �X kxj(t)kpX�1=p (6.6)for any �nite collection fxjg in CA(X).Lemma 6.10. If T : CA(X) ! Y is (q; p;X)-summing, then there is a probabilitymeasure � on � such that kTxk � C(R kx(t)k10qX d�(t))1=10q.Indeed, it is routine to carry through the above proof of Lemma 6.9. For this, notethat some functions will remain scalar-valued, as for instance the function ' in (6.5). Thecondition on x and ' in (6.5) becomes kx(t)kX + j'(t)j � 1 for t 2 �.For any operator T : CA ! Y , we de�ne the operator ~T : fxjg 7! fTxjg on sequencesof functions in CA. Evidently T is (q; p)-summing if and only if ~T maps CA(`p) to `q(Y ). Itis quite easy to see that even more is true.Lemma 6.11. If T is (q; p)-summing, then ~T is (q; p; `p)-summing.Now we apply Lemma 6.10 to ~T and proceed as in the proof of the Mityagin-Pe lczy�nskitheorem. As before, we may assume that the measure � is absolutely continuous, and eventhat � = ad� with log a 2 L1(d�). Then ~T has the factorization~T : CA(`p) ,!H10q(`p; a) ! `q(Y ); (6.7)where the �rst mapping is the identity embedding and the second is the extension of ~T bycontinuity. To complete the proof, we need a projection.Lemma 6.12. If 1 < p; s <1 and log a 2 L1(d�), then there is a projection ~Q fromLs(`p; a) onto Hs(`p; a) having the form ~Q(ffjg) = fQfjg for a projection operator Q actingon scalar-valued functions.We take Q to be the projection Qs in the proof of the Mityagin-Pe lczy�nski theorem(Theorem 6.1). The boundedness of ~Q follows from standard techniques.It is now easy to establish Theorem 6.8 in the case p > 1. If p > 1 in (6.7), then ~Textends to some operator U : C(`p) ! `q(Y ) of the form Ufxjg = fSxjg, where S acts fromC(�) to Y . The boundedness of U means that S is (q; p)-summing. Clearly S extends T .27



It remains to treat the case where p = 1. The facts already proved and Maurey'sTheorem 6.7 show that for 1 < r < q the class of (q; r)-summing operators from CA to Ydoes not depend on r. It su�ces to extend this statement to r = 1. For this, let T : CA ! Ybe of �nite rank, and let 1 < r < s < q. Then we haveT : CA(`s) �q;s(T )�! `q(Y );T : CA(`1) �q;1(T )�! `q(Y ): (6.8)By the remark after the proof of Lemma 7.6 (where H1-spaces are involved, but this doesnot matter too much), we can interpolate as if we had C(`s) and C(`1). This shows that�q;r(T ) � C�q;s(T )1���q;1(T )� for some 0 < � < 1. Since the norms �q;r and �q;s areequivalent, we obtain the desired result.
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7 Interpolation of Hardy-Type SubspacesSeveral times in Section 6 we had to interpolate either between weighted Hardy spacesHp(a d�), or between Hardy spaces of vector-valued functions Hp(`r). To cover both cases,we consider the measure space (� � 
;m� �), where dm = d�=2� is normalized arc-lengthmeasure on the unit circle �, and (
; �) is some �xed �-�nite measure space. Since we wishto use the full range 0 < p � +1, we will refer to quasi-Banach spaces where appropriate.A lattice of measurable functions on (��
;m��) is a quasi-Banach space X of measurablefunctions such that if f 2 X, g is measurable, and jgj � jf j, then g 2 X and kgkX � CkfkX.(Note that this is not the same as a Banach lattice, as de�ned in Basic Concepts, whoseelements are measurable functions. Since we treat the term as an inseparable unit, lattice-of-measurable-functions, there should be no confusion.) The examples we have in mind arethe spaces Lp(w dmd�), and the spaces Lp(dm;Lr(�)) of measurable functions x(t; !) suchthat y(t) = �R jx(t; !)jrd�(!)�1=r is in Lp(dm).Let N+ be the Smirnov class of analytic functions on the unit disk (see [Du, Pr]),which we identify with their boundary value functions on the circle. (For our purposes theclass N+ could be replaced bySp>0Hp.) We call a function on the circle analytic if it belongsto N+. If X is a lattice of measurable functions on (� � 
;m � �), we de�ne its analyticsubspace XA to be the set of functions f 2 X such that f(�; !) 2 N+ for almost all !. Inthe case of functions of one variable, as when � is a point mass, we have LpA = Hp.In the sequel we also impose on X the following conditions:(i) if f 2 X, then R� log+ jf(t; !)j dm(t) <1 a.e. on 
,(ii) if fn ! 0 in X, then R� log+ jfn(t; !)j dm(t) ! 0 in �-measure,(iii) if f 2 X, there exists g 2 X such that jf j � jgj, kgkX � CkfkX,and log jg(�; !)j 2 L1(m) for a.a. !.These conditions serve to exclude various degenerate possibilities. Under these conditions itis easy to prove, for instance, that XA is closed in X.Now let X and Y be lattices of measurable functions. The fundamental problem weconsider is to determine when interpolation properties of the couple (X;Y ) are inherited bythe couple (XA; YA). We shall deal with real interpolation only.We remind the reader of the de�nition of the real interpolation spaces (X0;X1)�;qfor a couple (X0;X1) of compatible quasi-Banach spaces. By compatible we mean that X0and X1 are linear subspaces of some ambient space, so we may de�ne the K-functional29



K(x; t;X0;X1) for t > 0 and x 2 X0 +X1 byK(x; t;X0;X1) = inffkx0k0 + tkx1k1 : x0 + x1 = x; x0 2 X0; x1 2 X1g:For 0 < � < 1 and 0 < q � 1, we de�ne the interpolation space (X0;X1)�;q to consist ofx 2 X0 +X1 such that t�K(x; t;X0;X1) belongs to Lq(dt=t), and we de�ne the norm of x in(X0;X1)�;q to be the norm of t�K(x; t;X0;X1) in Lq(dt=t). Actually the speci�c expressionsfor the K-functional and the norm will not play a role for us.Let Y0 � X0 and Y1 � X1 be closed subspaces. We say that the couple (Y0; Y1) isK-closed in (X0;X1) if there is C > 0 such that any decomposition y = x0+x1 of an elementy 2 Y0 + Y1 with xi 2 Xi can be modi�ed to a decomposition y = y0 + y1 with yi 2 Yi andkyiki � Ckxiki, i = 0; 1. In this case we have(Y0; Y1)�;q = (Y0 + Y1) \ (X0;X1)�;q ;with equivalence of norms, and the interpolation properties of the couple (X0;X1) and itssubcouple (Y0; Y1) are identical. Our basic problem can be formulated as follows.Problem. When is the couple (XA; YA) K-closed in (X;Y )?We shall see that this happens fairly often.We begin with a useful duality result. Assume that X0 and X1 are Banach spacesand that X0 \X1 is dense in both X0 and X1. Then, in a natural way, the spaces X�0 andX�1 are included in (X0 \X1)� and, consequently, form a compatible couple. If Yi � Xi (asabove), we denote by Y ?i the annihilator of Yi in X�i , that is, the set of L 2 X�i such thatL = 0 on Yi.Lemma 7.1. The couple (Y0; Y1) is K-closed in (X0;X1) if and only if the couple(Y ?0 ; Y ?1 ) is K-closed in (X�0 ;X�1 ).The proof is left to the reader (see [Pi, K4]).If X is a Banach lattice of measurable functions on (��
;m� �), it often happensthat under the duality hf; gi = R R fg dmd�, X� is also a lattice of measurable functions onthe same measure space. We will assume that this is the case, and further that both X andX� satisfy the conditions (i)-(iii) above. Then one easily sees that, as in the classical case ofthe Hp-spaces on the circle, we have X?A = Z(X�)A, where Z is the coordinate function on �.Thus Lemma 7.1 relates interpolation properties of the couples (XA; YA) and ((X�)A; (Y �)A),X and Y being two lattices as above. 30



The class of BMO functions will play an important role in what follows. Recall thata function f on � is in BMO if f = u + Hv, where u, v 2 L1. As usual, we disregardthe constant functions and de�ne kfkBMO to be the in�mum of kuk + kvk over all suchrepresentations, where k � k is the norm in L1 modulo the constants.Lemma 7.2. Let w > 0 be a measurable function on �. Then logw 2 BMO if andonly if there exist constants C > 1, 0 < � < 1, and a function f > 0 such that w=C � f � Cwand jH(f�)j � Cf�. Moreover, C and � are controlled in terms of k logwkBMO, and viceversa. Proof. Suppose logw 2 BMO. Then logw = �+u+Hv, where � is a real constant,u and v are real functions, R v = 0, and kuk1 + kvk1 � 2k logwkBMO. We pick � sosmall that �kvk1 < �=4, and we set F = exp(�i�(v+ iHv)) = e�Hv[cos(�v) + i sin(�v)] andf = e�(ReF )1=� = we�u[cos(�v)]1=�. Since F is analytic in the unit disk and F (0) is real,we have ImF = H(ReF ). Since j sin �vj � cos �v, we have jImF j � ReF , and consequentlyjH(f�)j � f�. The estimates 1 � cos(�v) � 1=p2 lead to w=C � f � Cw.Conversely, given f as in the lemma, we put G = f� + iH(f�). Since jH(f�)j � Cf�,the values of G lie in a sector in the right half-plane, and the principal branch of logG isanalytic. Writing logG = log jGj + i argG, we have j argGj � tan�1 C and H(argG) =� log jGj+log jG(0)j, so log jGj 2 BMO. Since f� � jGj � p1 + C2f�, we see that � log f �log jGj is bounded, and log f 2 BMO. Finally, log f � logw is bounded, so logw 2 BMO,with BMO-norm bounded in terms of C and �.From the proof we see that we can always reduce �, at the expense of increasing Cand changing f .A weight is a function w > 0 on � � 
 such that logw(�; !) 2 L1(dm) for a.a. !.For 0 < p < 1 we denote by Lp(w) the usual space Lp(wdmd�), with norm denoted bykfkp;w, though we shall denote by L1(w) the space of functions f on � � 
 such that f=wis bounded, with the normkfk1;! = ess supfjf(�; !)j=w(�; !) : (�; !) 2 �� 
g:With this notation, L1(w) = L1(w)� under the non-weighted duality hf; gi = RR fg dmd�.We denote LpA(w) by Hp(w), 0 < p � 1.For a weight w, we say that logw is uniformly (or C-uniformly) in BMO if thefunction logw(�; !) is in BMO for almost all !, withBMO-norm bounded by C. In this case,the analog of Lemma 7.2 holds, where the function f can be chosen to depend measurably31



on the parameter !. We will use this extended version of Lemma 7.2.A quasi-Banach lattice of measurable functions X on ��
 is said to be BMO-regularif for every x 2 X, there exists u 2 X such that jxj � u, kukX � CkxkX, and log u is C-uniformly in BMO, where C depends only on X. The function u will be referred to as aBMO-majorant of x.As an easy consequence of (the extended version of) Lemma 7.2, we have the following.Lemma 7.3. A lattice X is BMO-regular if and only if there are C; � > 0 such thatfor every x 2 X there exists u 2 X with jxj � u, kuk � Ckxk, and jH(u�(�; !))j � Cu�(�; !)for a.a. ! 2 
. At the expense of increasing C, we can take � to be arbitrarily small.For a quasi-Banach lattice of measurable functions X and 0 < � <1, we de�ne X�to be the space of functions f such that jf j� 2 X, with quasi-normkfkX� = k jf j� k1=�X :Thus if X = Lp, then X� = Lp�. Clearly X� is BMO-regular if and only if X is. Our mainexamples of BMO-regular spaces will be based on the following proposition.Proposition 7.4. If the operator H (acting in the �rst variable) is bounded on X�,then X is BMO-regular.Proof. It su�ces to show that Y = X� is BMO-regular. We verify the conditionsformulated in Lemma 7.3. Taking y 2 Y , we put y0 = jyj, yn+1 = jH(yn)j for n � 0, andv = P �nyn, where � > 0 is a �xed small constant. Then jyj � v, kvkY � CkykY , andjHvj � v=�.Lemma 7.5. If logw is uniformly in BMO, then Lp(w) is BMO-regular for 0 <p � 1.Proof. If 1 < p < 1 and w = 1, we may apply Proposition 7.4, with � = 1. Thecase 0 < p < 1 and w arbitrary then follows easily from the de�nitions. For p = 1, thede�nition of the norm in L1(w) as sup(jxj=w) shows that kxk1w is a BMO-majorant ofx 2 L1(w).Lemma 7.6. The space Lp(dm;Lr(
)) is BMO-regular for 0 < p <1, 0 < r �1.Proof. The case where r <1 is a consequence of Proposition 7.4, and the case wherer = 1 of its proof. Indeed, given x, we construct a BMO-majorant for y = ess sup !jx(�; !)jin Lp(dm), and then treat this majorant as a function of two variables.32



It is easy to �nd other examples of BMO-regular spaces on the basis of the sameideas. A less trivial example is the space L1(dm; `s), 0 < s <1 (see [K4]). While we couldhave cited this example (and, of course, Theorem 7.7) when interpolating in (6.8), that proofcan be based also on the duality L1(dm; `s) = L1(dm; `s0)� for s � 1, where the latter spaceis BMO-regular by Lemma 7.6. Thus, to interpolate in (6.8) we can refer to Corollary 7.8.Now we state our main interpolation result. We are assuming that X and Y areBanach lattices of measurable functions on � � 
, and (when applicable) that X� and Y �are also lattices of measurable functions on ��
, all satisfying the conditions (i)-(iii) above.Also, the density of X \ Y in X and Y is assumed when needed.Theorem 7.7. If X and Y are BMO-regular, then (XA; YA) is K-closed in (X;Y ).There is some evidence (see [Ka]) in favor of the conjecture that BMO-regularity isa self-dual property. However, this has not yet been veri�ed in the general case. Thus, wecombine Lemma 7.1 with Theorem 7.7 to obtain more information.Corollary 7.8. In any of the following three cases, (XA; YA) is K-closed in (X;Y ),and ((X�)A; (Y �)A) is K-closed in (X�; Y �).a) X and Y are BMO-regular,b) X� and Y � are BMO-regular,c) X and Y � are BMO-regular.Cases (a) and (b) of the corollary are direct consequences of Theorem 7.7 and Lemma7.1. Case (c) is not needed in Section 6, so we leave it as an exercise.We pass to the proof of Theorem 7.7. Let w0; w1 be two weights whose logarithmsare C-uniformly in BMO.Lemma 7.9. If f(�; !) 2 N+ for a.a. ! and f = g+h with g 2 L1(w0), h 2 L1(w1),then f = ' +  with ' 2 H1(w0),  2 H1(w1) and k'k1;w0 � C 0kgk1;w0; k k1;w1 �C 0khk1;w1 , where C 0 is determined by C.Clearly Theorem 7.7 is a consequence of this lemma. Given f = x + y with f 2XA +YA, x 2 X, y 2 Y , we �nd BMO-majorants for x and y in their respective spaces, andapply the lemma to these majorants as the weights.To prove Lemma 7.9, we �rst assume that f 2 H1(w0) + H1(w1). Then thestatement to be proved is precisely the K-closedness of the couple (H1(w0);H1(w1)) in33



(L1(w0); L1(w1)). By duality (Lemma 7.1), it su�ces to check that the couple (H1(w0);H1(w1))is K-closed in (L1(w0); L1(w1)). So let z = a + b 2 H1(w0) + H1(w1), where a 2 L1(w0),b 2 L1(w1). We must replace a and b with functions roughly of the same size but analyticin the �rst variable.Let v be a BMO-majorant for b in the BMO-regular space L1(w1). Setting w = w0v,we apply Lemma 7.2 and the remark after its proof to �nd a function k and a constant � < 1such that w=C � k � Cw and jHk�(�; !)j � Ck�(�; !). Fixing an integer n > 1=�, we de�ne� = max�1; (jaj=v)1=n	 ; F = k� + iH(k�)k��+ iH(k��) ; G = 1 � (1� F n)n:We claim that z = (1 �G)z +Gz is the required decomposition.Indeed, the summands are analytic in the �rst variable, and it su�ces to estimate thenorms. Since jH(k�)j � Ck�, we see that jF j � C1=� � C1 and jGj � C2=�n � C2, whencejGzj � C3jaj��n +C2jbj � C3v+C2jbj. By the choice of v, we obtain the required inequalitykGzk1;w1 � C4kbk1;w1.We estimate the quantity k(1�G)zk1;w0 � (1 +C2)kak1;w0 + k(1�G)bk1;w0. We havej1� F j = j(�� 1)k� + iH((�� 1)k�)jj�k� + iH(�k�)j � (�� 1) + jH((� � 1)k�)jk� :Since also jF j � C1, jbj � v, and w � Ck, we see thatZ j1�Gjjbjw0 � C5 Z j1 � F jnw � C6 Z j1� F j1=�w� C7�Z (�� 1)1=�w + Z jH((� � 1)k�)j1=�wk �� C8�Z (�� 1)1=�w + Z jH((� � 1)k�)j1=��Since H acts on L1=�(dmd�) and k � Cw, it follows that the second integral in parenthesesis dominated by the �rst. Now � � 1 = 0 if j�j � v and � � 1 � (jaj=v)1=n � (jaj=v)�otherwise. Therefore Z (�� 1)1=�w � Z (jaj=v)w = Z jajw0;and we are done.It remains to get rid of the asumption f 2 H1(w0) + H1(w1). This is done by astandard approximation argument based on the Hardy space theory. Suppose only f 2 N+.For u = log jf j de�ne G(�; !) = exp(u(�; !) + iHu(�; !)) and F = f=G, so that jF j = 134



a.e. Thus f = FG is the \inner-outer" factorization of f . Set uj = jf j ^ (jw0) andGj(�; !) = exp(uj(�; !) + iHuj(�; !)). Then jGj j � jGj, and Gj ! G in measure. Setfj = FGj 2 H1(w0), then fj ! f in measure, and jfjj � jf j � jgj + jhj. By the �rstpart of the proof, fj = 'j +  j, where 'j 2 H1(w0),  j 2 H1(w1), k'jk1;w0 � C 0kgk1;w0,and k jk1;w1 � C 0khk1;w1. For some subnet of the integers we have 'j ! ' and  j !  weak-star. Simultaneous convex combinations of the 'j's and  j's can be chosen to convergea.e. to ' and  , and this guarantees that f = '+  with the appropriate estimates for j'jand j j.
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8 Bourgain ProjectionsLet w be a weight on the unit circle. We say that w admits an analytic projection if thereis an operator Q that projects Lp(w) onto Hp(w) for all 1 < p < 1 at once and, togetherwith Q�, is of weak type (1; 1) relative to w,wfjQf j > �g � c� Z jf jw; wfjQ�f j > �g � c� Z jf jw; f 2 L1(w);where we denote w(e) = Rew. Here the adjoint Q� is calculated relative to the dualityhf; gi = R f�gw dm.Operators of this sort served as the main technical tool in Bourgain's work extendingGrothendieck's theorem to the disk algebra. Bourgain [B2] proved that for every integrableweight u there exists a weight w admitting an analytic projection and satisfying w � u andR w � C R u, where C is a universal constant. The existence of such a projection does notimply the K-closedness in the scale Hp(w) if the \extreme" exponents p = 1 and p = 1are involved. However, it still implies certain \nice" interpolation properties of this scale,su�cient for instance for proving Lemma 6.4.Though here we have used di�erent (simpler) techniques, Bourgain's projections re-main interesting in themselves. We shall show that a weight w admits an analytic projectionif and only if logw 2 BMO. Bourgain's majorization result quoted in the preceding para-graph then follows from the fact that L1(d�) is BMO-regular.We need a technical notion. A two-tailed sequence of functions 'j 2 H1, �1 < j <1, is called an analytic decomposition of unity subordinate to a weight w if there exists aconstant c such that(i) j'jj1=8w � c2j ; �1 < j <1,(ii) P j'jj1=82j � cw,(iii) P j'jj1=8 � c,(iv) P'j = 1.Roughly speaking, the functions 'j behave like the characteristic functions of the sets where2j�1 � w < 2j . The exponent 1=8 is convenient technically but, in principle, may be replacedby any � 2 (0; 1]; see [K3].Theorem 8.1. For a weight w, the following conditions are equivalent:1) logw 2 BMO,2) there is an analytic decomposition of unity subordinate to w,36



3) w admits an analytic projection,4) there is an operator Q projecting Lp(w) onto Hp(w) for two di�erent values of p.We focus on the implications 1) ) 2) ) 3). The implication 3) ) 4) is trivial, and4) ) 1) is proved in [KX, Corollary 2.2].To prove that 1) ) 2), we need a lemma.Lemma 8.2. Suppose u is a weight such that log u 2 BMO. Then log(1^u) 2 BMO,and the BMO-norm of log(1 ^ u) is controlled by the BMO-norm of log u.Proof. By Lemma 6.2, there exist C > 1, 0 < � < 1, and f such that u=C � f � Cuand jH(f�)j � Cf�. We put g = (1 + f�)1=�, then jH(g�)j � Cg� and (u + 1)=C1 � g �C1(u+ 1). Thus the BMO-norm of log(u+ 1) is controlled by the BMO-norm of log u, andconsequently we have similar control over the BMO-norm of log(u=(u + 1)). Finally notethat (1 ^ u)=2 � u=(u+ 1) � 1 ^ u.Now to show 1) ) 2), let logw 2 BMO. For any � > 0, we introduce two weights:u0 = 1^ (w=�)16, u1 = 1^ (�=w)8. Then k log u0kBMO, k log u1kBMO � C = C(k logwkBMO)by Lemma 8.2. Since 1 � u0 + u1, by Lemma 7.9 we �nd g 2 H1(u0), h 2 H1(u1) suchthat 1 = g + h, jgj � Cu0, khk � Cu1, where here and below all constants are determinedby k logwkBMO.We do this for each � = 2n, n 2 Z, and denote the resulting functions by gn and hn.Next we put 'n = gn � gn+1 = hn+1 � hn, thenj'nj � cminf(2�nw)16; (2nw�1)8g: (8.1)We claim that f'ng is the required analytic decomposition of unity. Indeed, (iv) is clear;the convergence of the series a.e. easily follows from (8.1), and the sum telescopes. Againby (8.1), j'nj1=8w � C2n, which is (i). We verify (ii) (condition (iii) is proved similarly). Letek = f2k � w < 2k+1g, then, again by (8.1),Xn2Z 2nj'nj1=8 � CXn2Z 2n(Xk�n 2�2n22k�ek +Xk>n 2n2�k�ek) :Changing the order of summation, we see that the latter expression is dominated byPk 2k�ek �Cw. Now we sketch the proof of the implication 2) ) 3). Let f'jg be an analytic decom-37



position of unity for w. We write 'j = �j 8j with �j inner and  j outer, and putQf =Xj2Z �j 4jR(f 4j ) ; (8.2)where R is the Riesz projection. Then Q is the required operator. We only check the weaktype (1; 1) property of Q; the weak type (1.1) for Q� is similar, and the Lp(w)-boundednessof Q for 1 < p < 1 is simpler. Clearly the values of Q are analytic functions, and Q �xesanalytic functions because P'j = 1.Lemma 8.3. An operator T acting from a subset of L1(�) to measurable functionsis of weak type (1; 1) if and only if it satis�es the estimateZ jTf j1=2jgjd� � Ckfk1=2L1(�)kgk1=2L1(�)kgk1=2L1(�) :Proof hint. To prove the \if" part, take g = �E, where E � fjTf j > �g is an arbitraryset of �nite measure.Now we check the estimate of Lemma 8.3 for Q, using the fact that it is true for R:Z jQf j1=2jgjw �Xj Z j jj2jR(f 4j )j1=2jgjw� CXj 2j Z jR(f 4j )j1=2j jgj � Ckgk1=21 Xj 2jkf 4j k1=2L1 k jgk1=2L1� Ckgk1=21 (Xj 2jkf jkL1)1=2(Xj 2jkg jkL1)1=2 � Ckgk1=21 kfk1=2L1(w)kgk1=2L1(w):See [K3] for more information on Bourgain projections. To illustrate their usefulness,we mention an application to conformal mapping.Let G be a Jordan domain with recti�able boundary. The analogues for G of theclassical Hp-spaces are the spaces Ep(G) consisting of the analytic functions f on G forwhich sup R
n jf(z)jpjdzj is �nite, where f
ng is a �xed sequence of recti�able curves thattend to @G in a natural sense. The domain G is a Smirnov domain if the derivative g0 ofthe conformal mapping g of the unit disk onto G is outer. In this case we may identify thescale Ep(G) with the scale Hp(jg0j) of weighted Hardy spaces on the disk.For a Smirnov domain G with conformal map g, it is important to know when log jg0jis in BMO. See [Po] for a detailed discussion. The following theorem is an immediateconsequence of Theorem 8.1. 38



Theorem 8.4. The following statements are equivalent for the conformal mapping gof the unit disk onto a Smirnov domain G.1) log jg0j 2 BMO.2) There is an operator projecting Lp(@G) onto Ep(G) for all p 2 (1;1) and havingweak type (1; 1).3) There is an operator projecting Lp(@G) onto Ep(G) for two di�erent values of p.Theorem 8.4 together with a theorem of G. David [D] yields a proof of the (known)fact that if the arc-length measure on the boundary of G satis�es a Carleson condition, thenlog jg0j 2 BMO. The Carleson condition is that the length of @G \Dr is bounded by cr forany small disk Dr of radius r. By David's theorem, this implies that the Cauchy integralover @G is a bounded operator on Lp(@G) for 1 < p <1. In particular, condition (3) aboveholds, and from (1) we obtain log jg0j 2 BMO. Note that the Cauchy integral operator neednot have weak type (1; 1), and the Bourgain projection in statement (2) has the form (8.2).Finally, we note that the theory discussed in Section 7 can be carried over, nearlyword for word, to the Hardy spaces related to a weak-star Dirichlet algebra, as can theimplications 1) ) 2) ) 3) in Theorem 8.1. See [SW] for background on weak-star Dirichletalgebras.
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9 Perturbation of Uniform AlgebrasOften a Banach function space remembers almost nothing about the set on which the func-tions are de�ned. For example, if p is �xed, the spaces Lp(
; �) for � separable and atomlessare all isometric. The reason is that, up to isomorphism in a proper sense, there are no sep-arable atomless measures other than Lebesgue measure on [0; 1]. Something similar occursin the context of the spaces C(K). The celebrated Milyutin theorem (see [Woj, III.D, x19])asserts that for any uncountable compact metric space K, C(K) is linearly homeomorphicto C[0; 1]. On the other hand, if we do not change the norm of C(K) by too much, wekeep K in sight. The Amir-Cambern theorem (see [Ja1]) asserts that if T is a linear isomor-phism of two C(K)-spaces such that kTk kT�1k < 2, then the underlying compact spacesare homeomorphic.This leads us to consider linear isomorphisms of uniform algebras that are not toofar from being isometries. For an exposition of this area, see [Ja1]. The idea of nearness oftwo uniform algebras can be given several equivalent formulations, but we focus only on theBanach space notion of nearness to an isometry. We say that two uniform algebras are (1+")-isomorphic if there is a linear isomorphism T between them that satis�es kTk kT�1k < 1+",that is, if the Banach-Mazur distance between them is less than log(1 + "). Algebras thatare 1-isomorphic in this sense are isometrically isomorphic as Banach spaces, and for thesewe have the following.Theorem (Nagasawa [Na]). If two uniform algebras A and B are isometricallyisomorphic as Banach spaces, then they are isometrically isomorphic as uniform algebras.In particular, their maximal ideal spaces are then homeomorphic, as are their Shilovboundaries. As a consequence, if K1 and K2 are compact subsets of the complex plane suchthat the algebras A(K1) and A(K2) are linearly isometrically isomorphic, then there is ahomeomorphism of K1 onto K2 that maps the interior of K1 conformally onto the interior ofK2. On the other hand, deformation of the compact set K leads to linear isomorphisms ofA(K) that are close to being isometries. For example, consider the scale of annuli Gr = fr <jzj < 1g, and the associated algebras A(Gr). Since these annuli are conformally distinct, notwo of the algebras A(Gr) can be isometric. On the other hand, the linear operator T fromAr to As de�ned by T  1Xn=�1 anzn! = n=�1Xn=�1 an �rs�n zn + 1Xn=0 anznis a linear isomorphism of Ar onto As, and further kTk kT�1k ! 1 as s! r.40



We say that a uniform algebra A is stable if there is " > 0 such that any uniformalgebra B that is (1 + ") isomorphic to A is actually isometrically isomorphic to A. Thusthe algebras C(K) are stable, while the annulus algebras are not. R. Rochberg [Ro1] provedin 1972 that the disk algebra CA is stable, and he went on to study the perturbations of thealgebras A(K) for K a �nitely connected subset of the complex plane with smooth boundary,or more generally for K a �nite bordered Riemann surface. The 
avor of his work is givenby the following result.Theorem (Rochberg). Let K be a �nite bordered Riemann surface. Then for" > 0 small, any uniform algebra B that is (1 + ")-isomorphic to A(K) has the form A(J)for a compact bordered Riemann surface J that is a deformation of K by a quasi-conformalhomeomorphism with dilatation tending to 0 with ".For expository accounts of these results, see [Ro2, Ro3]. More recently, Jarosz [Ja2]was able to prove that the nonseparable algebra H1(�) is also stable.Meanwhile there is currently no known compact set K in the complex plane withnonempty interior such that CA(K) can be shown to be linearly nonisomorphic to the diskalgebra. Conformal mapping theory and the relation CA � (CA � CA � : : : )c0 proved byWojtaszczyk (see [Woj, III.E, x12]) suggest that a compact set K for which CA(K) (or P (K),or R(K)) is proper but is not isomorphic to the disk algebra should not be too simple (if itexists).
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10 The Dimension ConjectureIt is natural to ask how linear topological properties of an algebra of analytic functions ofseveral complex variables re
ect the geometry of the underlying domain. The oldest problemalong these lines is to determine what e�ect the number of variables (dimension) has.Dimension Conjecture. If G1 and G2 are bounded domains in C n and Cm respec-tively, with n 6= m, then the spaces A(G1) and A(G2) are not linearly homeomorphic, norare H1(G1) and H1(G2).We discuss brie
y some results related to the dimension conjecture. The main refer-ences are [B4] and [Pe, x 11].It is most natural to examine the dimension conjecture �rst for the polydisks �n andthe balls Bn. In [B4] it was proved that A(�n) is not linearly homeomorphic to A(�m)if m 6= n. The invariant distinguishing the spaces (in fact, their duals) is the behavior ofcertain vector-valued multiindexed martingales on the measure space �1 � � � � � �1 withnatural �ltration; the martingales in question must have some additional complex analyticstructure. The method in [B4] yields the following.Theorem 10.1. Let U1; : : : ; Un, V1; : : : ; Vm be strictly pseudoconvex domains withC2-smooth boundary (the dimension may vary from one domain to another). If m > n, thenA(V1 � � � � � Vm)� does not embed in A(U1 � � � � � Un)� as a closed subspace.Theorem 10.1 includes the previously known result that the spaces A(Bm) and A(�n)are not linearly isomorphic for m;n � 2. It had been shown that A(�n)� does not embed ina direct sum of an L1-space and a separable space (see [Pe, x 11]), whereas A(Bm)� is sucha direct sum by Theorem 4.3.Very little is known beyond Theorem 10.1. Currently it is not even known whetherthe ball algebras A(Bm) are mutually nonisomorphic for m � 2. They are all distinct fromA(B1) = A(�) = CA. The latter space is a subspace of C(�) with separable annihilator,whereas A(Bm) for m � 2 does not embed in C(K) as a subspace with separable annihilator(see [Pe, x 11]).The series fH1(�n)g seems to be quite similar to fA(�n)g; however, in general themethod of [B4] is not applicable to H1(�n). It is known only that H1(�) di�ers fromH1(�n) for n � 2. Again, see [B4, Pe] for proofs.For comparison, we describe the situation concerning the Hardy spaces H1(�n) and42



H1(@Bn). The spaces of the �rst series are not isomorphic to one another (see [B5, B6]),whereas those of the second series are all isomorphic (see [Wol]). More recently, it was shownthat for any strictly pseudoconvex domain with smooth boundary the corresponding spaceH1 is isomorphic to the classical H1 in the disk (see [Ar]).Finally, note that in contrast to the current state of a�airs in one complex variable, itis possible to �nd in several complex variables many examples of nonisomorphic spaces A(G)where the underlying domains G have the same dimension. For instance, from Theorem 10.1it follows that A(�4) is not linearly isomorphic to A(B2 �B2).
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