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Abstract

Any Banach space can be realized as a direct summand of a uniform algebra, and
one does not expect an arbitrary uniform algebra to have an abundance of properties
not common to all Banach spaces. One general result concerning arbitrary uniform
algebras is that no proper uniform algebra is linearly homeomorphic to a C'(K)-space.
Nevertheless many specific uniform algebras arising in complex analysis share (or are
suspected to share) certain Banach space properties of C'(K). We discuss the family
of tight algebras, which includes algebras of analytic functions on strictly pseudocon-
vex domains and algebras associated with rational approximation theory in the plane.
Tight algebras are in some sense close to C'(K)-spaces, and along with C'(K)-spaces
they have the Pelczyniski and the Dunford—Pettis properties. We also focus on certain
properties of C'(K)-spaces that are inherited by the disk algebra. This includes a dis-
cussion of interpolation between HP-spaces and Bourgain’s extension of Grothendieck’s
theorem to the disk algebra. We conclude with a brief description of linear deformations
of uniform algebras and a brief survey of the known classification results.
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1 Uniform Algebras

A uniform algebra is a closed subalgebra A of the complex algebra C'(K') that contains the
constants and separates points. Here K is a compact Hausdorff space, and A is endowed with
the supremum norm inherited from C'(K’). The algebra A is said to be properif A # C(K).
Uniform algebras arise naturally in connection with problems in approximation theory. The
main examples of proper uniform algebras come from complex analysis. The prototypical
proper uniform algebra is the disk algebra, which we denote simply by C}y, consisting of the
analytic functions on the open unit disk in the complex plane that extend continuously to
the boundary I'. More generally, if K is a compact subset of C", we denote by A(K), or by
CA(K), the algebra of functions continuous on K and analytic on the interior of K. Also, we
may consider the uniform closure of the restriction to A of some algebras of “elementary”
holomorphic functions, such as analytic polynomials, or rational functions with singularities
off K. The uniform closure of the rational functions with singularities off K is denoted by
R(K). If K is a compact subset of the complex plane, Runge’s approximation theorem asserts
that R(K) includes the functions that are analytic in a neighborhood of K. It may occur
that R(K) is a proper subalgebra of C'(K') even when K has empty interior. Other uniform
algebras, associated with a domain D in C", are the algebra A(D) of analytic functions on
D that extend continuously to the closure of D, and the algebra H*(D) consisting of all
bounded analytic functions on D. Endowed with the supremum norm on D, the algebra
H*>(D) becomes a uniform algebra on the smallest compactification of D to which the
functions extend continuously. In the case of the open unit disk A = {|z| < 1}, we may
identify H*(A) with a closed subalgebra H*(df) of L>(df) via nontangential boundary

values, where df is the arc-length measure on the unit circle.

One of the goals in studying uniform algebras is to use the tools of functional analysis
and the Gelfand theory in order to prove approximation theorems or to understand why ap-
proximation fails. Mergelyan’s theorem, that R(K') = A(K') whenever K is a compact subset
of the complex plane whose complement has a finite number of components, was eventually
given a proof, by Glicksberg and Wermer, that depends on uniform-algebra techniques and a
less difficult theorem of Walsh on approximation by harmonic functions. We quote two other
approximation theorems, whose proofs depend on the algebra structure and on techniques

of functional analysis.

Theorem (Wermer [We]). Let A be a (not necessarily closed) algebra of analytic
functions on the unit circle I' in the complex plane. Suppose that A separates the points of

I', and that each function in A extends to be analytic in a neighborhood of I'. Then either A



is dense in C(I'); or else there is a finite bordered Riemann surface with border I such that

the functions in A extend to be analytic on the surface.

Theorem (Davie [Da]). Let Ax be the area measure on a compact subset K of the
complex plane, and let H* (Mg ) be the weak-star closure of R(K) in L*(Ak). Then each
f € H®(Ak) is approximable pointwise a.e. on K by a sequence of functions f, € R(K)
such that ||£.]) < 171

In some sense, uniform algebra theory can be regarded as an abstract study of the

maximum principle for algebras. For an incisive account of this aspect of the theory, see

[AWe].

Uniform algebra theory has also served as a source of interesting problems. One such
problem, originally raised by S. Kakutani, asked whether the open unit disk A is dense in
the spectrum of the algebra H*(A). This problem became known as the “corona problem.”
It was answered affirmatively by L. Carleson (see [Gar]). While the corona theorem per se
has not played a really significant role in analysis, the techniques that were devised to solve

the problem have played an important role in function theory.

The question arises as to the extent that properties of various uniform algebras depend
only on their linear structure. From the point of view of Banach spaces, how special are
uniform algebras’ We will see in Section 2 that generic uniform algebras are as bad as
generic Banach spaces, in the sense that any Banach space is isometric to a complemented
subspace of a uniform algebra. On the other hand, we will show in Section 3 that a proper
uniform algebra is distinct as a Banach space from C'(K). In fact, no proper uniform algebra
is linearly isomorphic to a complemented subspace of a C'(K)-space, or even to a quotient
of a C'(K)-space.

It is of interest to know which properties of C'(K') are inherited by uniform algebras.
Towards answering this question, a great deal of effort has gone into determining which
properties of C'(I') are passed down to the disk algebra C'4. Some of the known results are

summarized in the table below.

At present there is no unified theory but rather only fragmented results on uniform
algebras as Banach spaces. Our aim in this article is to present a selection of results in order
to give an idea of what has been studied and what problems are currently open. Sometimes
proofs or indications of proofs are also given, to convey the flavor of the techniques that are

employed.

Section 2 includes a brief introduction to algebras of analytic functions on domains in



Banach spaces. In Section 3 we show how some basic facts about p-summing and p-integral
operators lead to several characterizations of proper uniform algebras. Sections 4 and 5 are
devoted to certain properties that involve weak compactness. The properties are well-known
for C'(K)-spaces, and they are inherited by algebras generated by analytic functions on
planar sets and on strictly pseudoconvex domains, where the key ingredient is the solvability

of a J-problem.

Property of X = C(K)or X = Cy C(K) (4 | Reference
X is a (linear) quotient of C'(5) Yes No 63
X** is complemented in a Banach lattice | Yes No 63

X* has the Dunford-Pettis property Yes Yes 85

X has the Pelczynski property Yes Yes 85

X* is weakly sequentially complete Yes Yes 85

X has a basis Yes if K is metric | Yes [Woj]
X verifies Grothendieck’s theorem Yes Yes 86

X has a complemented copy of C(I) Yes if K is metric | Yes [Woj]

and uncountable

In Sections 6 through 8 we talk of properties that are more specific to the disk algebra
(4. We focus on Bourgain’s extension of Grothendieck’s theorem to the disk algebra obtained
in [B1, B2]. This subject was treated in detail in the survey [K2]. The exposition here will
follow the ideas of [K2] with slight simplifications at some points, and with emphasis on the
interpolatory nature of the proofs. The extension of Grothendieck’s theorem is discussed in
Section 6, and the results on interpolation used in the proofs are dealt with in Section 7.
Section 8 includes a brief account of Bourgain projections, the main technical tool used by

Bourgain to transfer results from continuous to analytic functions.

A good deal of the material presented here has already been discussed in various mono-
graphs and expository papers. We mention particularly the early lecture notes of Pelczynski
[Pe], and the research monographs of Wojtaszczyk [Woj] and of Diestel, Jarchow, and Tonge
[DJT]. For background on uniform algebra theory, see [Gam1], [Sto], and [AWe]. For Davie’s
theorem, see also [Gam2]. The basic Hardy space theory that we refer to is covered in [Du],
[Gar], and [Hof]. One reference for several complex variables and pseudoconvexity is [Ra].

The expository papers [K2] and [K4] also cover in part the material of the present article.

We collect here some standard notation and conventions. We denote by I' the unit
circle {|z] = 1} in the complex plane, and by dm = df/27 the normalized arc-length measure
on I'. The Hilbert transform on L'(dm) is denoted by H. We denote by C'4 the disk algebra,
which is the uniform closure of the analytic polynomials in C'(I'). The algebra of bounded

analytic functions on a domain D is denoted by H*(D). If A is a linear space of functions



on K, and o is a measure on K, then H*(A, o) will denote the weak-star closure of A in
L>(c). The generic Banach space, or quasi-Banach space, is denoted by X. The closed unit
ball of a Banach space X is denoted by Bx, and the open unit ball by B%. The image of a
Banach space X in its bidual X™* under the canonical embedding is denoted by X,



2 Analytic Functions on Banach Spaces

We wish to develop some examples of algebras of analytic functions defined on domains in a

Banach space.

A complex-valued function on an open subset of a Banach space X is analytic if it
is locally bounded and its restriction to every complex one-dimensional affine subspace of
X is analytic. In other words, f is analytic on D if f is locally bounded, and if for every
zo € D and direction @ € X, the function A — f(x¢+ Ax) depends analytically on A. Sums,

products, and uniform limits of analytic functions are analytic.

A locally bounded function f on D is analytic just as soon as its restriction to DNY
is analytic for every finite-dimensional subspace Y of X. Thus any statement about analytic
functions that involves only a finite number of points of X will hold in general once it holds

for analytic functions of several complex variables.

Let f be analytic on a domain D in a Banach space X. Suppose 0 € D, and suppose
|f(z)] < C for ||z|| < r. For fixed @ € X, the function ¢ — f(Cx) has a Taylor series

expansion

fGa) =Y Ane)C™ [] < /Il
m=0
One checks easily that each A,,(x) is m-homogeneous, that is, A, (Ax) = A" A,,(x). From the
Cauchy estimates we have |A,,(x)| < C||z||™/r"™, and consequently A,,(x) is locally bounded.
If we restrict the expansion f(x) = > A,,(2) to a finite dimensional subspace of X, we obtain
the usual expansion of an analytic function as a series of m-homogeneous polynomials. In
particular, A,,(z) depends analytically on x in any finite-dimensional subspace of X, and

since it 1s locally bounded, it is analytic.

Let P, = P,,(X) denote the space of analytic functions on X that are m-homogeneous.
We endow P, with the supremum norm over the unit ball Bx of X, and then P,, becomes a
Banach space. The Cauchy estimates show that the correspondence f +— A, is a norm-one

projection from the space H*(B%) of bounded analytic functions on the open unit ball of

X to P,,.

The first Taylor coefficient in the expansion of an analytic function f at 0 coincides
with the usual Fréchet derivative f/'(0) of f at 0, whose defining property is that f(x) =
F(0) + f'(0)(x) 4+ o(||z||) as © — 0. The Fréchet derivative f’(0) is a continuous linear
functional on X, and the space P; coincides with the dual space X* of X.



Theorem 2.1 (Milne [Mi]). Any Banach space is isometric to a complemented

subspace of a uniform algebra.

To prove the theorem, we let K = Bxs be the closed unit ball of the dual space X*
of X, endowed with the weak-star topology. Recall that X denotes the canonical image of
X in X**. The restriction of X to K is a closed subspace of C'(K). Let A be the uniform
algebra on K generated by X. The functions in A are analytic on the open unit ball of X™*,
hence have Taylor expansions f(x*) = > A, (2*). The norm-one projection f — A; into
P(X™) is the identity on X, and it projects any m-homogeneous polynomial in elements of
X to0if m # 1. Thus if we pass to uniform limits of sums of polynomials in elements of X,

we obtain a norm-one projection of A onto XX,

We could as well obtain the same result by considering the algebra A(Bx«) of weak-
star continuous functions on Bys that are analytic on the open unit ball of X*. It is not
difficult to check that the projection of A(Bxx) onto Pi(X*) 2 X** maps A(Bx+) onto
linear functionals that are weak-star continuous on By, thus onto X. However, it is shown
in [ACG] that the algebra A(Bx«) need not coincide with the algebra generated by the
weak-star continuous linear functionals. Along these lines, it is not even known whether the

maximal ideal space of A(Bx») coincides with Bysx.

There is an expanding literature about polynomials on Banach spaces and about
uniform algebras associated to Banach spaces (see [Din], [GJL]). The study of polynomials
focuses on the spaces P,,, which can be viewed as spaces of multilinear functionals on X.
Every continuous m-homogeneous polynomial f on X is the restriction to the diagonal of a
unique continuous symmetric m-linear functional F on X x --- x X. This F' is given by the

polarization formula

1
Flag,...,ap) = Zel---smf(elxl—|—---—|—5m:1;m),

ml2m

the summation being extended over the 2™ independent choices of ¢; = +1 (exercise). The
same formula shows that the norm in P, is equivalent to the multilinear functional norm,
though the spaces are not isometric in general. The space P,, can also be viewed as the dual

space of the m-fold symmetric projective tensor product of X with itself. For background,

see [Mu], [Gam3].



3 Characterization of Proper Subalgebras

In this section we shall prove that if a uniform algebra is proper, then it differs as a Banach
space from any space C'(K'). The crux of the proof is that every absolutely summing operator
from C'(K) to a reflexive space is compact, while we construct on any proper uniform algebra

an operator to /% that is absolutely summing but not compact.

Let X and Y be Banach spaces, and let 0 < p < ¢ < oo. An operator T': X — Y is
said to be (g, p)-summing if

(S i) < € sup { (S letapl) " s e xo o) < 1} (3.1)

for every finite collection {x;} of elements of X. The best constant C' is denoted by 7, (7).
The class of such operators forms an operator ideal, in the sense that precompositions and
postcompositions with bounded operators remain within the class, and further the usual

estimates for norms hold.

If p = ¢, (3.1) coincides with the definition of a p-summing operator (see Basic
Concepts); in this case the notation m,(T") is used. By absolutely summing we mean 1-
summing. We remind the reader that the p-summing operators are characterized as those
that factor through a part of the inclusion L*(y) < LP(u), in the sense that 7' can be

represented as a composition
U v
T -X —M—M,—Y, (3.2)

where p is a probability measure, M is a subspace of L™ (u), and M, is a subspace of LP(u)
containing M, or alternatively M, is the closure of M in L?(u). For p > 1, T is said to
be strictly p-integral if it factors through the entire inclusion L>(u) — LP(u), that is, we
can take M = L*(u) and M, = LP(u) in (3.2). This notion differs slightly from that of a
p-integral operator, as defined in Basic Concepts. However, the two notions coincide if, say,
Y is reflexive. As explained in Basic Concepts, for p > 1 every p-summing operator on C'(K)
is strictly p-integral, so that the p-summing and the strictly p-integral operators on C'(K)

coincide.

We recall that any absolutely summing operator is weakly compact. For l-integral

operators, we can use the Dunford-Pettis property of L'(p) to say more.

Lemma 3.1. A (strictly) 1-integral operator from X to a reflexive Banach space is
compact. In particular, an absolutely summing operator from C(K) to a reflexive Banach

space 18 compact.



To see this, consider the factorization (3.2) above, with p = 1, M = L*(u), M, =
LP(p). Since Y is reflexive, V' is weakly compact. By the Dunford-Pettis theorem, V' maps
weakly compact subsets of L'(x) to norm-compact subsets of Y. Since bounded subsets of
L= () are weakly precompact in L'(u), the composed operator T' maps bounded subsets of

X into norm-compact subsets of Y, and T" is compact.

The prototype for an absolutely summing operator that is not 1-integral is the Paley
operator P on the disk algebra ('4. The Paley operator assigns to a function f on the unit
circle T the sequence of 2th Fourier coefficients {f(Zk)}iozl Paley’s inequality is

o 1/2
(Z |f(2’“)|2) <cplflh.  feH (m)
k=1

for some constant cp > 0. In other words, the restriction of the Paley operator P to H'(m)

is a bounded operator from H'(m) to (*. For the proof, see [Hof], [Z].

Let M be the closed linear span in L?(m) of the exponential functions exp(:2%0),
k> 1. It is a classical fact (see [Z]) that the LP-norms on M are equivalent, for 0 < p < oo.
Further, for 1 < p < oo there is a continuous projection @), of LP(m) onto M. Thus for
1 < p < oo, we can factor the Paley operator on C'(I') through the inclusion L>(u) — L?(u),

P:CO(T) = L¥(m) = LP(m) 2% M — 2,

and P operating on C'(I') is p-integral for 1 < p < co. On the other hand, P is not compact,

so P is not absolutely summing on C(I).

The story is different if we restrict P to C'4. Paley’s inequality yields the factorization

P: A O'(m) L£27
where V' is the Paley operator on H'(m). Thus P is absolutely summing on C'4. On the
other hand, P maps the exponential functions exp(:2¥), £ > 1 to the standard basis vectors
of /%, so that P is not compact, and P is not 1-integral. This shows incidentally that C4 is
not complemented in C'(I'), nor even isomorphic to any quotient space of a C'(K)-space, or
else the composition of the projection and P would produce an absolutely summing operator

on C'(K) that is not compact.

Our aim is to transfer the Paley operator and this final observation to an arbitrary

uniform algebra. Paley’s inequality transfers directly, as follows.

Lemma 3.2. Let A be a uniform algebra on K. Let f € A satisfy || f]| < 1, and let

10



T be any measure on K orthogonal to A. Then the sequence

ro={[1)

belongs to (%, and ||P(7)||2 < cp||7]|, where cp is the best constant for Paley’s inequality. The
estimate persists for f € H*(|7|), the weak-star closure of A in L>(|7]).

Proof. Define U : C(I') — C(K) by (Ug)(s) = g(f(s)) for g € C(I') and s € K,
where § is the Poisson integral of g. Then ||U|| < 1, U(2") = f*, and U(z") = f". Now
U*: M(K) — M(T) sends At to C'f, which by the F. and M. Riesz theorem is identified
with H}(m). Thus U*(7) = hdm for some h € H'(m), and

—2k k
/ fodr = /52 h(z)dm, k>1.
K r

Paley’s inequality for A yields ||P(7)|l2 < cp||h||1 = ep||U*(7)|| < cpl|7|]. This proves the
first statement of Lemma 3.2, and the second is obtained by applying the first to the uniform
algebra H*(|7|) and noting that 7 generates a functional on L>(|7|) orthogonal to H*(|7]).

Theorem 3.3 (Kislyakov [K1]). If A is a proper uniform subalgebra of C(K),
then there is an absolutely summing operator from A to (* that is not compact, hence not

1-integral.

The proof depends on the Paley operator associated with an extremal function F
for a certain dual extremal problem. Since A is proper, there is a measure y on K such
that ;1 — A but the complex conjugate g of u is not orthogonal to A. We assume that the
functional f — [ fdji on A has unit norm. By the Hahn-Banach and Riesz representation
theorems, there is a measure A on K such that ||A]| = 1 and A — g — A. Let {f,} be a
sequence of functions in A such that || f,|| < 1 and [ f.dig — 1, and let F" € H>(|u|+]A]) be
a weak-star limit point of the sequence {f,}. Then |F| <1, and [ F'd\ = 1, from which it
follows that |F| =1 a.e. dA\. Now f(A—p) — Aforall f € A, hence for all f € H®(|u|+]|A]).
In particular, F*(A — ) — A, and 7 = u + F*(A — ) — A. We define

T(g) = {/FngdT}oo . geA (3.3)

k=1

By Lemma 3.2, applied to F' € H*(|u| 4 |A|) and the orthogonal measure g7, the sequence
T'(g) is square summable and ||7'(g)||2 < ¢|lg7|| = ¢ [ |g|d|r|. Thus T' can be factored through
the closure H*(|7|) of A in L'(|7]),

T:A— HY(r]) — 2,

11



and T is absolutely summing. To see that T" is not compact, we compute the kth component

of T(F?+1) (to be rigorous, rather we must consider lim, o, T(f2"+1)):
T(F¥H), = / PPUE gy = / PR ) 4 / FHLUE gy / FPHT 4 (3.4)

Let E be the set on which |F| = 1. Since A is carried by F, the first integral on the right is
J F'd\ =1. Since |F|" — 0 off £ as n — oo, (3.4) tends to

1—|—/Fd/,c—/Fd/,L:1—|—2iIm </qu>’ (3.5)
I I I

which is not zero. Since the kth components of the vectors T(F"), n > 1, do not tend to
zero uniformly in n, the vectors T'(F™) do not lie in a compact subset of ¢, and then neither
does the image of the unit ball of A under 7. Thus T is not compact, and by Lemma 3.2,
T is not 1-integral on A.

If we analyze the proof of Theorem 3.4, we find that it extends to any closed subspace
B of a uniform algebra A providing there is a function f € B such that fA C B while f ¢ A.
Indeed, let I be the set of all f satisfying fA C B. This is a closed ideal in A. We choose

i — A such that g generates a norm-one functional on 7, and we proceed as before.

For some time it was an open problem, known as the Glicksberg problem, as to whether
a proper uniform algebra on a compact space K can be complemented in C'(K). Theorem

3.4 settles the Glicksberg problem, and it does even more.

Theorem 3.4. If A is a proper uniform subalgebra of C(K), then A is not isomorphic
to a quotient of a C(J) space. In particular, A is not complemented in C(K).

Indeed, suppose A is the quotient of C'(J). If we compose the operator T' from

Theorem 3.3 with the quotient map, we obtain an operator
C(J)— C()))Z2 = AL 2

that is absolutely summing, hence compact, by Lemma 3.1. Since the projection is an open

mapping, the operator 7' must be compact, and this contradicts Theorem 3.3.

We mention some further conclusions that can be drawn from this circle of ideas.
Recall (see Basic Concepts) that a Banach space X has Gordon-Lewis local unconditional
structure (GL l.u.st.) if, roughly speaking, its finite dimensional subspaces are well embed-
dable in spaces with unconditional basis. This occurs if and only if X** is a complemented
subspace of a Banach lattice. Thus C'(K') has GL lLu.st., as do all LP-spaces, 1 < p < co.

12



Theorem 3.5. [f A is a proper uniform subalgebra of C(K), then A does not have
GL Lu.st.

The idea of the proof is to look for a factorization of the Paley operator P : C'y — (*
through A** with the help of the second adjoint of the operator T' defined in the proof of
Theorem 3.3,

POy oA I e

However, in this way we only obtain an operator quite similar to P (but not P itself).
We redefine F' to be a weak-star limit point of the sequence {f,} in A**, and we use the
realization of A** as a weak-star closed subspace of C** described in the next section. The
operator T™* may still be defined by (3.3), where now ¢ belongs to A™*, and the functions
being integrated in (3.3) are the projections of the functions in C** into L*(|r|). The
correspondence p(Z) — p(F') mapping a polynomial in the coordinate function 7 to p(F)
is of norm at most 1, hence extends to a bounded operator U from (4 into A**. Now the
hypothesis of GL l.u.st. implies by the Gordon-Lewis theorem (see [DJT, Theorem 17.7])

that the absolutely summing operator 7* factors through an L!'-space, and we obtain
T=U : Oy -2 A= 2 L) 2 2,

By Bourgain’s extension of the Grothendieck theorem (Theorem 6.5), the composition VU
mapping C'4 into an L'-space is 2-summing, hence weakly compact. By the Dunford-Pettis
theorem, the weakly compact operator W maps weakly compact subsets of L'(r) to norm-
compact subsets of £2. Thus the composition WV U is compact, contradicting the noncom-

pactness of T**U (see (3.4-3.5)).

Along similar lines, it can also be proved that if a proper uniform algebra A is a
quotient of a Banach space X having GL l.u.st., then X contains a complemented copy of [!.
The crucial observation here is that if X fails to have a complemented copy of [, then every
operator from X to L'(v) is weakly compact. To see this, combine the Pelczyniski property

of L>*(v) with [LT, Proposition 2.e.8].

In another direction, Garling [Ga] showed that the dual A* of a proper uniform algebra
is not a subspace of the dual of a C*-algebra. The proof is modeled on an earlier argument

for C4 and uses the basic objects (A, u, and F') appearing in the proof of Theorem 3.4.

13



4 Tight Subspaces and Subalgebras of C(K)

The classical Hankel operator corresponding to a function ¢ on the unit circle operates from
H?*(df) to H?*(df)*, sending f to gf — P(gf), where P is the orthogonal projection from
L*(df) onto H*(df). The Hankel operator is equivalent to the operator f — ¢gf + H?* from
H? to the quotient space L[?/H?. The analogue of these operators, acting on subspaces of

C(K), has proved a key to understanding uniform algebras.

Let A be a closed subspace of C(K). To each g € C(K) we associate a generalized
Hankel operator S, from A to the quotient Banach space C'(K)/A by

Sef=g9f+4, feA

We say that A is a tight subspace of C'(K) if the operators S, are weakly compact for all
g € C(K). We say that A is a compactly tight subspace of C'(K) if S, is compact for all
g € C(K). Tightness was introduced in [CG]. Our discussion is based on that paper, and on
[Sacl], [Sac2].

We will use the representation of the bidual C** of ' = C'(K) as a uniform algebra.
This representation is realized as follows. The dual space of C' is the space M(K) of finite
(regular Borel) measures on K, with the total variation norm, and this can be regarded
as the direct limit of the spaces L'(p), ¢ € M(K). The bidual C** is then represented
as the inverse limit of their dual spaces L>(u), p € M(K). A “simple-minded” way to
express this is to say that each element F' € C** determines for each p € M(K') a function
F, € L™ (u), and these satisfy the compatibility condition that F, = F}, almost everywhere
with respect to v whenever v << p. Conversely, each uniformly bounded compatible family
{F,}, F, € L*(u1), determines an element of C**. The norm of F' in C** is the supremum of
the norms of F}, in L=(x). The multiplication in the spaces L*(p) determines an obvious

multiplication in C**.

Let A be a subspace of C. Recall that H*(A, i) denotes the weak-star closure of A
in L(u). The bidual A** can then be identified with the weak-star closed subspace of C**
consisting of F' € C** such that F,, € H*(A, u) for all p € M(K). The bidual of the quotient
space C'/A is isometric to C**/A** and the canonical embedding maps C'/A isometrically
onto C'/A**. In particular, C'/A** is a closed subspace of C**/A** and consequently A** + C

is a closed subspace of C**.

Now the operator .5, is weakly compact if and only if the image of A™ under 57" is

contained in the canonical image of C'/A. Identifying C' with its canonical image in C**, we
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see that for g € C,
Sy is weakly compact <= gA™ C A 4 C. (4.1)

From this it follows that the ¢’s for which 5, is weakly compact form a closed subalgebra of
C(K). Thus A is tight just as soon as 5, is weakly compact for any collection of ¢’s that

generates C'(K') as a uniform algebra.

If A is a subalgebra of C, then each space H*(A,p) is an algebra, and A** is a
subalgebra of C**. In this case we obtain from (4.1) the following.

Theorem 4.1. A uniform algebra A on a compact space K is a tight subalgebra of
C(K) if and only if A+ C(K) is a closed subalgebra of C'(K)**.

For algebras of analytic functions, tightness is related to solving a d-problem. Roughly
speaking, the connection is as follows. Functions that belong to an algebra of analytic
functions A are characterized as the functions f satisfying f = 0. Suppose that 9*' is a
solution operator for the d-problem, which need not be linear. Let ¢ be a smooth function.
If f € A, then from the Leibnitz rule we obtain d(fg) = fo(g) + gd(f) = f9(g). This shows
that the one-form fd(g) is d-closed. We apply the solution operator and obtain a function
h = 0 (fdg) satisfying dh = 9(fg), so that h — fg € A, and S,f = h + A. Thus the action
of S, on f amounts to multiplying f by dg, applying d+!, and projecting into the quotient
space C'/A. Tt follows that if there is a weakly compact solution operator for the d-problem,
then each S, is weakly compact, and A is tight. By the same token, if there is a compact
solution operator for the d-problem, then A is compactly tight.

If D is a bounded strictly pseudoconvex domain in complex n-space with smooth
boundary, the O-problem can be solved by means of integral operators, with Hélder estimates
on the solutions, so that there are compact solution operators; see [Ra]. The argument
outlined above can be made precise. It shows that the algebra A(D) associated with any
stuch domain is compactly tight. The connection between tightness and solving the d-problem

is not completely understood, but our line of reasoning does establish the following.

Theorem 4.2. Let D be a bounded domain in complex n-space. Suppose there is
a weakly compact subset £ of C(D) such that the equation Oh = w on D has a solution
h € E for every 0-closed smooth (0,1)-form w on D that extends continuously to D and
satisfies ||w||oe < 1. Then A(D) is a tight subalgebra of C(D). If E is compact, then A(D)
is compactly tight.

If D is strictly pseudoconvex with smooth boundary, the d-problem solution tech-

niques can be used to show that any f € H*(D) can be approximated pointwise on D by
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a bounded sequence of functions in A(D) that extend analytically across D, with uniform
convergence on D if f € A(D). In the strictly pseudoconvex case, every point p in 9D
is a peak point for A(D), that is, there is f € A(D) satisfying f(p) = 1 and |f| < 1 on
D\{p}. Thus the following theorem applies to strictly pseudoconvex domains with smooth

boundaries.

Theorem 4.3. Let D be a bounded domain in complex n-space for which the 0-
problem s solvable as in Theorem 4.2, and let o be the volume measure on D. Suppose that
the functions in A(D) that extend analytically across 0D are pointwise boundedly dense in
H>(D). Then A(D)* is the direct sum of L'(c)/A(D)* and an L'-space, and the bidual
A(D)*™ is isometrically isomorphic to the direct sum of H*(D) and an L*>-space. Further,
if every point of D is a peak point for A(D), then H*(D)+ C(D) is a closed subalgebra of
L (o), and A(D)*+ C(D) is isometrically isomorphic to the direct sum of H*(D)+ C(D)

and an L*-space.

The idea of the proof is as follows. Let B, be the band of measures on D that
are singular to every measure in A(D)*, and let B, be the band of measures generated
by A(D)*. There is a direct sum decomposition M (D) = B, & B,, with a corresponding
decomposition A(D)*™ = H*(B,) & L>~(B;). We claim that the summand H*(B,) is
isometrically isomorphic to H*(D). We regard H*(D) as a subalgebra of L>(o). If F' €
A(D)**, there is a bounded net {f,} in A(D) that converges weak-star in A(D)** to F'. Then
{fa} converges weak-star to F, in L>°(c). Since the f,’s are uniformly bounded, they are
equicontinuous at each point of D, and consequently any limit function is analytic on D.
Thus F, € H*(D). The hypothesis of pointwise bounded density implies that the projection
F + F, maps A(D)** onto H>*(D). Suppose F' € A(D)** satisfies F, = 0. Let u € A(D)*.
Let g be a smooth function, and let { f,} be a bounded net in A(D) that converges weak-star
to F. Then f, — 0 on D. Choose h, € E such that 9(f.g) = d(h,) on D. Passing to a
subnet, we may assume that h, — h weakly, where h € C(D). Then gf, — h, is analytic
on D, and in the limit, & is analytic on D. Now ¢f, + h — hy, — gF}, weak-star in L>(p).
Thus p — gF),, this for all smooth functions g, so that F, = 0. It follows that F, = 0 for all
measures v € B,, and consequently the projection of F'in H*(B,) is 0. Thus the algebra
homomorphism H*(B,) — H®(D) is one-to-one and onto. Since any homomorphism of
uniform algebras that is one-to-one and onto is an isometry, H*(B,) is isometric to H*(D).
The final statement of the theorem, that H*(D)+ C(D) is isometric to a direct summand of
A(D)*+C(D), is equivalent to the statement that H*°(B,) — H>(D) is a “local” isometry,
in the sense that it is an isometry at every point of dD. An easy way to guarantee this is to

assume that every point of 9D is a peak point for A(D).
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Another class of examples of tight algebras are the algebras R(K) and A(K') associ-
ated with a compact subset K of the complex plane. For these, the solution operator for the

d-problem is the Cauchy transform operator

(0FR)(¢) = —%//Zh(_z)(dxdy, ( €K,

which is a compact operator on C'(K ). Again the line of reasoning outlined above, together

with a few technical details, establishes the following.

Theorem 4.4. Let K be a compact subset of the complex plane. Then the algebras
R(K) and A(K) are compactly tight. If o is the area measure on K, and A is either of
these algebras, then A* is isometric to the direct sum of L'(o)/At and an L'-space. The
bidual A** is isometrically ismorphic to the direct sum of H* (o) and an L*-space. Finally,
H>(o)+ C(K) is a closed subalgebra of L>°(o), and A** + C(K) is isometrically ismorphic
to the direct sum of H* (o) 4+ C(K) and an L™ -space.

Here H* (o) is the weak-star closure of A in L*°(o). In the case of A(K'), the measure
o can be taken to be the area measure on the interior of K, or the harmonic measure on the
boundary of the interior of K. In the case of R(K'), o can be taken to be the area measure
on the set of nonpeak points of R(K’), which serves in some sense as an interior for K with
respect to R(K'). The proof of Theorem 4.4 is similar to that of Theorem 4.3, except that
Davie’s theorem is used to obtain the isometric isomorphism of H*(B,) and H* (o). The
proof of the final statement depends upon estimating solutions of the d-problem for some

specific bump functions.

Summarizing, we can say that very many standard uniform algebras of analytic func-
tions are tight. We turn to an example of a tight subspace that is not an algebra and that
has a different flavor. Let Ux be the space of continuous functions f(e?) on the unit circle T
for which the symmetric partial sums 7, f = > f(k)e““e of the Fourier series of f converge
uniformly. Normed by |||f||| = sup ||Tnf]|c, the space Uc becomes a Banach space. We may
regard Ux as a subspace of a C'(K')-space as follows. For each n, 0 <n < oo, let I, be a copy
of the unit circle I', and let K be the disjoint union of the I';’s, with the natural topology
determined by declaring that I', — ', as n — oo. Each f € Ugx determines F' € C(K) by
setting ' =T, fon I',, 0 <n < oo, and ' = f on I',. Then Ug is isometric to a closed
subspace of C(K).

Theorem 4.5. Let Us be the Banach space of functions on I' with uniformly con-
vergent Fourier series, regarded as a closed subspace of C(K) as above. Then Uc is a

tight subspace of C(K), though Uc is not compactly tight. Further, the weak-star closure
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H>®(Ug,df) of Us in L*°(df), where df is the arc length measure on I's,, coincides with the
space of functions f € L*(df) such that the symmetric partial sums of the Fourier series of
[ are uniformly bounded. The bidual US* is isometric to the direct sum of H*(Uc,df) and

an L°°-space.

If ¢ € C(K) is supported on one of the circles I',, for n finite, then the operator 9,
is finite dimensional. Thus to check that Ugs is tight, it suffices to show that the operators

4

S. and S: are weakly compact, where z = ¢ on each circle I',. Let f € Ug have Fourier

series > are™ and denote the corresponding function in C(K) by ®(f) = [Tof, 10 f,- .. , f].
With this notation,

z@(f) —@(=f) = [aoem — a1, .. ,akei(’“’l)e —agpet™ ,0].

Since this expression is in C'(K) for all two-tailed *-sequences {ay}, and since Y |ax|? < oo
for f € Ug, the operator S. factors through /2. Thus S, is weakly compact, as is Sz, and Ug

is tight. To see that S, is not compact, apply S. to the sequence of exponential functions
{ei*0].
There is another way to see that S, is weakly compact. Since only two Fourier

coefficients appear in each component above, we obtain

1SS < [2@(f) = @(=f)llee < 20 f][L2 (a8/2m)-

This estimate shows that 5., is an absolutely summing operator, in fact, an integral operator.

Since bounded subsets of L> are weakly compact in L, S. is weakly compact.

A similar theorem holds for the space U4 of analytic functions on the unit disk with
uniformly convergent Taylor series. Again we may regard Uy as a subspace of C(K) as
above, and Uy is a tight subspace. In this case the weak-star closure H*(Uj4, df) coincides
with the functions in f € H®(df) such that the partial sums of the power series of f
are uniformly bounded. The bidual U} is isometrically isomorphic to the direct sum of
H*>(Uy,df) and an L*-space. The proof (see [Sac2]) depends on a generalization of the F.
and M. Riesz theorem due to Oberlin [Ob], asserting that any measure on K orthogonal to

U4 is absolutely continuous with respect to df on I',.
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5 The Pelczynski and Dunford-Pettis Properties

As Banach spaces, tight subspaces of C'(K') share a number of properties of C'(K). We
discuss the Pelczynski property, which is shared, and also the Dunford-Pettis property, which
is partially shared.

A Banach space X has the Pelczyriski property if whenever T' is an operator from X
to another Banach space that is not weakly compact, there is an embedding ¢y — X such
that the restriction of T to ¢y is an isomorphism. The spaces C'(K) have the Pelczyriski
property (see [Woj, IT11.D.§ 33]). However, L'-spaces do not have the Pelczynski property
unless they are finite-dimensional. Reflexive Banach spaces have the Pelczynski property, by

default.
Theorem 5.1 (Saccone). Any tight subspace of C(K') has the Pelezyriski property.

Before saying something about the proof, we discuss the Pelczynski property in more

detail.

A series Y xy in X is weakly unconditionally convergent, or a wuc series, if Y a*(xy)
converges unconditionally for all * € X*. In this case, >  a*(x)) converges absolutely for
each #* € X*, and the closed graph theorem shows that the operator «* — {a*(a)} is
continuous from X* to (', In particular, there is 3 > 0 such that > |a*(xy)| < B]|z*|| for
all 2* € X*. The preadjoint operator T' : ¢¢ — X, defined on the standard basis vectors
er of cg by T(ex) = xy, is then seen to be continuous and satisfy ||T]| < 3. Conversely,
any (continuous) operator 17" : ¢ — X determines a wuc series Y T'(ex). Thus wuc series

correspond to operators from ¢q into X.

Let E be a subset of X*. If E is weakly precompact in X*, and if > }, is a wuc series
in X with corresponding operator T', then T*(E) is weakly precompact in ¢!. Consequently
T*(F)(ex) tends to 0 as k — oo, that is,

sup |a*(xr)| — 0 as k — oo. (5.1)
z*elR

With a little more effort, it can be shown that if (5.1) fails, then there is an /!-basic sequence
{z%} in E, that is, a sequence that is equivalent to an ('-basis. These statements charac-
terize weak compactness precisely when X has the Pelczynski property. We state this result

formally.

Theorem 5.2. The following statements are equivalent, for a Banach space X.

(i) X has the Pelezynski property.
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(ii) If £ is a subset of X* such that for any wuc series Y xp in X we have v*(xg) — 0 (as
k — o0) uniformly for «* € F, then F is weakly precompact.

ii1) If F is a subset of X* that is not weakly precompact, then there is an (*-basic sequence
(i) If not Y p pact, q

i E.

We refer to [Woj] for the proof. A related result in this circle of ideas is that if X has
the Pelczynski property, then its dual space X* is weakly sequentially complete.

Now we return to Saccone’s theorem, which is proved in [Sacl]. The crux of the
matter is to find, for a given F that is not weakly compact, a wuc series in X for which
(5.1) fails. To do this, Saccone begins with a characterization of weak compactness due to
R.C.James, and eventually he throws the proof back on some difficult work of Bourgain [B3,
B7], for which there is a clear treatment in [Woj, I11.D. §§ 29-32].

Recall that an operator T' : X — Y is completely continuous if T maps weakly
convergent sequences in X to norm convergent sequences in Y. If X is reflexive, then the
completely continuous operators coincide with the compact operators, while every operator
on X is weakly compact. In contrast, for X = C'(K), the completely continuous operators

coincide with the weakly compact operators.

An isomorphism of ¢y cannot be completely continuous, as the standard basis of
¢o converges weakly to 0. Thus if X has the Pelczynski property, then any completely
continuous operator from X to another Banach space is weakly compact. As a corollary to

Saccone’s theorem, we then obtain the following.

Corollary 5.3. If B is a tight subspace of C(K), then any completely continuous
operator T': B — Y s weakly compact.

A Banach space X has the Dunford-Pettis propertyif every weakly compact operator
from X to another Banach space is completely continuous. This occurs if and only if whenever
the sequence {x,} in X converges weakly to 0, and the sequence {x}} in X converges
weakly to 0, then z%(z,) — 0. The spaces C'(K), and any L'-space, have the Dunford-
Pettis property. If a dual Banach space has the Dunford-Pettis property, then its predual
does also. Reflexive Banach spaces do not have the Dunford-Pettis property unless they are

finite-dimensional. See Basic Concepts.

Not every tight subspace of C'(K) has the Dunford-Pettis property. In fact, any
infinite-dimensional reflexive subspace of C'(K') is tight but fails to have the Dunford-Pettis
property. However, the Dunford-Pettis property does hold under hypotheses that are some-

what stronger than tightness. The following statement can be extracted from Bourgain’s
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work in [B3].

Theorem 5.4 (Bourgain). Let A be a subspace of C(K). If Sy is completely
continuous for all g € C, then A* and A have the Dunford-Pettis property.

The collection of g € €' such that S;* is completely continuous is a closed subalgebra

of C'. It is called the Bourgain algebra associated with A.

We wish to develop some criteria that guarantee that 57 is completely continuous.

The following condition is a variant of the notion of a rich subspace, which stems from [Woj].

An operator T' from A to another Banach space is nearly dominated if there is a
probability measure p on K such that if { f,,,} is a bounded (!) sequence in A that converges to
0in L'(u), then ||T || — 0. Trivially, absolutely summing operators are nearly dominated.
If 7; : A — X is nearly dominated by p;, and if T; — T" in operator norm, then 7' is nearly
dominated by > p;/27. Tt is straightforward to show that the collection of g € C such that
S, 1s nearly dominated forms a closed subalgebra of C'. The pointwise bounded convergence

theorem can be used to show that nearly dominated operators are completely continuous.

Theorem 5.5. Let A be a subspace of C(K). Fach of the following conditions
guarantees that S;= is complelely continuous for all g € C, hence that A* and A have the
Dunford-Pettis property.

(i) The subspace A is compactly tight.

(ii) The operators S, are absolutely summing for a family of functions g € C' that generates
C' as a uniform algebra.

(iii) The operators S, are nearly dominated for a family of functions g € C that generates C

as a uniform algebra.

For (i), observe that if S, is compact, then S7* is compact hence completely continu-
ous. For (ii), we use the fact that if S, is absolutely summing, then S;* is absolutely summing

hence completely continuous. The proof under the condition (iii) is straightforward.

Note that either of the conditions (ii) or (iii) covers the subspaces Uy and U¢ discussed
earlier. Fach of the three conditions covers the algebras R(K) and A(K') from rational

approximation theory.
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6 Absolutely Summing and Related Operators on the
Disk Algebra

Now we consider some properties of the Banach space C'(I') of continuous functions on the
unit circle I' that are inherited by the disk algebra C'4. A prototypical theorem along these
lines is the following (see [Pe]).

Theorem 6.1 (Mityagin-Pelczyriski). For 1 < p < oo, every p-summing operator
from the disk algebra C4 to a Banach space Y extends to a p-summing operator from C(I')
to Y, hence is strictly p-integral.

The Paley operator shows that the statement fails at the endpoint p = 1. The proof of
the theorem depends on the boundedness of the Riesz projection R from L?(df) onto H?(df),
1 < p < 00, together with some Hardy space theory. Indeed, let T' be a p-summing operator,
and let 1 be the measure on I' for T' given by the Pietsch theorem (see Basic Concepts),
so that T" extends to a continuous operator from the closure H?(u) of C'4 in LP(u) to Y.
Let ¢ = wdf + ps be the Lebesgue decomposition of p with respect to Lebesgue measure
df. The Hardy space theory gives HP(u) = HP(wdf) & LP(us). Further, if logw ¢ L'(df),
then H?(u) = LP(n), and T is p-integral. On the other hand, if logw € L'(df), and
h = exp(logw + iH(logw)) is the “outer” function in H'(d#) such that |h| = w, then
Q,(f) = hYPR(RY? f) projects LP(wdf) onto HP(wdf), and this projection allows us to
factor T',

T:Cy s L) — LP(p) 2% P (1) — v,

again showing that T is strictly p-integral.

Our primary focus will be on Bourgain’s extension of the Grothendieck theorem to
the disk algebra, with emphasis on the interpolatory nature of the proofs. We will sketch

the proofs modulo the interpolation theorems, which we defer to the next section.

The Grothendieck theorem (see Basic Concepts) asserts that any operator from an
L'-space to (? is absolutely summing. A dual version of Grothendieck’s theorem asserts
that any operator from a C'(K)-space to /' is 2-summing. In fact, we can replace ¢! in
this statement by any space of cotype 2. In reading the following version of Grothendieck’s

theorem, recall that among the spaces L?, precisely those with 1 < p < 2 are of cotype 2.
Theorem 6.2. Fvery operator from C(K) to a space of cotype 2 is 2-summing.

Theorem 6.2 is a simple consequence of the following two lemmas.
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Lemma 6.3. IfY is of cotype 2, and if p > 2, then any p-summing operator from a

Banach space X to'Y is 2-summing.

Lemma6.4. For every Banach space Y and every finite rank operatorT : C(K) — Y
we have m,(T) < mo(TY||T||*? for 2 < p < oo, where § = 2/p.

If the lemmas are proved and Y is of cotype 2, we combine the lemmas to obtain
mo(T) < emy(T) < c(7r2(T)HTH)1/2 for every T : C(K) — Y of finite rank, whence my(7T) <

c*||T||. The finite rank assumption is easily lifted by approximation.

The first lemma is proved by an easy concatenation of inequalities, one of which is the
Khinchin inequality (see [Woj, IILF § 36], and also Basic Concepts). It yields the estimate
mo(T) < ¢,Cy(Y)mp(T), where Cy(Y) is the cotype constant of Y, and ¢, depends only on
p. To prove the second lemma, we choose by the Pietsch theorem a probability measure y
on K such that the operator T acts from L*(x) to Y with norm m3(7T). Also, T acts from
C(K) to Y with the norm ||T||, and consequently T extends to L*(y) with (at most) the

saime norii,

T () "y, (6.1)

T () My, (6.2)
By interpolation, T" acts from LP(;) to Y with norm not exceeding mo(T)%||T||*+?, where 0

is given by the convexity condition 1/p = 0(1/2) + (1 — 0)(1/o0) = 6/2. This proves the

lemma and with it Grothendieck’s theorem.
Now we turn to Bourgain’s version of the theorem for the disk algebra.

Theorem 6.5 (Bourgain). Fvery operator from the disk algebra Ca to a space of

cotype 2 is 2-summing.

As previously, the proof is an easy consequence of Lemma 6.3 and the following analog

of Lemma 6.4.

Lemma 6.6. For every Banach space Y and every finite rank operator T': Cy — 'Y
we have m,(T) < emo(T)?||T||10 for 2 < p < oo, where § = 2/p and ¢ is a universal constant.

For the proof, we start as in the proof of Lemma 6.4 with a probability measure y
on the unit circle ' such that T acts from the closure H*(p) of C4 in L*(p) to Y with norm
mo(T). Our first problem is that the measure u need not be absolutely continuous with

respect to arc length df. For this, we invoke the following.

Absolute Continuity Principle. In problems like this, the singular parts of mea-
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sures can be disregarded.

One way to justify this is to refer to the decomposition H?(u) = H?(wdf) & LP(us)
used above and to the Hardy space theory underlying this decomposition. However, some-
times other arguments are also applicable. In the case under consideration, we may work
with the operators T, f = T(K, * f) in place of T, where K, is the nth Fejér kernel. For them
the above measure becomes absolutely continuous, and moreover the 7),’s may be regarded

directly as operators on H*>(df).

Thus we assume that p = wdf, where w > 0 is a weight, [wdf = 1. We arrive at
the following analogs of (6.1) and (6.2):

T 02 (wdo) 28y, (6.3)
T H=(wdg) Ly, (6.4)

The question now is whether we can interpolate between (6.3) and (6.4) as we did between
(6.1) and (6.2). The answer is that we can replace w by a weight v > w, [v < C, such
that for this new weight the above interpolation is possible. This will follow from results
in the next section. Indeed, since L'(df) is BMO-regular (see Proposition 7.4), there is
a majorant v for w such that logv belongs to BMO, and on account of Theorem 7.7 the

desired interpolation holds for this majorant v. This proves Bourgain’s theorem.

In a standard way, Bourgain’s theorem implies that every operator from C% (or from

L'/ H}) to [? is absolutely summing. Then from the relations
CAN(CA@CA@...)CO, LI/HSN(LI/HS@Ll/HS@...)p

(see [Woj, TILE. § 12]), it is also standard to conclude that L'/H; and C% are of cotype 2.
See [Woj, 1111, § 14] for more details.

We mention another approach to the Grothendieck theorem, due to Maurey. This
method gives some information about operators 7' : C'(K) — Y, where Y is a space of
arbitrary finite cotype. In particular, it applies to Y = L? for any 1 < p < oo. For the proof
of the following theorem, see [DJT, Chapter 10] or [K2].

Theorem 6.7 (Maurey). For 1 < p < q, the class of (q,p)-summing operators
defined on C(K) does not depend on p and is contained in the class of (q + €)-summing

operators for any ¢ > 0.

A related result, due to Pisier (see the above references), is that T : C(K) — Y is
(g, p)-summing if and only if T factors through the inclusion C'(K) < L,1(x) (the Lorentz

space) for some probability measure g on K.
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If Y is of cotype ¢, the identity operator of Y is (g, 1)-summing. Thus Maurey’s
theorem shows that every operator from C(K) to Y is (¢ + ¢)-summing. We recover the

Grothendieck theorem by setting ¢ = 2 and applying Lemma 6.3.
The following theorem allows us to transport these results to the disk algebra Cy.

Theorem 6.8 (Kislyakov). For an arbitrary Banach space Y and g > p > 1, every
(g, p)-summing operator T': Cy — 'Y extends to a (q,p)-summing operator from C(I') to Y.

According to the Mityagin-Petczynski theorem, the theorem remains true if g = p > 1.

The remainder of this section is devoted to an outline of a proof of Theorem 6.8, with

some simplifications compared to the exposition in [K2].
Lemma 6.9. Under the conditions of Theorem 6.8, the operator T' is 10g-summing.

We break the proof of Lemma 6.9 into four steps. First note that the family of (g, p)-
summing operators grows as p decreases, so we may assume that p = 1. We assume also
that 7, 1(7) = 1. When convenient, we use (-,-) to denote the pairing between vectors and

functionals.

Step 1. There is a probability measure A on I' such that
|ITz]|? < q|(l —p,A)| forall x,¢o € Cy satisfying |z| + |p| < 1. (6.5)

To see this, we use a trick invented by Pisier to prove his characterization of (g, p)-summing

operators on C'(K') mentioned above. Let

C, = sup{(Z HT;I;],Hq>1/q T < CA,Z |z ()] < 1}.

Clearly C,, " m,1(T) = 1. We choose 4, N\, 1 and for every n find x(ln),...,xé”) € (Cy
such that ). HT:L';n)Hq > 1 and ), |:1;;n)(t)| <4, /C,. Then we choose fj(n) € Y* such that
> Hfj(n)Hq/ <1 and Ej<Tx;n),§;n)> = 1, and define a functional A, on C4 by the formula
A () = E]<T(¢x;n)),§;n)> Then A, (1) = 1 and ||A.]| < 6,. We consider a weak-star
limit point of the sequence {A,}. This is a functional on C'4. We extend it to C'(I') with
preservation of norm, obtaining a measure A on I'. Since A(1) = 1 and ||A]| <1limd, =1, A

is a probability measure.

(n)

J

Now let z, ¢ € Cy satisfy || + |¢| < 1. We define y1,... ,yn41 € Ca by y; = px
for 1 <j <nand y,11 = z. Then

(S U7l)" < Cosup Y st0)] < /O
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which implies that |(¢, Ap) |2+ || Tx||? < (Chy16,/Cr)? and, in the limit, [(@, A) |7+ || Tz||? < 1.
Finally (¢, M)|? =1 = (1 — ¢, A)|? > 1 — ¢|{1 — ¢, A)|, from which (6.5) follows.

Step 2. We apply the absolute continuity principle. It may be assumed that A = vd#,
Jvdf =1, and that (6.5) is valid for , p € H>(df). (Again, we may convolve with Fejér

kernels to ensure this.)
Step 3. There is a > v, [a < C, such that
ITel) < Cllal el v e 1.

To see this, we assume that ||z]/. < 1/2. It suffices to show that ||[Tz||? < CH:I;H%EEG). We
shall deduce this from (6.5) by a careful choice of ¢. Denote by H the harmonic conjugation
operator. As in the proof of Proposition 7.4, there exists a > v, [a < Cy, such that for
b = a'’? we have |H(b)| < Cob, and |b+ iH(b)| < (1 + Cp)b. We put a = —log(1 — |z|), so
that a > 0, and also o < C|z] since || < 1/2. We define successively

ab + iH(a'b)
V= b+iH(b)

where the constant A > 0 will be chosen momentarily. Since 1 is the quotient of functions

o =/, p = exp(—A®),

with values in the right half-plane, it omits the negative axis, and we choose the branch of
® whose argument ranges between /4. Then Re ® > |®|/v/2 and |1 — ¢| < Cy|®|. Now
|| > /(1 + Cp), so Re ® > Cza. We set A = 1/C3, and then |p| = exp(—A Re @) <
exp(—ACsa) =1 — |z|. Thus we may apply (6.5) with this ¢ and A = v d6:

1/8
VRSl §/|1—<p|vd0§ Cz/|q)|ad(9§ Cy </|<I)|8ad(9> .

Now, |®[*a = [4|*0* < (a'b)? + H(a'b)?. Using the L*-estimate for H, we obtain

/|<I)|8a df < / ((a'0)* + H(a"b)?) db < 2/(@46)2 df < ZCf/ |z|*a df < Cs / |z|a df.
Taking 8th roots, we obtain the required estimate for || Tx||%.

Step 4. The result of the preceding step shows that T acts from the interpolation
space (H*, H'(a))1/sq1 of the real method to Y, with an appropriate norm estimate (see a
calculation in the proof of Theorem 3.5.2(b) in [BL]). If we were dealing with the Lf-scale,
the interpolation space would be readily identifiable as a Lorentz space, (L*, L*(a))1/sq1 =
[P (a). Even in the case at hand, on account of the above choice of a we are able to
interpolate similarly in the scale of weighted Hardy spaces, by Theorem 7.7. This leads to

the estimate

HTJ}H < C’HxHqu,l(a) < CHxHLloq(a), x e Cy.
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Thus T is 10g-summing, and Lemma 6.9 is established.

Next we need to introduce “vector coefficients.” For a Banach space X, we consider
the space C4(X) of all X-valued continuous functions f on the unit circle I' that extend
analytically to the unit disk, that is, that satisfy [ f(z)z"df = 0 for n > 1. An operator
T:Ca(X)—Y is said to be (¢, p, X )-summing if

(Shrete)™ < o (Slestone)™ (6.6

for any finite collection {z;} in C4(X).

Lemma 6.10. [fT : Ca(X) = Y is (q,p, X)-summing, then there is a probability
measure @ on ' such that || Tz|| < C(f ]\x(t)]\?qdu(t))l/loq.

Indeed, it is routine to carry through the above proof of Lemma 6.9. For this, note
that some functions will remain scalar-valued, as for instance the function ¢ in (6.5). The

condition on @ and ¢ in (6.5) becomes ||z (t)||x + |¢(¢)] < 1 for ¢t € T

For any operator T': C'4 — Y, we define the operator 7' : {z;} = {Tx;} on sequences
of functions in Cy4. Evidently T is (¢, p)-summing if and only if T maps Ca(lP) to 01(Y). Tt

is quite easy to see that even more is true.
Lemma 6.11. If T is (q,p)-summing, then T is (g, p, 7 )-summing.

Now we apply Lemma 6.10 to T’ and proceed as in the proof of the Mityagin-Pelczynski
theorem. As before, we may assume that the measure p is absolutely continuous, and even
that p = adf with loga € L'(df). Then T has the factorization

T:Cu(fF) — HOI(P a) — (7(Y), (6.7)

where the first mapping is the identity embedding and the second is the extension of T by

continuity. To complete the proof, we need a projection.

Lemma 6.12. If 1 < p,s < oo and loga € L'(df), then there is a projection Q from
L2(0?,a) onto H?((* a) having the form @({f]}) ={Qf;} for a projection operator ) acting

on scalar-valued functions.

We take () to be the projection ()5 in the proof of the Mityagin-Pelczynski theorem
(Theorem 6.1). The boundedness of Q) follows from standard techniques.

It is now easy to establish Theorem 6.8 in the case p > 1. If p > 1 in (6.7), then T
extends to some operator U : C'(£7) — (1(Y) of the form U{x;} = {Sx;}, where S acts from
C(I') to Y. The boundedness of U means that S is (¢, p)-summing. Clearly S extends 7.

27



It remains to treat the case where p = 1. The facts already proved and Maurey’s
Theorem 6.7 show that for 1 < r < ¢ the class of (¢, r)-summing operators from C4 to Y
does not depend on r. It suffices to extend this statement to r = 1. For this,let T': Cy — YV
be of finite rank, and let 1 < r < s < ¢. Then we have

7q,s (1)

T Oa() "8 vy,

@ vy,

. (6.8)
T CA(gl) LN

By the remark after the proof of Lemma 7.6 (where H>-spaces are involved, but this does
not matter too much), we can interpolate as if we had C'(£*) and C'(¢*). This shows that
Tor(T) < Cmyo(T) 07, 1(T)? for some 0 < 6 < 1. Since the norms m,, and 7, are

equivalent, we obtain the desired result.
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7 Interpolation of Hardy-Type Subspaces

Several times in Section 6 we had to interpolate either between weighted Hardy spaces
H?(a df), or between Hardy spaces of vector-valued functions H?(¢"). To cover both cases,
we consider the measure space (I' x Q,m x u), where dm = df/2x is normalized arc-length
measure on the unit circle I', and (€2, i) is some fixed o-finite measure space. Since we wish
to use the full range 0 < p < 400, we will refer to quasi-Banach spaces where appropriate.
A lattice of measurable functions on (I' x Q,m X p) is a quasi-Banach space X of measurable
functions such that if f € X, g is measurable, and |g| < |f]|, then g € X and ||g|]|x < | f]|x-
(Note that this is not the same as a Banach lattice, as defined in Basic Concepts, whose
elements are measurable functions. Since we treat the term as an inseparable unit, lattice-
of-measurable-functions, there should be no confusion.) The examples we have in mind are
the spaces LP(w dmdy), and the spaces LP(dm, L"(x)) of measurable functions z(t,w) such
that y(t) = ([ |2(t,w)|["du(w)) """ is in L?(dm).

Let Nt be the Smirnov class of analytic functions on the unit disk (see [Du, Pr]),
which we identify with their boundary value functions on the circle. (For our purposes the
class NT could be replaced by Up>0 H?.) We call a function on the circle analytic if it belongs
to N*. If X is a lattice of measurable functions on (I' x ,m x u), we define its analytic
subspace X4 to be the set of functions f € X such that f(-,w) € Nt for almost all w. In

the case of functions of one variable, as when 1 is a point mass, we have L', = HP?.

In the sequel we also impose on X the following conditions:
(i) if f € X, then [, log*t |f(t,w)| dm(t) < oo a.e. on
(ii) if f, — 0 in X, then [.log™ |f.(¢,w)| dm(t) = 0 in p-measure,
(iii) if f € X, there exists ¢ € X such that |f| <|g|, |lgllx < C||f|lx,
and log|g(-,w)| € L'(m) for a.a. w.
These conditions serve to exclude various degenerate possibilities. Under these conditions it

is easy to prove, for instance, that X4 is closed in X.

Now let X and Y be lattices of measurable functions. The fundamental problem we
consider is to determine when interpolation properties of the couple (X,Y’) are inherited by

the couple (X4, Ya). We shall deal with real interpolation only.

We remind the reader of the definition of the real interpolation spaces (Xg, X1)s,
for a couple (Xo, X1) of compatible quasi-Banach spaces. By compatible we mean that X,

and X; are linear subspaces of some ambient space, so we may define the K -functional
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K(x,t; X0, X1) for t >0 and @ € Xog + X; by
I((gf,t;Xo,Xl) = lﬂf{Hl’oHo + tH$1H1 1T+ = T, g € Xo, T € Xl}

For 0 < § <1 and 0 < ¢ < oo, we define the interpolation space (Xg, X1)s, to consist of
z € Xo+ X, such that ! K(z,t; Xo, X;) belongs to L?(dt/t), and we define the norm of = in
(X0, X1)p,, to be the norm of t K(x,t; Xo, X1) in L(dt/t). Actually the specific expressions

for the K-functional and the norm will not play a role for us.

Let Yo C Xo and Y; C X; be closed subspaces. We say that the couple (Y, Y7) is
K-closed in (Xo, X1) if there is C' > 0 such that any decomposition y = 2o+ x; of an element
y € Yy + Y] with z; € X; can be modified to a decomposition y = yo + y; with y; € Y; and
llyill: < CJ|@ili, ¢ = 0,1. In this case we have

(1/07}/1)941 — (1/0 + 1/1) N (X07X1)€,q )

with equivalence of norms, and the interpolation properties of the couple (Xg, X7) and its

subcouple (Yp, Y1) are identical. Our basic problem can be formulated as follows.
Problem. When is the couple (X4,Ya) K-closed in (X,Y)I
We shall see that this happens fairly often.

We begin with a useful duality result. Assume that Xy and X; are Banach spaces
and that Xy N X is dense in both Xy and X;. Then, in a natural way, the spaces X and
X7 are included in (Xo N X7)* and, consequently, form a compatible couple. If Y; C X, (as
above), we denote by Y= the annihilator of Y; in X7, that is, the set of L € X7 such that
L=0onY,.

Lemma 7.1. The couple (Yo, Y1) is K-closed in (Xo, X1) if and only if the couple
(YgH,Yib) is K-closed in (Xg, X7).

The proof is left to the reader (see [Pi, K4]).

If X is a Banach lattice of measurable functions on (I' x ©Q,m X u), it often happens
that under the duality (f,¢) = [ [ fgdmdu, X* is also a lattice of measurable functions on
the same measure space. We will assume that this is the case, and further that both X and
X~ satisfy the conditions (i)-(iii) above. Then one easily sees that, as in the classical case of
the HP-spaces on the circle, we have X1 = Z(X*) 4, where Z is the coordinate function on I'.
Thus Lemma 7.1 relates interpolation properties of the couples (X4, Y4) and ((X*)4, (Y*)a),

X and Y being two lattices as above.
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The class of BMO functions will play an important role in what follows. Recall that
a function f on I'is in BMO if f = u + Hv, where u, v € L*. As usual, we disregard
the constant functions and define || f||smo to be the infimum of |[u|| 4 |[v]| over all such

representations, where || - || is the norm in L* modulo the constants.

Lemma 7.2. Let w > 0 be a measurable function on I'. Then logw € BMO if and
only if there exist constants C > 1,0 < p < 1, and a function f > 0 such that w/C < f < Cw
and |H(f*)| < Cfr. Moreover, C and p are controlled in terms of ||log wl||Bmo, and vice

Versa.

Proof. Suppose logw € BMO. Then logw = a + u 4+ Hv, where « is a real constant,
u and v are real functions, [v = 0, and ||u|s + [|[v]|ee < 2|/log w|gro. We pick p so
small that p||v||.. < 7/4, and we set F' = exp(—ip(v +iHv)) = e’*¥[cos(pv) + i sin(pv)] and
f = e*(Re I')Y/? = wet[cos(pv)]t/?. Since I is analytic in the unit disk and F'(0) is real,
we have Im F' = H(Re F'). Since |sin pv| < cos pv, we have |Im F/| < Re F', and consequently
|H(f?)| < f*. The estimates 1 > cos(pv) > 1/y/2 lead to w/C < f < Cuw.

Conversely, given f as in the lemma, we put G = f? +iH(f*). Since |H(f*)| < Cf*,
the values of (& lie in a sector in the right half-plane, and the principal branch of log GG is
analytic. Writing log ¢ = log |G| + iarg (7, we have |arg ] < tan*! (' and H(arg ) =
—log |G| + 1og | G(0)], so log |G| € BMO. Since f* < |G| < /T + C2f*, we see that plog f —
log |G| is bounded, and log f € BMO. Finally, log f — log w is bounded, so logw € BMO,
with BMO-norm bounded in terms of C' and p.

From the proof we see that we can always reduce p, at the expense of increasing '

and changing f.

A weight is a function w > 0 on ' X Q such that logw(-,w) € L'(dm) for a.a. w.
For 0 < p < oo we denote by LP(w) the usual space L?(w dmdyp), with norm denoted by
| fllp., though we shall denote by L (w) the space of functions f on I' x © such that f/w

is bounded, with the norm

[fl[cow = ess sup{|f(C,w)|/w(C,w) : ((,w) € I' x Q}.
With this notation, L>(w) = L'(w)* under the non-weighted duality (f,¢) = [[ fg dmdpu.
We denote LY (w) by HP(w), 0 < p < oo.

For a weight w, we say that logw is uniformly (or C-uniformly) in BMO if the
function log w(-,w) is in BM O for almost all w, with BM O-norm bounded by C. In this case,

the analog of Lemma 7.2 holds, where the function f can be chosen to depend measurably
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on the parameter w. We will use this extended version of Lemma 7.2.

A quasi-Banach lattice of measurable functions X on I' x () is said to be BM O-regular
if for every # € X, there exists u € X such that |z| < u, ||u||lx < Cl|z]|x, and logu is C-
uniformly in BMO, where C' depends only on X. The function u will be referred to as a
BMO-majorant of z.

As an easy consequence of (the extended version of ) Lemma 7.2, we have the following.

Lemma 7.3. A lattice X is BMO-regular if and only if there are C,p > 0 such that
for every x € X there exists u € X with x| < wu, ||u]| < Oz, and [H(u(-,w))| < Cu’(-,w)

for a.a. w € Q). At the expense of increasing C, we can take p to be arbitrariy small.

For a quasi-Banach lattice of measurable functions X and 0 < 3 < oo, we define X”

to be the space of functions f such that |f|® € X, with quasi-norm

1/6
1 llxe = AP NKC

Thus if X = L?, then X? = LPP. Clearly X” is BMO-regular if and only if X is. Our main

examples of BM O-regular spaces will be based on the following proposition.

Proposition 7.4. If the operator H (acting in the first variable) is bounded on X,
then X is BMO-reqular.

Proof. It suffices to show that Y = X7 is BMO-regular. We verify the conditions
formulated in Lemma 7.3. Taking y € Y, we put yo = |y|, yn+1 = |H(yn)| for n > 0, and
v = > 06",, where § > 0 is a fixed small constant. Then |y| < v, ||v]ly < C||ylly, and
|Ho| < wv/é.

Lemma 7.5. If logw is uniformly in BMO, then L*(w) is BMO-regular for 0 <
p < o0.

Proof. f 1 < p < 0o and w = 1, we may apply Proposition 7.4, with § = 1. The
case 0 < p < oo and w arbitrary then follows easily from the definitions. For p = oo, the
definition of the norm in L*(w) as sup(|z|/w) shows that ||z||.w is a BMO-majorant of

€ L¥(w).
Lemma 7.6. The space L*(dm, L"(Q)) is BMO-reqular for 0 < p < oo, 0 < r < 0.

Proof. The case where r < oo is a consequence of Proposition 7.4, and the case where
r = oo of its proof. Indeed, given x, we construct a BMO-majorant for y = esssup |z (-, w)]

in L?(dm), and then treat this majorant as a function of two variables.
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It is easy to find other examples of BMO-regular spaces on the basis of the same
ideas. A less trivial example is the space L>(dm, (%), 0 < s < oo (see [K4]). While we could
have cited this example (and, of course, Theorem 7.7) when interpolating in (6.8), that proof
can be based also on the duality L°°(dm; (°) = L'(dm;*')* for s > 1, where the latter space
is BMO-regular by Lemma 7.6. Thus, to interpolate in (6.8) we can refer to Corollary 7.8.

Now we state our main interpolation result. We are assuming that X and Y are
Banach lattices of measurable functions on I' x €, and (when applicable) that X* and Y*
are also lattices of measurable functions on I x , all satisfying the conditions (i)-(iii) above.

Also, the density of X NY in X and Y is assumed when needed.

Theorem 7.7. If X and Y are BMO-reqular, then (Xa,Y4) is K-closed in (X,Y).

There is some evidence (see [Ka]) in favor of the conjecture that BMO-regularity is
a self-dual property. However, this has not yet been verified in the general case. Thus, we

combine Lemma 7.1 with Theorem 7.7 to obtain more information.

Corollary 7.8. In any of the following three cases, (X4, Ya) is K-closed in (X,Y),
and ((X*)a, (Y*)4) is K-closed in (X*,Y™).

a) X and Y are BMO-regular,
b) X* and Y* are BMO-regular,
c) X and Y* are BMO-regular.

Cases (a) and (b) of the corollary are direct consequences of Theorem 7.7 and Lemma

7.1. Case (c) is not needed in Section 6, so we leave it as an exercise.

We pass to the proof of Theorem 7.7. Let wq,w; be two weights whose logarithms
are C-uniformly in BMO.

Lemma7.9. If f(-,w) € Nt for a.a. w and [ = g+h with g € L™ (wg), h € L (w1),
then f = ¢ + 1 with o € H*(wo), ¥ € H*(w1) and [[¢lloow, < C'l[glo0wos [[¢]loow, <
C'||h|cow, » where C" is determined by C.

Clearly Theorem 7.7 is a consequence of this lemma. Given f = z 4+ y with f €
X4+Yy, € X,y €Y, wefind BMO-majorants for  and y in their respective spaces, and

apply the lemma to these majorants as the weights.

To prove Lemma 7.9, we first assume that f € H*(wo) + H*(wy). Then the
statement to be proved is precisely the K-closedness of the couple (H*(wq), H*(w)) in
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(L (wo), L (wy)). By duality (Lemma 7.1), it suffices to check that the couple (H*(wq), H* (wy))
is K-closed in (L'(wg), L'(wy)). Solet z = a+b € H'(wy) + H'(wy), where a € L'(wy),
b e L'(w;). We must replace @ and b with functions roughly of the same size but analytic

in the first variable.

Let v be a BMO-majorant for b in the BM O-regular space L'(w;). Setting w = wqv,
we apply Lemma 7.2 and the remark after its proof to find a function £ and a constant p < 1
such that w/C < k < Cw and [HE(-,w)| < Ck?(-,w). Fixing an integer n > 1/p, we define

kPt TH(E?)
- kfa+ iH(kra)’

a:max{l,(|a|/v)1/”}, G=1-(1—-F")"

We claim that z = (1 — )z + Gz is the required decomposition.

Indeed, the summands are analytic in the first variable, and it suffices to estimate the
norms. Since |H(k”)| < Ck?, we see that |F| < Ci/a < C; and |G| < Cy/a™ < Cy, whence
|Gz| < Cslala®™ + Cqlb] < Czv+ Cy|b|. By the choice of v, we obtain the required inequality
1G240 < Cal b1,

We estimate the quantity ||(1 — G)zll1,w, < (14 Co)|la]| 1w + ||(1 — G)b][1,u,- We have

J Pllo = 1)

(o — DE” + iH((a — 1)k?)]

1—-F|=
| | |ake + iH(ake)|

<(a-1)
Since also |F| < Ci, b < v, and w < Ck, we see that
Ji=Glbwn<cs [ - rro<co [ n-rpe
<0 ( fta- v [ - ey

<o [t [ o - vpey)

Since H acts on LY?(dmdu) and k < Cw, it follows that the second integral in parentheses
is dominated by the first. Now a —1 = 0 if |[a| < v and o — 1 < (Ja|/v)"/™ < (Ja|/v)”

otherwise. Therefore
Jta=1ws [aliore = [ lafuo

It remains to get rid of the asumption f € H*(wy) + H*(wy). This is done by a

and we are done.

standard approximation argument based on the Hardy space theory. Suppose only f € NT.
For u = log|f]| define G(-,w) = exp(u(-,w) + iHu(-,w)) and F = f/G, so that |[F| = 1
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a.e. Thus f = FG is the “inner-outer” factorization of f. Set u; = |f| A (Jwy) and
Gi(,w) = exp(uj(-,w) + iHu;(-,w)). Then |G;| < |G|, and G — G in measure. Set
fi = FG; € H*(wp), then f; — f in measure, and |f;| < |f| < |g] + |h|. By the first
part of the proof, fi = ¢; +1;, where ; € H>(wo), 1; € H™(wi), [[#5llcome < C*llglloo w0
and ||¢jlcow, < C'N|R]loow,. For some subnet of the integers we have ¢; — ¢ and ; — ¢
weak-star. Simultaneous convex combinations of the ¢;’s and ¢;’s can be chosen to converge

a.e. to ¢ and v, and this guarantees that f = ¢ 4 ¢ with the appropriate estimates for ||
and |v].
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8 Bourgain Projections

Let w be a weight on the unit circle. We say that w admits an analytic projection if there
is an operator ) that projects L?(w) onto H?(w) for all 1 < p < oo at once and, together
with @, is of weak type (1,1) relative to w,

wflQ =2 <5 [1fle, ol >N <5 [1fle, feliw),

where we denote w(e) = fe w. Here the adjoint ()* is calculated relative to the duality

(f.9) = [ fgwdm.

Operators of this sort served as the main technical tool in Bourgain’s work extending
Grothendieck’s theorem to the disk algebra. Bourgain [B2] proved that for every integrable
weight u there exists a weight w admitting an analytic projection and satisfying w > u and
Jw < C [u, where C is a universal constant. The existence of such a projection does not
imply the K-closedness in the scale H?(w) if the “extreme” exponents p = 1 and p = o
are involved. However, it still implies certain “nice” interpolation properties of this scale,

sufficient for instance for proving Lemma 6.4.

Though here we have used different (simpler) techniques, Bourgain’s projections re-
main interesting in themselves. We shall show that a weight w admits an analytic projection
if and only if logw € BMO. Bourgain’s majorization result quoted in the preceding para-
graph then follows from the fact that L'(df) is BMO-regular.

We need a technical notion. A two-tailed sequence of functions p; € H*, —0o < j <
0o, is called an analytic decomposition of unity subordinate to a weight w if there exists a
constant ¢ such that

(i) |o;| 3w < €27, —00 < J < 00,

(i) 3 lps V52 < ew,

(i) 3 o5 < o,

() Tps = 1.
Roughly speaking, the functions ¢; behave like the characteristic functions of the sets where
2741 < < 27, The exponent 1/8 is convenient technically but, in principle, may be replaced
by any o € (0, 1]; see [K3].

Theorem 8.1. For a weight w, the following conditions are equivalent:
1) logw € BMO,

2) there is an analytic decomposition of unity subordinate to w,
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3) w admits an analytic projection,
4) there is an operator () projecting LP(w) onto HP(w) for two different values of p.

We focus on the implications 1) = 2) = 3). The implication 3) = 4) is trivial, and
4) = 1) is proved in [KX, Corollary 2.2].

To prove that 1) = 2), we need a lemma.

Lemma 8.2. Suppose u is a weight such thatlogu € BMO. Thenlog(1Au) € BMO,
and the BMO-norm of log(1 A u) is controlled by the BMO-norm of logu.

Proof. By Lemma 6.2, there exist C' > 1,0 < p < 1, and f such that u/C < f < Cu
and |H(f*)| < Cf°. We put g = (1 + f*)Y/*, then |H(g")| < Cg¢” and (u +1)/C; < g <
Ci(u+1). Thus the BMO-norm of log(u + 1) is controlled by the BM O-norm of log u, and
consequently we have similar control over the BMO-norm of log(u/(u + 1)). Finally note
that (1 Aw)/2 <uf(u+1) <1Au.

Now to show 1) = 2), let logw € BMO. For any A > 0, we introduce two weights:
ug = LA (w/MN)' uy = 1A (A/w)®. Then || log uo||Barro, || log ui||smo < C = C(]| log w||Bamo)
by Lemma 8.2. Since 1 < ug + uy, by Lemma 7.9 we find g € H*(ug), h € H*(uy) such
that 1 = g+ h, |g| < Cug, ||h|| < Cuy, where here and below all constants are determined

by || log wl|Baso-
We do this for each A = 2", n € Z, and denote the resulting functions by g, and h,,.
Next we put ¢, = ¢, — ¢nt1 = hpi1 — hy, then

lon] < cmin{(ZL”w)w, (Z”w“)g}. (8.1)

We claim that {p,} is the required analytic decomposition of unity. Indeed, (iv) is clear;
the convergence of the series a.e. easily follows from (8.1), and the sum telescopes. Again
by (8.1), |¢n|"/%w < €27, which is (i). We verify (ii) (condition (iii) is proved similarly). Let
er = {2F < w < 2M1} ] then, again by (8.1),

Z 2|, |8 < CZQ”(Z 2Lamghy 4 ZQNQMX%)-

nez nes k<n k>n

Changing the order of summation, we see that the latter expression is dominated by Y, 2%y,, <

Cw.

Now we sketch the proof of the implication 2) = 3). Let {¢;} be an analytic decom-
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position of unity for w. We write ¢; = (9]@/)? with 6; inner and ¢; outer, and put
Qf =Y ;Ui R(f¥}), (8.2)
i€z
where R is the Riesz projection. Then () is the required operator. We only check the weak
type (1,1) property of @; the weak type (1.1) for Q* is similar, and the L?(w)-boundedness

of @) for 1 < p < oo is simpler. Clearly the values of () are analytic functions, and () fixes

analytic functions because > ¢; = 1.
Lemma 8.3. An operator T acting from a subset of L'(u) to measurable functions

is of weak type (1,1) if and only if it satisfies the estimate

1/2 1/2 1/2
[T gl < CUTI ol Mo

Proof hint. To prove the “if” part, take ¢ = xg, where £ C {|T'f| > A} is an arbitrary

set of finite measure.

Now we check the estimate of Lemma 8.3 for (), using the fact that it is true for R:
[1asiglo < 3 [ 1oPirc gl
J
<O 2[RI < Lol 2w 0l
J J

; ; 1/2 1/2
< CllgllEZ Qo 2 slle) 2 2 Nlgwhille)' ' < Cllgll &Iy gl -
J J

See [K3] for more information on Bourgain projections. To illustrate their usefulness,

we mention an application to conformal mapping.

Let GG be a Jordan domain with rectifiable boundary. The analogues for G of the
classical HP-spaces are the spaces E?((F) consisting of the analytic functions f on G for
which sup f% |f(2)|P|dz| is finite, where {v,} is a fixed sequence of rectifiable curves that
tend to G in a natural sense. The domain G is a Smirnov domain if the derivative ¢’ of
the conformal mapping ¢ of the unit disk onto (G is outer. In this case we may identify the
scale EP(() with the scale H?(|g'|) of weighted Hardy spaces on the disk.

For a Smirnov domain G with conformal map g, it is important to know when log |¢'|
is in BMO. See [Po] for a detailed discussion. The following theorem is an immediate

consequence of Theorem 8.1.
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Theorem 8.4. The following statements are equivalent for the conformal mapping g

of the unit disk onto a Smirnov domain G.
1) log|g'| € BMO.

2) There is an operator projecting LP(0G) onto EP(G) for all p € (1,00) and having
weak type (1,1).

3) There is an operator projecting LP(OG) onto EP(G) for two different values of p.

Theorem 8.4 together with a theorem of G. David [D] yields a proof of the (known)
fact that if the arc-length measure on the boundary of (¢ satisfies a Carleson condition, then
log|g’'| € BMO. The Carleson condition is that the length of dG'N D, is bounded by er for
any small disk D, of radius r. By David’s theorem, this implies that the Cauchy integral
over d( is a bounded operator on L?(9G) for 1 < p < co. In particular, condition (3) above
holds, and from (1) we obtain log |¢'| € BMO. Note that the Cauchy integral operator need
not have weak type (1, 1), and the Bourgain projection in statement (2) has the form (8.2).

Finally, we note that the theory discussed in Section 7 can be carried over, nearly
word for word, to the Hardy spaces related to a weak-star Dirichlet algebra, as can the
implications 1) = 2) = 3) in Theorem 8.1. See [SW] for background on weak-star Dirichlet

algebras.
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9 Perturbation of Uniform Algebras

Often a Banach function space remembers almost nothing about the set on which the func-
tions are defined. For example, if p is fixed, the spaces L?(€2, u) for o separable and atomless
are all isometric. The reason is that, up to isomorphism in a proper sense, there are no sep-
arable atomless measures other than Lebesgue measure on [0,1]. Something similar occurs
in the context of the spaces C'(K'). The celebrated Milyutin theorem (see [Woj, I11.D, §19])
asserts that for any uncountable compact metric space K, C'(K) is linearly homeomorphic
to C[0,1]. On the other hand, if we do not change the norm of C'(K) by too much, we
keep K in sight. The Amir-Cambern theorem (see [Jal]) asserts that if T is a linear isomor-
phism of two C/(K')-spaces such that ||T|| ||T*'|| < 2, then the underlying compact spaces

are homeomorphic.

This leads us to consider linear isomorphisms of uniform algebras that are not too
far from being isometries. For an exposition of this area, see [Jal]. The idea of nearness of
two uniform algebras can be given several equivalent formulations, but we focus only on the
Banach space notion of nearness to an isometry. We say that two uniform algebras are (1+¢)-
isomorphic if there is a linear isomorphism T' between them that satisfies | T']| || T < 1+¢,
that is, if the Banach-Mazur distance between them is less than log(1 + ). Algebras that
are 1-isomorphic in this sense are isometrically isomorphic as Banach spaces, and for these

we have the following.

Theorem (Nagasawa [Na]). If two uniform algebras A and B are isometrically

isomorphic as Banach spaces, then they are isometrically isomorphic as uniform algebras.

In particular, their maximal ideal spaces are then homeomorphic, as are their Shilov
boundaries. As a consequence, if K and K, are compact subsets of the complex plane such
that the algebras A(K;) and A(K3) are linearly isometrically isomorphic, then there is a
homeomorphism of K onto K, that maps the interior of K conformally onto the interior of
K5. On the other hand, deformation of the compact set K leads to linear isomorphisms of
A(K) that are close to being isometries. For example, consider the scale of annuli G, = {r <
|z| < 1}, and the associated algebras A(G,). Since these annuli are conformally distinct, no
two of the algebras A(G,) can be isometric. On the other hand, the linear operator T from
A, to A, defined by

00 n=11 00
T( Z anzn> = Z oy <£>nzn + anz"

n=1loco n=1loco n=0

is a linear isomorphism of A, onto Ay, and further [|T']] || T — 1 as s — r.
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We say that a uniform algebra A is stable if there is ¢ > 0 such that any uniform
algebra B that is (1 4 ¢) isomorphic to A is actually isometrically isomorphic to A. Thus
the algebras C'(K) are stable, while the annulus algebras are not. R. Rochberg [Rol] proved
in 1972 that the disk algebra C'4 is stable, and he went on to study the perturbations of the
algebras A(K') for K a finitely connected subset of the complex plane with smooth boundary,
or more generally for K a finite bordered Riemann surface. The flavor of his work is given

by the following result.

Theorem (Rochberg). Let K be a finite bordered Riemann surface. Then for
e > 0 small, any uniform algebra B that is (1 4 €)-isomorphic to A(K) has the form A(J)
for a compact bordered Riemann surface J that is a deformation of K by a quasi-conformal

homeomorphism with dilatation tending to 0 with e.

For expository accounts of these results, see [Ro2, Ro3]. More recently, Jarosz [Ja2]

was able to prove that the nonseparable algebra H*(A) is also stable.

Meanwhile there is currently no known compact set K in the complex plane with
nonempty interior such that C'4(K’) can be shown to be linearly nonisomorphic to the disk
algebra. Conformal mapping theory and the relation Cy ~ (C4 & Ca & ... )., proved by
Wojtaszczyk (see [Woj, IILLE, §12]) suggest that a compact set K for which C4(K') (or P(K),
or R(K)) is proper but is not isomorphic to the disk algebra should not be too simple (if it

exists).
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10 The Dimension Conjecture

It is natural to ask how linear topological properties of an algebra of analytic functions of
several complex variables reflect the geometry of the underlying domain. The oldest problem

along these lines is to determine what effect the number of variables (dimension) has.

Dimension Conjecture. If G and Gy are bounded domains in C" and C™ respec-

tively, with n # m, then the spaces A(G1) and A(Gy) are not linearly homeomorphic, nor
are H(Gy) and H*(Gy).

We discuss briefly some results related to the dimension conjecture. The main refer-

ences are [B4] and [Pe, § 11].

It is most natural to examine the dimension conjecture first for the polydisks A” and
the balls B,. In [B4] it was proved that A(A”") is not linearly homeomorphic to A(A™)
if m # n. The invariant distinguishing the spaces (in fact, their duals) is the behavior of
certain vector-valued multiindexed martingales on the measure space '™ x --- x I'** with
natural filtration; the martingales in question must have some additional complex analytic

structure. The method in [B4] yields the following.

Theorem 10.1. Let Uy,... . U,, Vi,...,V,, be strictly pseudoconver domains with
C*-smooth boundary (the dimension may vary from one domain to another). If m > n, then

AV x - x V)" does not embed in A(Uy x --- x Up,)* as a closed subspace.

Theorem 10.1 includes the previously known result that the spaces A(B,,) and A(A")
are not linearly isomorphic for m,n > 2. It had been shown that A(A")* does not embed in
a direct sum of an L'-space and a separable space (see [Pe, § 11]), whereas A(B,,)" is such

a direct sum by Theorem 4.3.

Very little is known beyond Theorem 10.1. Currently it is not even known whether
the ball algebras A(B,,) are mutually nonisomorphic for m > 2. They are all distinct from
A(B1) = A(A) = C4. The latter space is a subspace of C'(I') with separable annihilator,
whereas A(B,,) for m > 2 does not embed in C'(K) as a subspace with separable annihilator
(see [Pe, § 11]).

The series { H*(A™)} seems to be quite similar to { A(A")}; however, in general the
method of [B4] is not applicable to H*(A™). It is known only that H*(A) differs from
H*=(A™) for n > 2. Again, see [B4, Pe| for proofs.

For comparison, we describe the situation concerning the Hardy spaces H*(I'") and
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H'(0B,). The spaces of the first series are not isomorphic to one another (see [B5, B6]),
whereas those of the second series are all isomorphic (see [Wol]). More recently, it was shown
that for any strictly pseudoconvex domain with smooth boundary the corresponding space

H* is isomorphic to the classical H' in the disk (see [Ar]).

Finally, note that in contrast to the current state of affairs in one complex variable, it
is possible to find in several complex variables many examples of nonisomorphic spaces A(G)
where the underlying domains G have the same dimension. For instance, from Theorem 10.1

it follows that A(A*) is not linearly isomorphic to A(By x By).
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