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BANACH SPACES AND CLASSICAL HARMONIC ANALYSIS

S. V. KisLyAkov

ABSTRACT. Some points of contact of the two fields are discussed, specifically: pro-
jections onto translation invariant subspaces, Cohen’s theorem and related results,
multipliers of H!, the use of invariant means, p-summing and p-integral operators, the
vicinity of the Grothendieck theorem, some consequences of the Maurey—Nikishin—
Rosenthal factorization theorem, Ap-sets and Bourgain’s solution of the Ap-problem,
translation invariant subspaces without Gordon—Lewis local unconditional structure,
Sidon sets, multipliers on spaces of vector-valued functions, specific spaces (related to
harmonic analysis) in the general theory. Some proof are indicated or even exposed
in detail, in case they are not technical and help to better illustrate the interplay
between the fields in question.

Many classical Banach spaces admit a natural action of some group, and many
specific operators commute with translations. This features can be used in the
study of such spaces and operators. Reciprocally, sometimes the techniques of the
Banach space theory apply in harmonic analysis.

This 1s nearly all that can be said about the subject of this paper in general.
Furthermore, the manifestations of this relationship are scarce and heterogeneous.
Invoking the polemical metaphor of Kahane and Salem for their classical book
[KaS] on Fourier analysis (“il peut ... ressembler en quelque sorte & un herbier”,
[Ka$S, Préface]), it can probably be said that not only may the present text resemble
somewhat, but 1t really is a “herbarium”, much smaller and less systematized than
[KaS], representing a far less explored taxon, and incomplete even in the known
part of the latter.

In other words, the subsequent discussion can be viewed simply as a collection
of examples. I hope, however, that the reader will find some intrinsic logic in them,
and that at least sometimes he will be amused by the interplay of the two fields
mentioned in the title.

1. Basic definitions. Throughout, “a group” means “an Abelian group”. Any
group G acts on functions on it by translations f — f;, where fy(y) = f(y + 2),
z,y € GG. A linear space X of functions on G is said to be translation invariant if
with every function f it contains all translates of f. Let X and Y be two translation
invariant spaces on (G, and let T': X — Y be a linear operator. Then T' commutes
with translations if T(fy) = (Tf)y for f € X, 2z € G.

If G is compact (which will be assumed in what follows unless otherwise is
claimed explicitly), we denote by da the normalized Haar measure on G, by T the
dual group, and by f the Fourier transform of a function f € LY(G) (the same
notation is used for the Fourier transform of a measure). Mainly, we shall deal with
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2 S. V. KISLYAKOV

the classical spaces C'(G), LP(G) (1 < p < o0), M(G) = C(G)*. Let X be any of
these spaces, and let £ C I'. Then

XgE{feX f(y)=0 for v€E}

is a translation invariant subspace of X. If X = C(G) or X = LP(G) with 1 <
p < 0o, all translation invariant subspaces are such. Next, the spaces L¥ (G) and
MEg(G) are the only w*-closed translation invariant subspaces of L (G) and M (G),
respectively.

In an obvious way, the symbol X g makes sense for other spaces X, and we shall
use this notation without further explanations.

Now, let each of X, Y be either IP | 1 < p < oo, or €, and let Fy, Fs C T.
Suppose we are given a bounded linear operator 7' : Xg, — Yg,. Then T commutes
with translations if and only if it is representable in the form

(1) (TH)=m-f,

where m is a bounded function on T' vanishing on the complement of E; N Es (note
that, unless X =Y = L? not every bounded m gives rise to a bounded operator
via (1)). Often, m is called the symbol of T'. A similar characterization holds if the
spaces L or M are involved, under the assumption of w*-continuity of 7.

We write T'= T, if T acts in accordance with (1); also, T is called the multiplier
with symbol m.

Among specific examples of translation invariant spaces, we mention the Hardy
spaces HP(T™), where T" is the n-dimensional torus. The dual group of T" is Z",
and HP(T") is simply the space L’()ZJr)n(T”), 1 < p < oo. The space C(z - (T")
is called the polydisk algebra (the disk algebra if n = 1). All these spaces have a
well-known interpretation as the traces on the distinguished boundary T” of certain
spaces of functions holomorphic in the polydisk.

2. Averaging. Complementation. A most usual idea in the study of translation
invariant subspaces is to average something. We start with simple and old examples;
further, we shall come across several instances in which the realization of this idea
is more intricate.

Again, let each of X, Y be one of the spaces LF(G) (1 < p < o) or C(G), and
let Fq1, Es C I'. For every bounded linear operator T': Xp, — Xg,, we put

Tf= /G(fo)_xdx.

Then 7' commutes with translations. The mapping T — T is a norm 1 projection,
and T can be referred to as the invariant part of T'. Clearly, T inherits many
properties of 7', but 1t may happen that T=0.

The oldest and most well-known applications in which T is quite substantial are
related to projections. Suppose that X =Y and Es C E;. If P is a projection of
Xp, onto Xg,, it is easily seen that so is P. The symbol m of P is none other than
the characteristic function of Es.

In particular, it follows that the subspace L, (1 < p < 00) (respectively, Cg)
is complemented in L? (in C) if and only if the multiplier with the symbol xg is
bounded on L? (on ().
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Proposition 1. For 1 < p < oo, p # 2, and G compact infinite, some of the
subspaces LY (G) are uncomplemented in L¥ (G).

Proof. By the preceding discussion, otherwise the characters of G form an uncon-
ditional basis in LP (). From the Khinchin inequality it is easy to deduce that this
isnot soif p£2. O

In the case of L1((F), much more can be said. We refer the reader to [Gr-McG]
for the proof of the following statement.

Theorem 2 (Cohen’s idempotent theorem). LL(G) is complemented in L*(G) if
and only if E/ is in the coset ring of I.

By definition, the coset ring of I' is the smallest system of sets containing all
cosets of subgroups of I' and closed under finite unions and intersections and under
complementation.

It is known that translation invariant operators of L'(G) or C'(G) into itself are
precisely the operators of convolution with a finite measure. The projections among
such operators correspond to the idempotent measures p (g * pp = p, or (1)? = f1).
So, Theorem 2 describes also the idempotent measures. Now, it is clear that the
complemented translation invariant subspaces of C'(G) admit a characterization
similar to Theorem 2.

A measure p on G is said to be quasiidempotent if |i|* > || (i.e., for each v € T
either fi(y) = 0 or |a(y)| > 1). A set B C T is called a quasi-Gordon set if there
exists a quasiidempotent measure p such that = = {v : fi(y) # 0}. This notion was
introduced in [KwPe] and will be used later on in this paper.

3. Invariant projections in H*(T). The subspace H}(T) may be complemented
in H(T) for some E C Z4 not belonging to the Boolean ring generated by the
arithmetic progressions and singletons (i.e., here the picture is different from that
described in Theorem 2). The simplest example is £ = {1,2,4,...,2", ... }.

Theorem 3 (Paley; see, e.g., [H, Z]). For f € HY(T) we have
Q1Y < diflh-

n>0

A similar inequality is valid for any Hadamard lacunary set £ (we recall that
E C Zy is said to be Hadamard lacunary if E = {my, my,...} with mgy1 > Amy
for a fixed constant A > 1). From the properties of lacunary trigonometric series,
it follows that such an inequality means precisely that T} is a bounded operator
on H*.
Theorem 4 (see [Kl]). The subspace HL(T) is complemented in H'(T) if and

only if E s in the Boolean ring of subsets of 7.4 generated by singletons, arithmetic
progressions, and Hadamard lacunary sequences.

4. Now we discuss the complemented translation invariant subspace of L!(G) for
G locally compact but noncompact. H. P. Rosenthal showed (see [Ro]) that for
such a space X the set

hX ={yeT:f(y) =0 forall feX}

must be in the coset ring of 'y, i.e., of the group I' dual to G and endowed with
the discrete topology. This is, however, rather far from a complete description. We
quote a final result for the group R (see [AM]).
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Theorem 5. A translation invariant subspace X is complemented in L*(R) if and
only if hX = Ur<icn(aiZ4G;)\I", where I' C R is a finite set, {x;} and {;} are two
finite collections of reals, and the numbers «; are pairwise rationally independent.

The above general result of Rosenthal is again based on averaging, and we show
how this procedure applies this time. Let P be a projection onto a translation
invariant subspace X of L'((). Then P*: X* — L°(() is a simultaneous exten-
sion operator, i.e., P* extends each bounded linear functional on X to a bounded
linear functional on L!(G) (and the latter is identified with a function in L*(G),
as usual). Now, we define a simultaneous extension operator £ : X* — L®(G)
commuting with translations as follows:

(EF,g) = mu(F, (P(g2))-0), ' € X", g € L}(G).

Here m is a fixed invariant mean on {*°(G), i.e., a linear functional satisfying
m(l) = 1, m > 0, and m(f;) = m(f) for f € *°(G), v € G (the subscript x in
the notation m, shows that m is applied “in the variable #”). For (¢ commutative,
such a functional always exists, see, e.g., [Gri].

Now, we see that the operator A : F — F — £(F|x) is a projection commuting
with translations and taking L'(G)* = L*>(G) onto X~ = {F € LY(G)* : F|x =
0}. Eventually, it turns out that Cohen’s theorem can be applied to deduce Rosen-
thal’s result, but some additional analysis is needed to do this. The crucial step is
the observation that on the Bohr compactification G of G we can find a measure 7
such that Af = f % p for every continuous almost periodic function f on (. Since
the dual group of G is precisely G4, we easily arrive at Rosenthal’s result with the
help of Theorem 2. See [Ro] for more details.

5. Averaging against invariant means can also be used to show that, strikingly,
certain statements involving the uniform structure of a Banach space can be lin-
earized. Let X be a Banach space, and Y its closed subspace. Assume that there
exists a linear operator v mapping Y™ to the space of uniformly continuous func-
tions on X such that vf is an extension of f for every f € Y*. Next, assume that
v is continuous for the topology of uniform convergence on bounded sets.

Theorem 6 (see [Pe2, Remarks to §2, Proposition A]). Under the above assump-
tions, there exists a bounded linear operator w : Y* — X~ extending each y* € Y*
to the entire space X.

An operator v as above exists if, e.g., Y is a uniform retract of X (we may put
vf = fopif p: X — Y is a uniform retraction). We infer that if, say, Y is reflexive
and uncomplemented in X, then Y is not a uniform retract of X. In particular, no
infinite dimensional reflexive subspace of C'(K) is a uniform retract of C'(K).

Proof of Theorem 6. The operator w is given by the formula

(wf)(z) = /X /Y (o) + 3+ 2) — (W) +v)dyde,

where by fY ...dy and fX ...dz we denote some fixed invariant means on {*(Y)
and {*(X) (X and Y are regarded as Abelian groups under their own operations
of addition). The definition of w is consistent because the “integrand” is bounded
(note that, separately, the terms in the “integrand” are unbounded). That w has
the required properties is easy. The external “integration” is responsible for the
additivity of (wf)(+), while the internal one for the relation (wf)ly = f. O
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6. p-summing operators. Let (G be a compact space, X a subspace of C(G),
and T : X — Y a p-summing operator (1 < p < oo). By the Pietsch theorem (see
“Basic Concepts”), the latter is equivalent to the existence of a probability measure
p# on G such that

(2) ITH < e /G fldn, f e X,

Proposition 7. If G is a compact group, X is translation tnvariant, and T satisfies
|Tf = ITS] (f € X,2 € G), then in (2) we can take the Haar measure of G as

it
This is again done by averaging: we substitute f; for f in (2) and integrate in »
against the Haar measure. 0O

The condition on T' in Proposition 7 is fulfilled if, say, Y = L"(G) or Y = C(G),
and 7" commutes with translations.

Proposition 8. Let 1 < p < oo, and let E C I'. The wdentity embedding i :
Cp(G) — LY(G) is p-integral if and only if the multiplier with symbol x i is bounded
on LF(G).

Proof. The “if” part is clear. We prove the “only if” part in the case where p > 1
(only slight complications arise for p = 1, but we do not dwell on this). If ¢ is
p-integral, we have the following factorization:

C(G) « Cp(G) —— I2.(G)

Lo (p) s Lr (),

where u, v are bounded linear operators, p is a probability measure, and id 1s the
identity inclusion. By the extension property of L°°, there exists an extension w of
u making the diagram commutative. Thus, the operator 7' = vid w 1s a p-summing
extension of ¢ to C'((G). Tt is easily seen that the averaged operator T,

Tf= /G<fo>_xdx,

is a p-summing extension of ¢ to C'(G) that commutes with translations. Now,
Proposition 7 shows that 7" acts in fact from L?(G) to L, (G); consequently, the
invariant projection of LF(G) onto L%, (G) is bounded. O

By Proposition 1 we now conclude that, if G is infinite, some of the embeddings
Cg(G) — L% (G) are not p-integral (though, clearly, all of them are p-summing).
This observation was made in [Pel]. Trace duality then yields examples of quasi-
p-nuclear operators that are not p-nuclear.

7. Grothendieck theorem. This theorem says that any bounded linear operator
T : 1" — [? is 1-summing. By the lifting property of {!, to prove this it suffices
to exhibit a single 1-summing operator onto (. Such an example can be provided
by harmonic analysis (loosely, there is a multiplier with this property). This way
to the Grothendieck theorem was indicated by Pelczynski and Wojtaszczyk around
1977.
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Proposition 9. The operator 7 : Cy (T) — I? given by 7f = {f(?”)}nzl is
1-summing and onto.

Proof. The fact that 7 is 1-summing is a consequence of Theorem 3. To show that
T is onto, it suffices to prove the estimate ||7*z|| > ¢||z||, z € {?, which, by the F.
and M. Riesz Theorem (see, e.g., [H]), is equivalent to the estimate

1D ez +p(2)llzeer) > e enl®)?

n>1

for every analytic polynomial p. We use the classical fact that the multiplier with
symbol xz_ maps L'(T) to L"(T) for every r € (0,1). This yields

1D ez +p(lry > 1Y enz |l

n>1 n>1

It remains to refer to the classical properties of lacunary series. O

Another curiosity of similar nature is the operator acting by the same formula as
7, but defined on the space Cg(T), where = Z_U{2"},>¢. It maps Cg(T) onto
1? and is r-summing for every r > 0. This yields a direct proof (again via harmonic
analysis) of Maurey’s extension of the Grothendieck theorem: every operator from
I* to I? is r-summing for every r > 0. See the survey [Kil] for the details.

8. Invariant Grothendieck theorem. We may state the Grothendieck theorem
like this:

If I is a Hilbert space, then for every operator u : H — C'(K) the adjoint u* is
l-summing.

The problem of replacing C'(K) in this statement by some other spaces has
received considerable attention. In particular, it is reasonable to ask about the
spaces of the form Cg(G) that verify this theorem. We mention some cases in
which this is indeed so.

(1) T\ E is a A, set for some p > 1 (equivalently, the space Lll“\E is reflexive;
Ap-sets will be discussed later in this article).

(il) G =T, E =Z4 (then Cg(G) is the disk algebra).
(i) G=T", E=7Z"\ (Z_)".
(iv) G=T,E=2Z4U{=2"},>0.
(v) G=T,E=7Z,U(|J[-2%+ —2%)).
E>0

Statement (i) is due to the author and Pisier; see, e.g., [DJT, Pi3] for the proof.
More generally, if Y is any reflexive subspace of L!(K,p), then the space Y~ =
{f € C(K) fgqu = 0 for all ¢ € Y} verifies the Grothendieck theorem, so that
translatlon invariance is in fact irrelevant here. Statement (ii) is a celebrated result
of Bourgain, the proof of which is based on fine Hardy space theory; see [GaKi, Kil]
for more information and references. Statement (iv) is easy modulo (ii), see the
survey [Kil]. Statements (iii) and (v) were proved, respectively, in [X] and [Ki2].
Curiously, the arguments are somewhat similar. They are based on the ideas of the
proof of (ii), but involve some additional techniques (real variable Hardy spaces,
Littlewood—Paley decompositions, etc.).

We see that, in spite of the (accidental) involvement of translation invariant
subspaces, the methods leading to (i)—(v) can hardly be classified as deserving a
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more detailed exposition in this paper (at least, they deviate too much towards
only one of the two items mentioned in the title, whereas the paper is about the
vicinity of the conjunction “and”).

The situation becomes different if we restrict ourselves to operators commuting
with translations.

Definition (see [KwPe]). A set F C T is called a Marcinkiewicz set (respectively,
a quasi-Marcinkiewicz set) if the multiplier with symbol yg is of weak type (1,1)
(respectively, there exists a bounded function # on T such a that a(y) = 0 for
vy & E, |a(y)| > 1 for v € E, and the multiplier with symbol « is of weak type
(1,1)).

We remind the reader that an operator T' is of weak type (1,1) if
meas{|Tg| >t} < ct™|g|lz:, t>0,

for every ¢ in the domain of 7.

Theorem 10 (see [KwPe]). If E is a quasi-Marcinkiewicz set, then for every oper-
ator u : L*(G) — Cg(G) commuting with translations the adjoint u* is 1-summing.

The proof will be given in Section 10.

It is well known that Z, is a Marcinkiewicz set for G = T, but then Theorem 10
gives much less than statement (ii) above. The theory of martingale transformations
yields many examples of Marcinkiewicz sets in the dual of the group [[ Zy,, (see, e.g.,

n
[Gu]). Let, for instance, k, = 2 for alln = 1,2, ... (the dyadic group D). We agree
that Z, = {—1, 1} (written multiplicatively). Let ¢; be the jth coordinate function
of D; then all characters of D except the function 1 are of the form ¢;, €5, ... €5,
where N = 1,2,..., j1 < j2 < .-+ < jn. Fixing an arbitrary set B of integers,
consider the set F of the characters for which jy € B in the above representation.
Then F is a quasi-Marcinkiewicz set.

9. It isinteresting that Theorem 10 can be adapted to the space of smooth functions
C'(k)(Tl). Neglecting the constant, we may endow this space with the norm

Al = g}gﬁlefl

equivalent to the standard one (as usual, D® denotes the parial derivative corre-
sponding to a multiindex s). Thus, in a natural way, C*)(T!) can be regarded as
a subspace X of

C(MHa---o0(Th

(the number of summands is equal to card{s : |s| = k}), and X is invariant under
simultaneous translation on all copies of T!. Moreover, the orthogonal projection
onto the closure of X in L2(TY) @ --- @ L%(T!) is of weak type (1,1).

In [KwPe] it was shown that, using this projection, it is possible to work with
X as if we had a space of the form Cgp(G) with a quasi-Marcinkiewicz set E.
(The reader may trace this inspecting the proof in Section 10.) In particular, it
follows that any operator u : L*(T') — C*)(T!) commuting with translations has
1-summing adjoint. See [KwPe] for the details.
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10. Theorem 10 is proved by two-fold averaging. The first averaging yields a useful
lemma stated below. Let each of X and Y be either LY, (G) or Cg(G) (maybe, with
different E’s), let T': X — Y be an operator commuting with translations, and let
S :Y — X be a finite rank operator.

Lemma 11. We have trace TS = trace TS, where Sf = S (Sfe)-

Indeed, let o, be the translation f — f,. By the invariance of T" we have
trace T'S = trace (0 ' T'¢,,S) = trace (To,So; '),

and it suffices to integrate in « over G. 0O

Now, we remind the reader that the trace duality identifies the ideal of operators
with 1-summing adjoint as the dual of the ideal T'y of L'-factorable operators; see
[DJT]. In particular, for u : L?(G) — Cg(G) we have

m1(u*) = sup{trace (uv) : v:Cg(G) = L (G) 1s of
finite rank and 5 (v) < 1}.
Here, as usual, 7; stands for the norm on I';. By Lemma 11, if u commutes with
translations, the supremum can be restricted to v commuting with translations.
We see that it suffices to estimate the nuclear norm v (v) in terms of v, (v) for any
such v: v (v) < ey (v). We show a more general statement, without the finite rank
assumption.

Theorem 12. If F is a quast-Marcinkiewicz set, then every 1-factorable operator
v: Cgp(G) — L*(G) that commutes with translations is nuclear.

Proof. Again, we use an averaging procedure, but this time it is intricate. Let T'
be a multiplier of weak type (1,1) the symbol « of which satisfies a(y) = 0 for
v ¢ E and |a(y)| > 1 for vy € E. Clearly, T maps L'(G) to L'/?(G). Next, since
v is Ll-factorable, from the Maurey extension of the Grothendieck theorem (see
the end of Section 7) we deduce that v is 1/2-summing. Writing the definition of a
1/2-summing operator in the integral form, we see that if (€2, A) is a measure space
and F': Q@ — Cg(G) is a reasonably good function, then

J P @I aN) < mga(0) 7 supd | [P @). 2 re) e MGGl < 1

As (Q,A) we choose the group G with the Haar measure, and we put F(w) =
T(fu), w € G, where f is a trigonometric polynomial (a finite linear combination
of characters) on (. Clearly, F' indeed maps GG to Cg(G), and we obtain, using
invariance:

1/2
T < mapa) 7 supt [ KT S s € MGl < 1)
Putting ji(e) = p(—e) and using the fact that T maps L' to L'/, we see that

/in u|”2dw—/lT @Y < Olf «ally? < Clfn.
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It follows that vT" is a bounded operator from L!(G) to L?(G). Now, let b be the
symbol of v. We have

<Zwmwwmmwscém

YEE

for every f € LY(G). Letting f run through some approximate identity, we infer

that 3 cp [b(3) 2 < .
Thus, v is the convolution with an L?-function V the spectrum of which is

contained in E. So, v factors as follows:

cG) —4 1LYG)

I &

Cp(G) —— L*G),

where ¥ is again convolution with V. Since id is 1-integral and ¥ maps to a reflexive
space, v 1s nuclear. [0

11. A counterexample. Returning to the beginning of Section 8, let us agree
to say that a space X verifies the Grothendieck theorem if every operator from [?
to X has l-summing adjoint. From the discussion in “Basic Concepts” (see [DJT]
for more details), it can be seen that this happens if and only if every operator
from X to [' is 2-summing. From (ii) and (iv) in Section 8 we see that the spaces
Cz,(T) and Cg(T), where I/ = Z U {—=2"},,>0, verify the Grothendieck theorem.
However, their injective tensor product does not.

Indeed, this injective tensor pruduct is none other than C’Z+XE(T2), and the
latter space contains a complemented copy of {1 (then, surely, the projection to this
copy is not 2-summing). This copy is spanned by the functions {z%nzz_zn},»o. To
exhibit a projection, we observe that the characteristic function of {(k, —k)_: k€
Z} C Z? is the Fourier transform of a measure on T x T. The required projection
is given by convolution with this measure.

It is known that the dual spaces of Cz, and CE are of cotype 2 (see, e.g., the
survey [Kil]). The above construction can be adapted to show that the projective
tensor product of two cotype 2 spaces may fail to be of cotype 2, moreover, it may
contain a complemented copy of ¢g.

The conjectures disproved by the above were perceived as natural for some time
in the past. A “more radical” answer to these and many other questions is given
by Pisier’s celebrated counterexamples (see, e.g., [Pi3]). T have included the above
material (first published in [Kil]) because of its transparence and relevance to
harmonic analysis.

12. Stein theorem. Seemingly, in the proof of Theorem 12 we did not use the
full-scale assumption that F is a quasi-Marcinkiewicz set (we needed “only” the
(L' — LY/?) continuity of the corresponding multiplier). The result of Stein stated
below shows that this is not so. We denote by S(G) the space of all measurable
functions on G endowed with the (metrizable) topology of convergence in measure.
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Theorem 13. Let A C I, and let T : LY(G) — S(G) be a continuous linear
operator commuting with translations. Then T is of weak type (1,1).

Proof. The point is that something similar can be said if T does not necessarily
commute with translations. Specifically, by the Nikishin theorem (see [Ma]), in the
latter case for every £ > 0 we can find a set Q. C G with |G\ Q.| < € such that

(3) {t € Qe [(THO)] > M < CATH|fllu, f € Ly, A> 0.

Now, if T" does commute with translations, it only remains to average. We fix,
e.g., ¢ =1/2, and put Q = Qy 5. Substituting f, for f (x € () and using invariance,
we rewrite (3) in the form

[ xaceximasa < O
integrating in x over G, we get

QI{ITfI> A < CATYIf]l- O

13. Ap-sets. Let 1 < p < oo. A subset F of I is called a Ap-set if in L, (G) norm
convergence is equivalent to convergence in measure.

This is the same as if we demand the equivalence of the LP- and L?-norms on
L%, for some ¢ < p.

A subspace X C L*(p) (where p is a finite measure) if reflexive if and only if the
norm convergence on X is equivalent to the convergence in measure; see [KadPe].
Thus, F is a Aj-set if and only if LL(G) is reflexive.

The most well-known examples of Ap-sets (for all p at once) are Hadamard
lacunary sets of integers (here, of course, we have in mind the circle group T as G).
In general, for a fixed E the set {p : E'is of type A, } is an interval. In the pioneering
paper [Ru] of Rudin it was shown that for any integer n > 2 there is a Agp-set not of
type Agpye for any € > 0. The main idea of the construction is that | ZWEE ayy?"
expands explicitly as a linear combination of products of the characters in £ and
their complex conjugates, so that we may play with arithmetic conditions on E
to ensure huge cancellation after integration. This leads to nontrivial examples of
Asp-sets, some of which turn out to be not of type Aapie, € > 0.

The question as to whether similar examples exist for p # 2n, n > 2, n € Z, was
often referred to as the A,-problem.

For p < 2, the solution of this problem has turned out to be easy (at least
formally). Namely, if p < 2, then every A,-set is a A,4.-set for some ¢ > 0. As in
the preceding section, the reason is in the Rosenthal-Nikishin-Maurey factorization
theorem saying, in particular, that if X is any subspace of LP with p < 2 on which
the topologies of L? and S are equivalent, then, after a change of density, X becomes
a subspace of L™ with some r > p:

(flamla) " <e(f

where a is a positive weight, [a = 1. See [Ma] for the details. Now, if X is
translation invariant, we easily get rid of the density by averaging, which implies

X

x P \1l/p
i ‘a) & e X,

al/P
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our claim. This observation was made in [BE]. However (in reality, so-to-say), no
specific examples of A,-sets with p < 2 that are not As-sets seem to be known
(this is the precise meaning of the above remark on the formality of the solution in
question).

For any p > 2, Bourgain [Bo2] proved the existence of A,-sets that are not of type
Apye. (Thus, the A,-problem remains unresolved for p = 2 only.) Bourgain’s proof
1s probabilistic and combinatorial in nature. Technically, it has little in common
either with harmonic analysis or with Banach space theory, though philosophically
the result may be linked with the latter.

It 1s a known fact of the finite-dimensional theory of Banach spaces that if X
is a space of dimension n and its cotype p constant is at most C', then a typical
subspace of X of dimension [C71n2/?] is 2-distant from the Hilbert space of the same
dimension. Here C depends only on C'. See [MiSch, Theorem 9.6]. Thus, in any
n-dimensional subspace X of LP (p > 2) there are many nearly Hilbertian subspaces
of dimension proportional to n/?. Now, suppose that X is spanned by characters
Y1, .-+, Yn- If we succeed in finding a subspace Y of X also spanned by characters,
of dimension roughly n2/? and such that the LP-norm is equivalent to the L2-norm
on Y with a constant independent of X, we are very close to the desired example.
(In other words, we need to know that subspaces with “typical” behavior occur
even among quite specific spaces, namely, among those spanned by characters.)

To understand why this finite-dimensional statement suffices, we note that in
many cases the exponent 2/p in the above discussion is optimal. If we restrict
ourselves only to the spaces X having this property, then on the above Y the best
constant of equivalence of the LP- and LPT¢-norms must tend to infinity as n — oo,
for every ¢ > 0. Then we attach such spaces Y to one another to obtain an infinite
set that is precisely of type A,.

In [Bo2] an infinite set of this sort was constructed by considering the spaces
span {zzn, .. .,z2n+1} on T in the role of X; the “attachment” procedure consisted
in applying the Littlewood—Paley decomposition. This is easy. It is the above
finite-dimensional statement that is really difficult. Bourgain showed that, in fact,
translation invariance is irrelevant in it.

Theorem 14 (see [Bo2]). Let ¢1,...,¢n be mutually orthogonal functions on a
probability space (2, v), let ;| < 1 for all i, and let 2 < p < o0. Then there is a
subset S C {1,...,n} of cardinality at least n*/? satisfying

1Y aiill, < Cp)(S Jail)?

€S i€s
for all scalar sequences {a;}. The constant C(p) depends only on p.

In fact, in a due probability sense, most subspaces S of {1,...,n} possess the
required property.

Later, Talagrand gave a different proof of this remarkable theorem (see [T]).
Talagrand’s proof is somewhat simpler than Bourgain’s, but it leans upon finer
probabilistic background. Also, there is some more philosophy of Banach space
geometric nature around Talagrand’s proof. We quote an intermediate statement
occurring in [T]. In the case of X = LP it is weaker than Theorem 14; however, it
is applicable in a more general setting.
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The norm of a Banach space X is said to be 2-smooth if ||z + y|| + ||z — y|| <
2 + C|y||* with C independent of # and y. It is known that for p > 2 the norm of
L? 18 2-smooth.

Now, let {l‘i}lsl'sn be a collection of vectors in a real Banach space X, and let

r=supl Y fl&)’: feXT|Ifll <1}

1<i<n

Talagrand showed that if the norm of X is 2-smooth and m = [n!1=¢/7] (¢ € (0,1)
is an arbitrary fixed number), then there exists a subset I of cardinality m in

{1,...,n} such that
1> asadl| < KV Jasf?) 2.

i€l i€l

(In fact, “most” subsets I of cardinality m are such.) Here K depends only on ¢
and on the constant C' in the definition of 2-smoothness.

We observe that if X = LP, then 7 < n'=2/? 5o that the statement is “c-close”
to Theorem 14. The reader is referred to [T] for the proof of the above result, and
also to the procedure of eliminating € in the case of the LP-norm, p > 2. By the
way, the method generalizes to some other norms (an analog of Theorem 14 for the
Lorentz space LP! was presented in [T]). We do not have the possibility of entering
into the technicalities of either Bourgain’s or Talagrand’s proof.

14. Sidon sets. A subset E' of I' is called a Sidon set if ) p 17| < || f]]oo for
every f € L% (G). The smallest constant ¢ is called the Sidon constant of E and is
denoted by S(F). Again, the most well-known example is given by the Hadamard
lacunary sequences (for G = T). Also, the coordinate functions of the dyadic group
(viewed as characters) constitute a Sidon set. Basically, the latter sequence is none
other than the sequence of Rademacher functions on the segment [0, 1].

It is well known that every Sidon set E is a A, set for all p € [1,00) and,
moreover,

(4) 1/l < ev/pllfll for feLp(G), p>1;

see, e.g., [LoR]. A deep result of Pisier [Pil] shows that, in fact, (4) is a character-
ization of Sidon sets.

We shall discuss Sidon sets in more detail later on. Here we mention only a
recent result of Kalton and Pelczyriski [KalPe] who showed that if F C T'is a Sidon
set, then L%\E(G) is not an L!-space (the question about this had been circulating
for some time before that). In fact, again, the group structure has turned out to
be irrelevant here.

Theorem 15. If p is a finite measure and @Q is a surjection of L'(pu) onto a
space containing a copy of cg, then X = Ker Q) is not complemented in X** and
the Grothendieck theorem fails for X (in the sense that there is an operator from
X to [? that is not 1-summing). Consequently, X is not an L'-space and is not
1somorphic to a Banach lattice.

See [KalPe] for the proof and related results.
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15. Gordon—Lewis local unconditional structure. We refer the reader to
“Basic Concepts” for the precise definition, recalling only that a Banach space X
possesses Gordon-Lewis local unconditional structure (G-L lLu.st.) if and only if
X* is a complemented subspace of a Banach lattice. Harmonic analysis provides
many examples of spaces without local unconditional structure.

Theorem 16 (Kwapiein and Pelczyriski [KwPel]). If E is a quasi-Marcinkiewicz
set and there is a bounded function ¢ ¢ I*(F) such that the multiplier T, maps L}
to L%, then Cg(G) fails to have G-L Lu.st.

Theorem 17 (Pisier ). If E is a As-set, then E is a Sidon set if and only if Cp(G)
has G-L l.u.st.

Theorem 18 (Pisier). Let E be a Ay-set, and let p > 2. Then E is a Ap-set if
and only if L' (G) has G-L Lu.st.

Remark. The “only if” parts of Theorems 17 and 18 are trivial because Cg ~ [*(E)
for every Sidon set and L, ~ [*(E) for every A,-set if p > 2.

The proofs will be given in the next section, along the lines of the paper [KwPe].
Here we make some comments. In Theorem 16, let G = T, ' = Z;. Then F
is a Marcinkiewicz set. As ¢, we may take either xysn.,>0} (see Theorem 3), or
the function n +— (n 4+ 1)~Y2 n € Z, (then the continuity of T, : H' — H?
is a consequence of the classical Hardy inequality Y - .(n + 1)_1|f(n)| < ¢||fll1,
f € H'; see [H]). So, we recover the well-known fact that the disk algebra fails to
have G-L l.u.st.

Also (compare with Section 9), the proof of Theorem 16 can be adapted to show
that the space C)(T*) does not have G-L Lu.st. if k > 2 and [ > 1. Clearly, it
suffices to prove this only for [ = 1, k£ = 2. Then the role of T, in Theorem 16 can
be played by the Sobolev embedding operator Wl(l)(Tz) < L3(T?). In Section 9 it
was already explained that C'")(T?) is similar to a space of the form Cg(G) with
E a quasi-Marcinkiewicz set. The adjustment of the details is left to the reader (or
see [KwPe]).

Passing to applications of Theorem 17, we take F' = {2" : n > 0} C Z (this is a
Sidon set for T) and consider its square

Ey={(2"2Y k1 >0} cz%

From condition (4) for E it is easily seen that Fj is a Ap-set for T? for every
p < co. However, it is also easy to observe that in the analog of (4) for F; the
constant grows as p, i.e., faster than |/p. Thus, & is not a Sidon set. By Theorem
17, Cg, (T?) fails to have G-L lu.st. (we note that C'g, (T?) is isomorphic to the
projective tensor product of I* by itself).

The domain of applicability of Theorem 18 is outlined in Section 13.

We refer the reader to [KwPe] for more examples.

16. Theorems 16, 17, and 18 are proved by similar methods. For Theorem 16, we
consider the following operators:

Cp(G) % LL(6) 25 12,(6) 25 Cp(G).

Here 1 is an arbitrary function in {?(E). By Theorem 12, the adjoint le s 1-
summing. If Cg(G) has G-L lLu.st., the identity embedding id factors through L!
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(because id is 1-summing; see [DJT]). So, we have come across a composition of
operators belonging to mutually adjoint operator ideals, hence it follows that

(T, id Ty) < el[To|[ |9z )

( v1 stands for the nuclear norm), or

D1 < Nl e
YEE
This contradicts the condition ¢ ¢ [2(F). O
For Theorem 17, we consider the following operators:

id k T
(5) Ce(G) 5 LE(G) 5 14(G) = Cr(G).
Here k is the formal identity; & is continuous because F i1s a Ag-set. Next, T
is the convolution with a function # € Cg(G). We claim that 7* is 1-summing.
Indeed, T* is an operator of convolution with (—t); convolving this function with

a measure, we obtain a function in C_g(G), which does not depend on a particular
choice of this measure in a fixed coset modulo Cg(G)~. Hence, T* acts as follows:

T Op(G) LT o p(6) 1 L (6) B 12 (),
where, as in (5), id; is the identity embedding and k; is a formal identity; thus, 7*
is l-summing.
Now, in (5) id is I-summing, so that, if Cg(G) has G-L lL.u.st., as in the preceding
proof we obtain

idy

v (kidT) < COl||les, =€ Cp(G),
or
>z < Cllalles, = € Cr(G).
EE
Thus, E is a Sidon set. O
For Theorem 18, we let ¢! + p=t = 1 and f € L%((). Then, regarded as a
mapping from L4 (G) to L% (G), the operator S of convolution with f factors as
follows: .
S IR (G) D L3 (G) -5 LH(G) & 13(G).
Here 7 is again the operator of convolution with f, and k is the formal identity.
We see that S is I-summing. If L, (G) has G-L l.u.st., then S factors through
L(v) for some measure v. Next, for p > 2 every operator from a subspace of L?
to L' (v) factors through a Hilbert space H (see [Pi3, Chapter 3]). This implies the
following factorization for S:

S IR(G) = H = L' (v) = LE(G).
By the Grothendieck theorem, w is 1-summing. Hence, wuv is Hilbert—Schmidt, with

Hilbert-Schmidt norm not exceeding C|f||;. Since (wv)* is also Hilbert—Schmidt
with the same norm, it follows that
(2 IS" DI < Clifll: £ € L(G).
~vE—E
or, equivalently,
QOB <Clifllg, | e LUG).
YEE

A simple duality argument shows that the latter condition is equivalent to the fact
that I is a Ap-set. [
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17. Quasi-Cohen sets vs quasi-Marcinkiewicz sets. It turns out that in
Theorem 16 the condition of the existence of ¢ admits a nice reformulation. See
the end of Section 2 for the definition of a quasi-Cohen set.

Theorem 19 (Kwapien and Pelczyriski, [KwPe]). The following properties of a set
E CT are equivalent.

(i) E is a quasi-Cohen set.

(ii) For every multiplier T, : Ly (G) — L% (G) we have ¢ € I*(E).

(iii) There is a constant K such that for every trigonometric polynomial p satis-
fying p(x) > 0 for € B we have S p(2) < K|[pllo-

Proof. (1)=(ii). Let u be a measure satisfying ji(y) = 0 for v ¢ E, |(y )| 2
v € E, and let S be the operator of convolution with x. Then 7,5 maps L' (G

L%(G),le
(3 1ae@) f ) 1/2<c/|f| f € 1NG).

YEE

)

Letting f run through some approximate identity, we infer that

> (O 1M Pl > O len))M2.

~EE ~EE
(il)=(iii). Let p(y) > 0 for v € E. We introduce the multiplier T\/m_E :

LL(G) — L%4(G). To estimate the norm of this operator, for f € L1 we write

S WA = [ T s Hade < IS <Pl < 1A

hence ||T\/p|—E|| < ||p||(1><42 From (ii) we deduce that ZWEE p(7) < C|pllec-

(iii)=(i). In the space C'(G), we introduce two convex set:

W={peC(G):p(y) >0 for yeE, > p(y)=K},
vEE

U={q1+q:||ln1llec <1, ¢2(y) <0 for € E}.

Here K is the constant occurring in statement (iii).
Clearly, W is closed and U is open. Also, WNU = @. Indeed, if p € W and
p = q1 + ¢2 as in the definition of U, then (§ — ¢2)|g > 0 and

K=Y 57 <Y (000 = d(9) < Kllp = gslles = Kllgaleo < K.
~EE ~EE

Thus, there is a (signed) measure g on G such that

Re/ p(x)dp(z) < K for peU,
e

Re/ p(x)dp(z) > K for peW.
e
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We show that the measure v defined by v(A4) = u(—A) has the desired properties.
First, if v € E, then Ky € W, hence we see that

K< Re/ K~ydp = K Re fi(—7),
G

e, |o(y)| > 1. Second, if v ¢ E and ¢ is any complex number, then p = Key € U
(because p(A) =0 for A € F). Thus, K > Re K(ev(%)), and o(y) = 0. O

Now we can restate Theorem 16 as follows: if £ i1s a quasi-Marcinkiewicz set but
not a quasi-Cohen set, then Cg(G) fails to have G-L l.u.st.

18. Sidon sets and arithmetic diameter. For a finite set A C T, its arithmetic
diameter d(A) is defined as the smallest N such that Cy(G) is at most 2-distant
(relative to the Banach-Mazur distance) from a subspace of the N-dimensional
space {7, If E is a Sidon set in T', then CA(G) is at most S(E)-distant from lllAI
for every finite A C E. Consequently, the arithmetic diameter of A must grow
exponentially as a function of |A].

There are many ways to see this. For instance, we may argue as follows. First,
recall that for p > 2 the type 2 constant of L? is of order ¢,/p. Next, it is easily seen
that the Banach—Mazur distance between /5 and lf,gN is bounded uniformly in N,
so the type 2 constant of I3 does not exceed cy/log N. Finally, if eq,..., e, are

the coordinate unit vectors in [}, then the Rademacher average fol [ 27 (t)e;||dt
is equal to n, so that the type 2 constant of I} is at least \/n. Thus, if [} is
2-embeddable in {57, then /n < C’"/log N, as desired.

It is remarkable that the exponential dependence of d(A) on |A] in fact charac-
terizes the Sidon sets.

Theorem 20 (Bourgain [Bol]). Iflogd(A) > d|A| for every finite A C E, then E
is a Sidon set. Moreover, we have S(E) > ¢6=11, where ¢ is a universal constant.

The proof of this Banach-geometric characterization of Sidon sets can hardly be
called “geometric”; rather, it is combinatorial, because the only geometric notion
involved 1s that of entropy. In general, in a metric space with metric p, the e-
entropy of a set F is the logarithm of the smallest cardinality N,(¢) = N,(F,¢) of
an ¢-net for F.

The idea of using entropy in the theory of Sidon sets was originally exploited
by Pisier (see, e.g., [Pi2]). Later, Bourgain revised Pisier’s work on Sidon sets,
replacing some fine probability methods by an elementary random choice combined
with entropy combinatorics and with harmonic analysis arguments. We refer the
reader to the Bourgain’s survey [Bol] (and to the references therein) for this. The
following statement is [Bol, Corollary &]; this is a slight improvement of Pisier’s
original entropy characterization of Sidon sets (see [Pi2, p.941]). For a subset A of
I, we define a metric p* on G as follows:

pMa,y) = sup Iy(x) = (vl

Theorem 21. Let E C I'. If for every finite set A C E and some 7 > 0 we have

NpA (G, T) > 20|A|,
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then E is a Sidon set and S(E) < Co™1%(log 2)*°.

We show how Theorem 20 is deduced from Theorem 21. Suppose that £ C T is
such that logd(A) > J§|A| for all finite sets A C E. For any finite A, along with p*
we introduce another (greater) metric s* on G:

s, y) = sup{|f(x) = F(y)] : f € CA(G), Iflle < 13-

Tt is easily seen that for the arithmetic diameter d(A) we have d(A) < N,.a (G, 1/3).
Indeed, denoting the latter quantity by N, we find a (1/3)-net @1, ..., 25 for G in
the metric »*. Then the mapping f — (f(z1), ..., f(zn)) is a good embedding of
CA(G) into I35

Next, fixing a finite set A C E, we clearly have

=P (2, y) < S(A)p” (2, y)

for all B C A, yielding

> Noo(G,2) > d(B) > 27181,

Ns (G, 3

55
3S5(A)
Now, Theorem 21 implies the inequality

S(4) < C5™ 1 log(65(A)),

which does not allow the quantity S(A) to grow infinitely as A expands. More pre-
cicely, we obtain S(A) < €6~ for every finite A C E, whence S(E) < ¢’§711. O

19. Sidon sets and cotype.

Theorem 22 (Bourgain and Milman; see [BoMi, Bol]). If Cx(G) is of cotype ¢
for some ¢ < 0o, then A is a Sidon set.

Conversely, if A is a Sidon set, then Cy(G) ~ I*(A), which is of cotype 2.

Recalling the well-known characterization of the spaces with finite cotype, we
can restate Theorem 22 in the following way: either A is a Sidon set, or Cy contains
the spaces [° uniformly.

Theorem 22 can be deduced from Theorem 20 and the following subtle fact of
the theory of finite-dimensional Banach spaces.

Lemma 23. Let X be an n-dimensional normed space 2-isomorphic to a subspace

of 1. Then n < C[Cy(X)log C2(X)]91log N.

Here C(X), 2 < r < 0, is the cotype r constant of X.

We refer to [Bol] for the proof of this lemma.

Now, we prove Theorem 22. Let F C T, and let Cg(T') be of cotype ¢, i.e.,
Cq(Cr(G)) < 00. We fix a finite set A C E and obtain an a priori estimate for S(A)
(like that at the end of the preceding section). If B C A, then C2(Cp(G)) < S(A).
By Lemma 23

|B] < CLC4(Cr(G))]llog S(A)]? log d(B),

where, as before, d(B) stands for the arithmetic diameter of B. Now, Theorem 20
implies that
S(A) < C'[C(Ce(G)) log S(A)]M,
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which does not allow the numbers S(A) to be unbounded. Thus, £ is a Sidon
set. O

It should be mentioned that the case of ¢ = 2 in Theorem 22 is less involved (this
case had been analyzed independently by Pisier and by Kwapienn and Pelczynski
prior to Theorem 22). We can argue nearly as in the proof of Theorem 18. Indeed,
let Cg(G) be of cotype 2. For a function z € Cg(G), the operator 7 of convolution
with #(—t) can be viewed, in a natural way, as a mapping from Cg(G)* to C_g(G).
So, the domain of 7 is the conjugate of a cotype 2 space, and its range is a cotype
2 space. By Pisier’s factorization theorem (see [Pi3, Chapter 3]), 7 factors through
a Hilbert space H. This factorization 7 = S« is shown in the following diagram:

LL(G) — s Cp(G) —T— CO_p(G) — s 12 .(G)

a 8
p S

H
Here j and k are identity embeddings. Now, k is 1-summing, hence kg3 i1s Hilbert—
Schmidt. Considering the adjoints, in a similar way we see that aj* i1s Hilbert—
Schmidt. Concequently, the composition kBaj* is nuclear with vy (k8aj*) < C|z|co
Since this composition is again the operator of convolution with z(—t), we obtain
Yoveplt(I <Ol O
20. Multipliers on spaces of vector-valued functions. Let X be a Banach
space; then the spaces of X-valued functions L (G5 X) (1 < p < o0) or C(G, X)
are defined as usual. As in the scalar case, for E C T the spaces L% (G; X) and
Cg(G; X) are distinguished by the condition

f('y)dzef/Gf"yZO for ¢ E.

Now, assume we are given a bounded multiplier of scalar spaces T, : L%ll (G) —

L%Z(G), acting in accordance with formula (1). The expression m - f makes sense
also for X-valued functions f, so it is natural to ask about the description of the
spaces X for which (1) generates a bounded operator from L%ll (G, X) to L%z (G, X).
In fact, for each particular multiplier 7;,, this question presents a mystery, which
can be clarified only rarely, and by dissimilar techniques. Below we briefly discuss
two important cases. Beyond this, we mention the paper [BIPe], in which the vector-
valued analogs of the Paley inequality (see Theorem 3) and the Hardy inequality

Yo+ DT < ClflL,  fe (T,

n>0
as well as some related questions were discussed. In spite of a quite considerable bulk
of information presented in [BIPe], no complete description of the corresponding
classes of Banach spaces X is available in these cases as yet.

21. B-convexity and K-convexity. Here our basic multiplier is the orthogonal
projection of L?(D) (D is the dyadic group, see Section 8 for the definition) onto
the subspace generated by the coordinate functions of D. (Identifying D with [0, 1]
in the usual way, we arrive at the Rademacher projection.) The spaces X for which
this projection extends in a natural way to L%(D;X) are said to be K-convex.

The notion of K-convexity is quite useful in the theory of Banach spaces, pri-
marily due to the fact that it is intimately related to the duality between type and
cotype. Remarkably, K-convex spaces admit a complete characterization.
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Theorem 23 (Pisier; see [Pid]). A Banach space X is K-convex if and only if X
does not contain the spaces I} uniformly.

The spaces with the latter property are called B-convex. A space is B-convex if
and only if it is of nontrivial type; see “Basic Concepts”.

22. UMD-spaces. Here our basic multiplier is the Hilbert transformation H on
L2(T). We have H = Ty, where m(k) = —isgnk, k € Z.

It is really quite useful to know for which Banach spaces X the Hilbert transfor-
mation (more generally, an arbitrary Calderén-Zygmund singular integral operator)
acts on the LP-space of X-valued functions. The general theory reduces the case of
any p € (1,00) to the case of p = 2; see, e.g., [St].

Surprisingly, the class of spaces X for which H acts on L*(T, X) admits a com-
plete description.

Theorem 24 (Burkholder, McConnel, Bourgain). A Banach space X has the above
property if and only if there s a biconver function { : X x X — R such that
€(0,0) > 0 and ((z,y) < |lz +yll «f [le|| = [[yl] = 1.

The same condition is equivalent to the continuity of standard martingale trans-
formations on L?(X). That is why the spaces X such that H acts on L?(X) are
called UMD-spaces (UMD is for “unconditionality of martingale differences”). The
proof of Theorem 24 is indirect and passes via this statement on martingales. We
refer the reader to Burkholder’s survey [Bu] and to the references in it for the
details.

It should be noted that the condition formulated in Theorem 24 is difficult to
work with. Basically, the only way to prove the existence of the above { on a Banach
space X is to verify the continuity of H (or of the martingale transformations) on
L?(X) directly. The Hilbert space seems to be the only one presenting a simple
possibility of exhibiting ¢ (for instance, we may put {(z,y) = 1 + Re(z, y)).

Direct verification of the continuity of A shows that the spaces L? with 1 < p <
oo and the Shatten—von Neuman classes C, (again with 1 < p < oo) are UMD-
spaces. Next, the property of being a UMD-space is inherited by the subspaces
and quotient spaces. This is a superproperty (if X is finitely representable in YV
and Y is UMD, then so is X). A UMD-space must be superreflexive, but not
all superreflexive spaces are UMD. As before, we refer the reader to [Bu] and the
references therein. Again, the proofs of the above statements do not use Theorem

24.

23. The above discussion should be supplemented with the following result due to
Bourgain.

Theorem 25. If u is a finite measure and 0 < r < 1, then the Hilbert transforma-
tion H 1is bounded from L*(T;LY(u)) to L*(T;L"(p)).

We refer the reader to the survey [Kil] for the proof and related material. The
result can be used to verify statement (ii) in Section 8. This idea is Bourgain’s; the
details of this verification can also be found in [Kil].

24. Returning once again to statements (i)—(v) in Section 8, we note that we may
ask any Banach space theory question about any specific space arising in harmonic
analysis. This will yield an incontestable point of contact of the two fields, but
rarely will this show a real interplay between them. In many cases, a pure problem
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of hard analysis (even without the adjective “harmonic”) arises in this way, as is
described in Section 8 after statements (i)—(v).

Some exceptions of these “rule” were, however, discussed above. Another one
is presented by the still mysterious space U of uniformly convergent Fourior series
on the unit circle. Bourgain was the first to prove that U* is weakly sequentially
conplete, and his proof involved difficult techniques of hard analysis; see [Bo3]. But
later it was discovered that the statement can be verified almost entirely within the
(“soft”) methods of functional analysis. We refer the reader to the paper [GaKi] in
this collection for a discussion and references.

Having mentioned the space U, we probably cannot avoid considering the spaces
of trigonometric polynomials on the circle. Let

P =span{l, z,...,z"}

with the metric of LP(T), 1 < p < oo. In a way (and from the harmonic analy-
sis viewpoint), these spaces may be regarded as “elementary (n + 1)-dimensional
blocks” building the Hardy classes HP?(T). For 1 < p < oo this is emphasized by
the fact that the PL are complemented in H? uniformly in n. However, for p =1
or p = oo the norm of the invariant projection of H? onto P grows as clogn (and,
by averaging, the norm of any other projection cannot be smaller). The following
observation (folklore) was made by Bourgain and Pelczyriski about 20 years ago.

Proposition 26. The spaces Pl (respectively, P2°) can be embedded uniformly
complementedly in H' (respectively, H*).

Proof. We treat only the case of H!, the other one being similar. Considering the
subspaces generated by the odd or by the even powers of z, it is easy to deduce

that H! ~ H!' @ H!'. Thus, instead of H!' we embed P} into H ® H =
Ly (T)& L%Jr(T). The embedding in question is given by the formula

L ip— (Z"'p,p), peEPL

Now, we define an operator J, : L}, & L%Jr — P} by the formula

Jo(f,9) =" Ky x f+ K, x g,

where K, is the nth Fejér kernel. It is easily seen that J, [, =idp:. O

Without entering into the details, we refer the reader to [Bo4] for a construction
of a good basis in P2°, and to [GoR] for evaluation of various constants (such as
G-L lL.u.st., Banach-Mazur distances to various spaces, etc.) for the spaces PL.

Let us stop at this point.
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