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BANACH SPACES AND CLASSICAL HARMONIC ANALYSISS. V. KislyakovAbstract. Some points of contact of the two �elds are discussed, speci�cally: pro-jections onto translation invariant subspaces, Cohen's theorem and related results,multipliers ofH1, the use of invariantmeans, p-summingand p-integral operators, thevicinity of the Grothendieck theorem, some consequences of the Maurey{Nikishin{Rosenthal factorization theorem, �p-sets and Bourgain's solution of the �p-problem,translation invariant subspaces without Gordon{Lewis local unconditional structure,Sidon sets, multipliers on spaces of vector-valued functions, speci�c spaces (related toharmonic analysis) in the general theory. Some proof are indicated or even exposedin detail, in case they are not technical and help to better illustrate the interplaybetween the �elds in question.Many classical Banach spaces admit a natural action of some group, and manyspeci�c operators commute with translations. This features can be used in thestudy of such spaces and operators. Reciprocally, sometimes the techniques of theBanach space theory apply in harmonic analysis.This is nearly all that can be said about the subject of this paper in general.Furthermore, the manifestations of this relationship are scarce and heterogeneous.Invoking the polemical metaphor of Kahane and Salem for their classical book[KaS] on Fourier analysis (\il peut ... ressembler en quelque sorte �a un herbier",[KaS, Pr�eface]), it can probably be said that not only may the present text resemblesomewhat, but it really is a \herbarium", much smaller and less systematized than[KaS], representing a far less explored taxon, and incomplete even in the knownpart of the latter.In other words, the subsequent discussion can be viewed simply as a collectionof examples. I hope, however, that the reader will �nd some intrinsic logic in them,and that at least sometimes he will be amused by the interplay of the two �eldsmentioned in the title.1. Basic de�nitions. Throughout, \a group" means \an Abelian group". Anygroup G acts on functions on it by translations f 7! fx, where fx(y) = f(y + x),x; y 2 G. A linear space X of functions on G is said to be translation invariant ifwith every function f it contains all translates of f . Let X and Y be two translationinvariant spaces on G, and let T : X �! Y be a linear operator. Then T commuteswith translations if T (fx) = (Tf)x for f 2 X, x 2 G.If G is compact (which will be assumed in what follows unless otherwise isclaimed explicitly), we denote by dx the normalized Haar measure on G, by � thedual group, and by f̂ the Fourier transform of a function f 2 L1(G) (the samenotation is used for the Fourier transform of a measure). Mainly, we shall deal withSupported in part by the Russian Foundation for Basic Research, Grant. no. 96-01-006931



2 S. V. KISLYAKOVthe classical spaces C(G), Lp(G) (1 � p � 1), M (G) = C(G)�. Let X be any ofthese spaces, and let E � �. ThenXE def= ff 2 X : f̂ () = 0 for  2 Egis a translation invariant subspace of X. If X = C(G) or X = Lp(G) with 1 �p < 1, all translation invariant subspaces are such. Next, the spaces L1E (G) andME(G) are the only w�-closed translation invariant subspaces of L1(G) and M (G),respectively.In an obvious way, the symbol XE makes sense for other spaces X, and we shalluse this notation without further explanations.Now, let each of X, Y be either Lp, 1 � p < 1, or C, and let E1, E2 � �.Suppose we are given a bounded linear operator T : XE1 �! YE2 . Then T commuteswith translations if and only if it is representable in the form(1) (Tf)^ = m � f̂ ;where m is a bounded function on � vanishing on the complement of E1\E2 (notethat, unless X = Y = L2, not every bounded m gives rise to a bounded operatorvia (1)). Often, m is called the symbol of T . A similar characterization holds if thespaces L1 or M are involved, under the assumption of w�-continuity of T .We write T = Tm if T acts in accordance with (1); also, T is called the multiplierwith symbol m.Among speci�c examples of translation invariant spaces, we mention the Hardyspaces Hp(Tn), where Tn is the n-dimensional torus. The dual group of Tn is Zn,and Hp(Tn) is simply the space Lp(Z+)n(Tn), 1 � p � 1. The space C(Z+)n (Tn)is called the polydisk algebra (the disk algebra if n = 1). All these spaces have awell-known interpretation as the traces on the distinguished boundaryTn of certainspaces of functions holomorphic in the polydisk.2. Averaging. Complementation. A most usual idea in the study of translationinvariant subspaces is to average something. We start with simple and old examples;further, we shall come across several instances in which the realization of this ideais more intricate.Again, let each of X, Y be one of the spaces Lp(G) (1 � p < 1) or C(G), andlet E1, E2 � �. For every bounded linear operator T : XE1 �! XE2 , we puteTf = ZG(Tfx)�xdx:Then eT commutes with translations. The mapping T 7! eT is a norm 1 projection,and eT can be referred to as the invariant part of T . Clearly, eT inherits manyproperties of T , but it may happen that eT = 0.The oldest and most well-known applications in which eT is quite substantial arerelated to projections. Suppose that X = Y and E2 � E1. If P is a projection ofXE1 onto XE2 , it is easily seen that so is eP . The symbol m of eP is none other thanthe characteristic function of E2.In particular, it follows that the subspace LpE (1 � p < 1) (respectively, CE)is complemented in Lp (in C) if and only if the multiplier with the symbol �E isbounded on Lp (on C).



BANACH SPACES AND CLASSICAL HARMONIC ANALYSIS 3Proposition 1. For 1 � p < 1, p 6= 2, and G compact in�nite, some of thesubspaces LpE(G) are uncomplemented in Lp(G).Proof. By the preceding discussion, otherwise the characters of G form an uncon-ditional basis in Lp(G). From the Khinchin inequality it is easy to deduce that thisis not so if p 6= 2. �In the case of L1(G), much more can be said. We refer the reader to [Gr-McG]for the proof of the following statement.Theorem 2 (Cohen's idempotent theorem). L1E(G) is complemented in L1(G) ifand only if E is in the coset ring of �.By de�nition, the coset ring of � is the smallest system of sets containing allcosets of subgroups of � and closed under �nite unions and intersections and undercomplementation.It is known that translation invariant operators of L1(G) or C(G) into itself areprecisely the operators of convolution with a �nite measure. The projections amongsuch operators correspond to the idempotent measures � (� � � = �, or (�̂)2 = �̂).So, Theorem 2 describes also the idempotent measures. Now, it is clear that thecomplemented translation invariant subspaces of C(G) admit a characterizationsimilar to Theorem 2.A measure � on G is said to be quasiidempotent if j�̂j2 � j�̂j (i.e., for each  2 �either �̂() = 0 or j�̂()j � 1). A set E � � is called a quasi-Gordon set if thereexists a quasiidempotent measure � such that E = f : �̂() 6= 0g. This notion wasintroduced in [KwPe] and will be used later on in this paper.3. Invariant projections in H1(T). The subspace H1E(T) may be complementedin H1(T) for some E � Z+ not belonging to the Boolean ring generated by thearithmetic progressions and singletons (i.e., here the picture is di�erent from thatdescribed in Theorem 2). The simplest example is E = f1; 2; 4; : : :; 2n; : : :g.Theorem 3 (Paley; see, e.g., [H, Z]). For f 2 H1(T) we have(Xn�0 jf̂(2n)j2)1=2 � ckfk1:A similar inequality is valid for any Hadamard lacunary set E (we recall thatE �Z+ is said to be Hadamard lacunary if E = fm1;m2; : : :g with mk+1 � �mkfor a �xed constant � > 1). From the properties of lacunary trigonometric series,it follows that such an inequality means precisely that T�E is a bounded operatoron H1.Theorem 4 (see [Kl]). The subspace H1E(T) is complemented in H1(T) if andonly if E is in the Boolean ring of subsets ofZ+ generated by singletons, arithmeticprogressions, and Hadamard lacunary sequences.4. Now we discuss the complemented translation invariant subspace of L1(G) forG locally compact but noncompact. H. P. Rosenthal showed (see [Ro]) that forsuch a space X the sethX = f 2 � : f̂ () = 0 for all f 2 Xgmust be in the coset ring of �d, i.e., of the group � dual to G and endowed withthe discrete topology. This is, however, rather far from a complete description. Wequote a �nal result for the group R (see [AM]).



4 S. V. KISLYAKOVTheorem 5. A translation invariant subspace X is complemented in L1(R) if andonly if hX = [1�i�n(�iZ+�i)nF , where F � R is a �nite set , fxig and f�ig are two�nite collections of reals, and the numbers �i are pairwise rationally independent.The above general result of Rosenthal is again based on averaging, and we showhow this procedure applies this time. Let P be a projection onto a translationinvariant subspace X of L1(G). Then P � : X� �! L1(G) is a simultaneous exten-sion operator, i.e., P � extends each bounded linear functional on X to a boundedlinear functional on L1(G) (and the latter is identi�ed with a function in L1(G),as usual). Now, we de�ne a simultaneous extension operator E : X� �! L1(G)commuting with translations as follows:hEF; gi = mxhF; (P (gx))�xi; F 2 X�; g 2 L1(G):Here m is a �xed invariant mean on l1(G), i.e., a linear functional satisfyingm(1) = 1, m � 0, and m(fx) = m(f) for f 2 l1(G), x 2 G (the subscript x inthe notation mx shows that m is applied \in the variable x"). For G commutative,such a functional always exists, see, e.g., [Gri].Now, we see that the operator A : F 7! F � E(F jX) is a projection commutingwith translations and taking L1(G)� = L1(G) onto X? = fF 2 L1(G)� : F jX =0g. Eventually, it turns out that Cohen's theorem can be applied to deduce Rosen-thal's result, but some additional analysis is needed to do this. The crucial step isthe observation that on the Bohr compacti�cation eG of G we can �nd a measure �such that Af = f � � for every continuous almost periodic function f on G. Sincethe dual group of eG is precisely Gd, we easily arrive at Rosenthal's result with thehelp of Theorem 2. See [Ro] for more details.5. Averaging against invariant means can also be used to show that, strikingly,certain statements involving the uniform structure of a Banach space can be lin-earized. Let X be a Banach space, and Y its closed subspace. Assume that thereexists a linear operator v mapping Y � to the space of uniformly continuous func-tions on X such that vf is an extension of f for every f 2 Y �. Next, assume thatv is continuous for the topology of uniform convergence on bounded sets.Theorem 6 (see [Pe2, Remarks to x2, Proposition A]). Under the above assump-tions, there exists a bounded linear operator w : Y � �! X� extending each y� 2 Y �to the entire space X.An operator v as above exists if, e.g., Y is a uniform retract of X (we may putvf = f �p if p : X �! Y is a uniform retraction). We infer that if, say, Y is reexiveand uncomplemented in X, then Y is not a uniform retract of X. In particular, noin�nite dimensional reexive subspace of C(K) is a uniform retract of C(K).Proof of Theorem 6. The operator w is given by the formula(wf)(z) = ZX ZY [(vf)(x + y + z)� (vf)(x + y)]dy dx;where by RY : : :dy and RX : : : dx we denote some �xed invariant means on l1(Y )and l1(X) (X and Y are regarded as Abelian groups under their own operationsof addition). The de�nition of w is consistent because the \integrand" is bounded(note that, separately, the terms in the \integrand" are unbounded). That w hasthe required properties is easy. The external \integration" is responsible for theadditivity of (wf)(�), while the internal one for the relation (wf)jY = f . �



BANACH SPACES AND CLASSICAL HARMONIC ANALYSIS 56. p-summing operators. Let G be a compact space, X a subspace of C(G),and T : X �! Y a p-summing operator (1 � p < 1). By the Pietsch theorem (see\Basic Concepts"), the latter is equivalent to the existence of a probability measure� on G such that(2) kTfk � c ZG jf jd�; f 2 X:Proposition7. If G is a compact group, X is translation invariant , and T satis�eskTfxk = kTfk (f 2 X;x 2 G), then in (2) we can take the Haar measure of G as�. This is again done by averaging: we substitute fx for f in (2) and integrate in xagainst the Haar measure. �The condition on T in Proposition 7 is ful�lled if, say, Y = Lr(G) or Y = C(G),and T commutes with translations.Proposition 8. Let 1 � p < 1, and let E � �. The identity embedding i :CE(G) �! LpE(G) is p-integral if and only if the multiplier with symbol �E is boundedon Lp(G).Proof. The \if" part is clear. We prove the \only if" part in the case where p > 1(only slight complications arise for p = 1, but we do not dwell on this). If i isp-integral, we have the following factorization:C(G) - CE(G) i����! LpE (G)w& ??yu x??vL1(�) id����! Lp(�);where u, v are bounded linear operators, � is a probability measure, and id is theidentity inclusion. By the extension property of L1, there exists an extension w ofu making the diagram commutative. Thus, the operator T = v idw is a p-summingextension of i to C(G). It is easily seen that the averaged operator eT ,eTf = ZG(Tfx)�xdx;is a p-summing extension of i to C(G) that commutes with translations. Now,Proposition 7 shows that eT acts in fact from Lp(G) to LpE (G); consequently, theinvariant projection of Lp(G) onto LpE (G) is bounded. �By Proposition 1 we now conclude that, if G is in�nite, some of the embeddingsCE(G) �! LpE (G) are not p-integral (though, clearly, all of them are p-summing).This observation was made in [Pe1]. Trace duality then yields examples of quasi-p-nuclear operators that are not p-nuclear.7. Grothendieck theorem. This theorem says that any bounded linear operatorT : l1 �! l2 is 1-summing. By the lifting property of l1, to prove this it su�cesto exhibit a single 1-summing operator onto l2. Such an example can be providedby harmonic analysis (loosely, there is a multiplier with this property). This wayto the Grothendieck theorem was indicated by Pe lczy�nski and Wojtaszczyk around1977.



6 S. V. KISLYAKOVProposition 9. The operator � : CZ+(T) �! l2 given by �f = ff̂ (2n)gn�1 is1-summing and onto.Proof. The fact that � is 1-summing is a consequence of Theorem 3. To show that� is onto, it su�ces to prove the estimate k��xk � ckxk, x 2 l2, which, by the F.and M. Riesz Theorem (see, e.g., [H]), is equivalent to the estimatekXn�1xn�z2n + p(z)kL1(T) � c(X jxnj2)1=2for every analytic polynomial p. We use the classical fact that the multiplier withsymbol �Z� maps L1(T) to Lr(T) for every r 2 (0; 1). This yieldskXn�1xn�z2n + p(z)kL1(T) � kXn�1xn�z2nkLr :It remains to refer to the classical properties of lacunary series. �Another curiosity of similar nature is the operator acting by the same formula as� , but de�ned on the space CE(T), where E = Z�[f2ngn�0. It maps CE(T) ontol2 and is r-summing for every r > 0. This yields a direct proof (again via harmonicanalysis) of Maurey's extension of the Grothendieck theorem: every operator froml1 to l2 is r-summing for every r > 0. See the survey [Ki1] for the details.8. Invariant Grothendieck theorem. We may state the Grothendieck theoremlike this:If H is a Hilbert space, then for every operator u : H �! C(K) the adjoint u� is1-summing.The problem of replacing C(K) in this statement by some other spaces hasreceived considerable attention. In particular, it is reasonable to ask about thespaces of the form CE(G) that verify this theorem. We mention some cases inwhich this is indeed so.(i) � n E is a �p set for some p > 1 (equivalently, the space L1�nE is reexive;�p-sets will be discussed later in this article).(ii) G = T, E =Z+ (then CE(G) is the disk algebra).(iii) G = Tn, E = Zn n (Z�)n.(iv) G =T, E = Z+ [ f�2ngn�0.(v) G = T, E = Z+ [ ( Sk�0[�22k+1;�22k]).Statement (i) is due to the author and Pisier; see, e.g., [DJT, Pi3] for the proof.More generally, if Y is any reexive subspace of L1(K;�), then the space Y ? =ff 2 C(K) : R gqu = 0 for all g 2 Y g veri�es the Grothendieck theorem, so thattranslation invariance is in fact irrelevant here. Statement (ii) is a celebrated resultof Bourgain, the proof of which is based on �ne Hardy space theory; see [GaKi, Ki1]for more information and references. Statement (iv) is easy modulo (ii), see thesurvey [Ki1]. Statements (iii) and (v) were proved, respectively, in [X] and [Ki2].Curiously, the arguments are somewhat similar. They are based on the ideas of theproof of (ii), but involve some additional techniques (real variable Hardy spaces,Littlewood{Paley decompositions, etc.).We see that, in spite of the (accidental) involvement of translation invariantsubspaces, the methods leading to (i){(v) can hardly be classi�ed as deserving a



BANACH SPACES AND CLASSICAL HARMONIC ANALYSIS 7more detailed exposition in this paper (at least, they deviate too much towardsonly one of the two items mentioned in the title, whereas the paper is about thevicinity of the conjunction \and").The situation becomes di�erent if we restrict ourselves to operators commutingwith translations.De�nition (see [KwPe]). A set E � � is called a Marcinkiewicz set (respectively,a quasi-Marcinkiewicz set) if the multiplier with symbol �E is of weak type (1,1)(respectively, there exists a bounded function x on � such a that �() = 0 for =2 E, j�()j � 1 for  2 E, and the multiplier with symbol � is of weak type(1,1)).We remind the reader that an operator T is of weak type (1,1) ifmeasfjTgj > tg � ct�1kgkL1; t > 0;for every g in the domain of T .Theorem 10 (see [KwPe]). If E is a quasi-Marcinkiewicz set , then for every oper-ator u : L2(G) �! CE(G) commuting with translations the adjoint u� is 1-summing.The proof will be given in Section 10.It is well known that Z+ is a Marcinkiewicz set for G = T, but then Theorem 10gives much less than statement (ii) above. The theory of martingale transformationsyields many examples of Marcinkiewicz sets in the dual of the groupQn Zkn (see, e.g.,[Gu]). Let, for instance, kn = 2 for all n = 1; 2; : : : (the dyadic group D). We agreethat Z2 = f�1; 1g (written multiplicatively). Let "j be the jth coordinate functionof D; then all characters of D except the function 1 are of the form "j1 "j2 : : : "jN ,where N = 1; 2; : : : , j1 < j2 < � � � < jN . Fixing an arbitrary set B of integers,consider the set E of the characters for which jN 2 B in the above representation.Then E is a quasi-Marcinkiewicz set.9. It is interesting that Theorem 10 can be adapted to the space of smooth functionsC(k)(Tl). Neglecting the constant, we may endow this space with the normkfkk = maxjsj=k jDsf jequivalent to the standard one (as usual, Ds denotes the parial derivative corre-sponding to a multiindex s). Thus, in a natural way, C(k)(Tl) can be regarded asa subspace X of C(Tl)� � � � �C(Tl)(the number of summands is equal to cardfs : jsj = kg), and X is invariant undersimultaneous translation on all copies of Tl. Moreover, the orthogonal projectiononto the closure of X in L2(Tl) � � � � � L2(Tl) is of weak type (1,1).In [KwPe] it was shown that, using this projection, it is possible to work withX as if we had a space of the form CE(G) with a quasi-Marcinkiewicz set E.(The reader may trace this inspecting the proof in Section 10.) In particular, itfollows that any operator u : L2(Tl) �! C(k)(Tl) commuting with translations has1-summing adjoint. See [KwPe] for the details.



8 S. V. KISLYAKOV10. Theorem 10 is proved by two-fold averaging. The �rst averaging yields a usefullemma stated below. Let each of X and Y be either LpE(G) or CE(G) (maybe, withdi�erent E's), let T : X �! Y be an operator commuting with translations, and letS : Y �! X be a �nite rank operator.Lemma 11. We have trace TS = trace T eS, where eSf = RG(Sfx)�xdx.Indeed, let �x be the translation f 7! fx. By the invariance of T we havetrace TS = trace (��1x T�xS) = trace (T�xS��1x );and it su�ces to integrate in x over G. �Now, we remind the reader that the trace duality identi�es the ideal of operatorswith 1-summing adjoint as the dual of the ideal �1 of L1-factorable operators; see[DJT]. In particular, for u : L2(G) �! CE(G) we have�1(u�) = supftrace (uv) : v : CE(G) �! L2(G) is of�nite rank and 1(v) � 1g:Here, as usual, 1 stands for the norm on �1. By Lemma 11, if u commutes withtranslations, the supremum can be restricted to v commuting with translations.We see that it su�ces to estimate the nuclear norm �1(v) in terms of 1(v) for anysuch v: �1(v) � c1(v). We show a more general statement, without the �nite rankassumption.Theorem 12. If E is a quasi-Marcinkiewicz set , then every 1-factorable operatorv : CE(G) �! L2(G) that commutes with translations is nuclear.Proof. Again, we use an averaging procedure, but this time it is intricate. Let Tbe a multiplier of weak type (1,1) the symbol � of which satis�es �() = 0 for =2 E and j�()j � 1 for  2 E. Clearly, T maps L1(G) to L1=2(G). Next, sincev is L1-factorable, from the Maurey extension of the Grothendieck theorem (seethe end of Section 7) we deduce that v is 1/2-summing. Writing the de�nition of a1/2-summing operator in the integral form, we see that if (
; �) is a measure spaceand F : 
 �! CE(G) is a reasonably good function, thenZ
 kvF (!)k1=22 d�(!) � �1=2(v)1=2 supfZ
 jhF (!); �ij1=2d�(!) : � 2M (G); k�k � 1g:As (
; �) we choose the group G with the Haar measure, and we put F (!) =T (f!), ! 2 G, where f is a trigonometric polynomial (a �nite linear combinationof characters) on G. Clearly, F indeed maps G to CE(G), and we obtain, usinginvariance:kvTfk1=22 � �1=2(v)1=2 supfZG jhTf!; �ij1=2d! : � 2M (G); k�k � 1g:Putting ~�(e) = �(�e) and using the fact that T maps L1 to L1=2, we see thatZG jhTf!; �ij1=2d! = ZG jT (f � ~�)j1=2 � Ckf � ~�k1=21 � Ckfk1=21 :



BANACH SPACES AND CLASSICAL HARMONIC ANALYSIS 9It follows that vT is a bounded operator from L1(G) to L2(G). Now, let b be thesymbol of v. We have (X2E jb()�()f̂ ()j2)1=2 � C ZG jf jfor every f 2 L1(G). Letting f run through some approximate identity, we inferthat P2� jb()j2 <1.Thus, v is the convolution with an L2-function V the spectrum of which iscontained in E. So, v factors as follows:C(G) id����! L1(G)x?? ??y~vCE(G) v����! L2(G);where ~v is again convolution with V . Since id is 1-integral and ~v maps to a reexivespace, v is nuclear. �11. A counterexample. Returning to the beginning of Section 8, let us agreeto say that a space X veri�es the Grothendieck theorem if every operator from l2to X has 1-summing adjoint. From the discussion in \Basic Concepts" (see [DJT]for more details), it can be seen that this happens if and only if every operatorfrom X to l1 is 2-summing. From (ii) and (iv) in Section 8 we see that the spacesCZ+(T) and CE(T), where E = Z+[ f�2ngn�0, verify the Grothendieck theorem.However, their injective tensor product does not.Indeed, this injective tensor pruduct is none other than CZ+�E(T2), and thelatter space contains a complemented copy of l1 (then, surely, the projection to thiscopy is not 2-summing). This copy is spanned by the functions fz2n1 z�2n2 gn�0. Toexhibit a projection, we observe that the characteristic function of f(k;�k) : k 2Zg �Z2 is the Fourier transform of a measure on T�T. The required projectionis given by convolution with this measure.It is known that the dual spaces of CZ+ and CE are of cotype 2 (see, e.g., thesurvey [Ki1]). The above construction can be adapted to show that the projectivetensor product of two cotype 2 spaces may fail to be of cotype 2, moreover, it maycontain a complemented copy of c0.The conjectures disproved by the above were perceived as natural for some timein the past. A \more radical" answer to these and many other questions is givenby Pisier's celebrated counterexamples (see, e.g., [Pi3]). I have included the abovematerial (�rst published in [Ki1]) because of its transparence and relevance toharmonic analysis.12. Stein theorem. Seemingly, in the proof of Theorem 12 we did not use thefull-scale assumption that E is a quasi-Marcinkiewicz set (we needed \only" the(L1 � L1=2) continuity of the corresponding multiplier). The result of Stein statedbelow shows that this is not so. We denote by S(G) the space of all measurablefunctions on G endowed with the (metrizable) topology of convergence in measure.



10 S. V. KISLYAKOVTheorem 13. Let � � �, and let T : L1�(G) �! S(G) be a continuous linearoperator commuting with translations. Then T is of weak type (1,1).Proof. The point is that something similar can be said if T does not necessarilycommute with translations. Speci�cally, by the Nikishin theorem (see [Ma]), in thelatter case for every " > 0 we can �nd a set 
" � G with jG n
"j < " such that(3) jft 2 
" : j(Tf)(t)j > �gj � C"��1kfk1; f 2 L1�; � > 0:Now, if T does commute with translations, it only remains to average. We �x,e.g., " = 1=2, and put 
 = 
1=2. Substituting fx for f (x 2 G) and using invariance,we rewrite (3) in the formZ �
�x�fjTfj>�g � C��1kfk1;integrating in x over G, we getj
j jfjTf j> �gj � C��1kfk1: �13. �p-sets. Let 1 � p <1. A subset E of � is called a �p-set if in LpE (G) normconvergence is equivalent to convergence in measure.This is the same as if we demand the equivalence of the Lp- and Lq-norms onLpE for some q < p.A subspace X � L1(�) (where � is a �nite measure) if reexive if and only if thenorm convergence on X is equivalent to the convergence in measure; see [KadPe].Thus, E is a �1-set if and only if L1E(G) is reexive.The most well-known examples of �p-sets (for all p at once) are Hadamardlacunary sets of integers (here, of course, we have in mind the circle group Tas G).In general, for a �xed E the set fp : E is of type �pg is an interval. In the pioneeringpaper [Ru] of Rudin it was shown that for any integer n � 2 there is a �2n-set not oftype �2n+" for any " > 0. The main idea of the construction is that jP2E aj2nexpands explicitly as a linear combination of products of the characters in E andtheir complex conjugates, so that we may play with arithmetic conditions on Eto ensure huge cancellation after integration. This leads to nontrivial examples of�2n-sets, some of which turn out to be not of type �2n+", " > 0.The question as to whether similar examples exist for p 6= 2n, n � 2, n 2Z, wasoften referred to as the �p-problem.For p < 2, the solution of this problem has turned out to be easy (at leastformally). Namely, if p < 2, then every �p-set is a �p+"-set for some " > 0. As inthe preceding section, the reason is in the Rosenthal{Nikishin{Maurey factorizationtheorem saying, in particular, that if X is any subspace of Lp with p < 2 on whichthe topologies of Lp and S are equivalent, then, after a change of density, X becomesa subspace of Lr with some r > p:�Z ��� xa1=p ���ra�1=r � C�Z ��� xa1=p ���pa�1=p; x 2 X;where a is a positive weight, R a = 1. See [Ma] for the details. Now, if X istranslation invariant, we easily get rid of the density by averaging, which implies



BANACH SPACES AND CLASSICAL HARMONIC ANALYSIS 11our claim. This observation was made in [BE]. However (in reality, so-to-say), nospeci�c examples of �p-sets with p < 2 that are not �2-sets seem to be known(this is the precise meaning of the above remark on the formality of the solution inquestion).For any p > 2, Bourgain [Bo2] proved the existence of �p-sets that are not of type�p+". (Thus, the �p-problem remains unresolved for p = 2 only.) Bourgain's proofis probabilistic and combinatorial in nature. Technically, it has little in commoneither with harmonic analysis or with Banach space theory, though philosophicallythe result may be linked with the latter.It is a known fact of the �nite-dimensional theory of Banach spaces that if Xis a space of dimension n and its cotype p constant is at most C, then a typicalsubspace of X of dimension [C1n2=p] is 2-distant from the Hilbert space of the samedimension. Here C1 depends only on C. See [MiSch, Theorem 9.6]. Thus, in anyn-dimensional subspace X of Lp (p > 2) there are many nearly Hilbertian subspacesof dimension proportional to n2=p. Now, suppose that X is spanned by characters1; : : : ; n. If we succeed in �nding a subspace Y of X also spanned by characters,of dimension roughly n2=p, and such that the Lp-norm is equivalent to the L2-normon Y with a constant independent of X, we are very close to the desired example.(In other words, we need to know that subspaces with \typical" behavior occureven among quite speci�c spaces, namely, among those spanned by characters.)To understand why this �nite-dimensional statement su�ces, we note that inmany cases the exponent 2=p in the above discussion is optimal. If we restrictourselves only to the spaces X having this property, then on the above Y the bestconstant of equivalence of the Lp- and Lp+"-norms must tend to in�nity as n �!1,for every " > 0. Then we attach such spaces Y to one another to obtain an in�niteset that is precisely of type �p.In [Bo2] an in�nite set of this sort was constructed by considering the spacesspan fz2n ; : : : ; z2n+1g on Tin the role of X; the \attachment" procedure consistedin applying the Littlewood{Paley decomposition. This is easy. It is the above�nite-dimensional statement that is really di�cult. Bourgain showed that, in fact,translation invariance is irrelevant in it.Theorem 14 (see [Bo2]). Let '1; : : : ; 'n be mutually orthogonal functions on aprobability space (
; �), let j'ij � 1 for all i, and let 2 < p < 1. Then there is asubset S � f1; : : : ; ng of cardinality at least n2=p satisfyingkXi2S ai'ikp � C(p)(Xi2S jaij2)1=2for all scalar sequences faig. The constant C(p) depends only on p.In fact, in a due probability sense, most subspaces S of f1; : : : ; ng possess therequired property.Later, Talagrand gave a di�erent proof of this remarkable theorem (see [T]).Talagrand's proof is somewhat simpler than Bourgain's, but it leans upon �nerprobabilistic background. Also, there is some more philosophy of Banach spacegeometric nature around Talagrand's proof. We quote an intermediate statementoccurring in [T]. In the case of X = Lp it is weaker than Theorem 14; however, itis applicable in a more general setting.



12 S. V. KISLYAKOVThe norm of a Banach space X is said to be 2-smooth if kx + yk + kx � yk �2 + Ckyk2 with C independent of x and y. It is known that for p � 2 the norm ofLp is 2-smooth.Now, let fxig1�i�n be a collection of vectors in a real Banach space X, and let� = supf X1�i�n f(xi)2 : f 2 X�; kfk � 1g:Talagrand showed that if the norm of X is 2-smooth and m = [n1�"=� ] (" 2 (0; 1)is an arbitrary �xed number), then there exists a subset I of cardinality m inf1; : : : ; ng such that kXi2I aixik � K�Xi2I jaij2�1=2:(In fact, \most" subsets I of cardinality m are such.) Here K depends only on "and on the constant C in the de�nition of 2-smoothness.We observe that if X = Lp, then � � n1�2=p, so that the statement is \"-close"to Theorem 14. The reader is referred to [T] for the proof of the above result, andalso to the procedure of eliminating " in the case of the Lp-norm, p > 2. By theway, the method generalizes to some other norms (an analog of Theorem 14 for theLorentz space Lp;1 was presented in [T]). We do not have the possibility of enteringinto the technicalities of either Bourgain's or Talagrand's proof.14. Sidon sets. A subset E of � is called a Sidon set if P2E jf̂()j � ckfk1 forevery f 2 L1E (G). The smallest constant c is called the Sidon constant of E and isdenoted by S(E). Again, the most well-known example is given by the Hadamardlacunary sequences (for G = T). Also, the coordinate functions of the dyadic group(viewed as characters) constitute a Sidon set. Basically, the latter sequence is noneother than the sequence of Rademacher functions on the segment [0; 1].It is well known that every Sidon set E is a �p set for all p 2 [1;1) and,moreover,(4) kfkp � cppkfk2 for f 2 L2E(G); p � 1;see, e.g., [LoR]. A deep result of Pisier [Pi1] shows that, in fact, (4) is a character-ization of Sidon sets.We shall discuss Sidon sets in more detail later on. Here we mention only arecent result of Kalton and Pe lczy�nski [KalPe] who showed that if E � � is a Sidonset, then L1�nE(G) is not an L1-space (the question about this had been circulatingfor some time before that). In fact, again, the group structure has turned out tobe irrelevant here.Theorem 15. If � is a �nite measure and Q is a surjection of L1(�) onto aspace containing a copy of c0, then X = KerQ is not complemented in X�� andthe Grothendieck theorem fails for X (in the sense that there is an operator fromX to l2 that is not 1-summing). Consequently , X is not an L1-space and is notisomorphic to a Banach lattice.See [KalPe] for the proof and related results.



BANACH SPACES AND CLASSICAL HARMONIC ANALYSIS 1315. Gordon{Lewis local unconditional structure. We refer the reader to\Basic Concepts" for the precise de�nition, recalling only that a Banach space Xpossesses Gordon{Lewis local unconditional structure (G-L l.u.st.) if and only ifX� is a complemented subspace of a Banach lattice. Harmonic analysis providesmany examples of spaces without local unconditional structure.Theorem 16 (Kwapie�n and Pelczy�nski [KwPe]). If E is a quasi-Marcinkiewiczset and there is a bounded function ' =2 l2(E) such that the multiplier T' maps L1Eto L2E , then CE(G) fails to have G-L l.u.st.Theorem 17 (Pisier ). If E is a �2-set , then E is a Sidon set if and only if CE(G)has G-L l.u.st.Theorem 18 (Pisier). Let E be a �2-set , and let p > 2. Then E is a �p-set ifand only if LpE(G) has G-L l.u.st.Remark. The \only if" parts of Theorems 17 and 18 are trivial because CE � l1(E)for every Sidon set and LpE � l2(E) for every �p-set if p > 2.The proofs will be given in the next section, along the lines of the paper [KwPe].Here we make some comments. In Theorem 16, let G = T, E = Z+. Then Eis a Marcinkiewicz set. As ', we may take either �f2n:n�0g (see Theorem 3), orthe function n 7! (n + 1)�1=2, n 2 Z+ (then the continuity of T' : H1 �! H2is a consequence of the classical Hardy inequality Pn�0(n + 1)�1jf̂(n)j � ckfk1,f 2 H1; see [H]). So, we recover the well-known fact that the disk algebra fails tohave G-L l.u.st.Also (compare with Section 9), the proof of Theorem 16 can be adapted to showthat the space C(l)(Tk) does not have G-L l.u.st. if k � 2 and l � 1. Clearly, itsu�ces to prove this only for l = 1, k = 2. Then the role of T' in Theorem 16 canbe played by the Sobolev embedding operator W (1)1 (T2) ,! L2(T2). In Section 9 itwas already explained that C(1)(T2) is similar to a space of the form CE(G) withE a quasi-Marcinkiewicz set. The adjustment of the details is left to the reader (orsee [KwPe]).Passing to applications of Theorem 17, we take E = f2n : n � 0g �Z(this is aSidon set for T) and consider its squareE1 = f(2k; 2l) : k; l � 0g �Z2:From condition (4) for E it is easily seen that E1 is a �p-set for T2 for everyp < 1. However, it is also easy to observe that in the analog of (4) for E1 theconstant grows as p, i.e., faster than pp. Thus, E1 is not a Sidon set. By Theorem17, CE1(T2) fails to have G-L l.u.st. (we note that CE1(T2) is isomorphic to theprojective tensor product of l1 by itself).The domain of applicability of Theorem 18 is outlined in Section 13.We refer the reader to [KwPe] for more examples.16. Theorems 16, 17, and 18 are proved by similar methods. For Theorem 16, weconsider the following operators:CE(G) id�! L1E(G) T'�! L2E(G) T ��! CE(G):Here  is an arbitrary function in l2(E). By Theorem 12, the adjoint T � is 1-summing. If CE(G) has G-L l.u.st., the identity embedding id factors through L1



14 S. V. KISLYAKOV(because id is 1-summing; see [DJT]). So, we have come across a composition ofoperators belonging to mutually adjoint operator ideals, hence it follows that�1(T' idT ) � ckT'k k kl2(E)( �1 stands for the nuclear norm), orX2E j ()jj'()j � C 0k kl2(E):This contradicts the condition ' =2 l2(E). �For Theorem 17, we consider the following operators:(5) CE(G) id�! L1E(G) k�! L2E(G) T�! CE(G):Here k is the formal identity; k is continuous because E is a �2-set. Next, Tis the convolution with a function x 2 CE(G). We claim that T � is 1-summing.Indeed, T � is an operator of convolution with x(�t); convolving this function witha measure, we obtain a function in C�E(G), which does not depend on a particularchoice of this measure in a �xed coset modulo CE(G)?. Hence, T � acts as follows:T � : CE(G)� (�)�x(�t)������! C�E(G) id1��! L1�E(G) k1�! L2�E (G);where, as in (5), id1 is the identity embedding and k1 is a formal identity; thus, T �is 1-summing.Now, in (5) id is 1-summing, so that, if CE(G) has G-L l.u.st., as in the precedingproof we obtain �1(k idT ) � Ckxk1; x 2 CE(G);or X2E jx̂()j � Ckxk1; x 2 CE(G):Thus, E is a Sidon set. �For Theorem 18, we let q�1 + p�1 = 1 and f 2 Lq(G). Then, regarded as amapping from LpE (G) to L2E(G), the operator S of convolution with f factors asfollows: S : LpE(G) ��! L1E (G) id�! L1E(G) k�! L2E(G):Here � is again the operator of convolution with f , and k is the formal identity.We see that S is 1-summing. If LpE(G) has G-L l.u.st., then S factors throughL1(�) for some measure �. Next, for p > 2 every operator from a subspace of Lpto L1(�) factors through a Hilbert space H (see [Pi3, Chapter 3]). This implies thefollowing factorization for S:S : LpE(G) u�! H v�! L1(�) w�! L2E(G):By the Grothendieck theorem, w is 1-summing. Hence, wv is Hilbert{Schmidt, withHilbert{Schmidt norm not exceeding Ckfkq. Since (wv)� is also Hilbert{Schmidtwith the same norm, it follows that( X2�E kS�()k2)1=2 � Ckfkq; f 2 Lq(G);or, equivalently, (X2E jf̂ ()j2)1=2 � Ckfkq; f 2 Lq(G):A simple duality argument shows that the latter condition is equivalent to the factthat E is a �p-set. �



BANACH SPACES AND CLASSICAL HARMONIC ANALYSIS 1517. Quasi-Cohen sets vs quasi-Marcinkiewicz sets. It turns out that inTheorem 16 the condition of the existence of ' admits a nice reformulation. Seethe end of Section 2 for the de�nition of a quasi-Cohen set.Theorem 19 (Kwapie�n and Pelczy�nski, [KwPe]). The following properties of a setE � � are equivalent.(i) E is a quasi-Cohen set.(ii) For every multiplier T' : L1E (G) �! L2E(G) we have ' 2 l2(E).(iii) There is a constant K such that for every trigonometric polynomial p satis-fying p̂() � 0 for  2 E we have P2E p̂() � Kkpk1.Proof. (i))(ii). Let � be a measure satisfying �̂() = 0 for  =2 E, j�̂()j � 1 for 2 E, and let S be the operator of convolution with �. Then T'S maps L1(G) toL2E(G), i.e., (X2E j�̂()'()f̂ ()j2)1=2 � c Z jf j; f 2 L1(G):Letting f run through some approximate identity, we infer thatc � (X2E j�̂()j2j'()j2)1=2 � (X2E j'()j2)1=2:(ii))(iii). Let p̂() � 0 for  2 E. We introduce the multiplier Tpp̂jE :L1E(G) �! L2E (G). To estimate the norm of this operator, for f 2 L1E we writeX2E(pp̂()jf̂()j)2 = ZG f(�x)(p � f)(x)dx � kfk1kf � pk1 � kfk21kpk1;hence kTpp̂jEk � kpk1=21 . From (ii) we deduce that P2E p() � Ckpk1.(iii))(i). In the space C(G), we introduce two convex set:W = fp 2 C(G) : p̂() � 0 for  2 E; X2E p̂() = Kg;U = fq1 + q2 : kq1k1 < 1; q̂2() � 0 for  2 Eg:Here K is the constant occurring in statement (iii).Clearly, W is closed and U is open. Also, W \ U = ?. Indeed, if p 2 W andp = q1 + q2 as in the de�nition of U , then (p̂� q̂2)jE � 0 andK = X2E p̂() �X2E(p̂() � q̂2()) � Kkp� q2k1 = Kkq1k1 < K:Thus, there is a (signed) measure � on G such thatRe ZG p(x)d�(x) < K for p 2 U;Re ZG p(x)d�(x) � K for p 2W:



16 S. V. KISLYAKOVWe show that the measure � de�ned by �(A) = �(�A) has the desired properties.First, if  2 E, then K 2W , hence we see thatK � Re ZGKd� = K Re �̂(�);i.e., j�̂()j � 1. Second, if  =2 E and " is any complex number, then p = K " 2 U(because p̂(�) = 0 for � 2 E). Thus, K > ReK(" �̂()), and �̂() = 0. �Now we can restate Theorem 16 as follows: if E is a quasi-Marcinkiewicz set butnot a quasi-Cohen set, then CE(G) fails to have G-L l.u.st.18. Sidon sets and arithmetic diameter. For a �nite set � � �, its arithmeticdiameter d(�) is de�ned as the smallest N such that C�(G) is at most 2-distant(relative to the Banach{Mazur distance) from a subspace of the N -dimensionalspace l1N . If E is a Sidon set in �, then C�(G) is at most S(E)-distant from l1j�jfor every �nite � � E. Consequently, the arithmetic diameter of � must growexponentially as a function of j�j.There are many ways to see this. For instance, we may argue as follows. First,recall that for p � 2 the type 2 constant of Lp is of order cpp. Next, it is easily seenthat the Banach{Mazur distance between l1N and llogNN is bounded uniformly in N ,so the type 2 constant of l1N does not exceed cplogN . Finally, if e1; : : : ; en arethe coordinate unit vectors in l1n, then the Rademacher average R 10 kP ri(t)eikdtis equal to n, so that the type 2 constant of l1n is at least pn. Thus, if l1n is2-embeddable in l1N , then pn � C 0plogN , as desired.It is remarkable that the exponential dependence of d(�) on j�j in fact charac-terizes the Sidon sets.Theorem 20 (Bourgain [Bo1]). If logd(�) � �j�j for every �nite � � E, then Eis a Sidon set. Moreover , we have S(E) � c��11, where c is a universal constant.The proof of this Banach-geometric characterization of Sidon sets can hardly becalled \geometric"; rather, it is combinatorial, because the only geometric notioninvolved is that of entropy. In general, in a metric space with metric �, the "-entropy of a set F is the logarithm of the smallest cardinality N�(") = N�(F; ") ofan "-net for F .The idea of using entropy in the theory of Sidon sets was originally exploitedby Pisier (see, e.g., [Pi2]). Later, Bourgain revised Pisier's work on Sidon sets,replacing some �ne probability methods by an elementary random choice combinedwith entropy combinatorics and with harmonic analysis arguments. We refer thereader to the Bourgain's survey [Bo1] (and to the references therein) for this. Thefollowing statement is [Bo1, Corollary 8]; this is a slight improvement of Pisier'soriginal entropy characterization of Sidon sets (see [Pi2, p.941]). For a subset � of�, we de�ne a metric �� on G as follows:��(x; y) = sup2� j(x) � (y)j:Theorem 21. Let E � �. If for every �nite set � � E and some � > 0 we haveN�� (G; � ) > 2�j�j;



BANACH SPACES AND CLASSICAL HARMONIC ANALYSIS 17then E is a Sidon set and S(E) � C��10(log 2� )10.We show how Theorem 20 is deduced from Theorem 21. Suppose that E � � issuch that log d(�) � �j�j for all �nite sets � � E. For any �nite �, along with ��we introduce another (greater) metric {� on G:{�(x; y) = supfjf(x) � f(y)j : f 2 C�(G); kfk1 � 1g:It is easily seen that for the arithmetic diameter d(�) we have d(�) � N{� (G; 1=3).Indeed, denoting the latter quantity by N , we �nd a (1=3)-net x1; : : : ; xN for G inthe metric {�. Then the mapping f 7! (f(x1); : : : ; f(xN )) is a good embedding ofC�(G) into l1N .Next, �xing a �nite set � � E, we clearly have{B(x; y) � S(�)�B (x; y)for all B � �, yieldingN�B�G; 13S(�)� � N{B (G; 13) � d(B) � 2�jBj:Now, Theorem 21 implies the inequalityS(�) � C��10 log(6S(�));which does not allow the quantity S(�) to grow in�nitely as � expands. More pre-cicely, we obtain S(�) � C 0��11 for every �nite � � E, whence S(E) � C 0��11. �19. Sidon sets and cotype.Theorem 22 (Bourgain and Milman; see [BoMi, Bo1]). If C�(G) is of cotype qfor some q <1, then � is a Sidon set.Conversely, if � is a Sidon set, then C�(G) � l1(�), which is of cotype 2.Recalling the well-known characterization of the spaces with �nite cotype, wecan restate Theorem 22 in the following way: either � is a Sidon set, or C� containsthe spaces l1n uniformly.Theorem 22 can be deduced from Theorem 20 and the following subtle fact ofthe theory of �nite-dimensional Banach spaces.Lemma 23. Let X be an n-dimensional normed space 2-isomorphic to a subspaceof l1N . Then n � C[Cq(X) logC2(X)]q logN .Here Cr(X), 2 � r <1, is the cotype r constant of X.We refer to [Bo1] for the proof of this lemma.Now, we prove Theorem 22. Let E � �, and let CE(�) be of cotype q, i.e.,Cq(CE(G)) <1. We �x a �nite set � � E and obtain an a priori estimate for S(�)(like that at the end of the preceding section). If B � �, then C2(CB(G)) � S(�).By Lemma 23 jBj � C[Cq(CE(G))]q[logS(�)]q logd(B);where, as before, d(B) stands for the arithmetic diameter of B. Now, Theorem 20implies that S(�) � C 0[Cq(CE(G)) logS(�)]11q;



18 S. V. KISLYAKOVwhich does not allow the numbers S(�) to be unbounded. Thus, E is a Sidonset. �It should be mentioned that the case of q = 2 in Theorem 22 is less involved (thiscase had been analyzed independently by Pisier and by Kwapie�n and Pe lczy�nskiprior to Theorem 22). We can argue nearly as in the proof of Theorem 18. Indeed,let CE(G) be of cotype 2. For a function x 2 CE(G), the operator � of convolutionwith x(�t) can be viewed, in a natural way, as a mapping fromCE(G)� to C�E(G).So, the domain of � is the conjugate of a cotype 2 space, and its range is a cotype2 space. By Pisier's factorization theorem (see [Pi3, Chapter 3]), � factors througha Hilbert space H. This factorization � = �� is shown in the following diagram:L2E (G)� j�����! CE(G)� �����! C�E(G) k����! L2�E(G)�& �%HHere j and k are identity embeddings. Now, k is 1-summing, hence k� is Hilbert{Schmidt. Considering the adjoints, in a similar way we see that �j� is Hilbert{Schmidt. Concequently, the composition k��j� is nuclear with �1(k��j�) � Ckxk1.Since this composition is again the operator of convolution with x(�t), we obtainP2E jx̂()j � Ckxk. �20. Multipliers on spaces of vector-valued functions. Let X be a Banachspace; then the spaces of X-valued functions Lp(G;X) (1 � p � 1) or C(G;X)are de�ned as usual. As in the scalar case, for E � � the spaces LpE (G;X) andCE(G;X) are distinguished by the conditionf̂ () def= ZG f� = 0 for  =2 E:Now, assume we are given a bounded multiplier of scalar spaces Tm : Lp1E1 (G) �!Lp2E2 (G), acting in accordance with formula (1). The expression m � f̂ makes sensealso for X-valued functions f , so it is natural to ask about the description of thespaces X for which (1) generates a bounded operator fromLp1E1 (G;X) to Lp2E2 (G;X).In fact, for each particular multiplier Tm this question presents a mystery, whichcan be clari�ed only rarely, and by dissimilar techniques. Below we briey discusstwo important cases. Beyond this, we mention the paper [BlPe], in which the vector-valued analogs of the Paley inequality (see Theorem 3) and the Hardy inequalityXn�0(n + 1)�1jf̂(n)j � Ckfk1; f 2 H1(T);as well as some related questions were discussed. In spite of a quite considerable bulkof information presented in [BlPe], no complete description of the correspondingclasses of Banach spaces X is available in these cases as yet.21. B-convexity and K-convexity. Here our basic multiplier is the orthogonalprojection of L2(D) (D is the dyadic group, see Section 8 for the de�nition) ontothe subspace generated by the coordinate functions of D. (Identifying D with [0; 1]in the usual way, we arrive at the Rademacher projection.) The spaces X for whichthis projection extends in a natural way to L2(D;X) are said to be K-convex.The notion of K-convexity is quite useful in the theory of Banach spaces, pri-marily due to the fact that it is intimately related to the duality between type andcotype. Remarkably, K-convex spaces admit a complete characterization.



BANACH SPACES AND CLASSICAL HARMONIC ANALYSIS 19Theorem 23 (Pisier; see [Pi4]). A Banach space X is K-convex if and only if Xdoes not contain the spaces l1n uniformly.The spaces with the latter property are called B-convex. A space is B-convex ifand only if it is of nontrivial type; see \Basic Concepts".22. UMD-spaces. Here our basic multiplier is the Hilbert transformation H onL2(T). We have H = Tm, where m(k) = �i sgn k, k 2Z.It is really quite useful to know for which Banach spaces X the Hilbert transfor-mation (more generally, an arbitrary Calder�on{Zygmund singular integral operator)acts on the Lp-space of X-valued functions. The general theory reduces the case ofany p 2 (1;1) to the case of p = 2; see, e.g., [St].Surprisingly, the class of spaces X for which H acts on L2(T;X) admits a com-plete description.Theorem 24 (Burkholder, McConnel, Bourgain). A Banach space X has the aboveproperty if and only if there is a biconvex function � : X � X �! R such that�(0; 0) > 0 and �(x; y) � kx+ yk if kxk = kyk = 1.The same condition is equivalent to the continuity of standard martingale trans-formations on L2(X). That is why the spaces X such that H acts on L2(X) arecalled UMD-spaces (UMD is for \unconditionality of martingale di�erences"). Theproof of Theorem 24 is indirect and passes via this statement on martingales. Werefer the reader to Burkholder's survey [Bu] and to the references in it for thedetails.It should be noted that the condition formulated in Theorem 24 is di�cult towork with. Basically, the only way to prove the existence of the above � on a Banachspace X is to verify the continuity of H (or of the martingale transformations) onL2(X) directly. The Hilbert space seems to be the only one presenting a simplepossibility of exhibiting � (for instance, we may put �(x; y) = 1 + Rehx; yi).Direct veri�cation of the continuity of H shows that the spaces Lp with 1 < p <1 and the Shatten{von Neuman classes Cp (again with 1 < p < 1) are UMD-spaces. Next, the property of being a UMD-space is inherited by the subspacesand quotient spaces. This is a superproperty (if X is �nitely representable in Yand Y is UMD, then so is X). A UMD-space must be superreexive, but notall superreexive spaces are UMD. As before, we refer the reader to [Bu] and thereferences therein. Again, the proofs of the above statements do not use Theorem24.23. The above discussion should be supplemented with the following result due toBourgain.Theorem 25. If � is a �nite measure and 0 < r < 1, then the Hilbert transforma-tion H is bounded from L2(T;L1(�)) to L2(T;Lr(�)).We refer the reader to the survey [Ki1] for the proof and related material. Theresult can be used to verify statement (ii) in Section 8. This idea is Bourgain's; thedetails of this veri�cation can also be found in [Ki1].24. Returning once again to statements (i){(v) in Section 8, we note that we mayask any Banach space theory question about any speci�c space arising in harmonicanalysis. This will yield an incontestable point of contact of the two �elds, butrarely will this show a real interplay between them. In many cases, a pure problem



20 S. V. KISLYAKOVof hard analysis (even without the adjective \harmonic") arises in this way, as isdescribed in Section 8 after statements (i){(v).Some exceptions of these \rule" were, however, discussed above. Another oneis presented by the still mysterious space U of uniformly convergent Fourior serieson the unit circle. Bourgain was the �rst to prove that U� is weakly sequentiallyconplete, and his proof involved di�cult techniques of hard analysis; see [Bo3]. Butlater it was discovered that the statement can be veri�ed almost entirely within the(\soft") methods of functional analysis. We refer the reader to the paper [GaKi] inthis collection for a discussion and references.Having mentioned the space U , we probably cannot avoid considering the spacesof trigonometric polynomials on the circle. LetPpn = spanf1; z; : : : ; zngwith the metric of Lp(T), 1 � p � 1. In a way (and from the harmonic analy-sis viewpoint), these spaces may be regarded as \elementary (n + 1)-dimensionalblocks" building the Hardy classes Hp(T). For 1 < p < 1 this is emphasized bythe fact that the Ppn are complemented in Hp uniformly in n. However, for p = 1or p =1 the norm of the invariant projection of Hp onto Ppn grows as c logn (and,by averaging, the norm of any other projection cannot be smaller). The followingobservation (folklore) was made by Bourgain and Pe lczy�nski about 20 years ago.Proposition 26. The spaces P1n (respectively , P1n ) can be embedded uniformlycomplementedly in H1 (respectively , H1).Proof. We treat only the case of H1, the other one being similar. Considering thesubspaces generated by the odd or by the even powers of z, it is easy to deducethat H1 � H1 � H1. Thus, instead of H1, we embed P1n into �zH1 � H1 =L1Z�(T)� L1Z+(T). The embedding in question is given by the formulaIn : p 7! (�zn+1p; p); p 2 P1n:Now, we de�ne an operator Jn : L1Z� � L1Z+ �! P1n by the formulaJn(f; g) = zn+1Kn � f +Kn � g;where Kn is the nth Fej�er kernel. It is easily seen that JnIn = idP1n . �Without entering into the details, we refer the reader to [Bo4] for a constructionof a good basis in P1n , and to [GoR] for evaluation of various constants (such asG-L l.u.st., Banach{Mazur distances to various spaces, etc.) for the spaces Ppn.Let us stop at this point. References[AM] Alspach D. E., Matheson A., Projections onto translation-invariant subspaces of L1(R),Trans. Amer. Math. Soc. 277 (1983), no. 2, 815{823.[BE] Bachelis G. F., Ebenstein S. E., On �(p) sets, Pacif. J. Math., 54 (1974), no. 1, 35{38.[BlPe] Blasco O., Pe lczy�nski A., Theorems of Hardy and Paley for vector-valued analyticfunctions and related classes of Banach spaces, Trans. Amer. Math. Soc. 323 (1991),no. 1, 335{367.
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