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1 Introduction

The laplacian. Let A be the Laplace operator in R” (n = 1,2,3,...). We say that
a real-valued function u is harmonic on an open subset of R™ if Au = 0 there, and
subharmonic if Au > 0. A domain in R” is an open and connected set. The classical
maximum principle for subharmonic functions can be given the following formulation. Let
D be a bounded domain in R”, and u a function continuous on the closure of ). We then
have the implication

0 < Aulp and ulsp <0 = u|p <0. (MP:A)

Moreover, unless u|p = 0, the conclusion can be sharpened to u|p < 0.

The bilaplacian. It is natural to try to extend the maximum principle to higher order
elliptic operators: let us focus on the simplest example, the bilaplacian A%. In the same
way that physically, the laplacian corresponds to a membrane, the bilaplacian corresponds
to a plate (there is also a connection with creeping flow). In view of the nature of
the boundary data for the Dirichlet problem, the maximum principle we are looking for
necessarily will involve two inequalities along the boundary of the subdomain D, one for
the functions, and another for the normal derivatives. We first need some notation. A
real-valued function u on a domain € is biharmonic provided that A%u = 0 there, and
sub-biharmonic if A%u < 0 (one should think of A as a negative operator, which is the
reason why the inequality i1s switched as compared with the definition of subharmonic
functions). In the following we shall restrict our attention to the case of the plane R?
which is identified with C, the complex plane. Around 1900, it was known — more or less
— that a variant of a maximum principle can be formulated for circular disks. Let D be
a circular disk and u a C'-smooth function on the closure of D. The maximum principle
reads

Aulp <0, ulap <0, and Ou <0 = ulp <0, (MP:A?)
dn leD

where the normal derivative is calculated in the interior direction. Actually, unless u|p =
0, we have u|p < 0. Let T'p denote the Green function for the Dirichlet problem associated
with A? on D: for fixed ¢ € D, the function I'p(-,{) vanishes along with its normal
derivative on D, and A’T'p(-,¢) equals the unit point mass at (. The above maximum
principle (MP:A?) then expresses the following three basic facts:

0<TIp(z0), (z,{) e D x D, (1.1)
0< A, Tp(z), (2,{) €D x D, (1.2)

and
ani(z) A, Tp(z,¢) <0, (2,¢) € 9D x D. (1.3)



These properties are easily verified by computation. In fact, with the normalizations used
here, the Green function I' = T'p for the unit disk D = {z € C: |z| < 1} is expressed by

z—¢

1—2z

2

P(z,¢) = |z = ([’ log +(I = A=), (20 eDxD.

It should be mentioned that a local analysis of the behavior near the boundary shows
that (1.2) is an immediate consequence of (1.1), at least if we replace the sign “<” with
“<”. The connection between (MP:A?) and (1.1)-(1.3) is apparent from the symmetry
of I'p together with Green’s formula:

u(z) = /D Tp(z¢) Azu(C) do(¢) + %/ (AgFD(Z,C) S_Z(C)
0
_ 371—((’)

where d¥ is area measure, normalized by the factor #—!, and deo is one-dimensional
Lebesgue measure, normalized by the factor (27)7'.

ATp(zQ)u(Q)) do(¢),  z€D, (14)

Notation: Throughout the paper, the word positive is normally given the weakest pos-
sible sense. So, for instance, a function f is positive if 0 < f holds pointwise, and if we
wish to express that 0 < f holds everywhere, we say that the function is strictly positive.
However, when we deal with individual real numbers x, we adhere to the usual standard
and say that x is positive if 0 < x. Unless explicitly stated otherwise, normal derivatives
are calculated in the interior direction. Moreover, we have normalized the laplacian A
acting over the plane: it is the operator

1/ 0% 0? )

The plan of Hadamard. Jacques Hadamard, in his treatise on plaques élastiques
encastrées ([14], pp. 515-641), suggests the possibility of a maximum principle of the
type (MP:A?) for more general subdomains D. In fact, he writes: “Du moins, cette
proposition, comme 'inégalité Ff > 0, parait incontestable pour tout contour convexe”.
That is, the Green function for A? should be positive for a much larger collection of
domains than the disks, including all convex regions with smooth boundary. This was,
however, later shown not to be the case, by Duffin, Leewner, and Garabedian. In fact, it
follows from Paul Garabedian’s work [11] that (1.1)—(1.2) both fail when D is an ellipse,
provided that the ratio of the major axis to the minor axis exceeds a certain critical
value €y &~ 1.5933. Further calculations along Garabedian’s lines show that (1.3) fails
much sooner, namely when that ratio exceeds another critical value, ey & 1.1713. The
conclusion we can draw from this 1s that within the family of ellipses, we cannot deviate
very far from circles and keep the maximum principle (MP:A?). The Almansi formula,
which expresses each biharmonic function locally as f + |z|%g, where f, g are harmonic,
suggests that circles are special for A?. This intuitive feeling is further corroborated by
Charles Loewner’s work [31], where it is shown that the only coordinate transformations
(suitably modified) preserving the biharmonic functions are of Mcebius type.

Conformal transformations and weights. Let us see how the biharmonic operator
transforms under analytic coordinate changes. For a smooth function u in some domain
in the plane, and a holomorphic mapping ¢,

Alg'[T*A(uo ¢) = [¢[* (A%u) 0 ¢,



wherever the expressions make sense. This suggests switching from the bilaplacian to
the more general operators A|¢’|~2A. In fact, we shall consider operators of the form
Aw™'A, where w is a logarithmically subharmonic weight function — this amounts to
the squared Laplace-Beltrami operator on a general hyperbolic Riemannian manifold (see
below). The term logarithmically subharmonic means that w takes values in the interval
[0, 4+oc[, and that logw is subharmonic. These operators Aw™!A form a conformally
invariant class, because if w is logarithmically subharmonic, then so is w o ¢ |¢/|?. A real-
valued function u is said to be sub-w-biharmonic if Aw~'Au < 0, and w-biharmonic if
Aw Ay = 0. We fix a bounded simply connected domain  in C — our universe from
now on — and suppose w is defined and logarithmically subharmonic there. Let D be
a precompact subdomain of 2. The problem of determining when we have a maximum
principle like (MP:A?) generalizes to the question of determining for which subdomains
D we have a maximum principle

0
Aw™ Au|p <0, ulsp <0, and 8_u <0 = u|p <0, (MP:Aw™tA)
nlap
whereby u is assumed smooth on the closure of D, and the boundary 9D is smooth as well
(C'-smoothness is appropriate here). The experience with A? suggests that we should

look for the appropriate analogue of the circular disks. We first turn to some geometric
aspects. Endow the domain Q with the Riemannian metric ds,(z) = \/w(z) |dz|, that is,

ds,(2)? = w(?) (dxz—i—dyz), z=zx+1iy € Q.
The induced area measure is w dX. The property of w that
0 < Alogw(z), 2z €9,

means that the Riemannian manifold obtained is hyperbolic, in the sense of having nega-
tive Gaussian curvature. The distribution p = Alogw is identified with a positive Borel
measure on 2, which in fact is independent of the particular choice of coordinates for
the hyperbolic manifold, and represents the local distribution of negative curvature. The
Laplace-Beltrami operator on the manifold is given by

The weighted biharmonic operator A w™'A then corresponds to the bi-laplace-beltramian
AZ. The energy integral associated with Aw™'A on the subdomain D is expressed by

dx
o) = [ 1Ptz = [ s S5
D D w(z)
The w-biharmonic functions minimize this energy under given Dirichlet boundary data.
A crcular disk D centered at zg with radius r 1s uniquely determined by the mean
value property

/Dh(z) d¥(z) = r*h(z0),

with h ranging over all bounded harmonic functions on D, as was proved by Bernard
Epstein [43]. A precompact subdomain D of the fixed “universal” domain €2 is said to be
an w-disk — centered at zg € D with “radius” r, 0 < r < 400 — provided that

[ )t aste) = o)



holds for all bounded harmonic functions & on D. In the case of a constant weight,
we recover the circular disks. The w-disks turn out to be uniquely determined by the
parameters zg and r, just like the circles, and they are simply connected. They are the
result of a physical process, a Hele-Shaw flow on the hyperbolic manifold (see below).
We feel that the maximum principle (MP:Aw~™tA) holds for w-disks D. The proof of
this statement, however, remains to be found. Nevertheless, we have found the weaker
principle

Aw™'Aulp <0, ulsp =0, and g_u‘aD <0 = ulp <0, (MP":Aw™1A)
n

with v smooth on D. As we pull the coordinates back to the unit disk, we require of the
weight w to have D as an w-disk for zo = 0 and » = 1: we say that w is reproducing for
the origin provided that

/Dh(z)w(z) dX(z) = h(0) (1.5)

holds for all bounded harmonic functions h on ID. The Green function for the Dirichlet
problem associated with the weighted biharmonic operator Aw™'A on the unit disk I is
denoted by T',,. The main result — equivalent to (MP’:Aw=!A) — is the following.

THEOREM 1.1 Suppose w is a logarithmically subharmonic weight on I which repro-
duces for the origin. Then 0 < Ty |pxp-

The statement of the theorem is false if we keep the reproducing property but scrap
the logarithmic subharmonicity: there are simple radial weights that provide counterex-
amples. Also, if we instead drop the reproducing property and keep the logarithmic
subharmonicity, the result is false, as is apparent from Garabedian’s work on ellipses [11].

The weighted Hele-Shaw flow. Suppose the bounded simply connected universal
domain Q has as boundary a C'*°-smooth Jordan curve, and that the logarithmically
subharmonic weight w is C'°*-smooth and strictly positive on €, and real analytic in the
interior €2. We recall that a precompact subdomain D 1s said to be an w-disk with center
zp and radius r provided that zo € D and

rzh(zo):/Dh(z)w(z) d¥(z), (1.6)

holds for all bounded harmonic functions & on D. It i1s natural to ask for existence
and uniqueness of such generalized disks D. It turns out that we have uniqueness and
existence in a certain interval 0 < r < p(z), and non-existence for larger r simply
because then D necessarily expands beyond the boundary 92 (the latter statement slightly
exaggerates what we actually prove). This suggests writing D = D(zp, 7;w) to indicate
the determining parameters. For 0 < r < p(zg), D(z0,r;w) is simply connected, and the
boundary is a real analytic Jordan curve; moreover, D(zp, r;w) grows with the parameter
7.

We prove the above statements as follows. We first assume that D has the additional
property that

r2u(zo) g/Du(z)w(z) dX(z) (1.7)

holds for all bounded subharmonic functions u on D, which allows us to interpret the
problem of finding D in terms of an obstacle problem for the laplacian, which has a unique



solution (compare with [12]). We call subdomains D satisfying (1.7) weighted Hele-Shaw
flow domains, because it is possible to interpret them as arising from a Hele-Shaw flow on
the hyperbolic manifold € with Riemannian metric ds,,. The usual Hele-Shaw flow (with
w = 1, and r? replaced by a time parameter ¢{) models how the free boundary evolves
between an incompressible viscous Newtonian fluid and vacuum, which occupy the space
between two parallel, narrowly separated infinitely extended surfaces, as fluid is injected
at a constant rate at the source point zy. We first prove that the weighted Hele-Shaw
flow domains are simply connected and have boundaries that are real analytic Jordan
curves. The proof 1s based on Makoto Sakai’s fundamental work on the regularity of free
boundaries [42], which guarantees that the topological situation is fairly uncomplicated.
The positivity of the biharmonic Green function on the unit disk comes in at a crucial
point in the argument. It remains to see why any subdomain D with (1.6) necessarily has
(1.7). This is achieved by a simple argument due to Sakai and refined by Gustafsson [13].

Sketch of the proof. A few words should be said about the proof of the main result,
the positivity of the Green function ', given that w is logarithmically subharmonic and
reproduces for the origin. It is important to note that since Aw™! AT, (-, {) is a unit point
mass at (, it follows that

A, T(2,¢) =w(z)(G(2,¢) + Hu(z,0)), (z,() e D x D,

where )

is the Green function for the laplacian, and the function H,(z,¢) is harmonic in z. We
shall call the kernel function H,, the harmonic compensator, because it solves the balayage
problem

[ 660+ B, O) w21 d2() =0, (e

for all bounded harmonic functions h on ). If the Green function T, is positive, then a
local analysis near the boundary shows that A,T',(z, () is positive on T x I} and using the
harmonicity of H, in the first variable, it follows that H, is positive throughout D x ID.
It is much less obvious that if the harmonic compensator is positive for a certain family
of weight functions of the same type as w, then we can go the other way around and
obtain the positivity of I',,. This is done with the help of a variational technique due to
Hadamard (see [14, 20]), along domains given by the weighted Hele-Shaw flow D(r), for
0 < r <1, which starts at zo = 0 and ends with D(1) = I.

The harmonic compensator is related to the reproducing kernel function @, for the
space HP?(ID,w) obtained as the closure of the harmonic polynomials with respect to the

norm of L*(D,w), 1
Il = ([ 1P )

AcHu(z,¢) = —w(() Qu(z, ).

If the harmonic compensator is positive, then a local study of the behavior near T x T
reveals that Qu |12\5(1) < 0, where §(T) = {(2,2) : z € T} denotes the diagonal. We are
led to search for some kind of reverse implication. We first study the reproducing kernel
function K, for the space P?(ID,w) which is obtained as the closure of the (holomorphic)
polynomials with respect to the norm of L*(ID,w). It is shown that @, = 2Re K, — 1, so
that the information obtained for K, can be readily converted to information about @, .

More precisely,



This 1dentity reflects the fact that under the reproducing condition on w, the analytic
polynomials and the antiananlytic polynomials vanishing at the origin are perpendicular
to each other in the Hilbert space HP?(ID,w). We obtain a representation formula for K,,,

1- 7Lw
[(w (Z,C) = 4(124; ZC()Zz C)a

whereby L, is the reproducing kernel for some Hilbert space of analytic functions on I,
which we suggest to call the deficiency space for P?(ID,w). Using this representation, we
find that that @, is negative on T?\ §(T), and in fact that

(z,() €D x D,

1 1 1
A0 (SG+ o) roge FOETXTVD, (0
and just as previously this allows us to go backwards, to obtain the positivity of the
harmonic compensator, by means of a variational technique along the weighted Hele-
Shaw flow. We use the Hadamard variational method for the laplacian to write the Green
function G as a negative integral of a product of two Poisson kernels for the flow domains
D(r) over r, 0 < r < 1. Noting that H,(-,¢) is the orthogonal harmonic projection
(with respect to the weight) of the function —G(-, (), we find that it suffices to show
that the harmonic projection of a positive harmonic function on a flow region D(r), with
0 < r < 1, extended to vanish on D\ D(r), is positive throughout I. This is precisely
what the estimate (1.8) permits us to do.

Connection with the Bergman spaces. For 0 < p < +00, the Bergman space A? (D)
consists of all holomorphic functions f : D — C with bounded norm

= ([ If(Z)I”dE(Z))% < 4o,

and there is a corresponding collections of inner functions: a function ¢ € A?(ID) is inner

in AP (D) if

/D h(z) [ (2)IPAS(2) = h(0),

for all bounded harmonic functions & on ID. These inner functions have been studied
rather extensively in recent years, primarily because of their use for the factorization of
functions with respect to zeros and their relevance for operator theory (see, exempli gra-
tia, Hedenmalm [16], Duren, Khavinson, Shapiro, Sundberg [6, 7], and Aleman, Richter,
Sundberg [2]; one should compare with the more classical A=%° theory of Korenblum
[29]). They are analogous to the classical inner functions (Blaschke products, singular
inner functions, and products of the two) which play a vital role in the function theory
of the Hardy spaces H?(DD), for 0 < p < 4oco; we recall that a holomorphic function
f:D—Cisin HP(D) if

1

1lla = sup ( / If(rC)Ipda(C))p < 4o,
0<r<1 T

For an inner function ¢ in AP(D), |¢|F is logarithmically subharmonic and reproduces for
the origin, so by our main theorem, the Green function I'|,» for the weighted biharmonic
operator Alp| PA is positive. As we apply this result to the Bergman spaces AP (D), we
arrive at the following. Given a zero sequence A in I for the space AP(ID), let M4 be
the subspace of all functions in A? (D) that vanish at all points of A, with multiplicities



as prescribed by the sequence. Subspaces of the type M4 are referred to as zero-set
subspaces. Let ¢4 be the function that maximizes |p(0)|, given that ¢ vanishes on A
and has norm 1 (this does not define ¢4 uniquely, because we can always multiply by
a unimodular constant, but this is the only obstruction; if A contains the origin, we
need to maximize the first non-vanishing derivative at the origin). The function ¢, is
an inner function in A?(ID), and it has no extraneous zeros; in fact, it generates M4
as an invariant subspace [2] (see below for a definition of the term invariant subspace).
Duren, Khavinson, Shapiro, and Sundberg coined the term canonical zero divisors for
these functions ¢ 4. For two zero sequences A and B, such that A is contained in B, it
follows from the main theorem that

leafllar < llenfllar, (1.9)

for all holomorphic functions f on . This means that the canonical zero divisors are
monotonic with respect to Korenblum domination along the lattice of zero-set subspaces:
following Boris Korenblum [30], we say that given two function F' and G in AP(D), G
dominates F', written F' < (7, provided

[Fqllar < ||Gqllar

holds for all polynomials q. The relation ¢4 < ¢p for A C B was conjectured by
Hedenmalm in [20, 21] as well as in Problem 12.13 in the Havin-Nikolski problem book
[15]. A consequence of this result is the following. We say that a closed subspace M
of AP(ID) is invariant provided that Sf € M whenever f € M, where S is the shift
operator: Sf(z) = zf(z). A particularly simple collection are the zero-set subspaces, as
described above. These have the property that they have index 1 (with the exception
of the trivial invariant subspace {0}), meaning that the dimension of M/SM is 1. If an
invariant subspace M with index 1 contains a zero-set subspace, then M itself is a zero-set
subspace.

It is interesting to note that in the Dirichlet space, the domination relation between
the corresponding functions ¢4, g is reversed [1, 39].

Higher dimensions. We wish to point out that the above results have been obtained
in dimension n = 2 only. It is not clear what the appropriate generalization to higher
dimensional R”?, for n = 3,4,5,..., should look like. A serious obstacle is that we do
not have the artillery of conformal mappings any more. These problems deserve further
investigation.

2 Bergman spaces and kernel functions

Let © be a bounded domain in the complex plane C (a domain is a connected open set).
For an area summable function w : £ — [0, +oo[ which is positive on a set of positive
area-measure (we call w a weight), we let L?(Q,w) be the Hilbert space of complex-valued
Borel measurable functions on Q which are square summable with respect to the measure
wdX>: the norm is expressed by

= ([ irwas)’, sera.

As a Hilbert space, L?(2,w) is equipped with an inner product

<f,g>w=/ﬂf§wd2, f,9 € L*(Q,w).



Bergman spaces: the general setting. Let & be a complex-linear vector space whose
elements are continuous functions on €2, with the property that the elements of & are
square summable on © with respect to the measure w d¥. Since elements of L(Q,w) are
really equivalence classes of functions on €, two functions being identified if they coincide
except on a null set with respect to wdX, we cannot be certain that it is possible to
identify & with a linear subspace of L?(,w). This is however the case if w is a Bergman
&-weight function on , which requires that for all f € &,

/()] < C(K)

|fllw, z €K,

where K is an arbitrary compact subset of 2, and C'(K) is some positive constant which
depends on K. Under this assumption, we may form the completion of & with respect to
the norm || - ||, which we denote by &%(Q,w). The space &%(£2,w) consists of continuous
functions on €2, and we can regard it as a closed subspace of L?(Q,w). Clearly, it gets
easier for w to be a Bergman &-weight function if the generating space & gets smaller. If
w 1s a Bergman &-weight function, then the point evaluation functionals at points of 2
are continuous. The representation theorem for bounded linear functionals on a Hilbert
space then shows that to each A € Q, there is a unique element K (-, X; Q) in 6%(Q,w),
such that
f(/\):<f’[(f('a/\;9)>wa fERZ(Q’w)'

The function K&(z,{;Q), with (2,¢) € Q x Q, is called the Bergman &-kernel function
for the weight w on 2. The space &?(2,w) is separable because L?(2,w) is, and hence it
has a countable orthonormal basis ¢1, @2, @3, . ... One shows that the Bergman &-kernel
function has the representation

KS(Z,C):ZSDn(Z)@n(C), (2,0) € 2 xQ,

whence it follows that the complex conjugate of KS(z,() equals K2 (¢, z).

Analytic Bergman spaces. Let P denote the algebra of polynomials. Then the el-
ements of P are square summable on Q with respect to the measure wdX, given the
assumptions on w and 2. We may then use & = P in the above setting: we speak of
w as a Bergman polynomial weight function when it is a Bergman &-weight, we write
P?(Q,w) for the space &%(2,w), and call it the polynomial Bergman space for the weight
w, and finally, we call the associated reproducing kernel function K& = K the Bergman
polynomial kernel for the weight w. The functions in P?(Q,w) are holomorphic on €,
and if € is multiply connected, they extend holomorphically across the interior holes (this
follows from the maximum principle).

Let R(2) denote the algebra of rational functions (ratios of polynomials) with poles

off the closure of Q. We may then use & = R(f2) in the above setting. So, if w is an
R(Q)-weight, we express this in words as being a Bergman rational weight function on ,
and we write R?(Q,w) for the space &?(Q,w), which we call the rational Bergman space
for the weight w on Q. The reproducing kernel function K©(z,(; Q) is written in symbols
as K (2,¢;9Q), and we call it the Bergman rational kernel for the weight w on Q.
Another choice of spanning space & is the following. Let & consist of all holomorphic
functions on Q which are square integrable with respect to the measure wdX. With
this setting, we say that w is a Bergman weight function on Q if it is a Bergman &-
weight. Given that w has this property, the space &?(Q,w) equals & (we shall denote it

by A%(Q,w)), and we call it the Bergman space with weight w on Q. The reproducing



kernel function K©(z,(;Q) is written in symbols as K2 (z,(;Q), and called the Bergman
kernel for the weight w on Q.

For a Bergman weight w on Q, P?(Q,w) equals the closure of the polynomials in
A%(Q,w), and R%(Q,w) equals the closure of the rational functions in R(Q).

When we consider the constant weight w(z) = 1, we drop the indication of the weight,
and speak of the polynomial Bergman space P?({2), the rational Bergman space R?(),
and the Bergman space A%(2). On the unit disk I, all three spaces coincide: P?(ID) =
R*(D) = A%(DD).

For w to be a Bergman weight on 2, what is essentially required is that w does not
vanish too much near the boundary 99Q. If the weight w is logarithmically subharmonic,
this 1s not a problem.

LEMMA 2.1 Ifw is logarithmically subharmonic on €2, it is a Bergman weight on €.

Proof. Take an interior point zy € €2, and let r, 0 < r < 400, be so small that the
disk D(zp,7) = {z € C: |z — zp| < r} is precompact in . For a holomorphic function f
on Q, the function |f|?w is subharmonic, and therefore, by the sub-mean value property,

1
feo)Poton) < 55 [ AP a2 < AR,
r D(z0,r)

so that
P < 2.
~ r2w(z) “
Taking logarithms, we obtain
1l 1
1 <log——+ =1 . 2.1
o8 (o) < tog L1 + 5 10g (21)
The left hand side is subharmonic, so that we can get the estimate
ke 1 1
log|f(z0)| < log =— 4+ — log —— do(2). 2.2
( ) - r 2r D (z0,r) w(z) ( ) ( )

and since logw is subharmonic, it is integrable on compact circles in € such as 9D(zg, 7).
Introducing the Poisson kernel in these calculations allows us to get a uniform estimate
on compact subsets, which does 1t. [

Harmonic Bergman spaces. So far we only considered Bergman spaces of holomorphic
functions. We also need Bergman spaces of harmonic functions.

If we let & equal the space HP of harmonic polynomials, which are functions of the
type p + ¢, where p and ¢ are polynomials, we get the concept of Bergman harmonic
polynomial weight on €, by setting it equal to Bergman &-weight. The corresponding
space &%(Q,w) is written HP?*(Q,w), and we call it the harmonic polynomial Bergman
space with weight w on Q. The functions in HP?(Q2,w) are harmonic on , and if Q is
multiply connected, they extend harmonically across the interior holes. The reproducing
kernel function K2 is written QF,
with weight w on Q.

If we instead let & equal the space HR(Q) of harmonic rational functions of the type
h = r+s, where r, s are in R(Q), we get the concept of Bergman harmonic rational weight
on Q. The associated space &%(Q,w) is written HR?*(Q,w), and we call it the harmonic

and called the harmonic polynomial Bergman kernel



rational Bergman space with weight w on Q. The reproducing kernel function K© is
written Qff, and called the harmonic rational Bergman kernel with weight w on €.

The largest choice of spanning space & among the harmonic functions is the following.
Let & consist of all harmonic functions on € which are square integrable with respect
to the measure wdX. With this setting, we say that w is a Bergman harmonic weight
function on Q if it is a Bergman &-weight. The space &?(Q,w) then equals & (we shall
denote it by HL?(Q,w)), and we call it the harmonic Bergman space with weight w on
Q. The reproducing kernel function K&(z,(; Q) is written in symbols as Q (2, ¢; Q), and

called the harmonic Bergman kernel for the weight w on €.

Logarithmically subharmonic reproducing weights on the unit disk. We now
specialize to the domain € = D, the unit disk, and discontinue indicating the domain
in the expressions for kernel functions for the remainder of this section. Let w be a
logarithmically subharmonic area summable weight w on I, which is reproducing for the
origin, in the sense of the introduction:

holds for all bounded harmonic functions & on .
The following assertion is known, but we do not have a reference. The first result of
this type can be found in [16].

LEMMA 2.2 For the above class of weights w, we have the following growth control:
W < (=P, zeD

Proof. To see that this estimate is valid, one can proceed as follows. As in [16], one
obtains the Carleson measure type condition

/D|f|2w 0 <||fllw=. S e H(D).

Consider for ¢ € I the Mcebius automorphism of the disk

(—z

¢c(z) = et

z e,
and note that the above inequality becomes

/D|fo¢g|2wo¢g|¢g|2dzs||f||H2, f € HA(D).

By choosing

iy = I

we obtain from the sub-mean value property that

(1= KPhe(@) < (1= k) [ 2 Tff(;z('fféfﬁ' =)<,

from which the assertion is immediate. [ ]

10



PROPOSITION 2.3 Under the above assumptions on w, HP*(D,w) is a Hilbert space
of harmonic functions on 1D, with locally uniformly bounded point evaluations. Denote by
PZ(D,w) the subspace of P*(D,w) consisting of those functions that vanish at the origin,

and by PZ(D,w) its image under complexr conjugation. Then the harmonic space splits
HP*(D,w) = P*(D,w) & PZ(D,w),

the two subspaces on the right hand side being orthogonal. As a consequence, the kernel
function for HP*(D,w) has the form

Qf(zaC)ZQRe[{E(ZaC)_L (ZaC)E]DZ

Proof. Let p,q be polynomials. If ¢(0) = 0, then by the reproducing property of w,

(9, Do = / p(=) a(2) w(z) dS(2) = 0,

and hence P?(D,w) and PZ(D,w) are perpendicular with respect to the inner product
of HP?(D,w). Each harmonic polynomial can be written in the form p + ¢. By the
Pythagorean theorem,

llp+4llz = IIpII2 + llall2-

If we take a Cauchy sequence of harmonic polynomials p; + ¢; (with ¢;(0) = 0) with
respect to the norm || - ||, then by the above, p; is a Cauchy sequence in P*(I),w), and
¢; a Cauchy sequence in PZ(D,w). But then there are elements f € P?(D,w) and g in
P¢(D,w), holomorphic in the disk I, such that p; — f and ¢; — g. The limit function
h = f + g is then harmonic in I, and we have

16115 = 117+ gllE = 11F11E + llgll2-

The local boundedness of point evaluations now follows from Lemma 2.1.
The reproducing kernel for P%(ID,w) is KZ', and for P2(D,w) it is KF — 1. Tt follows

w )
from the above direct sum decomposition that (), is the sum of these two kernels. [

3 Green functions for weighted biharmonic operators

Smooth weights. Let €2 be a finitely connected bounded domain in € with C'*°-smooth
boundary, by which we mean that locally, the boundary is given as the zero level curve
of a C'"*°-smooth real-valued function with non-vanishing gradient. Also, let u be strictly
positive and C°°-smooth on the closure Q. We then define the Green function I', for the
biharmonic operator Ap~'A in the following way. For fixed { € ©, it solves the boundary
value problem

A p(2) PALT 4 (2,8) = 0¢ (2), z €9,
Lu(Qloa =0,

d
FN('aC)|3Q =0,

on
where the normal derivative is taken in the interior direction. The symbol d; denotes a
unit point mass at the point { € . The laplacian A has the factorization

32
5= o

11



where (z = » + iy)

9_1(0 8\ 9 _1(d .0
9z 2\ 0z dy )’ 0z 2\ Oz 8y )’
are the usual Wirtinger derivatives. We shall also use the space-saving notation 9, and

0, for these operators. Locally summable functions f on © are to be interpreted as
distributions by the dual action

(o f) = /ﬂ o(2) (2) dS(2),

where ¢ is a test function, that is, a compactly supported C'*°-smooth function on €.
With these normalization settings, the Green function for @ =D and g =1 is

2

+ (1= = ICP).

I(z,¢) = |z — ([ log ‘ﬁ

The weighted biharmonic operators A u~'A and the associated Green functions seem
to have been considered for the first time by Paul Garabedian [11]. When we apply a
laplacian to I',, we should get the weight y times the Green function G for the laplacian
plus a harmonic function, that is,

ATu(z,Q) = p(2) (G(2,Q) + Hu(2,0),  (5,() €2xQ, (3.1)

where H,(z,¢) is harmonic in the z variable. Let ¢ be a C* function on the closure of
Q, Applying Green’s formula, we see that the zero Dirichlet boundary conditions on I',
translate into the requirement that

/ﬂ AT, (2, O)é(z) dE(z) = /ﬂ Loz )AL 6(2) dS(2).

By applying this identity to ¢ = h, where h is harmonic, we obtain

[ B (6.0 + (e 00) ple) a(2) = 0, (3.2)

and by an approximation argument we have this for all bounded harmonic functions A
on 2. This is the balayage problem mentioned in the introduction. Since the bounded
functions are dense in HL?(€2, u1), the closed subspace of L?(€2, ut) consisting of functions
harmonic on €2, it follows that H,(-, () equals the orthogonal projection of the function
—G(+,¢) to HL*(Q, p1) in the space L*($2, ). We shall call the kernel H, the harmonic
compensator. We write this as H, = —Q, ¢ G, or written out more explicitly,

Ho(2,) = — /ﬂ Qu(2,€) G(E, Q) plE) dS(6), (3.3)

where @, = Qf is the reproducing kernel for the space HL?(€2, ut). Here, we think of a
kernel T'(z,¢) as having an operator T associated to it in the fashion

Tf(:) = /Q T(=.0) F(0) dS(0).

whenever the integral converges. In principle, the operator also determines the kernel, for
we obtain the kernel by applying the operator to a unit point mass at an interior point
(or by applying it to functions approximating the unit point mass, and taking the limit).

12



Because of the boundary conditions, the Green function can be recovered through the
formula

Pu(z.0) = /ﬂ G(2,€) (G(€, ) + Ha(€,C)) ju(€) dS(6). (3.4)

The operators @), and G are self-adjoint, so that taking adjoints, we have the identity
H; = —I'n@Q,. We note that the kernel for the operator H is H}(2,() = H,(C,2).
The function H,(z, -) then solves Poisson’s equation with data —u(-)Q.(-, z). The kernel
H,(z,¢) is harmonic in the z variable, and for z € 0Q, it solves the boundary value
problem (compare with [20]; 0, is a condensed notation for the interior normal derivative)

Acp(Q) T ACHL(2,0) =0, (€,
HN(Z’C):Oa CE@Q,
On(c) Hu(z,€) = 298.(¢), ¢ € Q.

Smoothness properties of kernels. As above, let  be finitely connected with C'°°-
smooth boundary, and the weight  be C'™-smooth on Q, and strictly positive there. For
a subset E of the complex plane C, let §(E) = {(z,2) € C? : z € E'} be the corresponding
diagonal set. In particular, we shall be concerned with the diagonal §(Q), the interior
diagonal §(€2), and the boundary diagonal §(9€2). Then, by an elliptic regularity theorem
of Louis Nirenberg [34], which says that we have C"*°-smooth solutions locally if the data
are that smooth, the kernels G and I', are C®°-smooth on (Q x Q) \ §(©2). It follows that
the kernels H, and @, are C™-smooth on (Q x Q) \ §(09).

Let us for the moment replace C'*°-smoothness with C“-smoothness — real analyticity
— everywhere above (so that the boundary 9 is real analytic, and the weight y is real
analytic on Q). Another elliptic regularity theorem, this time due to Morrey and Nirenberg
[32], then states that locally, solutions are C*-smooth if the data have that degree of
regularity. We apply it to our Green functions, to get that the kernels &' and I';, are
C“-smooth on (€2 x Q) \ 6(Q), and that as before, it follows that the kernels H, and Q,
are C¥-smooth on (Q x Q) \ 6(99).

If we instead consider the complex elliptic second order operator 0, p~'9,, we have the
same regularity theory. The associated Green function G, (with zero Dirichlet boundary
data) was considered by Garabedian in [11]. He obtained the identity

azéC GN(ZaC) = /J(Z) ﬂ(C) [(N(ZaC)a (ZaC) € QZ \6(Q)a

which carries over the regularity of GG, to the reproducing kernel K. Here, K, stands for
Kf or K;?, which are the same because R*(Q, u) = A?(2, ) under the given regularity
assumptions. To spell these out: g is assumed C'*°-smooth and strictly positive on Q, and
d2 is assumed C'*-smooth, too. The regularity of G, shows that K, is C*°-smooth on
(2xQ)\d(89). This also applies to the real analytic situation: if yt is assumed C*-smooth
and strictly positive on Q, and 9Q is C%-smooth as well, it follows that the kernel K, is

C%-smooth on (Q x Q) \ §(89). This latter fact was mentioned and used in [6].

Some consequences of the positivity of I',. Let us assume Q and p are as above, and
that we know that ', is positive on Q x Q. For fixed ¢ € €, the function I', (-, ¢) vanishes
together with its normal derivative along 92, so for it to be positive in the interior it
must have a positive second normal derivative, that is, 0 < AT'(-,{) on 9. By (3.1),
this means that H,(-, () is positive on 0, so by harmonicity, we even get that H,(- ()
is positive on . By a similar type of argument applied to the second coordinate, we see

that the harmonic kernel function Q,(z,¢) is negative for (z,¢) € (92 x 9Q)\d(0R2). This
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consequence was observed by Garabedian [11], and in fact, it was how he disproved the
conjecture that the biharmonic Green function is positive for all ellipses. We use it for
a different purpose: we need to know what properties to look for in the harmonic kernel
function @, to be able to prove that we have a positive Green function I',,.

More general weights. What if the weight is less smooth than assumed previouslyl’
For instance, let us say that we merely know that p is summable on €. Tt is fairly clear
that some additional requirement is needed to be able to define the biharmonic Green
function T', in view of the formulas (3.1) and (3.3), which suggests that existence of
I', entails that some type of harmonic Bergman space then becomes well-defined for the
weight g In the setting considered thus far, the spaces HL? (€2, ) and HR? (€2, ut) coincide,
and hence the reproducing kernels Qf and Qf, as well. There 1s a need to make a choice
here, and we decide to choose the harmonic rational Bergman space HR?*(2, ) and its
reproducing kernel Qf In other words, for Bergman harmonic rational weights g on €,
we take (3.3) as the definition of the harmonic compensator H,, with Q,, = Qf, and then
(3.4) is used to define the weighted biharmonic Green function I',,. We formalize this in
a definition.

DEFINITION 3.1 Let u be a Bergman harmonic rational weight on Q, and let G = Gq
stand for the Green function for the laplacian A on . The harmonic compensator is the
function

HM@Oz—AQﬂaQG@OMOﬁM%

and the weighted bitharmonic Green function is given by

m@o:AG@@m@o+m@@w@mma

4 The smoothing of weights
Here we show how to obtain the following approximation result.

THEOREM 4.1 Letw be logarithmically subharmonic weight on ID which s reproducing
for the origin. Then, for each ¢, 0 < ¢ < +00, there is another logarithmically subhar-
monic reproducing weight & which is real analytic on the closed disk D and strictly positive
there, such that

/D |w(z) —ZJ(Z)| dX(z) < e.

The local smoothing of weights. Let aut (D) denote the automorphism group of I,
which consists of all conformal mappings of D onto itself. If we let ¢ be an element of
aut (1), then we can find o, 5 € T and r € [0, 1] such that

¢ = Ro o ¢y o Rg, (4.1)
where R, (z) = az and Rg(z) = §z are rotations, and

r—=z

¢r(z) =

T l—rz
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is a kind of reflexion. This decomposition is unique for r # 0, and for » = 0, the mapping
¢ 1s a rotation, and only the product a3 can be determined. For complex A € ID, set

which decomposes into
¢>\ :ROCO¢7‘OR5H

provided that A = ra, with 0 < r < 1 and a € T. So we can write a general ¢ € aut (ID)
as ¢ = Rg oy, with 3 € T and A € ID. In this decomposition, both 3 and A are uniquely
determined. We can then identify aut (D) with the set T x I, which can be visualized as
a subset of R* Thinking of R* as a subset of the complex four-dimensional space C*, we
can define real analytic functions on T x [ as those that extend holomorphically to some
open subset of C* containing T x . We can also think of another complex structure:
T x D C C3, viewing T as a subset of C, and D as a subset of R? C C?. This complex
structure also gives rise to a class of real analytic functions. Fortunately, the two different
complex structures induce the same class of real analytic functions.

There is a left and right invariant Haar measure on aut (), which in terms of the
representation (4.1) takes the form

2rdr
dd) = m dO’(O[) dO’(ﬁ),
and in terms of the representation ¢ = Rg o ¢, with (5, A) € T x D, it becomes

_dsy
= o V)

Let @ : aut () —]0, +oo[ be a real analytic function of the product form

q)(¢) :@1(6)@2(A)a ¢:Rﬁo¢)\a
where

By(N) = w A ED, (4.2)

for some integer N = 2,3,4,..., which has integral

d=()
J, 00 TP =

and ®, : T —]0, +o0[ is some real analytic function with integral

/T B1(5) do(f) = 1.

For instance, we can take

1—o?

B T

BeT, (4.3)
for some real parameter ¢ with 0 < ¢ < 1. We shall now see that

/ oy BOV 067 0)d6 = () (4.4)
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for all bounded harmonic functions k on . For ¢ = Rg o ¢, we have ¢~! = ¢, o Rg, so
that ¢=1(0) = A. It follows that the left hand side of (4.4) assumes the form

/TXDCI”(@) B2 () h(A) dor(9) %

(1= P2

= [@@ o) [ S hyany) = wio),
T D -

for all bounded harmonic functions & on I, as claimed, if we use the mean value property.

We shall use the function ® to regularize w: consider the function

wg(z) = / D(P)w o ¢(2) |¢/(z)|2dqb (4.5)
aut ()

It is strictly positive on I, because with the given choice of the smoothing function @,
the only way for wg to vanish at a point z € I would be that w o ¢(z) = 0 for almost all
¢ in aut (D), which never happens, given the assumptions on w. Just as w, the function
wg is logarithmically subharmonic, because each individual function w o ¢ |¢’|? occurring
in the integral is, and because the logarithmically subharmonic functions form a cone. It
is representing as well, as a computation shows:

/Dh(z)w@(z) dE(z):/ t(D)q)(qS)/Dh(z)woqb(z)|¢>/(z)|2d2(z) do

= / t(]D))q)(d))/]D)h © ¢_1(2)w(2) dE(z) dop = q>(¢) ho ¢_1(0) d¢ = h(O),

aut ()

for all bounded harmonic functions h on I, where we use (4.4). A shift of variables yields
the alternative representation

walz) = (1 - [2?)2 / i HE2 0006 0) |60

This is a mean of the various functions ®(¢ o ¢,), taken over the variable ¢, because

o N2 w _ 2y do(B) dE(A)
[ pee s e PG = [ ooy - G

= [Exmw(ﬁ/\) do(8) dX(A) :/w(O) do(B) = 1.

T

We want wg to approximate w in L!(ID) norm, and to be real analytic on . The first aim
is reached by letting ® have most of its mass concentrated near the unit element of the
group aut (D)), which in the coordinates ¢ = Rg o ¢ corresponds to A = 0 and § = —1.
That means that the parameter N should be very large for the function ®; given by (4.2)
to be concentrated near 0 in I, and that the function ®; given by (4.3) should have most
of its mass near the point —1 on the unit circle, which happens if the parameter g is close
to 1. Tt is helpful to know that the contribution of remote elements ¢ to the integral (4.5)
defining wg 1s small: here we can use the a priori bound in Lemma 2.2 on w and the fact
that the function ®3(A) drops off quickly as A approaches T. To deal with the second
aim, we proceed as follows. For ¢ = Rg o ¢,

. ¢>>\(z) . Az—1

z = s ith = = —
po¢ R»@Wo¢¢z(>‘) wi ¢2(A) 1 — )z

(4.6)
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so that

D(¢p o ¢.) = 1(By) P2(02(N)), ¢ = Rgognx.
We shall need the following: the functions ®(¢ o ¢,), considered as functions of z € I,
should extend holomorphically to a neighborhood U of D C R? in C?, and be uniformly

bounded there. We shall do this locally around an arbitrary point zg € . A calculation
shows that

e IR el A

©2(0:(V) = 5 |1 — Az[2N

Real analytic functions on I are functions of the type F'(z, Z), where F' is a holomorphic
function of two variables in a neighborhood of the anti-diagonal {(z,z) : z € D}. A
holomorphic extension of ®2(¢.(A)) is supplied by the formula

L (—=)Va - PPN

P2 = 5 (1= AN (1= Az )V

which i1s bounded uniformly in A € [ provided that z is close to zg and z* is close to Zj.
Let @1 denote not only the real analytic function on T but also its bounded holomorphic
extension to a neighborhood of T; with ®; given by (4.3), the extension is

1 — o?
(1 +2e8)(1 +¢/5)’

A holomorphic extension of G(z, 2) = ®1(57), where 7 is given by (4.6), is then given by

Az —1
=@ -
G(Z,Z) 1<61—A2)’

P, (8) = peC\{~o ¢}

which is also uniformly bounded in A € ID provided that z is close to zp and z* is close to
Zo.

It follows that with the above choice of ®, wg approximates w in the L*(ID) norm, is
reproducing, logarithmically subharmonic, and real analytic on D.

The effect of dilatation. We wish to approximate a given weight w on D, which is
logarithmically subharmonic and reproducing, by a positive weight which is real analytic
on the closed disk D, and has the same properties. ;From the previous section we know
that we can achieve real analyticity in the interior ID. We can therefore assume from the
start that w is real analytic and positive on ID.

For r, 0 < r < 1, let wy(z) = w(rz) be the associated dilatation of w. We shall see
that w, is subrepresenting, that 1s, that for all positive bounded harmonic functions & on
D, we have

/ h(z)wy(2) dX(z) < R(0). (4.7
D
Let P(z,¢) denote the Poisson kernel

1.2
P(z,C)—l 2]

el (z,) eD x T,

and consider, for A € D, the function

[EP(/\, a)w(az)do(a), z €.
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As a function of A, this function is harmonic and equals w(Az) for A € T. As the function
w(Az) is subharmonic in the variable A, it follows that

w(Az) < /TP(/\,oz)w(OzZ) do(a), (z,A) € D x D.

We specialize to A =7, 0 < r < 1:

wr(z) < /TP(T, a)w(az)do(a), z e

By the reproducing property of w, we get for all positive bounded harmonic functions A
on D that

/Dh(z) wr(2)dE(z) < /TXDh(z) P(r,a)w(az) dE(z) do(a)
= /TP(T, oz)/Dh(z)w(az) dX(z) do(a) = /TP(T, a) h(0)do(a) = R(0), (4.8)

as asserted above.

Completing subrepresenting weights. We now complete the subrepresenting weight
wy by adding a suitable small term which makes the sum representing. We consider first
the harmonic function

P*w,(2) = / P(z,¢) wr(€) dX(C), z e,
D
where we have extended the Poisson kernel to the interior:

_ 2
Pz ¢y = =10

—acp  POEDXD

The function P*[w,] extends harmonically to a neighborhood of the closed unit disk. One
way to see this is to realize that P*[w,]|r is the outward normal derivative of the function

/G d¥(¢), z e,

which solves the problem AG[w,] = w, with boundary data G[w,]|r = 0. Here, G(-,-)
denotes the Green function for the laplacian A on ID. By a classical theorem of Painlevé,
the real analyticity of the data w, forces the real analyticity of the solution G|w,], also
on the boundary (see also [32]). The assertion that P*[w,] is real analytic and hence
harmonic on D is immediate. By the subrepresenting property (4.7) of w,, 0 < P*[w,] < 1
throughout I, and hence we have 0 < P*[w,] < 1 also on T. Let # be a real parameter
with 0 < @ < 1, and consider the function H(z) = 1 — 0§ P*[w,](#), which is harmonic,
bounded above by 1, and positive, in a neighborhood of ID. Let g, 1 < ¢ < 400, be so
close to 1 that H is harmonic on the dilated disk glD. Then the function

(1—¢7?)?
T [1—eo7tz(*
is real analytic in gD and F' is positive there. Moreover, F' is logarithmically subharmonic,
and for z € I,

F(z) = H(g¢)do(C), =€ gD, (4.9)

* _ » - (1—Q_2)2 ;
U—/PLO(O@@ [ e [ area)
1_9 2)2 B ) -
// — o LCEP dE(C)H(Qg)dU(f)—[EP(Q 2,§) H(g¢) do(§) = H(z).
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It follows that the weight
G(z) = Owe(2) + F(z), z e,

is logarithmically subharmonic, strictly positive, and real analytic on some neighborhood
of I. Tt also has P*[&] = 1, which is another way of expressing that & is reproducing:

/Dh(z)a(z) ds(z) = h(0),

first for all bounded and positive harmonic functions h, then in a second step, for all
bounded harmonic functions & on D.

We now look at the L'(ID) norm proximity to the original weight w. If the parameter
r, 0 < r <1, is close to 1, the dilate w, is close to w. Also, if # is close to 1, the function
0w, still approximates w well. But this means that # P*[w,](0) is close to 1, and as the
LY(ID) norm of F equals the difference 1 — P*[w,](0), the modified weight & approximates
w well in LY(D). m

5 The approximation of Green functions

Let w be logarithmically subharmonic on the unit disk I and reproducing (for the origin).
We wish to show that the biharmonic Green function T',, for the fourth order elliptic
operator Aw™'A with vanishing Dirichlet data is positive. By Theorem 4.1, w can be
approximated in the L (ID) norm by a weight & which in addition to being logarithmically
subharmonic and reproducing is real analytic and strictly positive on . We need to show
that the corresponding Green functions ', and I'; are appropriately close. Throughout
this section, we write K, for the reproducing kernel in the space P?*(ID,w), dropping
the superscript P. We observe that K, = K because the rational functions in R(D)
(the space of rational functions with poles off D) are easily approximated uniformly by
polynomials on . Similarly, we drop the superscripts P and R for the harmonic Bergman
kernel, and write @,,.

We shall need the following basic estimate of the kernel K, obtained by Hedenmalm
in [23].

THEOREM 5.1 Let w be logarithmically subharmonic weight which s reproducing for
the origin. Then
2

Kw(ZaC)|§m, (2,¢) €D x D

THEOREM 5.2 Let w and wy,, for n = 1,2,3,..., be logarithmically subharmonic
weights which reproduce for the origin. If w, — w in the norm of L*(D) as n — o0,
then Ty (z,{) = Tu(z,() pointwise in D x D as n = +oo.

Proof. Let i denote a weight of the same general type as w and w,, and recall that
by the reproducing property of y, we have the following identity of reproducing kernel
functions (see Proposition 2.3):

Qu(#,¢) =2ReK,(2,¢) — 1, (z,{) e D x D (5.1)
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We have the identity

Ty (,C) = / G(€,2) G(€, O) u(€) dS(€)
[ QuiE ) G2 GO (&) pl) dS(©)dS(),  (5,0) €D XD (5.2)

DxD

Let F,(+,¢) be the minimum norm solution in L?(ID, ) to AF,(+,{) = &¢:

Ful#,0) = G(2,¢) - / Quiz MG, ) u(n) dS(m),  (5,¢) €D x D.

The formula for I', then simplifies:

020 = [ GEOREQNOASE, (50 €D D (53)
By Theorem 5.1 and (5.1), we have the estimate
4
|QN(Z’C)|§1+m’ (Z’C)EDXD’

so that in view of the weight growth control in Lemma 2.2, a calculation yields
|Fu(z,¢) — G(2,0)| < C(©), (z,{) €D x I, (5.4)
for some constant C(¢) depending continuously on ¢ € I, but independent of the partic-

ular weight . We shall now show that F,_(-,{) = F,(-,{) in an appropriate norm. By
minimality, we have that

1 Olle S MFwn (5 Olws 1Fw, 5 Ol S NTELC Ollwn-

In fact, a calculation shows that
/HD|Fw(Z,C)—Fwn(Z,C)|2w(Z) d%i(z) Z/D(len(Z,C)lz—|Fw(2,C)|2)W(Z) d¥(z), (5.5)

because the function F, (-, () is perpendicular to the harmonic functions in L*(ID,w). As
we interchange the weights, we also have that

/D |Fa(2,€) = Fo (2,€) eom(2) d(2) = / (1P (2, Q)% = |Fu (2, P)n () ().
(5.6)

We add (5.5) and (5.6) together, to get
/D |FL(2,0) = Fun (5, Q)] (@(2) + wn(2)) d5(2)
= [ IR OF = 1, (5, OP) on() = (2)) d(2)

By the uniform estimate (5.4) and the L!(ID) convergence w,, — w, it follows that for
fixed { € D,

/D|Fw(z,<’)—Fwn(z,C)|2w(z)dE(z)—>0 as n — 400,
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or in other words, F, (-,{) = F,(-,¢) in the norm of L?(D,w). By (5.3),

Io(z,¢) / G(2,€) (Ful€,C) — Fu, (£,0)) w(€) dS(€)
/G b (6.0 (£6) ~9n(©) d2(©), (2,0 €D XD,

so that the desired result follows from the uniform estimate (5.4) on F,, (-, (), the L*(ID)
convergence w, — w, and the growth estimate on the weights in Lemma 2.2. ]

6 Bergman kernels: structural properties

The general theory of reproducing kernels. In the general theory of reproduc-
ing kernel functions (see Saitoh’s book [40]), introduced and studied by Mercer, Moore,
Aronszajn, Krein, and Schwartz, a complex-valued function K of two variables, say (z, y),
defined on some product set £ x FE, is said to be a reproducing kernel if for any finite
subset {21,29,... 25} of E, we have that the matrix

. N
{A (xja xk) }jykj:l
1s positive definite, in other words, that

N
0< [((l‘j,l‘k) Wy W
7,k=1

holds for all sequences {wj}j»\;l € CN. In particular, such a kernel has 0 < K(z, =),
K(z,y) = K(y,z), and

K (2,9)] < K(2,2)7 K (y,9)7, (6.1)

for all x and y in . The above definition does not refer to any Hilbert space of functions
with bounded point evaluations, which was the way we defined the reproducing kernels
for the Bergman spaces back in Section 2. It turns out that if we have a Hilbert space
of functions with bounded point evaluations, then its reproducing kernel function has the
above positive definiteness property, and that if on the other hand, we have a reproducing
kernel function as above, there exists a unique Hilbert space for which it reproduces the
point evaluation functionals, by a theorem ascribed to Moore and Aronszajn [40]. For
instance, if we take a subspace & with the properties assumed in Section 2, and write
down an orthonormal basis {¢;}52, for &?(Q,w), then by the formula for the kernel in
terms of the basis,

%] %] N N
< E ‘ E wi(z;) ‘ = E § wi1(z;) @i(zr) wijwy = E K®(2j, 21) wjwg.
=1 j=1 I=1jk=1 7,k=1

The following general result is of some interest; it is known, but we do not have a
reference. An infinite matrix {A(j, k)}3%_, is said to be positive definite if each finite

submatrix {A(j, )}j\fk_lo Is positive definite, that is, for any finite sequence of points
{a]} 't € CV, we have that

E Oz] Ozk
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PROPOSITION 6.1 Let K be a function with a convergent power series expansion on
the bidisk D7,

E(z,0)= Y K(Gk¢*, (10 eDxD

0o
7,k=0

Then K is a reproducing kernel on D x D if and only if the infinite matrizx {f{(j, k) }5% =0
15 positive definite.

Proof. Let {wj}j»v:l € CN be arbitrary, and put

N
= ij Z", (6.2)
j=1

where {z; }j»\;l is a given sequence of points in . Then a change of the order of summation
shows that

N ¢S] R N ¢S] R
K (%, z) wjwg = Z K(m,n) Z wj wg 25" 2 = Z K(m,n) a; ay.
7,k=1 m,n=0 7,k=1 m,n=0

One implication is immediate: if {K(m, n) 15 n=o is positive definite, then K is a repro-
ducing kernel. We turn to the reverse implication. Given a sequence {a,}N_, € CV | we
would like to find points z1,...,zy in D and a sequence {wj}j»\f:l € CV such that (6.2)
holds for m = 0,1,2,..., N, because then the reverse implication also follows from the
above identity. This can easily be accomplished by choosing the points equidistantly on
a concentric circle of radius r, 0 < r < 1,

zy=re?IN =19 N,

because then we can use Fourier analysis on finite commutative groups to find expressions
for w; in terms of the a,,’s so as to have the desired relation between these two finite
sequences. ]

Reproducing kernels for weighted Bergman spaces. In the rest of the section, we
shall be concerned with weights w : ID — [0, +o0[ which are area-summable on I and meet
the following two conditions:

e w 18 logarithmically subharmonic on I, and

e w 18 reproducing for the origin.

Note that since we are looking at the unit disk, the spaces P?(D,w) and R*(ID,w)
coincide, and hence their kernels do as well: K/t = K. This is the analytic kernel that
we wish to study in detail. To simplify the notation, we shall write K, for it.

The following structure result is a well known consequence of the fact that the shift
operator Sf(z) = z f(z) is contractive on P?(ID,w) (see Saitoh [40], p. 135).

THEOREM 6.2 The function J,(z,¢) = (1 — 2{) Ko (2,() is the reproducing kernel for
a Hilbert space of holomorphic functions on ID.

The similar-looking structure result below is key to our further investigations.
THEOREM 6.3 The function L, defined by the equality

. l—szw z,¢
Koz 0) = (1_—<(>)

15 the reproducing kernel for a Hilbert space of holomorphic functions on .
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We postpone the proof a little. First, we need the following important property of the
shift operator S, Sf(z) = zf(z), acting on P*(D,w).

PROPOSITION 6.4 For any two functions f,g € P*(D,w), we have the inequality

155 + gll2 < 217112 + 1ISall2)-

Proof. It is enough to obtain the inequality when f and g are polynomials. Let us
first assume the weight w is w is C*°-smooth up to the boundary. For any A € C\ {0},
we have that

- 2
0 <AL (Jo(z) = AL 1 (=) Pw(2)) = A (lg(=)P w(2)
—2Re (AAL(9(2)2 F(2)9(2) ) + N2 AP FEPw(2). (63)
for z € I, where the first inequality holds because the product of a logarithmically
subharmonic function and the modulus-squared of a holomorphic function is again loga-

rithmically subharmonic, and in particular, subharmonic. Substituting A = z? in (6.3),
we obtain

0< A, (lg(2)]?w(z)) — 2Re (2_2AZ (g(z)2 f(z)w(z)))
AT AP () Pw(z). (6.4)

We note that none of the three terms on the right hand side has the slightest singularity
at the origin, even though it may seem so to the inexperienced eye. By Green’s formula,

/D(l— |21 A: (lg(2)]* w(z) dS(2) :/D(4|z|2—2) l9(2)[ w(z) d3(z). (6.5)

A slightly more sophisticated exercise involving Green’s formula shows that if I)(0,¢)
stands for a small circular disk about the origin of radius ¢, then

/D\mo U= BEY (572 Aclo()2° () 0(2))) d2()
= /]D)\]D)(O )Az (2—2(1 _ |z|2)2) <g(z)23 f(z)w(z)) dE(z)
+ 2/611))(0,5) ((1 — |22 2 3n(z)(g(z)23 f(z)w(z)>

_ 3n(z)<(1 — |Z|2)2 5—2) g(z)E?’ f(z) w(z)) do(2)
B /D\D(o B 29(2) F(z)w(2) dE(z) + O(e), (6:6)

as £ = 0, where the normal derivative is taken inward with respect to the disk (0, ¢).
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We apply Green’s formula a third time, and obtain

/]ID\]D)(O )(1 =1 (|Z|_4 AZ<|Z?’f(2)|2w(Z))) dx(z)
= /]D)\]D)(O )Az (|z|‘4(1 - |z|2)2) 122 £ ()2 w(z) d(2)
2 1_Z222_48nz B2 (s
* /mm,&)@ [2%)2 1217 o) (122 () w(2) )
_ |z3f(z)|2 w(z) 3n(z)<(1 _ |z|2)2 |z|_4)) do(2)
:/D\D(O )(4—2|z|2) |F(2)?w(z) dS(z) + O(e), (6.7)

as € — 0. Putting the terms (6.5)—(6.7) together, using (6.4), we arrive in the limit e — 0
at

0 g/D(4|z|2—2) |g(z)|2w(z) dX(z)
—28e [ 24() w2 a206) + [ (-2 TPl a5, (65)

which expresses in expanded form the inequality we are looking for. We now turn to the
explanation of why we can assume w to be C°°-smooth. ;From the previous section, we
know that we can approximate w in the L!(ID)-norm with weights of the same type but
with a much higher degree of smoothness (C* on D, in fact). And since we only need
to check the above inequality (6.8) for fixed polynomials f, ¢ at a time, the assertion is
immediate. ]

In addition to the forward shift .S, we shall need the backward shift T'; as defined by
Tf(z) = ————, z e,

which we think of as acting on P?(ID,w). The composed operator T'S is the identity, and
ST is given by ST f(z) = f(z) — f(0). The forward shift S is a contraction on P*(ID,w),
and so is ST, because of the reproducing property of the weight w, which leads to the
norm identity

1AL = 11f = FOIE + 1O, feP(Dw).
The variant of Proposition 6.4 which we shall actually use is the following.

COROLLARY 6.5 For any two functions f,g € P?(D,w), we have the inequality

1SF + Talle, < 2(1A11E + l9ll%)-

We are now ready to prove Theorem 6.3.

Proof. Solving for L, we find that

Lo(2,¢) = % (1 —(1- zf)sz(z,C)) = 1= Hel50) A;‘Z(Z’Q +2Ky(2,¢) — 2C Ky(2,¢). (6.9)
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By the reproducing property of the weight w, we have that
Ku(z,0) = K,(0,¢) =1, (z,() e x D, (6.10)

so that by some well-known division properties of holomorphic function on the bidisk ID?,

the function L, (z,¢) is holomorphic on D?. As a consequence of Theorem 5.1, the kernel
2 Lu(2,0) =1—=(1 =20 Ku(z,0), (2,¢) €D x D,

is bounded in modulus by 3, so that by the maximum principle for holomorphic functions
of two complex variables,

We shall see later that the bound 3 may be replaced by 1, which is best possible.
We wish to prove that L, is a reproducing kernel. In other words, we should show
that for any finite subset {z1,29,...,2x5} of D, it is the case that

N
0< > Lulz, 2r) wj wy (6.12)
7,k=1

holds for all sequences {wj}j»\f:l € CN. By exploiting the reproducing property of the
kernel K, we have that

Lo (25, 21) :/DXDLM(Z,C) Ko(z5,2) Ku(C, z1) w(z) w() dX(z) dX(C),

where the integral is absolutely convergent because of estimate (6.11) and the bound on
K, from Theorem 5.1. If we let f be the H*° (D) function — H*° (D) is the algebra of
bounded holomorphic functions on [ — given by the formula

N
f(2) :Zibjl(w(z,zj), z e,
j=1
we see that (6.12) is equivalent to having

= /HWL”(Z’C) F(2) F(Qw(z)w(Q) dX(z) dX(C). (6.13)

We shall obtain (6.13) for all f € H* (D). The forward and backward shift operators S
and T, acting on P?(ID,w), have adjoints S* and 1%, where the subscript indicates that
the adjoint is taken with respect to the inner product of P*(ID,w):

(SF,9)0 =, 550)e,  (Tf,9)e=(,T5g9)w, for f g€ P*D,w).
We have from (6.9) and (6.10) that for f € H* (D),

/D L (2,0) Q) w(€) dS(C)

_ _% (FLTKG (2o +2(F Ko, 2))w — 2 (F, SKu (-, 2) )

- (T5F Ko (5 2))e +2(F K (5 20w = 2 (S0 S K (- 2))u

Tz
= L& g esp. zen,
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so that since T f(0) = 0 — due to the reproducing property of w — we can condense the
above to

/D L(2:0) F(Q) w(Q) dS(Q) = ~TTEf(z) +2 /() — S5 f(),  zeD)

Integrating also with respect to the z variable, we arrive at

| B0 76 50 () (0) () (0
=TT o 42U P — (S S F o = —|TE AR + 2 1A — 115 A1
which shows that what we in fact need to know 1s that
0<2-TT" - 5S, (6.14)

where the inequality is interpreted in the sense of operator theory (meaning that the
operator on the right hand side is self-adjoint and that its spectrum is contained in the
interval [0, +o0[). Let P?(ID,w) & P?(ID,w) be the orthogonal sum of the two spaces, with
elements (f, g), f,9 € P?(D,w), and the inner product

((f1,91), (f2,92))ww = (f1, f2)w + (91, 92)w-
We consider the operator R : P?(D,w) & P*(D,w) — P?(D,w) given by
R(f,9) =27 (Sf + Ty),
and note that if R} : P?(D,w) — P?(D,w) & P%(D,w) is the adjoint defined by
<R(fag)ah>w:<(fag)aRZ)h>w,wa fagahEPZ(Daw)a

then we have R (h) = 272 (S%h, 1 *h). It immediately follows that

1
RRj;f:§(SSj;f+TT;f), f € P(Dw),

so that the assertion (6.14) can be written as R R}, < 1. This, however, is fulfilled precisely
when R, is a contraction. By Corollary 6.5, the operator R is a contraction, which implies
that R is a contraction as well. The proof is complete. [

COROLLARY 6.6 Let the kernel L, be as tn Theorem 6.3. Then

ILo(z, 01 <1, (2,0 € D7

Proof. The identity

. 1|2 Lu(z, 2)

[\w(Z’Z):W’ ZED,
together with the observations that 0 < K, (z,z) and 0 < L,(z,z) shows that 0 <
Lo (z,z) <1, because the function L (z, z) is subharmonic on ID. In fact, unless Ly (z, 2)
equals the constant 1 identically on I, we have a strict inequality: L, (z,z) < 1. And if
Ly(z,2) =1, then L,(z,{) = 1 too, because a kernel function is determined by its values
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along the diagonal. But if L,(z,{) = 1, then the kernel K, must be the Hardy kernel
(associated with the space H?(ID)), which cannot be, because H?(ID) is not of the type
P?(D,w). We conclude that | L, (z,¢)| < 1, because after all, L, (z, z) is the norm-squared
of the point evaluation functional at z € I in the Hilbert space of holomorphic functions
that can be associated with L. [ ]

We have achieved an improvement on the estimate of Theorem 5.1.
COROLLARY 6.7 The reproducing kernel K, can be estimated as follows:

1+ =]
==

Ku(z,0)| < (Z,C)EDZ

Proof. This is immediate from Corollary 6.6. ]

The kernel L, has the following boundary behavior.

THEOREM 6.8 Suppose our weight w is continuous on I, in which case 1 < wl|r. Then
the diagonal function Ly (z,2) has a continuous extension to D, and the boundary values
are

1
Lw(z,z)zl—m, zeT.

Proof. For A € D, let I\ be the function

1— AP

DT IERE

z e,

which has norm 1 in P?(ID). We fix a point ( € T. As X approaches ¢ from the interior,
F tends to 0 uniformly off every fixed neighborhood of the point {, and consequently,
the measure |Fy|?dY tends to the unit point mass at (. We apply this observation to
integration against the weight w, and obtain

/D|F>\(z)|2w(z)d2(z)—>w(<’) as A — (.

On the other hand, we have the estimate

1

T = A OF < Ko [ RGP w2,

so that

1
—— < liminf (1 — [A|?)? Ky (A, A) = liminf (1 — [A]? Ly (X, A)) = 1 — limsup Ly, (A, A),
S < it = 0 ) =i int (1= W a0 0) = L= limsup L (3, )
which leads to half of the desired assertion,

1
limsup Ly, (A A) <1 — ——, (eT.
A=( ( )_ W(C)
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For the other half, we use another collection of functions. For A € D, let GG be the
function

Ga(z) = Ku(MA)T2Ku(2,)), zeD,

which has norm 1 in P?(D,w). By the estimate of the kernel function of Theorem 5.1,
and the well-known fact that K, (A, A) = 400 as |A| = 1 (this quantity represents the
norm-squared of the point evaluation functional, and the space P?(I),w) contains the
Hardy space H?(D)), the function (i tends to 0 uniformly off a fixed neighborhood of
the point ¢ as A approaches ¢ € T. In particular, the measure |G|?w dX converges to a
point mass at ¢ as A — (. Using the properties of the Bergman kernel for P?(ID), we have
the estimate

Ko\ ) = |G —‘/ L5 2Gh () as(s)| < (1= AP /|GA )2 ds(2),

whereby in the limit,
1
Gr(2)|2d2(z) - — as A — (.
L iesrase) -
It follows that

1- hmme (A, A) = limsup (1 — [A]* Lo (A, N))

A=(
1
=limsup (1 — [A?)? K,(\,A) <1 — ——,
A= ( RO < w(C)
and consequently,
1
1 — ——= <liminf L, (A A), eT.
w() = x=¢ (A, A) ¢
This provides an alternative demonstration of the inequality 1 < w|y, as is seen by ob-
serving that a reproducing kernel is positive along the diagonal. ]

REMARK 6.9 Let I' be the biharmonic Green function for I,
=<
1—2z(

2

P(z,¢) = |z = ([’ log +(1= A=K, (50 eDxD.

The — by now classical — factorization-type identity found in [7] for weights w that repro-
duce for the origin reads

/If )Pw( /If )2 dX(z)
+ / TN MO ISR A, S € 1),

and in view of the fact that 0 < T'(z,¢) on I x I, and the logarithmic subharmonicity of
w which leads to 0 < Aw, we see that

[r@rase < [ 1r@Pue ase), e ),

Suppose that w extends to a continuous function on I. Then, by choosing the analytic
function f such that |f|?dX approximates a point mass at a point on the boundary T, we
see that 1 <w(z) on T.
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The function L, is bounded and sesqui-holomorphic on D? — meaning that the func-
tion Lw(z,f) is a holomorphic function of two variables there — and hence it possesses
radial boundary values almost everywhere on the torus T2, with respect to the usual arca
measure there. It follows that the kernels K, and @, too, have radial boundary values
almost everywhere on T?: for K, we can use the formula defining L, in Theorem 6.3,
and for Q) there is the identity of Proposition 2.3:

Qu(7,¢) =2Re K, (2,¢) — 1, (2,¢) € D?. (6.15)

The following result will be used later on in the proof of the positivity of the weighted
biharmonic Green function I',,. For this reason, we specify explicitly all the requirements
on the weight w.

COROLLARY 6.10 Let w be a logarithmically subharmonic reproducing weight on I,
which is continuous on ID. We then have the inequality (almost everywhere)

1 1 1
w05 (Gt g) e GO

Proof. Since the kernel L, is reproducing for some space, we have

1L (2,0)] < Lu(2,2)% Lo (¢, 0)%,  z,CeD,

and in view of Theorem 6.8 and the geometric-arithmetic mean value inequality, we obtain,
almost everywhere,

|Lw(z,C)|§(1—%)%<1—$)%§1—%<$+$), (z,¢) € T
(6.16)

We write the equation for K, in terms of L, as

. B 1—z§Lw(z,C) 1 2 3 2
KO=— o taoy ot Boel

where we notice the appearance of the Kaebe function
z

ﬁ(z):m, z e,

which maps I onto the slit domain C\] — oo, —1]. It has the boundary values

1
K?(Z)——m, ZET\{l},

so that on T2\ §(T), K,, equals (almost everywhere)
1 1 1
= _ — Lo (2,0, z,¢) € T2\ §(T).

The first term on the right hand side has real part % From the identity (6.15), the above

representation formula, and (6.16), we see that (almost everywhere)

Ku(z,0)

2 2 2 2
IR R e P Rl P et

1 1 1 ,
-~ (ot om) e GOTVm,

as asserted. [ ]

Qu(z,¢) =

)
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REMARK 6.11 (a) Proposition 6.4 only uses the logarithmic subharmonicity of w, not
the reproducing property.
(b) In the proof of Theorem 6.3, we appeal to Theorem 5.1 mainly for reasons of conve-
nience of exposition. The use of it can be avoided entirely, and then one has a different
proof of Theorem 5.1 from [23].
(¢) Tt is possible to interpret the assertion of Therem 6.8 as a statement about the asymp-
totical behavior of the matrix R

(Rl ) o
For large indices, the increments of this matrix in the direction of the diagonal (but not
necessarily on the diagonal) are asymptotically given in terms of the Fourier coefficients
of the reciprocal weight w=1|y.
(d) Tf we assume more regularity of w, say C'°°-smoothness on D, then the kernels K, and
Q. are also much smoother, in fact, C*-smooth on I x D\ §(T), so that the assertion of
Corollary 6.10 is valid everywhere on T?\ §(T).
(¢) Suppose w is is C*°-smooth on D and real analytic near T. It is a natural problem
to ask under what additional assumptions the kernel L, becomes sesqui-holomorphic on
D x D. We recall that sesqui-holomorphic means that the function is holomorphic in
the first variable, and anti-holomorphic in the second. One shows that unless Alogw =0
along T, the kernel K, necessarily develops a logarithmic singularity which prohibits such
smoothness of L,. An example of this phenomenon is w(z) = %(1 + |2]*), with kernel

2((1 1 z<+log(1—z<)).

Ky(2,¢) = 3\ (1=202 + 1—zC (=€)

7 The weighted Hele-Shaw flow

Let © be a finitely connected bounded domain in C with C°°-smooth boundary, and fix a
point zp € . Without loss of generality, we can take zo = 0. Let w : Q —]0, +o0o[ extend
to a C°°-smooth function on Q, which is strictly positive there: 0 < w(z) for all z € Q.
The Sobolev space W?2(£2) consists of all functions in L%(2) whose distributional partial
derivatives up to order 2 are also in L?(2). By the Sobolev-Morrey imbedding theorem,
the functions in W?2(Q) are in C%%(Q), the space of Hélder continuous functions on €,
for each exponent a, 0 < o < 1.

Hele-Shaw flow: the weak solution formulation. For positive r, we wish to find
open precompact subset D(r) of Q, with 0 € D(r), such that the reproducing property

rzh(O) = /D( )h(z)w(z) dX(z) (7.1)

holds for all h € W?(Q) which are harmonic on D(r). We also require the moment
inequality to hold, that 1s,

r2u(0) < /D( )u(z)w(z) d¥(z), (7.2)

for all u € W?(Q) that are subharmonic on D(r). In this general setting, there may exist
several solutions D(r) to (7.1), but only one of them (up to sets with zero area) also has
(7.2). The reason is that under (7.2), the set D(r) can be obtained as the non-coincidence
set for an obstacle problem (see below). The condition (7.1) requires r~2w Ip(ry d¥% to be
a reproducing measure for 0, and the condition (7.2) requires it to be a Jensen measure
for 0. Note that (7.2) actually contains the condition of (7.1), because for harmonic u we
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may apply the inequality to both « and —wu. The property (7.1) is a weighted quadrature
identity, and (7.2) requires D(r) to be a weighted subharmonic quadrature domain [41],
[43].

Let G = G be the Green function for the laplacian on €2, as usual. We then form the
potential function

Up(2) = Glw lp(ry — r°80] (2 / Gz () d%(¢) — r*G(z,0), z €9,

and observe that by (7.1), U, (z) = 0 off the closure of D(r) in Q. The requirement of (7.1)
that the function G(z, ) should be in W2(Q) is not fulfilled, though, but we easily modify
it near the singularity — safely away from D(r) — so that it is. As a matter of fact, no
matter how complicated the open set D(r) is, the function w 1p(,) is bounded and Borel
measurable in 2, which by results from singular integral theory leads to the smoothness
information that away from the origin in Q, U, is in the Sobolev space W?? of functions
whose distributional partial derivatives up to order 2 are in LP (with respect to area
measure), for each finite p, 1 < p < +o00. By the Sobolev-Morrey imbedding theorem,
U, is then of smoothness class C1%, for each o, 0 < o < 1, away from 0 in Q. We
use standard notation here: a function is in CH® if it is continuously differentiable (C'-
smooth), and the first order partial derivatives are Holder continuous with exponent a. Tt
is actually the case that U, is in the Sobolev space W%°° away from the origin in €2, and
hence of smoothness class C1'!, again away from the origin on Q (see below). For points
z € D(r), we can approximate the Green function (Gi(z,-) by W2-smooth subharmonic
functions, and in the limit we have that 0 < U,(z), by (7.2). For test functions ¢ on
(test functions are C'*°-smooth and have compact support), Green’s formula has it that

/ PSS = o0 )= [ A6 d26) = [ U asE)dEE). (13

where the middle integral is to be interpreted in the sense of distribution theory. As U,
itself has compact support, we can extend the above equality to the class of ¢ in C*°(Q),
and then an approximation argument shows that we can take an arbirary ¢ € W?2(Q).
The inequality (7.2) states that the left hand side of (7.3) is > 0 whenever 0 < A¢ on
D(r). In particular, we can take ¢ € W?2(2) which solves A¢ = —la\p(r), and get

/ U, (2)dS(z) = 0, (7.4)
2\D(r)

which sharpens the above conclusion that U, vanishes off the interior of the closure of
D(r): U, = 0 almost surely on @\ D(r). We shall now see that 0 < U,(z) almost surely
on D(r). Let E be the subset of D(r) where U, (z) = 0, and suppose for the moment that
E has positive area measure: 0 < X(F). Then, since U, is in W2 away from the origin,
all the partial derivatives of U, of degree less than or equal to 2 vanish (almost surely)
on F ([28] p. 53). In particular, AU, = 0 almost surely on F, which contradicts that
AU, =wlp@y — 728y, as the weight w was assumed strictly positive. This permits us to
make the following choice of the set D(r):

r)={zeQ:0<U ()} (7.5)

So far, we assumed that the open set D(r) was known, and defined the potential U, in
terms of 1t. However, it is actually more natural to first get the function U, from an
obstacle problem, and then obtain the set D(r) from the above relation.
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Hele-Shaw flow: the obstacle problem model. For 0 < r < 400, let V. be the
function

Vi(z) = G[r250 —w] (2) = r*G(z,0) —/QG(Z,C)(.J(C) d¥(¢), z € Q,

which is superharmonic on © \ {0}, vanishes on 92, and has a negative logarithmic
singularity at 0. We let V. denote the least superharmonic majorant to V. on €. The
connection with the Hele-Shaw flow is the following identity:

~

D) =) +U.(),  zeq (7.6)

This follows from the treatment of the subject in Bjorn Gustafsson’s paper [12], where
a similar obstacle problem was shown to be equivalent to the Hele-Shaw flow; that
Gustafsson’s obstacle problem is equivalent to the above follows from the treatment in
Kinderlehrer-Stampacchia [28]; see also [5]. We refer to the paper [27] for a rather ex-
tensive list of references on the problem set: Hele-Shaw flow, quadrature domains, and
obstacle problems.

For a set E of complex numbers, we write F/ € 2 to indicate that F is a precompact
subset of 2.

The obstacle problem makes sense for all values of the parameter r, 0 < r < 400,
allowing us to obtain the function U, from the formula (7.6). The domains D(r) as
given by (7.5) are then well-defined for all . We classify them as Hele-Shaw domains
when D(r) @ Q, and as generalized Hele-Shaw domains when D(r) is too big for this to
happen. A physical interpretation of the generalized Hele-Shaw flow is that the liquid is
allowed to stack up on the boundary dD(r) N 9.

The space O+ (Q) consists of all continuously differentiable functions on Q, whose first
order partial derivatives are Lipschitz continuous. It coincides with the Sobolev space
W2e(Q) of functions in L° () whose partial derivatives (taken in the distributional
sense) of order less than or equal to 2 are also in L°°(2). The functions in the latter space
may need to be redefined on a set of zero area measure to fit into the first-mentioned
space.

PROPOSITION 7.1 Fiz an v, 0 < r < +00. Then the superharmonic envelope func-
tion V, is in CHY(Q). It assumes the value V, =0 on 0.

Proof. It follows from the results of Chapters 2 and 4 in Kinderlehrer-Stampacchia
[28] that V, is in W2P(Q), for each p, 1 < p < +o00; we could also use Gustafsson’s
argument in [12] to this end. To get the stronger result with p = 400, we instead appeal
to the results of Chapter 1 in Avner Friedman’s book [10], or to the paper [5] by Caffarelli
and Kinderlehrer. Perhaps a word should be said about why ‘A/r vanishes on 9. The
function G[—w] is a superharmonic majorant to V., and it vanishes on 9. The function

V, is sandwiched between V, and G[—w], which both vanish on 9€2, and hence ‘A/r lo = 0.
| ]

PROPOSITION 7.2 Fiz anr, 0 < r < 4oo. Then the set
D)y ={z€Q: Vi(2) < Vp(2)}

is an open and connected subset of Q. Moreover, V.. is harmonic on D(r).

Proof. The function ‘77« — V, is continuous, and hence the set D(r) where it is
strictly positive is open. By the Perron process, V, is harmonic on D(r). TFor, if it

32



were not harmonic on some small circular disk in D(r), we can replace it on the disk by
the harmonic function with the same boundary values on the small circle, and obtain a
function that is smaller (by the maximum principle), and still superharmonic on 2. This
new function remains a majorant to V, if the disk is small enough, in violation of the
definition of V as the smallest superharmonic majorant to V.. We turn to the assertion
that D(r) is connected. Tt is clear that the origin is an interior point of D(r), because
Vi (%) tends to —oo as z tends to 0. If D(r) is indeed disconnected, then we can find a
connectivity component — call it Dy (¢) — which does not contain the origin. As the origin
is an interior point of D(r), the connected open set D;(r) is comfortably at a distance
from it. Moreover, we have that dD;(r) C Q \ D(r), because if a sequence of points of
Dy (r) have a limit point in D(r), well, then all point sufficiently near the limit point are
in Dy(r) as well, making the point interior for Dy(r). On Dy (r), V, is harmonic, and
on 9D1(r), it equals the function V.. As V; is superharmonic on Dj(r) (after all, it is
superharmonic on 2\ {0}), we obtain from the maximum principle that v, <V, on Dy (r),
in clear violation of the definition of the set D(r). ]

PROPOSITION 7.3 Fiz anr, 0 <r < +oco. We then have that AU, =w l1p(,y — 728y
on 0, in the sense of distributions.

Proof. On D(r), ‘77« is harmonic, and hence AU, = A(‘A/T V)= =AV, =w — 1?4y
there. On Q\ D(r), ‘A/r and V. coincide, and hence their first and second order derivatives
coincide almost everywhere there, in view of [28], p. 53, and the regularity result that ‘A/r
is in W% (Q) (Proposition 7.1). In particular, AU, = 0 almost everywhere on Q\ D(r).
]

The following proposition makes the relationship between the obstacle problem and
the Hele-Shaw flow explicit. For a set E of complex numbers, we write £ @ €2 to indicate
that F 1s a precompact subset of €.

PROPOSITION 7.4 Fiz anr, 0 < r < +oo. Then the following assertions are valid.

(a) Suppose D(r) is the non-coincidence set from the obstacle problem with obstacle V,,
as in Proposition 7.2, and that D(r) @ Q. Then the mean value and sub-mean value
properties (7.1) and (7.2) hold for D(r).

(b) Suppose, on the other hand, that D(r) is an open precompact subset of Q with 0 € D(r)
for which (7.1) and (7.2) hold. Then, up to a set of zero area measure, D(r) equals the
non-cotncidence set from the obstacle problem with obstacle V..

Proof. The second assertion, (), was discussed thoroughly in the introduction of
this subsection. R

We turn to part (a). The function U, = V, —V, has support set D(r), which is compact
in 2, and Proposition 7.3 tells us what its laplacian is. We apply Green’s formula to test
functions as in (7.3), and obtain

/D(T)QS(Z)W(Z) %(z) —17¢(0 /AU 2)d(z) = /QUT(Z)AQS(z)dE(z),

first for functions ¢ that are C'°°-smooth on Q, and then, by approximation, we get it for
all ¢ € W2(Q). As we apply this identity to harmonic and subharmonic ¢ on D(r), the
properties (7.1) and (7.2) follow. ]

PROPOSITION 7.5 Forr, 0 < r < +o0, the function U, = ‘A/r — V, wncreases with the
parameter r. Moreover, if the weight w is increased, U, decreases, for fized r. When U,
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increases, the flow domain D(r,w) = {z € Q: 0 < U,(2)} also increases. In particular,
D(r,w) increases with increasing v, and decreases with increasing weight w.

Proof. Let r,r’ be related as follows: 0 < r < r’ < 4o0o. We check that V, — V,.
is superharmonic, so that the function V,.» — V,» 4 V. is superharmonic, too. The latter
function also majorizes V., and hence V. < V., — V.o + V,.. Tt follows that U, increases
with r.

A similar argument shows that U, decreases as the weight w increases. The details
are as follows. Let w’ be a bigger weight than w: w < w’ on , and let V! be the potential
associated with w’: V! = G[r?dg—w’]. The function V,/—V, is then superharmonic, because
A(V! = V,) =w—w' <0. Tt follows that the function V, — V. + V/ is superharmonic,
too, and it clearly majorizes V. Tt is immediate that ‘7/ < V,—V, + V!, which leads to
Ul < U, (obvious notation), as asserted. ]

In the introduction, we claimed that the Hele-Shaw flow was well-defined for all param-
eter values of r with 0 < r < p(0), where 0 < p(0) < +o00. The critical radius parameter
p(0) is finite because our confining domain €2 is bounded (apply the reproducing property
(7.1) to the constant function h = 1). We still need to see that 0 < p(0), as we define
p(0) to be the infimum of all  with D(r) N 9Q # . With this definition, D(r) € Q for
all r with 0 < r < p(0), so that D(r) arises from the Hele-Shaw flow for these parameter
values. The domains D(r) increase with r, so we just need to check that that D(r) is
precompact in €2 at least for one value of », 0 < r < 4o00. This is accomplished by the
following proposition. We need some notation: for a point w € C and a positive real
parameter g, we let

D{w,¢) = {s € C: |z —u| < o}

denote the open circular disk of radius ¢ about w.

PROPOSITION 7.6 Let m be the minimum value of w on Q, and M the mazimum
value. If 7, 0 < r < 400, is so small that the circular disk (0, r//m) is contained in §2,
then D(r) is sandwiched as follows: D(0,r// M) C D(r) C (0, 7/+/m).

Proof. This follows from Proposition 7.5, by comparing the weight w with the
constant weights m and M, for which the Hele-Shaw flow consists of circular disks about

0. [ ]

It is of interest to see how the choice of underlying domain Q affects the Hele-Shaw
flow domains D(r).

PROPOSITION 7.7 Firanr, 0 <r < 4oo. Let Q' be an open subset of 0, containing
the origin. Let V! denote the least superharmonic majorant to V,|q: on €', and put
Diry={z€Q: Vi(2) < ‘7/(,2)} Then we have in general ‘7/ < ‘/}7‘|Q1, and D' (r) C
D(r)y N Q. Conversely, we have the following:

(a) if D(r) C €Y, then ‘7/ = ‘/}7‘|Q/ and D'(r) = D(r), and

(b) if D'(r) @, then V! = V,|qv and D'(r) = D(r).

Proof. The assertions that ‘7/ < v, lor and D' (r) C D(r) N are self-evident in view
of the definitions of these objects in terms least superharmonic majorants. We turn to
the assertion (a), that we have the equalities V! = V; | and D'(r) = D(r) provided that
D(r) C €. Given that D(r) C £, we construct a function V, on Q by setting it equal to
‘7/ on D(r), and V. on Q\ D(r). Tt is clear that A < ‘A/r on Q. The function V, equals ‘7/
on ', and is therefore superharmonic there; on Q\ D(r) it is also superharmonic, because
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Ve 18, at least away from 0. We wish to show that V, is superharmonic throughout €.
It is well known that a function is superharmonic on € if we have the appropriate mean
value inequality on sufficiently small circles about each point of €2. We just need to check
this for points z; € (2\ Q)N D(r) C dD(r). Let €, 0 < ¢, be so small that D(z1,¢) @ Q,
and calculate, using the superharmonicity of ‘A/r,

1 1 ~ ~
S WEdee <t [ T des) < i),
€ 8D(z1,¢) € dD(z1,¢)

Since z1 € 9D(r), we have ‘77«(,21) =V, (#1), whence ‘77«(,21) = ‘A/r(zl), and the mean value
property has been established. The minimality of V. now forces the equality V,, = V.
The assertion D' (r) = D(r) is immediate.

The assertion (b) is proved in an analogous fashion. ]

Less smooth obstacles. Suppose for the moment that the weight w is not as smooth as
before, say that we only know it is in L () for some p, 1 < p < 400, and that 0 < w holds
throughout €2. Let us see what conclusions remain from the previous subsection. Clearly,
we can still form the potential function V;., which is of Sobolev class W?2P away from the
origin in €2, and the superharmonic envelope function V, can also be formed, and it is,
by the same arguments from Kinderlehrer-Stampacchia [28], in W??(Q). The Sobolev-
Morrey imbedding theorem shows that W2F(Q) C C%*(Q), for some o, 0 < o < 1 (in
fact, for 1 < p < 2, we can take &« = 2(p — 1)/p). This means that the defining function
U, = V, — V, for the sets D(r) is continuous on Q \ {0}, and hence that the sets D(r) are
open, for all r, 0 < r < 4+00. Propositions 7.2, 7.3, 7.5, and 7.7 hold without changes. If w
is bounded away from 0 locally around the origin, the comparison argument of Proposition
7.6 shows that D(r) @ Q for sufficiently small positive r. Proposition 7.4 remains valid,
modulo the following modification: in part (b), we need to replace “zero area measure”
with “zero mass with respect to the measure w d¥”. If we assume that 0 < w holds
area-almost everywhere on 2, then Proposition 7.4 remains valid as it stands.

Continuity properties of the weighted Hele-Shaw flow. We keep the original
context, where {2 is a finitely connected bounded domain in C with C*°-smooth boundary,
and w is a C°°-smooth strictly positive weight on Q. The sets D(r) are obtained from
the obstacle problem, which is equivalent to the Hele-Shaw flow, as demonstrated in
Proposition 7.4. The following continuity property of the weighted Hele-Shaw flow is
basic to our investigations.

PROPOSITION 7.8 Fiz an r, 0 < r < p(0). To each given ¢, 0 < &, there exists a
d =0(g), 0 <6 < p(0) — v, such that if v is confined to the interval r < v’ < r 44, we
have the inclusion

D'y C D(r)+D(0,e) = {z+(: z€ D(r), (€D(0,¢)}.

Proof.  For the proof, we shall use a positive ¢ which is somewhat smaller than
the one appearing in the formulation of the proposition; precisely how much smaller will
be made evident later. Let D.(r) = D(r) + IN0,¢) and Da.(r) = D(r) + IN0, 2¢) be
the correspondingly fattened domains (both are open and connected), and suppose ¢ is
so small that Ds.(r) @ Q. Moreover, let w. stand for harmonic measure (supported on
the boundary) for the domain D.(r) with respect to the interior point 0. Then, if u
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is a subharmonic function on Ds.(r), which is continuous on Ds.(r), we have from the
sub-mean value property of harmonic measure that

u(0) < /6D o u(z) dw. (z). (7.7)

Let 9. be a real-valued C'*°-smooth function on C, subject to the following restrictions:
o 1. is radial: . (2) = ¥:(|2]),

o 0 < 4. throughout C,

e 0 < 9:(z) holds if and only if z € (0, ), and

o [ob:(2)dX(z) =1

We use the function 1. to mollify the harmonic measure w,,

Va(z):ﬂ)a*wa(z):/ . (2 — ) dw: (€), zeC,

8D (r)

producing a positive C'°°-smooth function with support contained in Ds.(r) \ D(r). Let
u € W2%(Q) be subharmonic on Da.(r); by Sobolev’s imbedding theorem, u is continuous
on Q. From the sub-mean value property for circles and the radial symmetry of the
mollifier 4., we have that

WO < [ w2 v ase) = v 0ase), D),
whence 1t follows that

ADE(T)u(C) dw.(¢) < ADE(T)Au(z)w(z—C) d¥(z) dw. (¢) = /ﬂu(z) ve(z) dX(z).

As we combine this with (7.7), we arrive at

u(0) < /ﬂu(z) ve(z) dX(z). (7.8)

Note that the mollifier 1. can be assumed to be bounded by supg w. < 2e~2% which leads
to the same behavior for v.: suppv: < 2e7%. The weight w is bounded away from 0 on
Q, and so the function

o0 = 55

has the asymptotics 0(¢) = O(¢7?) as € — 0. The weight
we(2) =w(z) Ipy(2) + 0(e) " ve(2) + w(2) Loz Da. (r)(2), z €4,
is smaller than w, and in view of (7.8) and the moment inequality property (7.2) of D(r),
(% 406 ) ul0) < [ ()2 dE ),
Doe(r)

for all v € W?(Q) that are subharmonic on Ds.(r). This is a moment inequality for
the weight w,, which shows that for the flow associated with that weight, Ds.(r) is the
Hele-Shaw domain — up to sets of zero mass for w. d¥ — for the radial parameter value

/72 +60(e)~1. In any case, up to sets of zero area, we have that

D( r? —1—9(6)_1,(.05) C Da. (7).
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Figure 7.1: A flow domain D(r) with three contact points.

By the comparison principle (Proposition 7.5) — applicable to the less regular weight w.
by the remarks of the previous subsection — we have, up to sets of zero area, the inclusion

D(VZHIET) = DV H 0 T,) € DI+ 00T e) C Daclr).

This may not be an actual inclusion, and the reason is that a part of the boundary
of Da(r) of zero area might be contained in the set on the left hand side. However,
Ds:(r) @ D./(r) whenever 2¢ < ¢’. The assertion, with £’ in place of €, is now immediate.
]

It 18 a consequence of Proposition 7.8 that the reason why the flow stops at the
parameter value r = p(0) is that then, the boundary dD(r) hits the outer boundary 9.
We also need to know that the flow moves at a positive speed, at least in a situation with
fairly regular boundary.

PROPOSITION 7.9 Fiz anr, 0 <r < p(0), and suppose that the flow domain D(r) is
simply connected with C?-smooth boundary, with the exception of finitely many so-called
contact points. Near each contact point, we assume the boundary consists of two C?-
smooth curves tangent to each other at the point, and that D(r) is what remains when
we cut out the thin two-sided wedge located between the two curves. To each given §,
0 < d < p(0) —r, there exists an £ = £(J), 0 < &, such that — up to sets of zero area — we
have the inclusion

D.(r) C D(r+14),
where D.(r) = D(r) + (0, ¢).

The geometric situation is illustrated in Figure 7.1.
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Proof. For ¢ with 0 < ¢, note that we can actually write

D.(r) = D(r) + (0, ),
and suppose ¢ is so small that D.(r) € Q. Let w denote the harmonic measure on §D(r)
corresponding to the domain D(r) and the interior point 0. The C*-smoothness of dD(r)
(although somewhat degenerate at the contact points) entails that w is comparable to
normalized arc length measure ¢, in symbols @ < ¢|sp(r), in the sense that there exist
real constants A and B, 0 < A < B < 400, such that

Aclapry <@ < Balap(r)-

To see this, we can use the conformal invariance of harmonic measure, and the Kellogg-
Warschawski theorem on conformal maps ([36], p. 49). Let ¢ be the function ¢.(z) =
e=2y(e71z), where

B = h0- D) k), zeC

The function 1. is positive and supported on D(0,¢), and it has L'(C)-norm 1; it will
serve as a mollifier for our purposes. Tt should be observed that it is also in LP(C) for
1 < p < 2. We form the convolution

Va(z):d)a*w(z):/fm( )1/)€(Z—C)dw(<’), zeC,

and, as we shall see later, the mollifier 4. is tailored in such a way that the function v, is
bounded away from 0 on the open subset dD(r) + (0, ) of @, which constitutes a sort
of “snake” around 9D(r); the function v, vanishes off the snake. To be more precise, we
have that there exist two real constants A and B (not the same as above), independent
of e, with 0 < A < B < 400, such that

Scnm <l €D 00,9, (7.9)

For the moment we shall assume that the above estimate is valid, and indicate how to
proceed to obtain the desired assertion. We consider the function

0(c) = inf{lj((;)) .z € D.(r) \D(r)} :

and observe that D, (r)\ D(r) is contained in the snake dD(r)+1)(0, ), so that by estimate
(7.9) and the fact that 0 < infqw, this function has the asymptotics () = O(e~!) as
e — 0. The weight

we(2) =w(z) Ipy(2) + 0(e) " ve(2) + w(2) Lovp. () (%), z €4,

is then larger than w. As in the proof of Proposition 7.8, we have a moment inequality
for v,

u(0) < / u(z) ve (2) dX(2),
Q
valid for all functions v € W?(Q) that are subharmonic on D, (r). In view of the fact

that v. vanishes off the snake dD(r) 4+ (0, ¢), and hence off D, (r), it follows from the
moment inequality (7.2) for D(r) that

(r* +0()™") u(0) < / u(2) we (2) dX(2)

D.(r)
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holds, for all u € W?(Q) that are subharmonic on D, (r). This is a moment inequality
for the weight w,, which shows that for the flow associated with that weight, D, (r) is the
Hele-Shaw domain — up to sets of zero area — for the radial parameter value /7% 4+ 8(g)~1.
By the comparison principle (Proposition 7.5) — applicable to the less regular weight w.
by the remarks of the previous subsection — we have, up to sets of zero area, the inclusion

D.(r) = D(\/r2 + 9(6)_1,(.05) C D(\/r2 + 9(6)—1,w) = D(\/r2 + 9(6)—1).

The assertion of the proposition is immediate from this.
We turn to the technical work of verifying the estimate (7.9). Since @ < olsp(y), it
suffices to obtain the estimate (7.9) with p. in place of v,, where

ua(z):1/)€*0'|ap(r)(z):/fm( )1/)€(Z—C)d0'(<’), zeC

Let v(z,7,€) be the curve {{ € C: z 4+ ¢ € dD(r)}, which is a magnified and translated
version of the boundary dD(r). A change of variables yields the identity

=g [ 9 er
2e DNy(z,re) (1 — |C|2)5

with the usual agreement that the integral over the empty set is 0. The requirement that
z € D(r) +1(0,¢) is equivalent to having DN ~(z,7,¢) # B, so that we need to show that

do(¢)
A< _ 9N g 7.10
- /]D)ﬂ'y(z,r,a) (1 — |C|2)5 - ( )

holds for some positive constants A, B, whenever the integration is over a non-empty
set. The set DN ~(z, 7 ) then consists of finitely many curve segments, each of which
enters at some point of T and exits at another. We need only be concerned with very
small ¢, in which case the curve segments of N y(z,r,¢) are pretty much straight lines,
being blow-ups of C?-smooth curves. As a matter of fact, unless we are blowing up near a
contact point, there is only one curve, and near a contact point, we have two, so “finitely
many” can be replaced by “one or two”. If there are two curves, it is enough to obtain
an estimate (7.10) for each of them, so it is enough to treat the case of a single curve
segment. The curvature of the curve segment v# = D N y(z,7,¢) is uniformly of the size
O(c) as ¢ — 0. We recall that if we parametrize I N vy(z,r,¢) by { = 7(t), where ¢
runs over a bounded open interval I of R, in such a way that the parametrization 1s at
constant speed 1, |¥(¢)] = 1, then the curvature is expressed by |¥(t)| (we use dots to
indicate differentiation with respect to t). We fix the parameter interval I =Jtg,#;[C R
by requiring that tq < 0 < ¢; and that v(0) = minges |y(¢)| (there is only one point on
of minimal distance to 0, at least for small £). We calculate

d? 9 N . o

-z (M(OF) =215 + 2Re5(1)7(1) = 2+ 2Re5()3(1), ¢ Ello, 1],

where the right hand side is 2 4+ O(¢) as ¢ = 0. Hence, for small ¢,

3 &
5 < g2 (WOF) <

N | Ot

, i E]to,tl[.

The first derivative of |y(¢)|? vanishes for ¢ = 0, so that an integration of the previous
estimate yields

t S ta t € [Oatl[a

N | Ot

(h®PF) <

N | o
5|
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with an analogous estimate in the remaining interval ]¢g,0]. At the right endpoint ¢;, the
curve intersects the unit circle, and we have |y(t1)] = 1. Another integration starting
from ¢; gives as result that

3 5
TEH-)<T-hOP < (-1, telonl.

We have an analogous estimate on the remaining interval [ty, 0]. Since

/tl dt /0 dt /1 dt
1: 1: 1: 7T,
o (- S @3-1)F T Jo (1-10)F

it follows that the integral expression

do(¢) (" dt
/w (1% /t (1= @)?)>

is kept between 27/y/5 and 27/+/3, which does it. ]

=

The local existence of a Schwarz function. We now suppose in addition to the
previous context that the weight w is real analytic on Q. This will allow us to show that
the boundary dD(r) is much better behaved than if we kept the C'*°-smoothness. To
be more precise, we shall establish the local existence of a Schwarz function: for each
point z; € 2N ID(r), there is an open neighborhood N(z1) and a continuous function
S : N(z1) N D(r) — C which is holomorphic on N(z;) N D(r), such that S(z) = z on
N(z1) N dD(r). The function S is the local Schwarz function. The weight w, being real
analytic, has a convergent power series expansion near zi:

oQ

w(z)= > B(mn)(z—2)"(z-2)"

m,n=0

Let

= W(m,n) o
Wi(z) = L (z— )" (2 — )T
for z near z;, and observe that AW (z) = w(z) there. By Proposition 7.1, the function
0,U, () is of regularity class C%! away from 0 on €, in particular on N(z1), provided the
given neighborhood is small. Let R be the function

R(z) =72+

which is well defined near z; and of regularity class C”! there. The 9 derivative of R is,
in view of Proposition 7.3,

0. 7(e) = o5 0.0, (W () = Un(2) = s A (W) = Ur(2) = 2 Lo ),

for z near z;. In particular, if N(z1) is a small neighborhood of zi, the function R
is holomorphic on D(r) N N(z1). The function U, vanishes on 2\ D(r), and as 0 is the
lowest value of this function in C'1! (away from the origin), the gradient VU, must vanish
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at all interior points, that is, on the set @\ D(r). It follows that 9,U,(z) = 0 on Q\ D(r),
so that

_ 1 _ 1 =L &(m,n)
R(Z) =z + 62W(2) =z + ——~ ZH;O ni_i_l

:21—|—2—21—|—0(|Z—21|2):2—|—O(|Z—Zl|2), (711)

(Z — Zl)m(f — 21)n+1

where O(|z — z1|?) stands for a real analytic function of the given magnitude. Let us write
T(z,z) for the real analytic function near z; expressed by the right hand side of (7.11),
with notation that emphasizes the separate dependence of z and z; we think of T" as a
holomorphic function of two complex variables near (21, z1) € C*. We recapture what we
know about the function R: for some small neighborhood N(z1) of z; € QN ID(r), we
have that R is Lipschitz continuous there; moreover, on N(z1) N D(r), R is holomorphic,
and on N (z1)\ D(r), R(z) = T(z,2) = 24+ O(]z — z1]?). By the implicit function theorem,
if N(z1) is small, there exists a Lipschitz continuous function S on N(z;) such that
R(z) = T(z,5(%)), which is then holomorphic on N(z1) N D(r). This is the sought-after
Schwarz function. The criterion that allows us to invoke the implicit function theorem is
that 0,7 (z1,71) = 1 # 0.

In his Acta paper [42], Makoto Sakai mentions that the above construction of a Schwarz
function is possible. We have merely filled in the details.

Sakai’s work on the regularity of boundaries with a Schwarz function. Sakai
shows in [42] that in view of the previous subsection, we have a classification of the points
of 9D(r) N Q. There are:

e isolated points,

e regular boundary points, where nearby 0D(r) is a real analytic curve, and D(r) is
situated on one side of the curve,

e interior regular boundary points, where nearby dD(r) is an infinite (closed) subset of a
real analytic curve, and D(r) is on both sides of the curve,

e regular contact points, where nearby dD(r) consists of two real analytic curves, tangent
to each other at the point, and D(r) is the complement of the thin wedgelike set between
the curves,

e cusp points, where nearby 9D(r) is the image of a real analytic curve under a second
degree polynomial mapping, which is such that it produces a cusp at the point in question;
the set D(r) is located to the one side of the cusp, with the cusp pointing inward toward
D(r).

We shall apply this to the case D(r) @ . Then D(r) C ©, and Sakai’s classification
applies to all boundary points. It is certainly possible for D(r) to be multiply connected,
but the holes have to be pretty well-behaved. In fact, there may be at most finitely many
holes with nonempty interior, and the rest of the holes are of the types finitely many
(subsets of) interior real analytic arcs, and finitely many isolated points (the ones not
accounted for already). See Figure 7.2 for an illustration of what D(r) may look like.

Logarithmically subharmonic weights. Assume in addition to the previous setting
— with 9Q C*°-smooth and w strictly positive and C'*°-smooth on Q and real analytic on
Q — that € is simply connected and w logarithmically subharmonic. We shall show that
then whenever D(r) @ €, then D(r) is simply connected and has a boundary that is a
real analytic Jordan curve.

The following lemma will prove instrumental.

LEMMA 7.10 LetY be a C*°-smooth real-valued function on D\ {0}, with a logarithmic
singularity at the origin, such that A*Y = Ady — p on D, where p € C*(D) has 0 < p
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Figure 7.2: A generic flow domain D(r) according to Sakai

on . Suppose that Y|p = 0, and that

36_nY§0 on T

bl

where the normal dertvative is in the interior direction. Then

Y(z) <log|z|*+1—|2)* <0, z € D.

Proof. We use the biharmonic Green function

2
D0 = Je = CPlog [T + (=PI =), (50) €7,

and the associated harmonic compensator function

oy 1 — |2¢]?
H(Z,C):(1—|C|)m, (z,{) eDx D,
to represent the function Y:

V() = [ TEQAYQaS© +5 [ 162)0,Y(0dr(0),

where we condensed the notation for the normal derivative, and think of the integration

in the sense of distributions. As the harmonic compensator is positive, the expression on
the right hand side only gets larger if we drop the second term:

Y(z) <

DF(Z,C) (Ado(C) = p(€)) d=(¢)

= AcT(2,0) - DF(z,C)ﬂ(C) dX(¢) < AcT(2,0) = log 2| + 1 — |27,
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Figure 7.3: The mapped flow domain B

where we have also used the fact that I' is positive. The proof is complete. [

Logarithmically subharmonic weights: ruling out holes and cusps. We now
assume  to be simply connected, and fix an », 0 < r < p(0). Then D(r) @ Q, and
Sakai’s classification applies to all boundary points of D(r). Let ﬁ(r) stand for the
simply connected domain obtained from D(r) by adding all the interior holes, both the
ones with nontrivial interior and the ones that are parts of arcs as well as the isolated
points. Then the boundary dD(r) is a closed real analytic curve, with the exception of
finitely many contact and cusp points. Let ¢ : D — ﬁ(r) be the Riemann mapping which
sends 0 onto 0, the “center” of the generalized disk D(r) (it is unique up to rotations of
D). By the regularity of the boundary, ¢ extends analytically to a neighborhood of D,
with the cusp points corresponding to simple zeros of ¢’. We then consider the domain
B = ¢71(D(r)), and note that '\ B is a compact subset of . In general, B may look
like what is illustrated by Figure 7.3. We shall prove that B = ID. Introducing the weight
v=r"2wo¢|¢'|?, which is logarithmically subharmonic on D, we obtain from (7.1) that

h(0) = /Bh(z) v(z) dX(z), (7.12)

for all harmonic functions on B of the form h = go ¢, with ¢ € W?(Q) harmonic on D(r).
We also have the corresponding inequality for subharmonic functions. The new weight
v is real analytic on D, with zeros at the finitely many points of T corresponding to the
cusps; elsewhere, it is strictly positive.

We can interpret the domain B as appearing from an obstacle problem. After all, the
function V, o ¢ has a least superharmonic majorant on D), and one checks that V;. o ¢ is
that majorant (by Proposition 7.7, with ' = D(r), we have that on D(r), V, is the least
superharmonic majorant to V,; the conformal invariance of the operation of taking the
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least superharmonic majorant then proves the claim). We calculate that
A(V; 0 9)(2) = AV (6(2) 6/ = r20u(z) —wo b(:)|6(5)2, = €D,

so that if we define
W(z) = G[dy — v](z) = log |z]? — / G(z,¢) v(€) d=(C), z e,
D

where ( refers to the Green potential operator and kernel function for the disk D,
z—C ?

1—2(

G(z,¢) = Gp(z,¢) = log

we obtain W = r=2V, 0¢ — =2 P[V, 0 ¢|1], where in general, P[f] expresses the harmonic
extension to [ via the Poisson integral formula of the function f given on the boundary
T. Let W stand for the least superharmonic majorant to W on I; by the above, W=
=2V, 0 — 2 PV, o ¢|1].
For 1 <t < 400, let

Wils) = Gledo = v)(z) = tlog i = [ Gl wl0)dse), =€,

and let /Wt be 1ts least superharmonic majorant on ). We are interested in the open sets
) ={zeD: Wi(z) < Wi(2)}.

By Proposition 7.2, the set B(t) is connected for each ¢, and by Proposition 7.5, it increases
with ¢. The left end point ¢ = 1 corresponds to dropping the parameter: W; = W and
B(1) = B. The function W; vanishes on the unit circle T. If W;(z) < 0 throughout D,
then the least superharmonic majorant is trivially /Wt(z) = 0. In this case, we also have
9, Wi(z) < 0 on T (interior normal derivative). Lemma 7.10 provides a converse to this
statement: since AW, =t Ady — Av, and v is subharmonic, we obtain from 8, Welr <0
that

Wi(z) <t (loglz|* +1—|2]*) <0, z €Dy (7.13)

it follows that B(¢) = D in this case. In other words,

o supp Wy <0 if and only if supy 8, W, <0, and
o if supp 0, W <0, then W; < 0 on D, and B(¢) =D

If supp 8, W < 0 holds for ¢t = 1, then we are done, for then B = B(1) = ID. So, let us
suppose instead that 0 < supp 0, W;. The formula defining W; yields

6nWt(2) :—Q(t—1)+8nW1(Z), ZET,

and since 9, Wy is in C°°(T) and real-valued, there exists a critical value t =;, 1 < #; <
400, such that 0 < supp 9, W; for 1 < ¢ < t; and supp I, W < 0 for ¢; <t < 400; in
fact, ty = 1+ % supy Op, We.

The set D\ B(?) is called the coincidence set for the obstacle problem, and each point of
D where the smallest concave majorant of W; touches the graph of the function definitely
belongs to this set. In particular, any point of D where W; attains its maximum is in
D\ B(t). Since we know that D\ B @ I from Sakai’s classification, and D\ B(t) gets
smaller as ¢ increases, it follows that any such maximum point is in the compact I\ B.
For each t with 1 <{ < {1, the function W} attains a positive maximum on I. Let us say
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that the maximum is attained at the interior point z(¢), which then must belong to D\ B.
We choose a sequence 73, j =1,2,3,..., with 1 < 7; <%y, and limit r; — #; as j — 4o0.
The points z; = z(7;) are in D\ B, and a subsequence of them tends to a point z., € D\ B
(by compactness). We have that 0 < Wy, (z;), so that in the limit 0 < W}, (20). But for
t =11, (7.13) holds, which does not permit such a point z., to exist. So, something must
be wrong, and that something is the assumption that B was not all of .

So we now know that B = I, and hence that D(r) is simply connected. We shall
now demonstrate that the boundary of D(r) fails to have cusp points. We also know that
(7.12) holds for all h of the form h = g o ¢, with ¢ € W?(Q) harmonic on D(r). If h is
a C*°-smooth function on I, holomorphic on I, with the property that it is totally flat
(meaning that all derivatives of finite order vanish) at the finitely many points of T which
are mapped onto cusp or contact points under ¢, then h is of the above form ¢ o ¢, with
a holomorphic g. The identity (7.12) is preserved under closure with respect to the norm
of L}(ID), and since the above-mentioned class of h is dense in the Bergman space A'(ID),
we have (7.12) for all h € A'(ID). Taking complex conjugates in (7.12), and forming sums,
another approximation process yields that (7.12) holds for all & in the harmonic Bergman
space HL'(ID). In other words, v is a reproducing weight for the origin. It follows from
Remark 6.9 that 1 < v|y, and, in particular, that v has no zeros on T. Consequently, the
simply connected region D(r) = ﬁ(r) cannot have any cusps.

Logarithmically subharmonic weights: ruling out contact points. We turn to the
problem of showing that for logarithmically subharmonic weights w, we do not even have
contact points in Sakai’s classification of the boundaries dD(r) arising from the weighted
Hele-Shaw flow.

We continue to work within the set-up of the previous subsection, where we were able
to rule out the possibility of holes in the Hele-Shaw domain D(r) for 0 < » < p(0). Fix
an r with 0 < r < p(0), and note that by the results of the previous subsection, D(r)
is simply connected and the boundary dD(r) consists of a real analytic curve, with the
possible exception of finitely many regular contact points, where locally, the boundary 1is
the union of two real analytic curves tangential to each other at the point, and D(r) is
situated on both sides of the thin wedge defined by the two curves. We refer to Figure 7.1
for an illustration of the situation. We claim that even for slightly larger v/, » < v < p(0),
the set D(r') will have merged at all the contact points, and that therefore, D(r') cannot
be simply connected anymore. But D(r') has to be simply connected just as D(r), again
by the results of the previous subsection, which makes it impossible for the set D(r) to
have contact points to begin with. We turn to the claim. According to Proposition 7.8,
the flow domain D(r') is just a little bigger than D(r) for #' close to r, and the only place
where topological changes are possible is in small neighborhoods of the set of contact
points. On the other hand, by Proposition 7.9, D(r') does indeed contain a whole little
neighborhood of each contact point, at least up to sets of zero area measure. But in view
of the known regular nature of the boundary of D(r'), we can remove the proviso. It
remains to show that if the set of contact points for D(r) is non-empty, the domain D(r)
now has to possess holes. Let us study an outer contact point, where to the one side, we
have the unbounded component of C\ D(r), and, to the other, a bounded one. As the
contact point fuses, at least part of the bounded component remains, and it now is a hole,
because there is no longer a path to the unbounded component. The existence of holes in
D(r") is immediate.

In conclusion, we have obtained the following theorem.

THEOREM 7.11 Let Q2 be a bounded domain in C, with C°-smooth boundary, and
let w be a C*-smooth strictly positive weight function on Q. Let the domains D(r) be
defined in terms of least superharmonic majorants, for 0 < r < 4+oo. Then there is a
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number p(0), 0 < p(0) < +oo, such that D(r) @ Q for all v, 0 < r < p(0), and such that
this fails for all v, p(0) < r < 4o00. The domains D(r) increase continuously with v for
0 < r < p(0), and as v — p(0), a portion of dD(r) approches 02. If in addition Q is
simply connected, and w is real analytic and logarithmically subharmonic on Q, then for
each r, 0 < r < p(0), the domain D(r) is simply connected, and its boundary 0D(r) is a
real analytic Jordan curve.

Hele-Shaw flow domains and w-disks. Fix an r, 0 < r < p(0), and for convenience
of notation, drop for the remainder of this subsection the indication of r: we write U and
D in place of U, and D(r). Suppose D* is a precompact subdomain of  containing the
origin, such that the reproducing property

rzh(zo) = / ) h(z)w(z) dX(z)

holds for all bounded harmonic functions A on D*. We need to show that D* = D,
where we allow the two sets to differ by an area-null set. We proceed as in [13], recalling
that D is simply connected and has smooth boundary. We shall prove that after a slight
regularization of D* 9D* C D, which leads to the conclusion that D* C D. From the
observation that D* and D both have w d¥-area 2, the desired equality D* = D readily
follows. We form the potential function

U*(z) = G(z,¢) w(C) dX(¢) — r*G(2,0), z€Q,
D+

and observe that it is of class C1® away from 0, for each o, 0 < o < 1. In contrast with
the function U, U* may attain negative values. The function U* vanishes on Q \ D*. To
refine this conclusion, we can run the analogue of the argument surrounding (7.3) with a
¢ such that A¢ equals the sign of U* on @\ D* (the sign function takes on the values
1,—1,0) and vanishes on D*. The conclusion is that U* = 0 area-almost everywhere on
Q\ D*. As a consequence, VU™ = 0 holds area-almost everywhere on \ D*. The set
where at least one of U* and VU™ differs from 0 is an open subset of the closure of D*,
and if we include it in D*, we have at most increased D* by an area-null set. So let us
do that, and notice that D* still is connected and precompact. The difference function
U* — U is subharmonic on D*; in fact,

A(U*(z)—U(z)) =w(z) (1[)*(2)—1[)(2)), 2z €9,
holds in the sense of distributions. It is negative on the boundary, for U* vanishes there:
U (z) = U(z) = =U(z) <0, z€0D.

By the maximum principle, therefore, U* —U < 0 on D*. In particular, U* < 0 on D*\ D.
We also know that U* = 0 on Q\ D*. Suppose we can find a point z; € 9D* \ D. Then
U*(z1) = 0 and U* < 0 in some small neighborhood N(z1) of z;. The function U* is
subharmonic on © \ {0}, in particular on N(z1), and hence, by the maximum principle,
U* =0 on N(z). But then AU* = 0 on N(z;) as well, which does not square with the
definition of U*, according to which AU* = w1p+ — #285. The contradiction obtained
shows that D* C D. The argument is complete.

Classical Hele-Shaw flow. We still need to understand analytically how fast the simply
connected domains D(r) grow with the parameter r. TLet r, 7' be related as follows:
0 < <r<p(0). Then D(r') C D(r) € £, and according to (7.1), we have

MO = =z | o M) 902)
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first for all harmonic functions k on D(r) with extensions to W?2(£2), and after an approx-
imation argument, using the structure of D(r) obtained in Theorem 7.11, for all bounded
harmonic functions £ on D(r). As v’ — r, the area of the difference set D(r)\ D(r') tends
to zero, and we expect the measure

1
to converge in the weak-star topology of measures to a probability measure w, supported
on 0D(r) with the reproducing property

h(0) = /6[)( )h(z) dw, (z),

for all bounded harmonic functions h on D(r). Luckily, there is only one measure with this
property, namely harmonic measure. More precisely, to, must be the harmonic measure
for the point 0 with respect to the domain D(r). Let us make the simplifying assumption
that D(r) is simply connected, so that there exists a Riemann map ¢, : D — D(r) taking
0 to 0. By the invariance of harmonic measure, dw,(¢,(z)) is the harmonic measure for
the origin with respect to the unit disk, which is known to coincide with do(z), normalized
arc length measure on T. It follows from the above considerations that for 7’ close to r,
D(r) should be a simply connected domain, too, such that D\ ¢-1(D(r')) is an annular
band of variable width — with outer boundary T — the width at a given point { € T being
given by (r—7') 0,(¢) + o(r — r’), where the second term expresses a small error, and the
local width function g, () is expressed by

r

G AGE

The classical Hele-Shaw problem — the terminology is from Richardson [38] — involves
having the constant weight w(z) = 1, as it corresponds to having constant distance in the

Or (C)

CeT.

narrow channel between the two confining plates in the physical model. As such it was
treated by Vinogradov and Kufarev [49]. The method is to use the formulas for conformal
mappings of nearly circular domains, as described in Nehari’s book ([33], pp. 263-265),
which, by the way, relies on Hadamard’s variational formula for the Green function for the
laplacian [14]. One obtains the integro-differential equation (this involves deciding more
precisely which conformal mapping ¢, we want, because the condition that ¢,.(0) = 0
only specifies ¢, uniquely up to rotation of I)

Ao o [CEe de(Q)
ar =0 G) | S e R

Some terminology: a map ¢ : £ — F', where £ and F are closed subsets of C, is said
to be conformal if ¢(F) = F and ¢ extends to a conformal map from a neighborhood of
E onto a neighborhood of F. If we prefer not to mention the set F'| we simply say that
¢ 1s conformal on F.

Vinogradov and Kufarev [49] obtained the result below in a special case (when the
weight w is the square of the modulus of the derivative of a conformal mapping on ﬁ) The
more modern approach, due to Reissig and von Wolfersdorfer [37], appeals to the Nishida-
Nirenberg nonlinear Cauchy-Kovalevskaya theorem, and it is more easily modified to lead
the statement below.

zeD. (7.15)

THEOREM 7.12 Suppose that the weight w s defined and strictly positive in a neig-
borhood of the closed unit disk D, and that it s C'™-smooth on I, and real analytic
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on a neighborhood of T. Let us take as initial function for r = 1 the identity mapping
$1(2) = z. Then there exists a small interval 1(e) =]1 — e, 1+ [, with 0 < e, such that
the following is true. There is a solution ¢, of (7.15) for r € I(€), with the property that
the mapping (r,z) — ¢,(z) extends to a holomorphic function of two compler variables
on a neighborhood of I(g) x D. Moreover, for r € I(¢), the mappings ¢, are all conformal
from D onto D(r), where D(r) is a simply connected domain D(r) whose boundary is a
real analytic Jordan curve. For each pair of parameter values r,v' € I(), with r < ', we
have that D(r) @ D(r'). Finally, if w has the reproducing property on the unit disk

h(0) :/Dh(z)w(z) d¥(z),

for all bounded harmonic functions h on ID, then it also has the analogous reproducing
property on D(r), forr € I(g):

for all bounded harmonic functions h on D(r).

It should be pointed out that in the context of the above theorem, the measure (7.14)
does converge to the harmonic measure w, in the weak-star topology of the Borel measures

on £.
Proof. We indicate the modifications needed for the approach of [37]. Let $; denote

the Herglotz transform,

_ [ots
T¢— %

H+171(2) f(Qdo(C),  z€D,
where f is assumed to be in L!(T).

Let 8, 0 < 8 < 1, be so close to 1 that near the unit circle T, w is of the form
w(z) = wh(z,%), where w! is a holomorphic function of two variables on the product
domain obtained from two annuli,

(D(0,67 ")\ D(0, 8)) x (D(0,6~")\ D(0,6)).

Now let f be defined and holomorphic on a neighborhood of D, and assume it is
zero-free. We can then let F' be the primitive of its reciprocal,

_ [ i
F(Z)_ 0 f(f)’ ZE]Da

and note that the composition wo F makes sense on D as long as F maps D into (0,671,
which 1s expected to be the case provided f does not deviate far from the constant function
1. Let ¥ be the non-linear operator

s =04 [, cen,
and put
SN =2 TN — £(6) 7 (T, =D
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The evolution equation (7.15) for the Hele-Shaw flow can be expressed in terms of the
function

1/)7“(2): 7 ) z e,

using that
Z dg Z ,
= d¢ = 6,(),
5= eod=e

and it leads to the initial value problem

%m =rg[,], =1 (7.16)

We shall see that the function v, 1s characterized uniquely by this equation. The non-
linear Cauchy-Kovalevskaya theorem due to Nishida-Nirenberg involves setting up a Ba-
nach scale of spaces, and we make the same choice as Reissig and von Wolfersdorfer: the
spaces X, for 0 < ¢ < 1; here, X; consists of all functions holomorphic and continuous
up to the boundary on the disk I(0, A¢), with Ay = (1 — t)Ag + tA1, for some fixed values
Ao, A1, 1< Ap < Ay < 400, close to 1. We use the uniform norm on I(0, A;) as norm on
X:. Suppose f is close to the constant function 1 in the norm of X;: ||f — 1]|x, < § for
some small §, 0 < & < 1. It follows that the function F' is close to the coordinate function
z, because they coincide at the origin, and their derivatives are close:

1 -1
Hf 1th <d(1—d8)".
In particular, if § is small, and A; is close to 1, the image of the annulus D(0, A;) \ I
under F is contained inside the other annulus (0, 6~1)\ (0, §), so that w!(F(z), F(2*))
is holomorphic and continuous up to the boundary as a function of z in E(O, A) \ .
Here, for z € C, we use the notation z* = z~! for the point reflected in the unit circle T.
Changing the path of integration, as permitted by Cauchy’s formula, we write

1 C+z  fIOFEC) &
TG = 5 /m(w (—z WH(F(2), F(z)) ¢’

This provides an analytic extension of T[f] to I)(0, A;) given that f € X, is sufficiently
close to the constant function 1. As in [37], the non-linear operator ¥ satisfies

ITfllx, <K, and

for some positive constants K, L, whenever f and ¢ belong to the ball {f € X; : ||f —
1||x, < d}, provided ¢ is small. And as in the Reissig-von Wolfersdorfer paper [37], these
properties of the operator ¥ imply that the operator r £ satisfies all the requirements of
the abstract non-linear Cauchy-Kovalevskaya theorem, due mainly to Nishida-Nirenberg.
It follows that the initial value problem (7.16) has a unique C'! solution with values along
the Banach scale, on an interval around 1. The proof of Nishida’s theorem [35] is based on
the well-known Picard iterative process from the theory of ordinary differential equations.
Taking into account the simple real analytic dependence on the parameter r in the initial
value problem (7.16), and the real analyticity of the £[f] with respect to f, as an operator
acting on the given scale of Banach algebras X;, an analysis of the Picard scheme shows
that the solution is real analytic in » near 1, with values in the Banach scale. This is an
existence statement, so we can take the values in a fixed space, namely the largest space
in the scale: Xj.
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We turn to the further properties of ¢,. For r close to 1, the function ¢/ is close to
the constant 1 uniformly on a fixed neighborhood of ID, and hence ¢, is univalent on .
We could also have used the lemma on p. 187 of [49], which in addition guarantees that
D(ry @ D(r') for r < v'. For r close to 1, the mapping ¢, maps I onto D(r), which
differs from [ by an annular band of variable width, where the width at a point { € T 1s
given by the expression

(r=1)e(¢) +o(r —1),
the little ordo being taken as r — 1. The width function g(¢) is obtained as follows:

7«:1):L cet.

o0 = Re (C o] ) = i

Consequently, for a function A harmonic on D,

d

o o) h(z)w(z) dX(z)

— 2 h(0),

r=1

and after having applied an appropriate conformal transformation, we get the correspond-
ing statement for general r, near 1:

d

- h(z) w(z) dE(z) = 2r h(0).
D(r)

Integrating this equality with respect to r, we arrive at
r? h(0) = / h(z)w(z) dX(z),
D(r)

for h harmonic on a neighborhood of I and 7 close to 1. An approximation argument
extends this identity to all bounded harmonic h on D(r). The proof is complete. [

Since the reproducing property (7.1) alone determines the Hele-Shaw flow domains for
logarithmically subharmonic w, we have the following theorem.

THEOREM 7.13 In the context of Theorem 7.11, with Q@ simply connected and the
logarithmically subharmonic weight w strictly positive and real analytic on Q, there is a
continuous sequence of conformal maps ¢, : D — D(r), for 0 < r < p(0), which depends
m a real analytic fashion on the parameter r. Fach ¢, extends to a conformal mapping
from a neighborhood of I onto a neighborhood of D(r). To a given 1y, 0 < 7o < p(0),
there is a small open interval I(ry) around it such that all the functions ¢, extend as
conformal maps to one and the same neighborhood of D for r € I(rg). The conformal
maps ¢, satisfy the evolution equation (7.15).

8 Hadamard’s variational formula

As before, we let Q be a simply connected bounded domain in C with C"*°-smooth bound-
ary. Moreover, w is a real analytic weight function on Q with a C'™ extension to €, which
is strictly positive there, and we suppose that logw is subharmonic on €2. By the previous
section on the weighted Hele-Shaw flow, we have, given a point zy € £2, a real analytic
continuous sequence of simply connected domains D(r), indexed by r, 0 < r < p(zp), gen-
eralized disks of “radius” r about zy, whose boundaries are real analytic Jordan curves,
determined by the reproducing property (7.1), with the origin 0 replaced by z.
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The variational formula for the weighted biharmonic Green function. Let I, ,
be the Green function for the weighted biharmonic operator Aw™'A on D(r):

Azw(z)_lAsz,T(Z,C):(5§(Z), ZED(?”),
Lyr(2,¢) =0, z € dD(r),
On(:)lwr(2,¢) =0, z € 0D(r).

It is intuitively clear that the Green function Iy, , varies continuously with the parameter
r; in fact, this can be made rigorous, for instance with the methods of Section 5. We shall
derive a variational formula, originally found by Hadamard in 1908, which describes the
development quantitatively. We follow the pattern from Hedenmalm’s 1994 paper [20].
By the elliptic regularity theorem of Morrey-Nirenberg [32] (for details, see Section 3),
the Green function I'y, , extends real analytically to a neighborhood of the set D(r) x
D(r) \ §(D(r)). In particular, for fixed ¢ € D(r), [, , solves the differential equation
Aw™IAT, +(-,{) = &¢ on a neighborhood of D(r) \ {¢}. We consider two parameter
values v, 7/ with 0 < r < ' < p(z), and note that by (3.4) and (3.2), with obvious
notations (for instance, G, is the Green function for A on D(r)),

Fur(2,0) = /D( (G 2) 4+ H & 2) (G 6.0+ B (€,0) (6) 4560,
for (z,¢) € D(r) x D(r), and for (z,{) € D(+') x D(+'), we have
Lap (0= [ (G614 Ml 2) (G (6:0) + M (6.0)) (0 45(6)

As r < ', we have the inclusion D(r) C D(r'), so that forming the difference of the above
relations, we obtain

Fw,r’(ZaC) - Fw,r(ZaC)
-/ gy (Gr(62) T Harl€ ) (Grl€ ) Ha o (€,0) (O 426, (51

whereby (z,¢) € D(r) x D(r), but, if »' is sufficiently close to r, so that we can use the
elliptic regularity, we can take (z,{) € D(#') x D(r'). From the subsection on the classical
Hele-Shaw flow in Section 7, we know that as v’ — r, the measure

1

= Loroin(E)w(z) dB()

converges (in the weak-star topology) to the harmonic measure @, for the point z in the
domain D(r), which is supported on dD(r). Dividing both sides of (8.1) by ' — r, and
taking the limit as ' — », we find that since the Green function G, vanishes when one
of the variables is on the boundary dD(r),

d

EFM’T(Z’C) = Qr/aD(r) Hyr (& 2)Hor(€,¢) dw, (€). (8.2)

Some further explanation is needed here. We need to know a priori that the kernels Iy, -,
H, ,, and G, depend fairly smoothly on the parameter r. It is convenient to use the
conformal map ¢, : D — D(r) to pull back the situation to the unit disk. We then have
the identity

er(ZaC):Fw,r(¢r(2)a¢r(C))’ (Z,C)EDX]D,
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whereby w, = w o ¢, |#.]?, and the left hand side expresses the Green function on the
unit disk for the weighted biharmonic operator Aw-'A. By Theorems 7.12 and 7.13,
the weight wy(z) is real analytic (and strictly positive) in the coordinates (z,7) on a
neighborhood of Dx]0, p(20)[. The Green function G, is easily expressed in terms of the

Green function GG = G for the laplacian on the unit disk,

G(ZaC):Gr(¢r(Z)a¢r(C))’ (Z,C)EDX]D,

and this identity gives us fairly complete regularity information for G.. As far as I'y,, is
concerned, we can turn to the proof of the elliptic regularity theorem of Morrey-Nirenberg
[32], which gives us more quantitative information concerning the domain of convergence
for the power series used to represent the real anaytic functions. It can be shown that
the kernel T, (z,() is real analytic in the coordinates (z,¢,r) on a neighborhood of the
product set

(D" \ 6(D)) x]0, pl=0)],

which then leads to the analogous information that H,, (z, () is real analytic in the coor-
dinates (z,(,r) on a neighborhood of the slightly bigger set

(D" \ 6(T))x]0, p(=0)L,

This justifies the limit process leading up to (8.2).

We want to turn the differential equation (8.2) into an integral equation. Note that
when one of the variables z,{ is on the boundary dD(r), and the other is in the interior
D(r), the Green function for Aw™'A vanishes: ['y, ,(z,{) = 0. As we integrate (8.2) with
respect to r, the following formula emerges:

Tu(2,C) = / / Ha f(62) Ha y(6,0) dwy(€) 20do, (8.3)
max{R(z),R(¢)} /8D(¢)

for (z,¢) € D(r) x D(r). Here, R(z) stands for the parameter value of g for which the
boundary of D(g) reaches the point z:

R(z)=inf{e: z € D(o)}.

We know from Section 3 that if the Green function I',, , is positive on D(r) x D(r), then
the corresponding harmonic compensator H, , is positive on dD(r) x D(r), and since
the latter is harmonic in the first variable, it is then positive throughout D(r) x D(r).
Hadamard’s variational formula (8.3) provides a kind of converse to the first implication:
if all the harmonic compensators for the subdomains D(g), 0 < ¢ < r, are positive, then
the Green function I,  is positive.

The variational formula for the Green function for the laplacian. We turn to
Hadamard’s better-known variational formula for G, ([33], p. 46), which has important
applications to the theory of conformal mappings. Let P, be given by

Pr(z,¢) = —% On(cy Gr(2,¢), (z,¢) € D(r) x dD(r),

the normal derivative being taken with respect to the boundary dD(r) in the interior
direction. This function then serves as a Poisson kernel on D(r). For instance, we have
the identity

dw, (z) = Pr(z0,2) do(z), z € 0D(r).
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The variational formula states that

d B dw, (£)
FOE0= [ PEORCOTHL (0D <D0
and in integral form, it becomes
" dw,(€)
Gr(z,0) =— P,(z,€&) P,(¢, £>2 90do, 8.4
=0 Aax{R<z>,R<c>}/aD<g> B Ty e 0

for (z,¢) € D(r) x D(r). We may combine this with equation (3.3), to get

Hor(C 2 —/D /maX{R /aD( QurlC)

X Py(z.€) Py(n, ) 2=elE)

w(€)

20dow(n) dX(n),
which transforms to

Ho\(C2) / /w / Qu (¢, 1) Py(n, €) w(n) dS()

x Py(z,€) dfé(f) 20do,  (z,¢) € D(r) x D(r). (8.5)

9 Positivity of the weighted biharmonic Green func-
tion

We continue the presentation from the previous section on Hadamard’s variational for-
mula. We recapture: €2 is a simply connected bounded domain in C with C'*°-smooth
boundary, and the weight w is real analytic on Q and has a C'* extension to £, which
is strictly positive there; we also suppose that logw is subharmonic on €2. The domains
D(r), indexed by r, 0 < r < p(zg), are the generalized “disks” about a fixed point z; € Q2
of radius r arising from the weighted Hele-Shaw flow, and these constitute a real analytic
continuous sequence of simply connected domains, whose boundaries are real analytic
Jordan curves. Tt is a consequence of formula (8.5) that if we can prove that

0< /D( )Qw,r(Can) PQ(Uag)w(ﬁ) dE(n), (g’c) c 3D(g) « D(?“), (9.1)

whenever 0 < ¢ < 7 < p(z0), then the harmonic compensator H, , is positive on D(r) x
D(r). In the above integral, the function @, (¢, -) is harmonic on D(r), and in particular,
bounded there, and the Poisson kernel P(-,£) is area summable on D(g). We conclude
that the integral in (9.1) makes sense.

We shall obtain the following result, which is equivalent to (9.1).

THEOREM 9.1 Fiz ¢,r such that 0 < ¢ < r < p(z0). Let h be a positive harmonic
funetion on D(p), and define

- /D Qe 0@, 2 e D),

Then h, is positive on D(r).
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Proof. It suffices to obtain the result under the proviso that h is harmonic and
strictly positive on D(g). Since Qu ,(20,) = v~ (this is a consequence of the reproducing
property of the flow domain D(r)), the value of the function h, at the center point zy is

1 N
7 [, MO a0 = ki),

hy(z0) =
7“( 0) 72
which is positive. We split the proof into three parts.

Part 1: continuity of h, in r. The function h;, is the orthogonal projection of h1p,)
~ interpreted to vanish on D(r) \ D(g) — onto the harmonic subspace HL?(D(r),w) in
L*(D(r),w). From the smoothness of the harmonic compensator H, , in the r variable
alluded to above, and the corresponding fact for the weighted harmonic Bergman kernel
Q. ,r as deduced from the identity

Qur(2,¢) = —w(2) ™ AcHu 4 (2,€),

it is immediate that h,(z) is real analytic in the coordinates (z,7) on (a neighborhood of)
the set

{(z,r) c2€D(r), r E]g,p(zo)[} U {(z,r) cz€D(r), re [g,p(zo)[}.

We need to investigate the continuity of h,(z) near the left end-point » = g. By the
reproducing property of the flow domains with respect to the weight, we have that

/D( )war(z,é’)w(é’) d¥(&) = o Qur(z,20) = i—z, z € D(r),
and hence
ho(z) - —h / Qur(2:6) (W) = () () dS(©), =€ D), (9.2)

provided r is so close to g that h is defined as a harmonic function on D(r). We have that
R(E) — h(2) = O(|z — €|) for z,¢ in some fixed neighborhood of D(g), so that part of the
singularity of the kernel @), , is neutralized by the appearance of this factor on the right
hand side of (9.2). As before, let ¢, : D — D(r) be the Riemann map taking 0 onto zg,
and let w, stand for the pulled-back weight on the unit disk,

wp(2) = r7*wo dn(2) |01(2)]7,

which is reproducing for the origin as well as logarithmically subharmonic. ;From the
conformal invariance of the reproducing property of the weighted harmonic Bergman
kernel, the following identity can be deduced:

r? Qw,r(¢r(2)a¢r(C)> :Qwr(ZaC) :2ReKwr(z,C) -1, (Z,C) eDxD. (93)
We apply Theorem 5.1 to K., and obtain as a result that

P Qur (60(2), 60(O)] = |Qun(2, )] €14+ ——==, (5,0 €DxD. (94)

We rewrite (9.2) in terms of the variable ¢, ¢,({) = ¢, and get
2
hy o ¢p(2) — 7z hodr(z)
= [ Qulen(2):6,(0) (H(6r(O) ~ hlér () (O dEQ), 2 €D,
~H(D(0)
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where ¢-1(D(g)) C . Given the estimates mentioned previously, it is easily deduced
from this identity that h, o ¢, = h o ¢, uniformly on ID as r — g¢. In particular, since we
assume h to be strictly positive on D(p), it follows that h, o ¢, is uniformly (in r) strictly
positive on D for r in some short interval |g, ¢ + 6], with 0 < J.

Part 2: the derivative of h, o ¢.. The derivative of the composition h, o ¢, with
respect to the parameter r 1s, by the chain rule,

d
Ehr O¢7‘(Z) =

dh, Oh, de,
o o¢r(2) +2Re ( P o ¢r(z) I (z)) , (9.5)
where the partial derivatives with respect to r and z correspond to thinking of the function
hy as a function of two variables: h,(z) = h(z,r). The derivative of ¢, with respect to r
is supplied by formula (7.15), which simplifies to

dor 2 o [CHzdoQ) oz, oo (1)
e ) et ETACE TS [ [ONEL S

r Wy
where the symbol $ stands for the Herglotz transform. We would like to find a way
to express the partial derivative d.h.. Let 7/, ¢ < 7' < r be so close to r that h,
extends harmonically and boundedly to D(r). Then, from the reproducing property of
the weighted harmonic Bergman kernel, we have

hei(z) = / Qur(2,8) hyr (E)w(&) dE(E), z € D(r). (9.7)
D(r)
On the other hand, again by the reproducing property,
[ Qer( ) Qe Ll 56 = Qur(=.0), (2,0) € DO x DI
so that
| Qe s as©
D(r)
= [ 09 [ Quole QMO a0 w(O) )
D(r) Do)
= /D( )war(z,(’) h(Q)w(C) dE(C) = hy(z), z€D(r). (9.8)
4
Forming the difference between (9.7) and (9.8), we obtain
he(2) — hpi(2) = —/ Qur(2,8) hp (E)w(&) dXE(E), z € D(r). (9.9)
D(r)\D(r')
In view of the observation made following Theorem 7.12, to the effect that the measure

o) Lpenpr (2) w(z) d¥(z)

converges weak-star to the harmonic measure w, on the boundary for domain D(r) with

respect to the interior point zp as ' — r, it follows from (9.9) that

h,
or

(Z) =—2r /(’)D( )Qw,r(zag) hr(g) dwr(g)a z € D(?“)

55



Shifting the coordinates back to the unit disk, we obtain, keeping in mind (9.3),

Oh, 2
Sro0rls) === [ QO 06, dol0). zeD (9.10)

By the Poisson integral formula for harmonic functions in I, we have the representation

b 0 61 /"'2 0 6,(()do((),  zED
r |1 ZC|2 r r b) b)

which after an application of one of the two Wirtinger differential operators leads to

oh, ¢
o) Groonl) = [ T esQdel0) zeD (o)
In view of (9.6), (9.10), and (9.11),the identity (9.5) becomes
L hoon(s) =
2 1 2
;/T{Re (fj+ [E] (2) m) - Qwr(Z,C)} hy 0 ¢:(C)do(C), 2 €D

(9.12)

As in the proof of Corollary 6.10, we notice the appearance of the Kcebe function. Suppose
for the moment that for some value of the parameter r, o < r < p(zg), the real analytic
function h, o ¢,|r vanishes along with its (tangential) derivative at some point z; €
T. Then h, o ¢,(z) = O(]z — 21|*) as z approaches z; along T, which counterbalances
the singularities of the Kcebe function and the weighted harmonic Bergman kernel, as
estimated by (9.4), at least when z € I approaches the boundary point z; radially.
Taking into account the well-known boundary behavior of the Keebe function, we obtain
in the limit that (the real part of the Herglotz transform is the Poisson integral, with
well-known boundary values)

d 2 1 1
Shoonten=-2 [{ s im0 hoanlQdn). (013)

If, in addition, 0 < h, o ¢, on D, well, then, by invoking Corollary 6.10, which states that

1 1 1
Qun(21,0) < = (wT(zl) +wr(C)) IC— 212 ¢eT\{zn},
we can assert that
2 1 1 d
1<} L@ Roap o+ 00 < oot (914)

The leftmost inequality holds because h, o ¢, cannot vanish identically — after all, we

know that 0 < h,(z0) = h, 0 ¢,(0).
Part 3: the finishing argument. Consider the function
h(r) = min{h, () : 2 € D(r)} = min{h, 0 ¢,(2) : z € D}, 0 < r < p(zo),

which, by the results of Part 1, extends continuously to the interval [g, p(z0)[, and is
positive at the left end-point: 0 < h(g). We shall demonstrate that 0 < h(r) holds for
all ¥ € [o, p(2z0)[, which is actually slightly stronger than what is needed. We argue by
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contradiction, and assume h(r) < 0 for some r €]g, p(z9)[. Forming the infimum over
all such r, we find a parameter value r1 €], p(z0)[ with h(ry) = 0, such that 0 < h(r)
holds for all » € [g, 1[. By the maximum principle, this means that there exists a point
z1 € T, such that h,, o ¢, (21) =0, and that 0 < h,, o ¢, elsewhere on D. The point z;
is precisely of the type considered in Part 2, so that by (9.14),

r=rqy’

d
0< Ehr O¢7‘(21)|

We immediately see that h, o ¢,(z1) < 0 for r, ¢ < r < ry, sufficiently close to r1, and
hence h(r) < 0 for such r. This contradicts the minimality of r1, and completes the proof.
]

i From the previous section on Hadamard’s variational formula, we then have the
following corollary.

COROLLARY 9.2 Fiz r with 0 < r < p(z0). Then both H, , and T, , are positive on
D(r) x D(r).

In the corollary, we need in fact not the entire assumption that w is logarithmically
subharmonic throughout £2: it can be weakened to requiring logw to be subharmonic on
D(r). This leads immediately to the following result, where w is a weight on the unit

disk.

COROLLARY 9.3 Suppose w is a logarithmically subharmonic and reproducing (for
the origin) weight on I, real analytic on D, and strictly positive on I as well. Then the
weighted bitharmonic Green function T, 1s positive on I x .

In view of the sections on approximation of weights and Green functions, (Sections
4 and 5, and more to the point, Theorems 4.1) and 5.2), we can remove the regularity
assumptions in the above corollary.

COROLLARY 9.4 Suppose w is a logarithmically subharmonic and reproducing (for
the origin) weight on . Then the weighted biharmonic Green function T, is positive on
D x D.

The above corollary was obtained earlier by Shimorin [48] in the special case of a radial
weight; see also Hedenmalm [20, 22].

10 Applications to the Bergman spaces

Applications to the Bergman spaces A?(ID). The study of the kernel function in the
context of the Bergman spaces was initiated by Stefan Bergman [4]. However, in the first
couple of attempts toward a factorization theory for the Bergman spaces — by Charles
Horowitz [25], [26], and Boris Korenblum [29] — it played a subordinate role, if used at
all. The kernel function later reappeared in the work of Hedenmalm [16]. Given a zero
sequence A for the Hilbert Bergman space A%(ID) on the unit disk (which for simplicity
avoids the origin), he considered the invariant subspace M4 of all functions in A%(ID) that
vanish on A (counting multiplicities), and formed the function

oa(z) = K4(0,0)77 Ka(2,0), zeD

where K 4 denotes the reproducing kernel for M 4. The function ¢ 4 has norm 1 in AZ(]D),
and has largest value in modulus at the origin among all functions in the closed unit ball of
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M 4; for this reason, such functions are sometimes called extremal functions. Hedenmalm
showed that ¢4 is an expansive multiplier, that is,

1/1laz < llpafllaz,  J € A*D).

For infinite zero sequences A, it may happen that the right hand side attains the value
4o00. Furthermore, the function ¢4 has no extraneous zeros in D, and it is a contractive
divisor,

1f/pallaz <[lfllaz, [ € Ma.
In [6], [7], the quartet Duren-Khavinson-Shapiro-Sundberg generalized Hedenmalm’s re-
sults to the Bergman spaces AP(ID), 0 < p < +oo. In the context of A%(DD), the main idea
1s to write the kernel function K4 in the form

Ka(2,¢) = ba(2)ba(C) Kjpa2(2,€), (2,¢) eD x D,

where b4 is the Blaschke product for A, assuming the sequence A meets the Blaschke
condition. For general p, 0 < p < 400, we then set

0a(z) = Kip,p(0,0)77 ba(z) Kppuppo (2,007,  z€D,

where as it happens, the weighted Bergman kernel function fails to have zeros, so that
it is all right to take fractional powers of it. These functions ¢4 can be defined for all
zero sequences, not just the for ones that satisfy the Blaschke condition, and have factor-
ization properties analogous to what was the case for p = 2. An important observation
is that the weight |p4|P is a logarithmically subharmonic and reproducing for the origin.
Multiplication by ¢4 is an isometry PP(ID, [¢4|P) — AP(ID) (evident notation), so that
the question whether for two zero sequences A and B,

leafllar <o fllar
holds for all polynomials f, becomes a matter of whether the injection mapping
P, pBl") = PP(D, lpal”)

is a contraction.
We have the following theorem.

THEOREM 10.1 Let A and B be two zero sequences for AP (D), such that A is contained
wm B. Then

lpafllar < llepfllar,  feAY(D).

Proof. For finite sequences A and B, the functions ¢4 and ¢p are holomorphicin a
neighborhood of D, and we consider the function ®p 4 which solves the boundary value
problem

A®p a(z) = lep () = lpal2)|, zeD,
q)B,A(Z):O, z€eT.

iFrom an application of Green’s formula, as in [16], [6], [7], we see that the fact that the
right hand side — the function |¢g|P —|¢4|P — annihilates the harmonic functions in L?(ID)
translates to the additional boundary data

871(,2) CI)B’A(Z) =0, z €.
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Dividing the differential equation by |¢(z)|?, and then afterward applying another lapla-
cian, we find that it solves

P

1
AipA@B,A(z):A‘SDB(Z) ze

lpa(z)l pal(z)

which is positive on . In view of the given boundary data, we may write the function
®p 4 as an integral in terms of the weighted biharmonic Green function I'j, ,»:

¢5(¢)
pa(C)

which is then positive. The importance of the potential function ®p 4 comes from the
fact that Green’s formula yields the identity

14
CI)B,A(Z):/DFILPAP(Z’C)AC‘ ‘ dZ(C), z e,

len fIlar = llpafllyr = /Dq)B’A(Z) A:lf(2)PdE(z), 2 €D,

for polynomials f, which yields the desired inequality in this case, because we can ap-
proximate functions in A? (D) by polynomials, and because the functions ¢4 and ¢p are
bounded on ID. Setting ¢ = ¢pf, we conclude that

$a
|Z2 9] ., < llgllar, (10.1)
¥p lAr

for all ¢ € AP(ID) that vanish on B. Now let A and B be arbitrary zero sequences, and
form finite subsequences A’ C A and B’ C B, with A’ C B’. Then the above inequality
holds with A and B replaced by A’ and B’, respectively, and we apply it to g vanishing
on B. Letting A’ grow up to A, and B’ up to B, ¢4 = ¢4 and pp — ¢p in AP(D),
and Fatou’s lemma delivers the above inequality for arbitrary A and B, which implies the
assertion of the theorem. ]

COROLLARY 10.2 (p = 2) Let A be and B be two zero sequences for A*(ID), and
suppose that B\ A consists of a single point o € D. Then the quotient v, = /4 is a
bounded holomorphic function on I, and it only vanishes at the point « in ID. Moreover,
if by is the Blaschke factor corresponding to the point B\ A, then 1 < |p,/by| holds
throughout . In particular, ¢ (D) covers the whole disk T.

Proof. The function ¢, is given by the formula

(1 - 7Kl”"‘|2(z’a)) , z€ED,

Kjpa2(a, )

V=

palz) = (1 = Kjp,2(a, O‘)_l)_

which, in view of Theorem 5.1, shows that ¢, is bounded on I, at least for o« € D\ {0}. A
closer analysis of what happens as o — 0 reveals that it is bounded also for « = 0. Using
a peaking function argument as in [16], we obtain 1 < |p,/bs| on I, as a consequence of
Theorem 10.1, at least for finite sequences A. Approximating general zero sequences by
finite ones, the assertion follows for general A. ]

The following answers a question raised by Korenblum.
COROLLARY 10.3 Let B be a zero sequence for AP(ID) and M an invariant subspace
in AP(D). Suppose M has index 1, that is, the dimension of the quotient space M/SM is

1, where S s the operator of multiplication by z. Then iof Mp C M, the subspace M is of
the form M = My, for some smaller zero sequence A.
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Proof.  We follow the scheme from Hedenmalm [18]. Let A be the sequence of
common zeros (counting multiplicities) of the functions in M. We are to show that
M = M,. According to Theorem 5.2 and Proposition 5.4 of Aleman-Richter-Sundberg
[2], it suffices to obtain that w4 € M, because w4 generates M4 as an invariant subspace.
From the assumption Mp C M, we have that ¢ € M. Then, because M has index 1,
we may divide out superfluous zeros in ¢p, one by one, and remain in M. So, if ¢ is a
polynomial whose zeros constitute a finite subset of B\ A, the function ¢g/q is also in M.
Let A’ be a finite subsequence of A, and B’ one of B, with A’ C B’. Then the function
vp /s can be factored as an invertible element of H*(ID) times a polynomial ¢ with

zeros at B\ A’, and hence
par

PAB.B = wB € M.

¥B
Meanwhile, by (10.1),

|25, <llenllar =1.

SDB’ AP

The function ¢a: p: p tends to w4 as A’ grows to A and B’ grows to B, and the limit
element ¢ 4 has norm 1, so that nothing is lost in Fatou’s lemma. This means that ¢4/ p/ B
tends to ¢4 in norm, and the conclusion ¢4 € M follows. The proof is complete. [

Applications to weighted Bergman spaces. The main theorem enables us to develop
a factorization theory for the spaces P?(ID,w), where the weight w is assumed to be
logarithmically subharmonic and reproducing for the origin. We say that a function
¢ € P?(D,w) is a P?(D,w)-inner function provided that the weight |p|?w is reproducing
for the origin.

THEOREM 10.4 Assume w is logarithmically subharmonic and reproducing for the
origin. Let ¢ € P*(D,w) be a P?(D,w)-inner function. Then ||f||le < ||¢f]|le for all
polynomials f. In fact, we have the norm identity

e IS = 117115 +/ Lo (2, Q) ' (DPIF(OF dE(2) (), f € P, Jpl*w).

DxD

Proof. The proof is really in the same vein as that of, for instance, Theorem
10.1. A slightly different approach is needed, though, because of the lack of smoothness
assumption on the weight, in which case Definition 3.1 is used to define the Green function
T,. The calculations are analogous to the ones used in [19] (see also [2]), and therefore
omitted. ]

A variant of the above runs as follows.

THEOREM 10.5 Assume that w and W’ are two logarithmically subharmonic weights
which are reproducing for the origin. Suppose that in addition, both are C'*°-smooth on I,
and that the quotient w' Jw is subharmonic. Then ||f|lw < ||f]|w’ holds for all f € A%(ID).

We remark that because of the regularity assumptions on w and ', the spaces P%(ID, w)
and P?(D,w’) coincide with A?(ID) in the above theorem.

By the general theory of reproducing kernel functions, as found in Saitoh’s book [40],
Theorem 10.5 leads to the following conclusion.

COROLLARY 10.6 Under the assumptions of Theorem 10.5, the difference K, — K,
1s a reproducing kernel on D x . In other words,

Lw'(ZaC) — ?w(Z,C)
(1 —2()?

1s a reproducing kernel on D x ID.
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11 Directions for further research

The main result of this paper, the positivity of the weighted biharmonic Green function ',
for logarithmically subharmonic reproducing weights w, was conjectured by Hedenmalm
in 1992. Partial results in this direction were found by Hedenmalm [17], [20], [22], [21],
by Sergei Shimorin [44], [45], [46], [48], and by Miroslav Englis [8], [9]. As a matter of
fact, the variational technique used in [22] was an inspiration for this work, although the
context is different.

It appears likely that the strong maximum principle suggested in the introduction
should be true. We formulate this as a conjecture. The normal derivative is as always in
the interior direction.

CONJECTURE 11.1 Letw be a logarithmically subharmonic reproducing wetght on 1D,
which is C™-smooth on D. Let u and v be two C™-smooth real-valued functions on D,
and suppose that u s sub-w-bitharmonic and v is w-btharmonic on . We then have the
mazrimum principle

ou Ov
— <

< d il
ule <vleand ol <5

— u|D < U|]D).

T

In terms of the Green function T',, what is required is that

o 1 _ oprs 0
T oy M50 = 2P0+

an—(z)Hw(z,C)gQ (2,{) e Tx D

In the special case w(z) = 1, an explicit calculation yields

1 f
o ) < 0ETe

o A0 = 2= 1P

In [47], Shimorin showed that one-point zero divisors are univalent functions — just like
the individual Blaschke factors — in the weighted spaces P?(ID,w), where w is radial and
logarithmically subharmonic. He also showed that, modulo some regularity, a univalent
one-point zero divisor is automatically an expansive multiplier; see also [3]. We believe
that the following is true.

CONJECTURE 11.2 Letw be a logarithmically subharmonic reproducing wetght on 1.
Then, for each o € D\ {0}, the one-point zero divisor in P*(D,w),

Ko (z,
(1_M), ceD,

Ky(a,a)

[SIC

Pa(2) = (1= Ky(a,0)™h)"

is univalent and maps I onto a star-shaped domain. Moreover, | (z)| < 3 holds for all
z €.

In fact, in a conversation with Peter Duren, it became clear that if the extended
maximum principle holds; as formulated in Conjecture 11.1, then each one-point zero
divisor ¢, 1s univalent and maps D onto a star-shaped domain, which by Corollary 10.2
contains . Assuming this for the moment, the geometry of the “corona” ¢4 () \ D should
contain information about how close the space P%(ID,w) is to the limit case H?(ID). We
wish to point out that the focus on one-point zero divisors is not as special at it may seem:
each zero-divisor can be written as a product of one-point zero divisors, where each factor
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is a divisor with respect to a weight that is the original weight times the modulus-squared
of product of the previous factors.

We turn to the connection between Conjectures 11.1 and 11.2. We can write |¢4|? as
an integral,

Pal)? = 1+/ (G(,0) + Ha(2,0) IEL (O dE(0), = €D,

D
and assuming that Conjecture 11.1 holds, we obtain that on the unit circle T, |¢q|?
increases in the outward normal direction. Then, assuming that w is real analytic near
T, an application of the Cauchy-Riemann equations to the locally defined function log ¢,
shows that the argument of ¢, (¢'?) increases with 8. The case of more general weights is
obtained by approximation.

A way to reach more detailed information about I'y, is to try to dissect the kernel
function K, further than we did back in Section 6. We should like to obtain further
structural information about the kernel L, .

In view of Corollary 10.6, one may ask the question whether the difference L, — L,
is also a reproducing kernel on I x D, under the assumptions of Theorem 10.5. It turns
out that it is not so, even if we replace the subharmonicity of w'/w with logarithmic
subharmonicity.

Example. If L, — L, were a reproducing kernel function for all logarithmically subhar-
monic reproducing weights w,w’ with w’/w logarithmically subharmonic, subject to the
condition that both weights are C°°-smooth on I, then it would also be so, by a dilation
argument, for the radial weights

wE)=walz) = (1—a) (1-zP)™%,  z€D,

and
W) =ws(z) == (1 -z2)"  zeD

which are less regular near the boundary, where the parameters «, 3 range over 0 < o <
§ < 1. The corresponding Bergman kernels are well-known, and we only write down the
formula for a:

I(wa(ZaC):(l_ZE)_Z-I_OC, (Z,C) el x D
We calculate that along the diagonal,

1— 2\a _ 1— 2\8
Lwﬂ(z,z)—Lwa(z,z): ( |Z| ) | |2( |Z| ) ’ ZE]D,
z

which is positive, but fails to be subharmonic, which 1s necessary for it to be the restriction
to the diagonal of a reproducing kernel function.

The above example, however, leaves open the possibility that at least one of the
expressions
Lw/(Z,C) — Lw(Z,C)
1—zC ’

(z,() €D x D,

and

Lw’ (Za C)7_ Lw (Za C)
1—2(Ly(2,¢)
might be a reproducing kernel. We note that if the second one is a reproducing kernel,

then so is the first one, because it can be written as a product of the second one and the
reproducing kernel J,, of Theorem 6.2.

(z,() €D x D,
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Creeping flow. The slow motion of a viscous incompressible fluid (with small Reynolds
number), squeezed in between two parallel walls of constant infinitesimal width, is known
as creeping flow. The motion of the fluid is governed by a real-valued potential function
U, which satisfies the biharmonic equation A?¥ = 0; the velocity of the fluid is given by

the expression
ov oV
8y’ Ox )’

which constitutes a vector perpendicular to the gradient VW. Consequently, the level
curves of ¥ are the flow lines of the creeping flow. Let the potential function ¥ equal
the biharmonic Green function T'q(-, (), for a fixed ¢ € ©, where 2 is a bounded planar
domain €2 with smooth boundary. The corresponding flow then involves a torque applied
at ¢, and friction at the boundary 9€2, so that the velocity vanishes there. There appears
a main swirl (vortex) centered at a point near ¢, and it is of interest to know whether
there are any other smaller swirls (eddies) located further away from (. Apparently,
this is the same as asking whether the Green function T'g(-,¢) has more than one local
extreme point in 2. Let us consider the weighted biharmonic Green function I',, for a
logarithmically subharmonic reproducing weight w on the unit disk . We may think of
it as corresponding to a weighted creeping flow. By our main theorem, the function I',,
is positive. This suggests that for fixed { € D, the flow has no eddy immediately near T.
The question arises: is there only one swirl in this situation?
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