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HJB|May/99Conditional Expectation and Half{sided TranslationsH.J. BorchersInstitut f�ur Theoretische PhysikUniversit�at G�ottingenBunsenstrasse 9, D 37073 G�ottingenAbstract:The relations between conditional expextations and half{sided translations and half{sided mod-ular inclusions will be investigated.1. Introduction and resultsIn several applications one uses modular covariant subalgebras and the conditionalexpectations E which are associated with them (see Takesaki [8]). At the same time thereoften exist half{sided translations for the original algebra. In this situation one is interestedin knowing the result of the application of the conditional expectation on the half{sidedtranslations. In this paper we want to answer this question. One example, where thissituation appears, is the investigation of Anosov dynamical systems, see, e.g. [7]. Anothercase is the investigation of tensor products, see e.g. [3].We start with a von Neumann algebra M acting on a Hilbert space H and assumethat M has a cyclic and separating vector 
. The modular operator and the modularconjugation of the pair (M;
) will be denoted by (�; J). In addition we assume, thatthere exists a �half{sided translation, i.e. a one{parametric continuous unitary U(t) groupwith non{negative generator such that one has U(t)
 = 
 8t 2 IR and AdU(t)M � Mfor t � 0 or for t � 0. The algebras AdU(t)M will be denoted by M(t). Moreover, weassume that N � M is a modular covariant subalgebra of M. E denotes the projectiononto [N
]. Since the algebra N is covariant under the modular action it follows that Ecommutes with �. The restriction of N ; E and � to EH will be denoted by bN ; bE , and b�respectively. The main questions are:When does U(t) commute with E?What can we say if U(t) does not commute with E?We want to show the following results: 1



HJB|May/991.1 Theorem.Let M;N ; E; E be as above and U(t) be a +half{sided translation. Then the followingstatements are equivalent:1: The group U(t) commutes with E.2: One has AdU(t) bN � bN for t � 0.3: For every t � 0 bE(M(t)) is a von Neumann algebra.4: For one t � 0 bE(M(t)) is a von Neumann algebra.5: There exists a von Neumann algebra P � N with [P
] = E and AdU(t)P � N forone t > 0.A similar result holds if U(t) is a �half{sided translation.The second result deals with the general case, namely the situation where U(t) andE do not commute.1.2 Theorem.Let M;N ; U(t); E; E be as above then there exists a continuous unitary group V (t) on EHsatisfying for t � 0 the relationAdV (t) bN = fbE(AdU(t)M)g":A similar result holds if U(t) is a �half{sided translation.For the second theorem we will present two di�erent proofs. The second demonstrationis applicable for more general situations. In order to formulate it we need some explanation.If M is a von Neumann algebra with cyclic and separating vector 
 then we call theanti{linear operator SM := JM�1=2M the Tomita conjugation of (M;
). In this section wewill deal with operators of the same kind, i.e. operators S ful�lling:(i) S is a densely de�ned closed anti{linear operator with domain of de�nition D(S).(ii) S2 = 1l on D(S).(iii) 
 2 D(S) and S
 = 
.We will call such operators generalized Tomita conjugations.Since S is closed it has a polar decomposition S = J�1=2. Then � is invertible andJ is a conjugation, i.e. J�J = ��1; J = J� = J�1: (1:1)These properties follow from the condition S2 = 1l. (See e.g, Bratteli and Robinson [5]Prop.2.5.11.)With this notation we obtain:1.3 Theorem.Let M be a von Neumann algebra on H with cyclic and separating vector 
 and let SM bethe Tomita conjugation of M. Let S be a generalized Tomita conjugation and assume SMis an extension of S. Assume in addition that S is an extension of �itMS��itM for t � 0.Then:1: There exists a continuous unitary group U(t) with2



HJB|May/99� U(t)
 = 
 for all t 2 IR.� U(t) has a non{negative generator.2: Between the modular group of M and U(t) exist the relations�itMU(s)��itM = U(e�2�ts); JMU(t)JM = U(�t):3: De�ne St = �itMS��itMwhich is monotonously increasing with t and setS1 = limt!1St:Then there holds for s > 0 U(s)S1U(�s) = S� 12� log s:Notice: There exists a variant of this theorem which is obtained by replacing every-where t by �t.The statement of the theorem needs some explanation. By assumption the family�itMS��itM is increasing with t. Hence the projections onto the graphs are an increasingfamily of projections which converges strongly. Since all these projections are majorizedby the projection onto the graph of SM the limit is smaller or equal to the majorant.2. Proofs and ApplicationsFor the proof of the theorems we need the concept of �half{sided modular inclusionsintroduced by Wiesbrock [9,10]. This is in some sense the opposite of the concept of �half{sided translations. Let N be a subalgebra ofM such that 
 is cyclic for N and such thatAd�itMN � N for t � 0, then we say N ful�ls the condition of �half{sided modularinclusion with respect to M. If this is the case then exists a half{sided translation U(t)with N = AdU(1)M.Proof of Thm. 1.1. Since bE(A); A 2 M is given by EAE we see that 
 is cyclic forbE(M(t)). Hence the implications 1: ! 2:; 1: ! 3: ! 4: and also the implication 1: ! 5:are trivially ful�lled. So it remains to show the converse implications. Since � commuteswith E we obtain by the relation Ad�itU(s) = U(e�2�ts) the implication 4: ! 3: (see[1]). We know by the separability of 
 that the map N ! bN is an isomorphism of vonNeumann algebras. Let � present this isomorphism, then ��1 bE(M(t)) � N is a vonNeumann algebra. Let �t denote the modular automorphism, then one obtains�s(��1 bE(M(t)) = ��1 bE(�sM(t)) = ��1 bE(M(e�2�st)):This implies in particular ��1 bE(M(t1)) � ��1 bE(M(t2)) for t1 � t2. Notice thatbE(M(t)); t > 0 ful�ls the condition of �half{sided modular inclusion. Hence by Wies-brock's result [9,10] exists on EH a +half{sided translation V (t) with Ad V (t)bE(M) =3



HJB|May/99bE(M(t)). By means of the isomorphism � we can tranport V (t) to the whole Hilbertspace. This means there exists an endomorphism t such that � � t(N ) = AdV (t)Nholds. This implies in particular E(AdU(t)M) = t(E(M)). Applying this equation tothe vacuum vector we obtain for A 2 M the relation EU(t)A
 = V (t)EA
. Restrictingthe elements A to N we obtain EU(t)E = V (t) for t > 0. Since U(t) and V (t) are bothunitary the last relation can hold only if U(t) commutes with E. This shows 4:! 1: andalso 2:! 1: Next we show 5:! 1: Since P
 is dense in EH and since U(t) is unitary weobtain U(t)EH � EH. Since �it commutes with E we get by the known relation between�it and U(s) (see [1]) U(e�2�st)EH � EH for all s 2 IR. Using the spectrum condition forU(t) we obtain by analytic continuation that the last inclusion is valid for all argumentsof U . Since U(t) is unitary this implies U(s)EH = EH;8s 2 IR, which is equivalent to thecommutativity.Proof of Thm. 1.2. Since U(t) is a half{sided translation we obtain for every t > 0the inclusion Ad�isM(t) � M(t) for s � 0. Since �is commutes with E we obtainAd�is bE(M(t)) � bE(M(t)). This implies Ad�isfbE(M(t))g" � fbE(M(t))g" for all t > 0and s � 0. Since b� is the modular group of bN = bE(M) it follows that fbE(M(t))g" ful�lsthe condition of half{sided modular inclusion and hence by Wiesbrock's result [9,10] existcontinuous unitary groups Vt(s) on EH with AdVt(1) bN = fbE(M(t))g". It remains toshow that these groups coincide except for a scale factor. Since �is commutes with Ewe obtain Ad�is bE(M(1)) = bE(M(e�2�s)). This relation extends to the von Neumannalgebras generated by these sets. Since we also have the relation Ad b�isV1(t) = V1(e�2�st)we obtain the relation V1(e�2�s) = Ve�2�s(1). This shows the theorem.We will show that this theorem is also a consequence of Thm. 1.3. For details see Prop.2.9. The proof of Thm. 1.3 is a variation of the proof of Wiesbrock's theorem on half{sidedmodular inclusions [9,10], but some explanations and preparations are needed.We deal with the situation that we have a generalized Tomita conjugation S and aTomita conjugation SM which is an extension of S. This implies the relation (1+�M)�1 �(1 + �)�1. This relation can easily be derived by looking at the graphs of S and SM. Aconsequence of this is that the operator{valued function C(t) := ��itM �it has a boundedanalytic extension into the strip S(0; 12 ). We are interested in determining the value of thisfunction at the upper boundary. We obtain:2.1 Lemma.Let S be a generalized Tomita conjugation and SM be the Tomita conjugation of M suchthat the latter is an extension of S. De�ne C(t) := ��itM�it. Then C(t) has a boundedanalytic continuation into the strip S(0; 12) and at the upper boundary one hasC(t+ i2) = JMC(t)J: (2:2)Moreover, the following estimate holds:kC(� )k � 1:4



HJB|May/99Proof . Since �M � � it follows by standard arguments that C(t) has a boundedextension into the strip S(0; 12 ). This extension is bounded in norm by 1. Choose  2 D(S�)and ' 2 D(SM) then we have(';C(t+ i2) ) = (� 12M';��itM �it�� 12 )= (JMSM';��itM�itJS� ) = (JM��itM�itJS� ;SM'):Since S� 2 D(S�) we �nd JM��itM�itJS� 2 D(S�M). Hence we obtain= (';S�MJM��itM�itJS� ):With S�MJM = JMSM and the commutation of SM with ��itM we �nd= ('; JM��itM SM�itJS� ):Because SM is an extension of S, we can replace SM by S which commutes with �it.Hence we obtain = ('; JM��itM �itSJS� ):With SJS� = J we get (';C(t+ i2) ) = ('; JMC(t)J ):Since D(SM) and D(S�) are both dense in H the lemma follows.Next we need a generalization of Thm. A in [2].2.2 Lemma.Let S = J�1=2 be a generalized Tomita conjugation. In addition let V be a unitary operatorwitha: VD(S) � D(S).b: V 
 = 
.c: For  2 D(S) one has SV  = V S .Then:The operator{valued function ��itV�it =: V (t)has a bounded analytic continuation into the strip S(0; 12 ) which ful�ls the estimatekV (t + i� )k � 1: 0 � � � 12 :At the upper boundary V (z) obeys the equationV (t + i2) = JV (t)J:5



HJB|May/99Proof . Since S commutes with �it it follows that S commutes with V (t). Moreover,since VD(S) � D(S) it follows by the usual argument that ��itV�it has a boundedanalytic continuation into S(0; 12 ). Choose  2 D(S�) and ' 2 D(S). Then one has('; V (t+ i2) ) = (�1=2';��itV�it��1=2 ) = (JS'; V (t)JS� )= (S�J'; V (t)JS� ) = (SV (t)JS� ; J') = (V (t)J ; J') = ('; JV (t)J ):This shows the lemma.Next we have a look at the expression ��itM�it under the assumption of the theorem.2.3 Lemma.Assume S is an extension of �itMS��itM for t � 0. Then for the operator{valued function��itM�it =: C(t) the following holds:(i) The inclusion properties:�: C(t)D(S) � D(S) for t � 0.�: C(t)D(S�) � D(S�) for t � 0.: C(t+ i2)D(S�) � D(S�) for t 2 IR.(ii) This implies:�: For  2 D(S) one has SC(t) = C(t)S provided t � 0.�: For ' 2 D(S�) one has S�C(t)' = C(t)S�' if t � 0.: For ' 2 D(S�) one has S�C(t+ i2 )' = C(t+ i2 )S�' for all t 2 IR.Proof . S is for t � 0 an extension of �itMS��itM . This implies �itMD(S) � D(S)� D(SM). Hence we obtain C(t)D(S) � D(S) for t � 0. Next choose  2 D(S�) and' 2 D(S) then we obtain for t � 0:( ;S�itMS') = ( ;SM�itMS')= ( ;�itMSMS') = ( ;�itM') = (��itM  ;'):On the other hand we get ( ;S�itMS') = (S';��itM S� ):Since the expression is continuous in ' we conclude ��itM S� 2 D(S�) and from S�D(S�) =D(S�) we get for t � 0 ��itM D(S�) � D(S�): This implies (i),�. Using Lemma 2.1 we obtainC(t+ i2)D(S�) = JMC(t)JD(S�) = JMC(t)D(S):Because of D(S) � D(SM) we obtain by the de�nition of C(t) the inclusionC(t+ i2 )D(S�) � JMD(SM) = D(S�M) � D(S�). This shows (i),.6



HJB|May/99For t � 0 we obtain from ��itM D(S) � D(S) � D(SM)SC(t)D(S) = S��itM�itD(S) = SM��itM�itD(S) = ��itM SM�itD(S)= ��itM S�itD(S) = ��itM�itSD(S) = C(t)SD(S):Next we calculate for  2 D(S�) and ' 2 D(S) and t � 0(';S�C(t) ) = (��itM �it ;S') = (�it ;�itMS��itM�itM'):As �itMS��itM is the generalized Tomita conjugation with domain �itMD(S) � D(S) itfollows that (�itMS��itM )� is an extension of S�. This implies= (�itM'; (�itMS��itM )��it ) = (�itM';S��it ) = (';��itM�itS� ):This shows (ii),�. FinallyS�C(t+ i2)D(S�) = S�JMC(t)JD(S�):As in the proof of (i), we have JMC(t)JD(S�) � D(S�M) � D(S�). Hence we obtain= S�MJM��itM �itJD(S�) = JM��itM SM�itJD(S�):Since SM is an extension of S we get= JM��itM S�itJD(S�) = JM��itM �itJS�D(S�) = C(t+ i2)S�D(S�):This shows the lemma.C(t) has an analytic extension into S(0; 12 ). For t � 0 it maps D(S) into D(S) andfor the rest of the boundary it maps D(S�) into D(S�). Therefore, we will map S(0; 12 )bi{holomorphic onto S(0; 12 ) in such a way that IR+ ist mapped onto IR and the rest ofthe boundary is mapped onto i2 + IR. This is achieved by the transformation� = 12� log(e2�z � 1); z = 12� log(e2�� + 1):We introduce B(t) := C( 12� log(e2�t + 1)); (2:3)then together with Lemma 2.3 holdsB(t)D(S) � D(S); for t 2 IR and SB(t)D(S) = B(t)SD(S);B(t + i2)D(S�) � D(S�); for t 2 IR and S�B(t + i2)D(S�) = B(t + i2)S�D(S�):(2:4)7



HJB|May/99The last inclusion is valid with the possible exception of the point i2 . Next we show:2.4 Lemma.De�ne B(s; t) = ��isB(t)�is with B(t) from Eq. (2:3). B(s; t) has an analytic extensioninto the tube based on the quadrangle with the corners(=ms;=mt) = (0; 0); (12 ;�12); (12 ; 0); (0; 12): (2:5)In the domain of holomorphy one haskB(�; � )k � 1:In the four corners B(�; � ) takes the valuesB(s; t) = ��isB(t)�is;B(s + i2 ; t) = ��isJB(t)J�is;B(s; t + i2) = ��isB(t + i2)�is;B(s + i2 ; t� i2 ) = ��isJB(t+ i2)J�is:Proof . For t real we get by Lemma 2.2 in s an analytic extension into S(0; 12 ) whichis bounded in norm by 1. Moreover, we have B(s + i2 ; t) = JB(s; t)J = ��isJB(t)J�is.For s real Lemma 2.1 yields an analytic extension in t into S(0; 12 ) which is also boundedin norm by 1. Moreover, we have B(s; t + i2 ) = ��isB(t + i2 )�is. Since J is anti{linearthe expression JB(t)J can be analytically continued into S(� 12 ; 0) wich is norm{boundedby 1. At the lower boundary one �nds B(s + i2 ; t � i2 ) = ��isJB(t + i2)J�is. Using theMalgrange-Zerner theorem (see [6]) we obtain the statement of the lemma.Now we are prepared for the �rst crucial step:2.5 Proposition.Between the group �is and the operator{valued function B(t) exist the relations�isB(t)��is = B(t � s) and JB(t)J = B(t + i2):Proof . Choose  2 D(S) and ' 2 D(S�) and de�ne the two functionsF+(s; t) = (';B(s; t) ) = (';��isB(t)�is );F�(s; t) = (S ;B(s; t)�S�') = (S ;��isB(t)��isS�'):8



HJB|May/99By Lemma 2.4 F+(s; t) has a bounded analytic extension into the tube given by Eq. (2.5)and F�(s; t) into the conjugate complex of that domain, which is also the negative of thedomain given by Eq. (2.5). By Eq. (2.4) we obtain for real s; tF+(s; t) = (S�S�';��isB(t)�is ) = (S��isB(t)�is ;S�')= (��isB(t)�isS ;S�') = F�(s; t):Moreover, one obtains with Eq. (2.4) and Lemma 2.4F+(s+ i2 ; t� i2 ) = (S�S�';��isJB(t+ i2)J�is ) = (S��isJB(t+ i2)J�is ;S�')= (��isJS�B(t + i2)J�is ;S�') = (��isJB(t+ i2)S�J�is ;S�')= (��isJB(t+ i2)J�isS ;S�') = F�(s � i2 ; t + i2):Using the edge of the wedge theorem we obtain a function which is periodic, i.e.F (s; t) = F (s + ni; t� ni); n 2 ZZ:The discontinuity which might exist at i2 is harmless, becase the boundary values coin-cide in the sense of distributions, for details see e.g. [4]. Since F (�; � ) is bounded bymaxfk kk'k; kS kkS�'kg the function must be constant in the direction of periodicity,i,e. F (s; t) = F (s + z; t� z); z 2 C:Choosing z = �s and inserting the expression for F we obtain:(';��isB(t)�is ) = (';B(t + s) ):For s = i2 and z = � i2 one �nds('; JB(t)J ) = (';B(t + i2) ):Since D(S) and D(S�) are both dense in H we obtain the statement of the proposition.The last result is the basis of the following2.6 Proposition.The operator{valued function C(t) is a commutative family of unitary operators. Moreover,there exists a continuous unitary group U(s) with non{negative generator such thatC(t) = U(e2�t � 1) (2:6)holds. 9



HJB|May/99The proof of this statement is based on the last proposition and it is an exact copyof the corresponding part of the proof of [2] Thm. 4.1. Therefore it does not need to berepeated here.Proof of Theorem 1.3. The �rst statement of the theorem is the content of Proposition2.6. We know that C(t) ful�ls the cocycle relation, which we use in the form��isC(t)�is =C(s+ t)C(s)�. Inserting Eq.(2.6) we �nd��isM U(e2�t � 1)�isM = U(e2�(s+t) � 1)U(�e2�s + 1) = U(e2�s(e2�t � 1)):Since U(t) ful�ls the spectrum condition the last equation can analytically be continuedto arbitrary arguments. This shows the �rst part of statement 2. From (2.6) we obtainC( i2) = U(�2). Hence we obtain JM = C( i2 )J = U(�2)J . If we insert Eq. (2.3) into thesecond expression of Proposition 2.5 we getAd JC( 12� log(e2�t + 1)) = C( 12� log(�e2�t + 1)):Using Eq. (2.6) this reads AdJU(e2�t) = U(�e2�t). With the above expression for JMwe obtain AdJMU(e2�t) = Ad fU(�2)JgU(e2�t) = U(�e2�t):By analytic continuation we obtain the second relation of statement 2. Finally withAd�itMS = St and Ad�itS = S we obtain AdC(�t)S = St. Inserting Eq. (2.6) we�nd AdU(e�2�t � 1)S = St. With S1 = limt!1 St = limt!1AdU(e�2�t � 1)S we getSt = AdU(e�2�t)S1 or AdU(s)S1 = S� 12� log s; s > 0. This proves the theorem.From Thm. 6.2.2 one can draw several conclusions. We start with the following result:2.7 Corollary.Let M be a von Neumann algebra on H with cyclic and separating vector 
 and let SMbe the Tomita conjugation of M. Let S be a generalized Tomita conjugation and assumeSM is an extension of S. Assume also that S is an extension of �itMS��itM for t � 0. Ifwe have in addition SM = limt!1St;then S is the Tomita conjugation of a von Neumann algebra N which has 
 as cyclic andseparating vector. Moreover, on hasN = U(1)MU(�1):2.8 Remark.Unfortunately I could not show that N is a von Neumann subalgebra of M, although itis suggested by the fact that SM is an extension of SN . Up to now one needs additionalinformation in order to conclude that N is a subalgebra of M.10



HJB|May/99Proof of the Corollary. With S1 = limt!1 St we know from Thm. 6.2.2 the relationS = U(1)S1U(�1). With S1 = SM it follows S = U(1)SMU(�1). Since M
 is a corefor SM it follows with N = U(1)MU(�1) that N
 is a core for S. Hence the corollary isproved.In connection with conditional expectations one can conclude that the algebra N ,described in Corollary 2.7, is a subalgebra of M.2.9 Proposition.Let M be a von Neumann algebra on H with cyclic and separating vector 
. Assume N isa modular covariant subalgebra of M and E the associated conditional expectation. Denoteby bN resp. bE the restriction of N resp. E to the cyclic subspace of N . Assume V (t) is a+half{sided translation for M. Then:(i) E(V (t)MV (�t)) is dense in the von Neumann algebra fE(V (t)MV (�t))g".(ii) There exists a +half{sided translation for bN = bE(M) withU(t) bNU(�t) = fbE(V (t))MV (�t))g":Proof . From the relation bE(V (t)MV (�t))
 = EV (t)M
 we see thatbE(V (t)MV (�t))
 is dense in EH. Let S� 12� log t be the mapEV (t)AV (�t)
 �! EV (t)A�V (�t)
. Since JM bNJM is the commutant of bN in EHit follows that S� 12� log t is pre{closed. Denote the closure again by S� 12� log t. SinceV (t)MV (�t) � V (t0)MV (�t0) for t � t0 we obtain with �itMV (s)��itM = V (e�2�ts) andwith �it̂N = �itMjEH that SN̂ is an extension of S0 which is an extension of �it̂NS0��itN̂for t � 0. Hence the family fStg ful�ls the conditions of Thm. 1.3. Consequently exists a+half{sided translation U(t) of bN withSt = U(e2�t)SN̂U(�e2�t):Since fEV (e2�t)A
;A 2 Mg is a core for St there exists an operator B a�liated with Nsuch that U(e2�t)BU(�e2�t)
 = EV (e2�t)AV (�e2�t)
 holds. (See [BR79] Prop. 2.9.5.)Since 
 is separating for bN we obtain U(e2�t)B̂U(�e2�t) = EV (e2�t)AV (�e2�t)E whichimplies kBk � kAk. Hence we get EV (e2�t)MV (�e2�t)E � U(e2�t) bNU(�e2�t). The setsEV (e2�t)M
 and U(e2�t) bN
 are both a core for St which implies that EV (e2�t)M
is dense in U(e2�t) bN
 in the graph topology of St. Since the graph topology of St isstronger than the Hilbert space topology we get the density in the Hilbert space topol-ogy. As 
 is separating and since EV (e2�t)MV (�e2�t)E is convex we conclude thatEV (e2�t)MV (�e2�t)E is strongly dense in U(e2�t) bNU(�e2�t). Hence the theorem isproved.An application of Thm. 1.1 can be found in [7] Thm. (3.10). Another problem isthe following: Let U(t) be a half{sided translation for M and N a modular covariantsubalgebra of M. Assume U(t) does not commute with the conditional expectation E :11



HJB|May/99M! N . Can one �nd modular covariant subalgebras ~N� with N � ~N+ and ~N� � Nin such a way that U(t) commute with the corresponding conditional expectations? Theanswer is the following:2.10 Lemma:Let U(t) be a half{sided translation for M and N a modular covariant subalgebra of M.Assume U(t) does not commute with the conditional expectation E :M!N . Then thereexists a minimal modular covariant subalgebra ~N+ of M such that N � ~N+ and U(t)commute with the conditional expectation E+ : M ! ~N+. There exists also a maximalmodular covariant subalgebra ~N� of M such that N � ~N� and U(t) commutes with theconditional expectation E� :M! ~N�.Proof . De�ne ~N+ = _t�0AdU(t)N . This implies by the invariance of N Ad�it ~N+ =_t�0AdU(e�2�st)N = ~N+. Hence ~N+ is a modular covariant subalgebra of M containingN . Moreover we obtain for s > 0 AdU(s) ~N+ = _t�sAdU(t)N � ~N+. Hence U(t)commutes with E+ by Thm. 1.1. From the construction we see that ~N+ is the minimalmodular subalgebra of M with the stated properties.For de�ning ~N� we use the commutant of N and set ~N� = f _t�sAdU(t)N 0g0. Thatthis algebra ful�ls the stated requirements is shown as before.In the last result we have seen, that one can vary the modular covariant subalgebra ifU(t) and E do not commute in such a way that U(t) commutes with the new conditionalexpectation. But in some situation it might be better to keep the modular subalgebra �xedand try to change the half{sided translation in such a way that one obtains commutation.That this is indeed possible is the content of the next result.2.11 Lemma:Let U(t) be a half{sided translation for M and N a modular covariant subalgebra of M.Assume U(t) does not commute with the conditional expectation E :M!N . Then thereexists a modi�ed half{sided translation W (t) which commutes with E.Proof . Let � be the isomorphism � : N ! bN . De�ne the algebraP(t) = ��1fbE(M(t))g". This algebra is contained inN by construction. Since the modularaction commutes with � we obtain Ad�isP(t) = P(eist). De�ning ~M(t) = P(t)_M(t) weget Ad�is ~M(t) = ~M(eist). This shows that ~M(1) ful�ls the condition of�half{sidedmod-ular inclusion. Therefore exists a half{sided translationW (t) with AdW (t)M = ~M(t). Itremains to show thatW (t) commuts with E. We know from construction E(M(t)) � P(t).Let St be the map A
! A�
; A 2 P(t) [M(t). Since M0 commutes with P(t) [M(t)it follows that St is a closable operator. Denoting its closure again by St then it ful-�ls the conditions of Thm. 1.3. Hence we obtain ~M(t)
 = closure of fP(t) [ M(t)g
in the graph topology of St. From this we get E( ~M(t)
 = E(closure fP(t) [M(t)g
 =E closure fP(t)[M(t)g
. Since with A 2 fP(t)[M(t)g also A� belongs to fP(t)[M(t)gwe obtain that the closure commutes with E. But from EfP(t) [M(t)gE = P(t)E it fol-lows that E( ~M(t)) = P(t) holds and hence W (t) commutes with E by Thm. 1.1.12
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