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BERNSTEIN{GELFAND{GELFAND SEQUENCESANDREAS �CAP, JAN SLOV�AK, AND VLADIM�IR SOU�CEKAbstract. This paper is devoted to the study of geometric structuresmodeled on homogeneous spaces G=P , where G is a real or complexsemisimple Lie group and P � G is a parabolic subgroup. We use meth-ods from di�erential geometry and very elementary �nite{dimensionalrepresentation theory to construct sequences of invariant di�erential op-erators for such geometries, both in the smooth and the holomorphiccategory. For G simple, these sequences specialize on the homogeneousmodel G=P to the celebrated (generalized) Bernstein{Gelfand{Gelfandresolutions in the holomorphic category, while in the smooth categorywe get smooth analogs of these resolutions. In the case of geometrieslocally isomorphic to the homogeneous model, we still get resolutions,whose cohomology is explicitly related to a twisted de Rham cohomol-ogy. In the general (curved) case we get distinguished curved analogs ofall the invariant di�erential operators occurring in Bernstein{Gelfand{Gelfand resolutions (and their smooth analogs).On the way to these results, a signi�cant part of the general theoryof geometrical structures of the type described above is presented herefor the �rst time. 1. IntroductionOur approach to geometries modeled on homogeneous spaces goes back toE. Cartan's notion of an `espace generalis�e'. The central objects for such ge-ometries are suitably normalized Cartan connections in the sense commonlyadopted, see e.g. [31]. The models for the geometries considered in this pa-per are homogeneous spaces of the type G=P , where G is real or complexsemisimple and P � G is a parabolic subgroup. In this case, there is a closelink to the project of parabolic invariant theory suggested by Ch. Fe�ermanin [17] and in view of this context we talk about the (real and complex)parabolic geometries.We explore the semi{holonomic jet modules and we use implicitly thecohomological information given by Kostant's version of the Bott{Borel{Weil theorem in order to construct sequences of homomorphisms betweenjet{modules, which in turn give rise to sequences of invariant di�erential op-erators expressed in terms of the invariant derivatives with respect to Cartanconnections, on all (curved) geometries in question. These sequences are dif-ferential complexes if certain twisted de Rham sequences are complexes, andthen they compute the same cohomology. In particular, this always happensfor the homogeneous models themselves and then our sequences specialize tothe Bernstein{Gelfand{Gelfand resolutions well known from representationtheory for complex G=P , while their real smooth analogues are provided forall real forms of this situation. 1



2 ANDREAS �CAP, JAN SLOV�AK, AND VLADIM�IR SOU�CEKIn spite of the fact that we have mentioned a few concepts from represen-tation theory, we want to underline that no deeper aspects of representationtheory are used in the construction of our new sequences of invariant opera-tors and in the discussion of their basic properties. In particular, no in�nitedimensional representation theory is needed. It is rather the language andthe way of thinking of representation theory that is essential (in a similar wayas the categorical language is useful in mathematics even if no deep results ofcategory theory are used). In order to stress this feature, we have postponedthe more detailed analysis of the structure of the sequences to a forthcomingsecond part of the article and we hope that the �rst part is accessible fordi�erential geometers without a deeper background in representation the-ory. We also provide a quite detailed exposition of the necessary algebraicbackground. In particular we have included two appendices covering somematerial which is rather well known in representation theory.The �rst general geometric theory close to our needs had been worked outin the series of papers by N. Tanaka and his school aiming at the originalequivalence problem of E. Cartan, see [34, 35, 27] and the references therein.Our inspiration comes, however, rather from the interest in the links betweentwistor theory and representation theory, as explained in the book [2]. Inthe generality we need, the normalized Cartan connections were constructedin [7] �rst. We have been also inuenced by the translation principle inrepresentation theory (see [4, 5] for example) and, in particular, by someideas in the second part of Baston's paper [1]. Some arguments and proofsin the latter paper seem very unclear to us, however.There are also many treatments of speci�c examples of parabolic geome-tries in the literature, including e.g. projective, conformal, almost Grassman-nian, and CR{geometries. Most of these well known geometries correspondto the so called j1j{graded Lie algebras g which can be equivalently expressedby the requirement that the tangent spaces correspond to irreducible rep-resentations of the parabolic subgroup P . Our theory of semi{holonomicjet{modules is in fact a generalization of the approach worked out for allreal j1j{graded algebras in our former papers [8, 9, 10] (and this paper couldbe also viewed as a fourth part of this series expanded to the full general-ity of parabolic geometries). On the other hand, there are only few explicitexamples of curved analogues of the Bernstein{Gelfand{Gelfand resolutionsavailable in the literature, see e.g. [14], and in fact only the case of conformalRiemannian geometries has been studied systematically, see [19] and [16] fortwo di�erent approaches. For an introduction addressed to wide audience,see the forthcoming paper [13].Let us indicate the structure of the paper. In the next section, we �rstcollect the necessary information on jkj-graded Lie algebras and the struc-ture of the corresponding Lie groups, and then real and complex parabolicgeometries are introduced (cf. 2.7). Our point of view is that the geometryon a manifold M is given by a choice of a Cartan connection (with possiblefurther normalization) and we are interested in the general calculus whichsuch a choice o�ers. In a certain sense, this is similar to the rôle of the gen-eral calculus for linear connections in Riemannian geometry by applicationto the Levi{Civita connection. Thus we only briey discuss the more classi-cal underlying geometrical information on the manifolds M themselves and



BERNSTEIN{GELFAND{GELFAND SEQUENCES 3the question of constructing a (normalized) Cartan connection from thesemore basic data, cf. 2.10. See [7, 27] for more information on this aspect. Wealso introduce the concepts of natural bundles and operators for parabolicgeometries in the end of Section 2.The third section deals with our basic algebraic tool, the semi{holonomicjet modules. The invariant derivative with respect to Cartan connectionsthen leads to the notion of strongly invariant di�erential operators whichare de�ned by means of P{module homomorphisms. As a �rst application,we introduce the twisted exterior derivatives which are certain torsion ad-justed versions of the covariant exterior derivatives induced by the Cartanconnections on certain bundles.The main results are stated and proved in Section 4. Referring implicitlyto the structure of the Lie algebra cohomologies, we �rst embed the nat-ural vector bundles corresponding to cohomologies into exterior forms bymeans of distinguished di�erential operators L, see Theorem 4.8. Then weuse the twisted exterior derivatives in order to construct explicitly many P{module homomorphisms of the semi{holonomic jet modules, cf. Proposition4.9. The corresponding invariant di�erential operators build the Bernstein{Gelfand{Gelfand sequences. Finally we discuss the conditions under whichthese sequences form di�erential complexes, and we discuss their cohomolo-gies, cf. 4.13{4.15.Finally, we illustrate briey the achievements on at least one non{trivialparabolic geometry and this is done in Section 5.Throughout the paper, we discuss the real and complex manifolds andgroups at the same time. We should point out however, that the relationbetween the real and complex settings deserves more attention. In fact, weare able to present both smooth and holomorphic results in one line ofarguments, because our point is to use the P{module homomorphisms inorder to construct the sequences of operators. The distinction is hidden inthe explicit structure of the Lie algebra cohomologies, which we use onlyimplicitly. One should say, however, this does not mean that working outthe details for one real form gives explicit results for all other real or complexforms of the group in question. This ambiguity disappears only if we restrictourselves to complex representations of the real forms.A more detailed discussion of our Bernstein{Gelfand{Gelfand sequencesrequires a deeper study of the cohomological information. Essentially, thenon{trivial operators between the irreducible bundles in the sequence cor-respond to arrows in the Hasse diagram of the parabolic subalgebras andthe knowledge of this structure leads to quite explicit information on the in-dividual operators. We have preferred to postpone all considerations whichneed more involved information from representation theory to a prospectivecontinuation in order to keep the avor of this article.Acknowledgements. The research evolved during a stay of the �rst twoauthors at the University of Adelaide supported by the Australian Re-search Council, and during the meetings of all three authors at the Er-win Schr�odinger Institute for Mathematical Physics in Vienna, the MasarykUniversity in Brno, and the Charles University in Prague. The institutional



4 ANDREAS �CAP, JAN SLOV�AK, AND VLADIM�IR SOU�CEKsupport by GA�CR, Grant Nr. 201/99/0675 has been essential, too. Our par-ticular thanks are due to Michael Eastwood who explained to us severalaspects of the Bernstein{Gelfand{Gelfand resolutions.2. Parabolic geometriesIn this section we review basic facts about jkj{graded Lie algebras andwe give basic de�nitions on parabolic geometries and invariant di�erentialoperators on manifolds equipped with geometries of that type. Most of thefacts on the algebras go back to [34, 35], see also [7] which is fully compatiblein notation.2.1. De�nition. Let K be R or C . A jkj{graded Lie algebra over K, k 2 Nis a Lie algebra g over K together with a decompositiong = g�k � � � � � g�1 � g0 � g1 � � � � � gksuch that [gi; gj] � gi+j and such that the subalgebra g� := g�k � � � �� g�1is generated by g�1. In the whole paper, we will only deal with semisimplejkj{graded Lie algebras.By p we will denote the subalgebra g0 � � � � � gk of g, and by p+ thesubalgebra g1 � � � � � gk of p.There is always a unique element E 2 g whose adjoint action is given by[E;X ] = `X for X 2 g`. The element E is contained in the center of thesubalgebra g0, which is always reductive. Using this, one shows that any idealof g is homogeneous. Thus, a semisimple jkj{graded Lie algebra is always adirect sum of simple jkij{graded Lie algebras, where all ki � k. Hence, oneusually can reduce most discussions to the simple case. When dealing withthe semisimple case, we have to assume that none of the simple factors iscontained in g0, for technical reasons. Since basically we are interested inhomogeneous spaces G=P , where G is a Lie group with Lie algebra g and Pan appropriate subgroup with Lie algebra p, and their curved analogs, thisis not really a restriction.For each i = 1; : : : ; k, the Killing form of g induces an isomorphism gi �=g��i of g0{modules. Finally, the powers of p+ are given by pi+ = gi�� � �� gk,for i = 1; : : : ; k. See e.g. [35, Section 3] for details.2.2. In the complex case, the meaning of a jkj{grading is particularly sim-ple to describe. One can show that there always exists a Cartan subalgebrah � g which contains the element E from above, and a choice of positiveroots �+ for h such that all root spaces corresponding to simple roots areeither contained in g0 or in g1. Denoting by � the set of those simple roots,whose root spaces are contained in g1, one sees that the grading on g isgiven by the �{height of roots. That is, if � is a root, then the root spaceg� is contained in gi, where i is the sum of all coe�cients of elements of �in the expansion of � as a linear combination of simple roots. In particular,this implies that the subalgebra p is always a parabolic subalgebra of g, andp = g0 � p+ is exactly the Levi decomposition of p into a reductive and anilpotent part.Conversely, if g is complex and semisimple and p � g is a parabolicsubalgebra, then one can �nd a Cartan subalgebra and a set of positiveroots such that p is the standard parabolic corresponding to a set � of



BERNSTEIN{GELFAND{GELFAND SEQUENCES 5simple roots. But then the �{height as de�ned above gives a jkj{grading ong, where k is the �{height of the maximal root of g, such that p = g0�� � ��gk .See e.g. [22, p. 88] or [2, Section 2] for more details.Thus, in the complex case giving a jkj{grading on g is the same thing asgiving a parabolic subalgebra p of g. Therefore, complex jkj{graded semisim-ple Lie algebras can be conveniently denoted by Dynkin diagrams withcrossed nodes. That is, given a jkj{graded semisimple complex Lie algebrawe may assume that p is the standard parabolic subalgebra correspondingto a set � of simple roots. Then we denote the jkj{graded Lie algebra g bycrossing out the nodes corresponding to the simple roots contained in � inthe Dynkin diagram of g. See the book [2] for a detailed discussion of theDynkin diagram notation for parabolic subalgebras.Finally note that for a jkj{graded Lie algebra g overRthe complexi�cationgC of g is jkj{graded, too. So in general we deal with certain real forms ofpairs (g; p), where g is complex and semisimple and p is a parabolic in g.The classi�cation of all these real forms is provided in [35, Section 4].2.3. Suppose that g is jkj{graded and semisimple over K = R or C , andlet G be any Lie group with Lie algebra g. (We do not assume that G isconnected.) Then we can de�ne subgroups G0 � P � G as follows: G0consists of all elements of G such that the adjoint action Ad(g) : g ! g ofg preserves the grading of g. By P we denote the subgroup of all elementsg 2 G such that Ad(g) preserves the �ltration by right ends induced by thegrading of g, i.e. Ad(g)(gi) � gi � � � � � gk. By de�nition G0 is a subgroupof P , and one easily veri�es that G0 and P have Lie algebras g0 and p,respectively, see e.g. [7, 2.9]. Moreover, it can be shown that if g is simple,then P equals the normalizer NG(p) of p in G, so it is the usual parabolicsubgroup associated to the parabolic subalgebra p.The following proposition clari�es the structure of the group P :Proposition. Let g 2 P be any element. Then there exist unique elementsg0 2 G0 and Xi 2 gi for i = 1; : : : ; k, such thatg = g0 exp(X1) : : :exp(Xk):Proof. See [7, 2.10].2.4. For i = 1; : : : ; k we de�ne a subgroup P i+ � P as the image under theexponential map of gi � � � � � gk, and we write P+ for P 1+. Then we haveP � P+ � P 2+ � � � � � P k+. The subgroup P+ � P is obviously normal andby Proposition 2.3 we have P=P+ �= G0, so P is the semidirect product ofG0 and the normal nilpotent subgroup P+. More generally, for each i > 1we see that P=P i+ is the semidirect product of G0 and the normal nilpotentsubgroup P+=P i+.The adjoint action of P on g by de�nition preserves any of the subspacegi� � � �� gk for i = �k; : : : ; k. Thus for each i = �k; : : : ; k and j > i we getan induced action of P on the quotient gi � � � � � gk=(gj � � � � � gk). Witha slight abuse of notation, we will denote this P{module by gi � � � �� gj�1.Again by Proposition 2.3, the action of P j�i+ on gi�� � ��gj�1 is trivial, so theaction of P on this space is induced by an action of P=P j�i+ . In particular,we get an action of P on g� = g=p, which is induced by an action of P=P k+.



6 ANDREAS �CAP, JAN SLOV�AK, AND VLADIM�IR SOU�CEKThere is another important consequence of Proposition 2.3: Suppose thatVand W are P{modules and that � :V! W is a linear mapping. Supposethat � is equivariant for the action of G0 and for the (in�nitesimal) actionof g1. Since p+ is generated by g1 this implies equivariancy with respect top+ and thus also with respect to P+, so using Proposition 2.3 we see that� is actually a homomorphism of P{modules. This will be technically veryimportant in the sequel.2.5. For a Lie group G with jkj{graded semisimple Lie algebra g and thesubgroup P de�ned in 2.3 above, consider the homogeneous space G=P .This homogeneous space is the at model for the parabolic geometry of thetype (G;P ) that we are going to study. It is well known that the canonicalprojection G! G=P is a principal �ber bundle with structure group P .If G is a complex Lie group, then P is a parabolic subgroup, so G=Pis a generalized ag manifold, and thus in particular a compact complexmanifold. In the real case, G=P need not be compact in general, as theexample of the conformal spheres in inde�nite signature shows.Next suppose that � : P ! GL(V) is a representation of P on a �-nite dimensional vector space V. Then we can form the associated bundleV := G �P V! G=P . This is a homogeneous vector bundle, that is thecanonical left action of G on G=P lifts to a left action of G on V by vec-tor bundle homomorphisms. Conversely, given a homogeneous vector bundleE ! G=P , consider the �ber E of E over the canonical base point o 2 G=P .Since the action of any element of P on G=P maps o to itself, the actionof G on E induces a representation of P on E and one easily veri�es thatG �P E and E are isomorphic homogeneous vector bundles (i.e. there is aG{equivariant isomorphism of vector bundles between them). Consequently,there is a bijective correspondence between �nite dimensional representa-tions of P and homogeneous vector bundles over G=P . In the case where Gis a complex Lie group, the action of G on G=P is holomorphic and thereis a bijective correspondence between holomorphic �nite dimensional rep-resentations of P and holomorphic homogeneous vector bundles over G=P(that is holomorphic bundles with holomorphic G{actions).In particular, the tangent and cotangent bundles of G=P are homogeneousvector bundles. One easily veri�es that they correspond to the representa-tions of P on g� �= g=p and p+ induced by the adjoint action, respectively.In the complex case, these representations induce the holomorphic tangentand cotangent bundle.For a homogeneous vector bundle E ! G=P consider the space �(E) ofsmooth sections of E. There is an induced action of G on this space givenby (g�s)(x) = g�(s(g�1�x)) for x 2 G=P . In the complex case, we can dealsimilarly with the spaces of holomorphic sections.De�nition. Let E and F be homogeneous vector bundles over G=P . A (lin-ear) invariant di�erential operator D : �(E)! �(F ) is a linear di�erentialoperator D which is equivariant for the G{actions constructed above.2.6. If D is of order � r, then it is induced by a vector bundle homo-morphism ~D : Jr(E) ! F , where Jr(E) is the r{th jet prolongation of E.Now simply by functoriality of the r{th jet prolongation, Jr(E) is again a



BERNSTEIN{GELFAND{GELFAND SEQUENCES 7homogeneous vector bundle, and the invariance of D is equivalent to thefact that ~D is equivariant for the G{actions on Jr(E) and F . Since G actstransitively on G=P , the homomorphism ~D is actually determined by itsrestriction ~D : Jr(E)o ! Fo to the �ber over o 2 G=P , and by invariance ofD, this map is P{equivariant.Conversely, a P{homomorphism Jr(E)o ! Fo extends uniquely to a G{homomorphism Jr(E) ! F and thus gives rise to an invariant di�erentialoperator. Thus, invariant di�erential operators �(E) ! �(F ) of order � rare in bijective correspondence with P{homomorphisms Jr(E)o ! Fo. Toavoid the restriction on the order, one can simply pass to in�nite jets andwe obtain that invariant di�erential operators �(E)! �(F ) are in bijectivecorrespondence with P{homomorphisms J1(E)o ! Fo, which factorize oversome Jr(E).Surprisingly, the problem of determining all such homomorphisms has anice reformulation in term of (in�nite{dimensional) representation theory,which has led to a complete solution in several cases. Namely, suppose thatE and F correspond to representations E and F of P , respectively. For thedual representation E� , one can form the induced module U(g) 
U(p) E� ,which is a (g; P ){module, i.e. it admits compatible actions of g and P . Inthe case where p � g is the Borel subalgebra (i.e. the minimal parabolic)and E is irreducible, these are the Verma{modules while for general p andirreducible E, they are called generalized Verma{modules . By a dualizationargument and Frobenius reciprocity one shows that for E and F irreducible,the space of all P{module homomorphisms J1(E)o ! Fo, which factorizeover some Jr(E)o is isomorphic to the space of all (g; P ){homomorphismsU(g)
U(p) F� ! U(g)
U(p) E� . Since these considerations are essential forunderstanding of the links of our development to the standard Bernstein{Gelfand{Gelfand resolutions, we provide some more details in AppendixAppendix A.Let us remark however that while there is a complete classi�cation of ho-momorphisms of Verma{modules in the complex case in [3], the classi�cationof homomorphisms of generalized Verma modules is a very di�cult problem,which is unsolved in general (even in the complex case). There is a completeclassi�cation in the case of real rank one for one dimensional representa-tions in [26] and for general representations in [4] and [5]. The problem inthe case of generalized Verma modules is the following: One has a class of ho-momorphisms which are induced by homomorphisms of Verma modules, theso{called standard homomorphisms. These are exactly the homomorphismswhich occur in Bernstein{Gelfand{Gelfand resolutions. But it may happenthat a homomorphism of Verma modules induces the zero{homomorphismbetween generalized Verma modules, and in this situation there may still benonzero homomorphisms (the so called non{standard homomorphisms).2.7. Parabolic geometries. Some geometries can be viewed as curvedanalogs of the homogeneous spaces G=P considered above. For the purposeof this paper, the best way to de�ne them is simply as generalized spaces inthe sense of E. Cartan.Let g = g�k � � � � � gk be a real jkj{graded Lie algebra and let G be aLie group with Lie algebra g. Let G0 and P be the subgroups of G de�ned



8 ANDREAS �CAP, JAN SLOV�AK, AND VLADIM�IR SOU�CEKin 2.3 above. Then we de�ne a (real) parabolic geometry of type (G;P ) ona smooth manifold M to be a principal P{bundle G ! M equipped with aCartan connection of type (G;P ), i.e. a di�erential form ! 2 
1(G; g) suchthat(1) !(�X) = X for all X 2 p(2) (rb)�! = Ad(b�1) � ! for all b 2 P(3) !jTuG : TuG ! g is a linear isomorphism for all u 2 G.Here �X denotes the fundamental vector �eld generated by X 2 p andrb denotes the principal right action of b 2 P . Thus, ! gives a smooth P{equivariant trivialization of the tangent bundle of G, which reproduces thegenerators of fundamental �elds. Each X 2 g de�nes the constant vector�eld !�1(X) given by !�1(X)(u) = !�1u (X) 2 TuG. Clearly, a parabolicgeometry of type (G;P ) on M can only exist if M has the same dimensionas G=P .In the complex setting, the Lie algebras and groups, as well as the manifoldM are complex and the above de�nition remains unchanged except for thereplacement of smooth by holomorphic. Thus a complex parabolic geometryof the type (G;P ) on a complex manifold M is given by a holomorphicprincipal �ber bundle equipped with a holomorphic absolute parallelism !with the three properties listed above.The (real or complex) homogeneous space G=P always carries a canonicalparabolic geometry, namely G = G and the Cartan connection is given bythe left Maurer Cartan form. Then the constant vector �elds are exactly theleft invariant �elds on G.It is fairly easy to make the parabolic geometries as de�ned above intoa category. Let (G; !) be a real parabolic geometry on M and (G 0; !0) be aparabolic geometry on M 0, and suppose that � : G ! G 0 is a smooth homo-morphism of principal P{bundles, such that the induced map � :M ! M 0is a local di�eomorphism. Then for any point u 2 G the tangent mapTu� : TuG ! T�(u)G0 is a linear isomorphism, and using this, one imme-diately veri�es that ��!0 := !0 � T� is a Cartan connection on G. Nowwe de�ne a morphism from (G; !) to (G 0; !0) to be a homomorphism � ofprincipal bundles such that the induced map � :M ! M 0 is a local di�eo-morphism and such that ! = ��!0. For complex parabolic geometries weadditionally require all maps to be holomorphic.Note that any homomorphism � : G ! G 0 of principal bundles whichlies over a local di�eomorphism can be viewed as a morphism (G;��!0) !(G0; !0). More generally, if (G 0; !0) is a parabolic geometry on M 0 and f :M ! M 0 is a local di�eomorphism, then we can form the pullback bun-dle f�G0 ! M . Then there is an induced homomorphism � : f�G0 ! G 0of principal bundles which lies over f , and we get an induced morphism(f�G0;��!0)! (G 0; !0).2.8. For some purposes, the category of parabolic geometries as de�nedabove is too large, and one has to impose certain restrictions. Usually, theserestrictions are on the curvature of the Cartan connection. Initially, thecurvature of a Cartan connection ! is de�ned as the g{valued two{form



BERNSTEIN{GELFAND{GELFAND SEQUENCES 9K 2 
2(G; g) de�ned by the structure equationK(�; �) = d!(�; �) + [!(�); !(�)];where � and � are vector �elds on G and the bracket is in g. Using theproperties of ! one immediately veri�es thatK is horizontal and equivariant.In particular, this implies that K is uniquely determined by the curvature{function � : G ! �2g��
g de�ned by �(u)(X; Y ) = K(u)(!�1u (X); !�1u (Y )).There are two natural ways to split � into components. First, the splittingof g induces a splitting of � according to the values in g. In particular, wecan split � = �� � �p according to the splitting g = g� � p. Following theclassical terminology for a�ne connections, �� is called the torsion of !.The other possibility is to split � according to homogeneous components.We denote the homogeneous component of degree i of � by �(i). So �(i) mapsgj 
 gk to gi+j+k .Another important point is that the space �2g�� 
 g is the second chaingroup C2(g�; g) in the standard complex for the Lie algebra cohomologyH�(g�; g) of the nilpotent Lie algebra g� with coe�cients in the g�{moduleg. As we shall recall in detail in Section 4, there is the adjoint @� to theLie algebra di�erential @ in this complex, so in particular, we have the map@� : �2g�� 
 g! g�� 
 g.De�nition. Let (G; !) be a (real or complex) parabolic geometry on a man-ifold M , and let � be the curvature of !. Then the parabolic geometry iscalled(1) normal if @� � � = 0.(2) regular if it is normal and �(i) = 0 for all i � 0.(3) torsion{free if �� = 0.(4) at if � = 0.Note that forming the curvature of a Cartan connection is a natural oper-ation. This means that if � : G ! G 0 is a homomorphism of principal bundlesand !0 is a Cartan connection with curvature K 0 and curvature{function �0then the curvature K and curvature function � of the pullback ��!0 aregiven by K = ��K 0 and � = �0 � �, respectively. Since all the subclassesof parabolic geometries de�ned above are given by restricting the values ofthe curvature{function, morphisms into a parabolic geometry from one ofthe four subclasses can only come from geometries from the same subclass.Clearly, for any of the four subclasses the geometries belonging to the classform a full subcategory of the category of all parabolic geometries of �xedtype.2.9. Examples. Before we review the construction of parabolic geometriesfrom underlying data, we present two well known examples.Conformal structures. Consider Rn with coordinates x1; : : : ; xn and thestandard inner product h ; i of signature (p; q), and Rn+2 with coordinatesx0; x1; : : : ; xn; x1 and the inner product associated to the quadratic form2x0x1 + h(x1; : : : ; xn); (x1; : : : ; xn)i, which has signature (p+ 1; q + 1). LetG = SO0(p+1; q+1) be the connected component of the special orthogonalgroup of this metric. Then the Lie algebra g of G admits a j1j{grading bydecomposing matrices into blocks of sizes 1, n, and 1, see e.g. [8, 3.3(2)].



10 ANDREAS �CAP, JAN SLOV�AK, AND VLADIM�IR SOU�CEKThe construction of the canonical Cartan connection for manifolds endowedwith a conformal structure of signature (p; q), originally due to E. Cartan(see [11]), shows that conformal structures of this signature are precisely thesame thing as normal parabolic geometries corresponding to that choice ofG and P . See [8] for a construction of the canonical Cartan connection onconformal manifolds in a style similar to the approach of this paper. In thisspecial situation, normal Cartan connections turn out to be automaticallyregular and torsion free, so three of the four subclasses de�ned in 2.8 abovecoincide. The at parabolic geometries in this case are exactly the locallyconformally at manifolds.Partially integrable almost CR{structures. The complex analog of theabove construction leads to the partially integrable almost CR{structureswhich present another example of real parabolic geometries. Here we haveto consider the complex vector space C n with the standard Hermitian in-ner product of signature (p; q) and Cn+2 with the Hermitian inner prod-uct associated to z0�z1 + �z0z1 + h(z1; : : : ; zn); (z1; : : : ; zn)i. Now we putG = PSU(p+1; q+1) the quotient of the special unitary group correspond-ing to this Hermitian inner product by its center. Splitting the matrices inthe Lie algebra g of G into blocks of sizes 1, n, and 1 this time gives riseto a j2j{grading. The construction of canonical Cartan connections in [7]shows that partially integrable almost CR{structures with non{degenerateLevi{form of signature (p; q) are exactly the same thing as regular parabolicgeometries corresponding to G (see [7, 4.14]). In this case, three of the foursubclasses of geometries de�ned in 2.8 above are really di�erent: The tor-sion free parabolic geometries in this case are precisely the CR{structures(see [7, 4.16]), and the at ones are those which are locally isomorphic tothe homogeneous model. The only coincidence in this case is that normalparabolic geometries are automatically regular.2.10. Underlying structures. These two examples already show thatidentifying a geometrical structure on a manifold as a parabolic geometryshould be rather the result of a theorem than a de�nition. In fact one canshow in a fairly general setting that certain parabolic geometries are deter-mined by underlying structures. This is the subject of the paper [7] whichgeneralizes [34], see also [27] and [35]. To review the results, we �rst describethe underlying structures we have in mind.Suppose that (G; !) is a regular parabolic geometry on a manifold M .The �rst thing we get out of this is a �ltration of the tangent bundle ofM of the form TM = T�kM � T�k+1M � � � � � T�1M . This is given byde�ning T iM to be the set of those tangent vectors � on M for which thereis a tangent vector ~� in TG lying over � with !(~�) 2 gi�� � �� gk . The lattercondition is independent of the choice of ~� since changing the vector with�xed footpoint adds a vertical vector whose image under ! lies in p, whilechanging the footpoint leads to the adjoint action of an element of P , whichby de�nition preserves the subspace gi� � � �� gk. Clearly, this �ltration hasthe property that the rank of T iM=T i+1M equals the dimension of gi forall i = �k; : : : ;�1.



BERNSTEIN{GELFAND{GELFAND SEQUENCES 11Now the underlying structures basically are given by considering the bun-dles G=P i+ ! M for i = 1; : : : ; k and the \traces" of the Cartan connectionthat remain on these bundles. This \trace" on the bundle G=P i+ ! M isa frame form of length i in the sense of [7, 3.2]. For the case i = 1 thegeometric meaning of such a frame form is particularly easy to describe: Itis exactly a reduction to the structure group G0 of the associated gradedvector bundlegrTM = T�kM=T�k+1M � � � � � T�2M=T�1M � T�1Mto the tangent bundle TM . The fact that the curvature{function � of theregular Cartan connection ! has the property that �(i) = 0 for all i � 0 isreected in a property of the underlying frame forms called the structureequation, see [7, 3.4]. The bundle G=P i+ together with the frame form oflength i, which satis�es the structure equations is called the underlying P{frame bundle of degree i. Again, for i = 1 this condition can be easilyunderstood geometrically. It is equivalent to the fact that the algebraic Liebracket on grTM which comes from the reduction to the groupG0 is inducedby the Lie bracket of vector �elds, that is it is given by a (generalized) Levi{form.Now the main result of [7] can be stated (with the help of the languageof Dynkin diagrams for the pairs (g; p) mentioned in 2.2 above) as follows:Let (g; p), G, P , and G0 be as in 2.3 and suppose throughout that nosimple factor of g is contained in g0 and g does not contain a simple factorof type A1. Then:(1) If (g; p) does not contain any simple factor of one of the types� � � � � � � or � � � � � � �hthen any regular parabolic geometry can be reconstructed from the underlyingP{frame bundle of degree one, and any P{frame bundle of degree one comesfrom a regular parabolic geometry. Thus, in all these cases regular parabolicgeometries are the same thing as manifolds with �ltered tangent bundle plusreductions of grTM to the group G0 such that the resulting algebraic bracketis induced by the Lie bracket.(2) If g contains simple factors of one of the two above types, then any regularparabolic geometry can be reconstructed from the underlying P{frame bundleof degree two and any such bundle comes from a regular parabolic geometry.Moreover, any P{frame bundle of degree one can be extended (in variousways) to a P{frame bundle of degree two.The classical examples of the second case are the projective structureswhere the P{frame bundle of degree one is simply the full frame bundle andall the structure is contained in the choice of an extension to a P{framebundle of degree two. The other exceptional examples are the so calledprojective contact structures.2.11. Natural bundles and operators. We will not go into much detailin the generalities about natural bundles and natural operators, but justoutline the basic facts. We do not want to compare the various notions ofnaturality (this will be taken up elsewhere) but just show that the operatorswe are going to construct are natural (or invariant) in any reasonable sense.



12 ANDREAS �CAP, JAN SLOV�AK, AND VLADIM�IR SOU�CEKGiven a representation of P on a vector space V and a parabolic geom-etry (G ! M;!) we can form the associated bundle VM = G �P V! M .If � : G ! G 0 is a homomorphism of principal bundles which covers a localdi�eomorphism � : M ! M 0, then we get an induced homomorphism ofvector bundles VM ! VM 0 which lies over the same map � and restrictsto a linear isomorphism in each �ber. To put it in another way, we get afunctor from the category of parabolic geometries to the category of vectorbundles over manifolds of the same dimension as G=P and vector bundlehomomorphisms which cover local di�eomorphisms and induce linear iso-morphisms in each �ber such that the composition of the base functor withthe given functor equals the base functor. Thus, we get a special case of agauge natural bundle as de�ned in [24, Chapter XII].Consider next a �xed category of real parabolic geometries, and two repre-sentations Vand W of P . Let V and W be the corresponding natural vectorbundles. A natural linear operator mapping sections of V to sections of Wis de�ned to be a system of linear operators D(G;!) : �(VM) ! �(WM),where M is the base of G such that for any morphism � : (G; !)! (G 0; !0)we have �� �D(G0;!0) = D(G;!) � ��:This de�nition implies immediately, that each of the operators is local bothin the section and in the Cartan connection: Suppose that s 2 �(VM)vanishes identically on an open subset U � M . Then there is an obvi-ous inclusion morphism i : (GjU ; !jU) ! (G; !) and i�s = 0. Thus alsoi�(D(G;!)(s)) = 0, i.e. D(G;!)(s) is identically zero on U . Similarly, assumethat ! and !0 are two Cartan connections which coincide on GjU . Then forany section s 2 �(VM) we have D(G;!)(s)jU = D(G;!0)(s)jU . In particular,the classical Peetre theorem implies that each of the operators D(G;!) is lo-cally overM a �nite order di�erential operator with respect to the argumentsin the vector bundles and the Cartan connection.For complex parabolic geometries, we deal with holomorphic represen-tations of P , the natural vector bundles are holomorphic, and the naturaloperators act on holomorphic sections. Let us also remark that all theseconcepts extend to non-linear objects without essential changes.2.12. The natural operators on the category of at parabolic geometriesare particularly easy to describe: It is a classical result on Cartan connectionsthat any at parabolic geometry is locally isomorphic to the homogeneousmodel G=P (see [7, 4.12] for a proof in the setting of parabolic geometries).This immediately implies that any natural operator on the category of atparabolic geometries is uniquely determined by its value on the homoge-neous model G=P , i.e. the parabolic geometry (G! G=P; !). Moreover, anoperator on the at model extends to a natural operator on the category ofat parabolic geometries if and only if it is natural with respect to all auto-morphisms of (G; !). The left multiplication by any element of G induces anautomorphism of the principal bundle G ! G=P and by left invariance ofthe Maurer Cartan form this actually is an automorphism of the parabolicgeometry (G; !). On the other hand, by [31, Theorem 3.5.2] the only smoothfunctions G! G which pull back the Maurer Cartan form to itself are theconstant left translations. Thus G is exactly the group of all automorphisms



BERNSTEIN{GELFAND{GELFAND SEQUENCES 13of (G; !). But this immediately implies that an operator on the homoge-neous model extends to a natural operator on the category of at parabolicgeometries if and only if it is invariant in the sense of de�nition 2.5. Thus forthe at case, the description of natural operators is equivalent to a problemin representation theory.Usually, the question on more general natural operators is then posed(in the special cases that have been studied so far) as the question of theexistence of curved analogs of invariant operators. This should be viewed asfollows: As we discussed in 2.6, an invariant operator of order r is inducedby a P{module homomorphism Jr(E)o ! Fo, which does not factor overJr�1(E)o. Now the kernel of the projection Jr(E)o ! Jr�1(E)o is the bundleSrT �(G=P )
E, so it corresponds to the representation Srp+
E. Thus theinvariant operator gives rise to a homomorphism Srp+ 
 E ! F of P{modules, which in turn gives a G{equivariant homomorphism between thecorresponding homogeneous vector bundles which is precisely the symbol ofthe operator we started with. But this P{module homomorphism inducesa homomorphism of associated bundles on any parabolic geometry, so forany parabolic geometry (G; !) over a manifold M , we get the correspondinghomomorphism SrT �M 
EM ! FM . Now a curved analog of an invariantoperator is a natural operator such that for each (G; !) the symbol of D(G;!)is the above homomorphism. Otherwise put, the question is whether wecan extend a given natural operator from the category of at parabolicgeometries to some larger category of parabolic geometries without changingits symbol, which, as a natural transformation, makes sense on any parabolicgeometry.2.13. We conclude this introductory section with some more remarks onthe beautiful geometric structure underlying each parabolic geometry. Thistopic deserves much more attention than we could pay here and it will bestudied in detail elsewhere. Some �rst steps have been done in [33].Suppose that (G; !) is a real parabolic geometry on a manifold M . Thenwe have the tower of principal �ber bundles G ! G=P+ ! M and the toplevel has the structure group P+. Now using the Baker{Campbell{Hausdor�formula, Proposition 2.3 can be restated in the form that for any g 2 Pthere is a unique g0 2 G0 and a unique Z 2 p+ such that g = g0 exp(Z).But using this, one easily shows that the bundle G ! G=P+ admits globalG0{equivariant smooth sections. Namely, one can use a local trivializationof G ! M to construct equivariant sections over the preimage in G=P+ ofappropriate open subsets of M . Such local sections can then be glued toa global section using a partition of unity (compare with the proof of [8,Lemma 3.6]). As in this last reference one also proves that the space of allthese sections is an a�ne space modeled on the space 
1(M) of one{formson M . G // G=P+ //
�

{{ M!OO ��(!g� + !g0)OO



14 ANDREAS �CAP, JAN SLOV�AK, AND VLADIM�IR SOU�CEKEach such global section � reduces the structure group of the tangent spaceTM to G0 and induces an a�ne connection � = ��(!g�+!g0) on TM . Thisa�ne connection is �{related to another Cartan connection !� on G, whichdi�ers from ! only in the p+{component. The class of all connections � isa straightforward generalization of Weyl structures on conformal geometriesand all di�erential operators built of the Cartan connection ! can be ex-pressed by uniform formulae in terms of these a�ne connections and theirtorsions and curvatures. The technique based on this general framework wasdeveloped systematically for all j1j-graded algebras g in [8, 9, 10].3. Semi{holonomic jet modules and strongly invariant operatorsSemi{holonomic jet prolongations of modules were �rst introduced in thecontext of AHS{structures in [8]. Here we develop the concept in the moregeneral setting of parabolic geometries and we discuss how the homomor-phisms of semi{holonomic jet prolongations give rise to natural operators.Throughout this section, there will be essentially no di�erences in the ar-guments for the real and complex parabolic geometries. Thus we shall notmention the �eld of scalars explicitly, and one has to think of the properreal or complex modules in the applications below.3.1. The absolutely invariant derivative. Suppose that (G; !) is a par-abolic geometry on a manifold M . We mentioned in 2.5, that the tangentand cotangent bundles on the homogeneous spaces are homogeneous vectorbundles. The Cartan connection ! extends this identi�cation to all parabolicgeometries as follows:We identify g� (as a P{module) with g=p, and consider the map G�g� !TM de�ned by mapping (u;X) to Tp�!�1u (X), where p : G ! M is theprojection. The equivariancy of the Cartan connection immediately impliesthat this factors to a vector bundle homomorphism G �P g� ! TM . Sincethis is immediately seen to be surjective, it must be an isomorphism ofvector bundles by dimensional reasons. Thus we have identi�ed TM withthe natural bundle associated to the P{module g�. Now, the invariance ofthe Killing form on g implies that g=p and p+ with the actions induced by theadjoint action are dual P{modules. Thus, similarly as above the cotangentbundle T �M of M can be identi�ed with the bundle G �P p+ (implicitly,this has been used in 2.13 above).There is a nice way to encode the action of vector �elds on functions (orequivalently the exterior derivative of functions) using the identi�cationsmade above. As we have seen, a typical tangent vector onM can be writtenas Tp�!�1u (X) for an element X 2 g�. Acting with this tangent vector ona smooth function f 2 C1(M;R), we get !�1u (X)�(f � p). Now, smoothfunctions on M are in bijective correspondence with smooth P{invariantfunctions on G, the correspondence given by mapping f to f � p. To anysmooth, P{invariant function f on G we associate a function r!f : G !L(g�;R) de�ned by r!f(u)(X) := !�1u (X)�f . The equivariancy propertiesof ! imply that the map r!f is P{equivariant. Taking into account theabove identi�cation of T �M with an associated bundle and of L(g�;R)' p+,we see that r!f is a one form on M , which by de�nition coincides with df .



BERNSTEIN{GELFAND{GELFAND SEQUENCES 15The above procedure immediately suggests a generalization. LetVbe anyrepresentation of P and let VM = G �P Vbe the corresponding associatedbundle. Then we can identify smooth sections of VM with smooth mapsG ! V, which are P{equivariant. Now to any smooth function s : G ! Vwe associate a smooth function r!s : G ! L(g�;V) de�ned byr!s(u)(X) := !�1u (X)�s:Obviously, this de�nes a di�erential operatorC1(G;V)! C1(G; L(g�;V))and these operators (for all (G; !)) form a natural operator on all parabolicgeometries in the sense of 2.11. This operation is called the universal co-variant derivative in the book [31, p. 194]. In [8, 2.3] we have chosen to callit the absolutely invariant derivative. The reason for the latter name alsoshows the main drawback of this operation: It is not really covariant, i.e. ifone starts with an equivariant map s (i.e. a section of VM) the result is notequivariant in general. Thus in general, if we start with a section, the resultof the invariant derivative is not a section of a bundle anymore.3.2. There is a way, however, to make a section of an associated bundle outof a section of an associated bundle and its absolutely invariant derivative.This is called the invariant one{jet of the section. To describe it, we �rst haveto analyze the action of G on one{jets in the homogeneous case. Thus, letus consider a representation Vof P , the corresponding homogeneous bundleV (G=P ) = G �P V and its �rst jet prolongation J1(V (G=P )) ! G=P . Aswe noted in 2.6 this is again a homogeneous bundle, and we want to describethe corresponding action of P on its standard �ber J 1(V) := J1(V (G=P ))o.As we noticed in 2.4 it su�ces to understand this space as a module overG0 and over p+ (in fact, already g1 would be su�cient).If we think of sections in �(V (G=P )) as P{equivariant smooth functionss 2 C1(G;V)P , then the 1{jets of sections at the distinguished point o 2G=P are identi�ed with 1{jets of equivariant functions at the unit e 2 Gand the action is given by g:(j1es) = j1e (s � `g�1) for all g 2 G. Thus, theinduced action of Z 2 p on the section s is given by the di�erentiation in thedirection of the right invariant vector �eld RZ on G, Z:j1es = �j1e (RZ�s).Now we can identify a one{jet j1e (s) with (s(e); ds(e)) and as we saw in3.1 above, ds(e) = r!s(e). As a vector space we can thus writeJ 1(V) = V� (g�� 
V)and we have to understand the induced actions of G0 and p+ on this space.Let us �rst assume that g 2 G0. Then (s � `g�1)(e) = s(g�1) = g�s(e) byequivariancy of s. On the other hand, we have to evaluate !�1e (X)�(s � `�1g ).This can be computed asddt jt=0s(g�1 exp(tX)) = ddt jt=0s(g�1 exp(tX)gg�1) == !�1e (Ad(g�1)X)�(g�s) = g�(!�1e (Ad(g�1)X)�s):Now since g 2 G0, we have Ad(g�1)X 2 g� for all X 2 g� (the adjointaction on g� coincides with the induced action on g=p in this case), so wesee that J 1(V) = V� (g�� 
V) even as a G0{module.



16 ANDREAS �CAP, JAN SLOV�AK, AND VLADIM�IR SOU�CEKFor Z 2 p+ we have �(RZ�s)(e) = Z�(s(e)) by the in�nitesimal version ofequivariancy of s. On the other hand, for the derivative component we haveto compute the linear mapping g� 3 X 7! �!�1(X)�RZ�s(e). Since !�1(X)is left invariant, it commutes with RZ and the resulting expression dependsonly on RZ(e) = Z = !�1(Z)(e), and we get�!�1(X)�RZ�s(e) = �!�1(Z)�!�1(X)�s(e)= �!�1(X)�!�1(Z)�s(e)� [!�1(Z); !�1(X)]�s(e):The in�nitesimal version of equivariancy of s shows that the �rst term in thelast expression gives Z�(!�1e (X)�s(e)). Since !�1( ) is just the left invariantvector �eld, the second term gives �!�1e ([Z;X ])�s. Now let us split ad(Z) =ad�(Z)�adp(Z) according to the splitting g = g��p. Then the adp(Z)(X){part acts algebraically by equivariancy of s while the rest simply produces�!�1e (ad�(Z)(X))�s.Thus, if we denote elements of J 1(V) as pairs (v; '), where v 2 Vand 'is a linear map from g� to V, then the appropriate action of Z 2 p+ is givenby Z�(v; ') = (Z�v;X 7! Z�('(X))� '(ad�(Z)(X)) + adp(Z)(X)�v);i.e. we get the tensorial action plus one additional term mapping the value{part to the derivative{part.This action can also be nicely written in a tensorial notation. To dothis let us choose a basis f��g of p+ such that each element �� is ho-mogeneous of degree j��j, and let f��g be the dual basis of g� (with re-spect to the Killing form B). Now consider an element (v0; Z1 
 v1) 2J 1(V), where v0; v1 2 V and Z1 2 p+ �= g��. Then by de�nition Z1 
 v1maps X 2 g� to B(Z;X)v1. Thus [Z;X ]� := ad�(Z)(X) is mapped toB(Z1; [Z;X ]�)v1. Since the Killing form vanishes on p+ � p, this can berewritten as B(Z1; [Z;X ])v1 = B([Z1; Z]; X)v1. Moreover, we can write adZas an element of L(g�; g) �= p+
 g in the formP� ��
 [Z; ��]. This impliesthat for Z homogeneous of degree jZj, we may rewrite the action on J 1VasZ�(v0; Z1 
 v1) = (Z�v0; Z1 
 Z�v1 + [Z; Z1]
 v1 + Xj��j�jZj �� 
 [Z; ��]�v0):A simple computation shows that J 1( ) can be made into a functor onthe category of P{modules by de�ningJ 1(f)(v; ') := (f(v); f � ')for each P{module homomorphism f :V! W.3.3. Surprisingly, the �rst jet prolongation of representations introducedabove leads for any parabolic geometry to a natural identi�cation of the �rstjet prolongation of any natural bundle with an associated bundle, i.e. withanother natural bundle. Let (G; !) be a parabolic geometry on M , let Vbea representation of P , and let VM be the corresponding associated bundleover M .Proposition. The invariant di�erential r! de�nes the mapping� : C1(G;V)P ! C1(G;J 1V)P ; �(s)(u) = (s(u); (X 7! r!s(u)(X)))



BERNSTEIN{GELFAND{GELFAND SEQUENCES 17which yields an isomorphism J1VM ' G �P J 1V.For each �ber bundle map VM ! WM induced by a P{module homo-morphism f :V! W, the �rst jet prolongation of the bundle map is inducedby the P{module homomorphism J 1(f).Proof. Let us recall that r!s(u)(X) = !�1(X)(u)�s. Thus the mapping� : s 7! (s;r!s) is well de�ned and depends on �rst jets only, so we only haveto check that the values are actually equivariant. First, for g 2 G0 we have tocompute (s(u�g);r!s(u�g)). Equivariancy of s implies s(u�g) = g�1�(s(u)).The second component maps X 2 g� to !�1u�g(X)�s. Now the equivariancyof ! immediately implies that !�1u�g(X) = Trg�!�1u (Ad(g)X). Since g 2 G0we see that Ad(g)X 2 g� and using equivariancy of s again, we see thatr!s(u�g) maps X to g�1�(!�1u (Ad(g)X)�s), and thus(s(u�g);r!s(u�g)) = g�1�(s(u);r!s(u)):On the other hand, we have to check equivariancy for the in�nitesimal actionof Z 2 p+. Thus, we have to compute ((�Z�s)(u); �Z�(r!s)(u)). Equivariancyof s implies that the �rst component equals �Z�(s(u)). The second compo-nent maps X 2 g� to (�Z�!�1(X)�s)(u). Now �Z = !�1(Z) and we canrewrite the expression as(!�1(X)�!�1(Z)�s)(u) + [!�1(Z); !�1(X)]�s(u):Since the curvature of ! is horizontal and !�1(Z) is vertical, we may rewritethe second term in this expression as (!�1([Z;X ])�s)(u). Now we can split[Z;X ] into a g� and a p{component and conclude as in 3.2 above that((�Z�s)(u); �Z�(r!s)(u)) = �Z�(s(u);r!s(u)).Clearly, this construction gives a smooth injective homomorphism of vec-tor bundles J1VM ! G�P J 1V, which covers the identity map onM . Sinceboth bundles clearly have the same rank, this must be an isomorphism.Finally, consider a homomorphism f :V! W. The corresponding bundlemap VM ! WM is induced by (u; v) 7! (u; f(v)), and so the induced actionon sections is induced bys 7! (x 7! (u(x); f � s(u(x)))):Taking 1{jet of this expression we obtain just the homomorphism J 1(f).3.4. Semi{holonomic jets. Since we posed no conditions on the repre-sentation V above, we can iterate the functors J1 on the associated vectorbundles as well as the functors J 1 on the P{modules. Proposition 3.3 thenimplies that the r{th iteration J1 : : : J1VM is an associated bundle to Gcorresponding to the P{module J 1 : : :J 1V. Let us look more carefully atJ 1J 1V and J1J1VM . There are two obvious P{module homomorphismsJ 1J 1V! J 1V, the �rst one given by the projection pJ 1Vde�ned on each�rst jet prolongation by projection to the �rst component, and the otherone obtained by the action of J 1 on pV. Thus there is the submodule �J 2Vin J 1J 1Von which these two projections coincide. As a vector space and aG0{module we have�J 2V= V� (g�� 
V)� (g�� 
 g�� 
V):The two P{module homomorphisms J 1(pV) and pJ 1V give rise to vectorbundle homomorphisms J1J1VM ! J1VM which are just the two standard



18 ANDREAS �CAP, JAN SLOV�AK, AND VLADIM�IR SOU�CEKprojections on the second non{holonomic jet prolongation. So we concludethat the second semi{holonomic prolongation �J2VM is naturally isomorphicto G �P �J 2V.Iterating this procedure, we obtain the r{th semi{holonomic jet prolonga-tions and J 1( �J rV) equipped with two natural projections onto J 1( �J r�1V),which correspond to the usual projections on the �rst jet prolongation ofsemi{holonomic jets. Their equalizer is then the submodule �J r+1V. As aG0{module �J rV= rMi=0 (
ig�� 
V):Proposition. For each positive integer r, the r{th semi{holonomic jet pro-longation �JrVM carries the natural structure of associated vector bundleG �P �J rV. Moreover, there is the natural embeddingJrVM ! �JrVM ' G �P �J rVjrs(u) 7! fu; (s(u);r!s(u); : : : ; (r!)rs(u))g:Proof. The �rst part of the statement has been already shown. What re-mains is to discuss the equivariancy properties of the invariant di�erentials.However also this follows from the �rst order case easily by induction, usingonly the de�nition of the semi{holonomic prolongations.3.5. Strongly invariant operators. The problem, why we cannot workwith true (holonomic) r{jets but have to use the semi{holonomic ones, is thatabsolutely invariant derivatives commute only for at Cartan connections.More precisely, from the de�nition of the absolutely invariant derivative andthe properties of the curvature, one immediately concludes the so calledgeneral Ricci{identity(r!r!s)(u)(X 
 Y � Y 
X) = r!s(u)([X; Y ]) + �p(X; Y )�(s(u))� r!s(u)(��(X; Y ))for all X; Y 2 g�. This also shows that the torsion{part of � has a quitedi�erent geometric meaning than the component valued in p. Thus, theidenti�cation from proposition 3.4 has values in the P{submodule J r(V) ofsymmetric elements �ri=0(Sig�� 
V) in the at case. Consequently we haverecovered the standard identi�cation of the r{th holonomic jet prolongationof a homogeneous bundle with an associated bundle for at geometries, butthis does not work in the curved case.Nevertheless, one can well use the semi{holonomic jet prolongations togenerate invariant operators. Suppose that Vand W are representations ofP and suppose that � : �J r(V) ! W is a homomorphism of P{modules.Then for any parabolic geometry (G; !) we can de�ne a di�erential operator�(VM) ! �(WM) as follows: For a section s viewed as an equivariantfunction G ! Vde�neD(G;!)(s)(u) = �(s(u);r!s(u); : : : ; (r!)rs(u)):From Proposition 3.4 above it follows that this gives a section of the bundleWM and that each D(G;!) is a di�erential operator of order � r. Moreover,by construction the operators D(G;!) form a natural operator on the cate-gory of all parabolic geometries in the sense of 2.11. Operators arising in



BERNSTEIN{GELFAND{GELFAND SEQUENCES 19this way will be called strongly invariant operators in the sequel. We willoften not distinguish carefully between a strongly invariant operator andthe corresponding homomorphism �J r(V)! W. Thus, the semi{holonomicjet modules give a possibility to construct natural operators for a parabolicgeometry in a completely algebraic way, since one only has to construct ahomomorphism between two �nite dimensional P{modules.There is a slight problem about strongly invariant operators, however.Namely, even if a homomorphism �J r(V)! W does not factor over �J r�1(V),the corresponding operators may be of order strictly less than r or evenidentically zero. To see this, note that we can easily compute the symbol ofa strongly invariant operator. This symbol is a vector bundle homomorphismSrT �M 
 VM ! WM , which is induced by a homomorphism Srg�� 
V!W. Using Proposition 3.4 it is clear that this homomorphism is given byrestricting � to Srg�� 
 V, viewed as a submodule of 
rg�� 
 V, which inturn can be viewed as a submodule of �J r(V). Thus, if a homomorphismrestricts to zero on the symmetric part of the top component of the jet{module, then the corresponding operator actually is of lower order (andcontains terms involving the curvature of the Cartan connection).There is an important situation in which this problem does not play anyrole. Suppose that we have an operator of order r in the at case withnontrivial symbol, and suppose that we can �nd a homomorphism �J r(V)!W which induces this operator (in the at case). Then this gives a curvedanalog of the operator in question, and there is no problem with the symbolat all. This will always be the case for the operators we are going to study.In particular, since �J 1(V) = J 1(V), any �rst order invariant operator onthe category of at parabolic geometries is automatically strongly invariant,and thus has a canonical curved analog.3.6. Remark. There are operators which are natural (invariant) in thesense of 2.11 but are not strongly invariant. Basically, there is only oneexample of such an operator known: It is shown in [21] that on conformalmanifolds of dimension 2m there exists a conformally invariant m{th powerof the Laplacian on smooth functions. In [16] it is shown that this operatoris not strongly invariant. It can, however, be written in terms of absolutelyinvariant derivatives, and thus it is also natural. In fact, it is shown in[32] that for AHS{structures, i.e. parabolic geometries corresponding to j1j{graded Lie algebras, naturality of (even non-linear) operators is equivalentto the possibility to express them by means of the absolute invariant deriv-ative and curvature of the de�ning Cartan connection, and this, in turn, isequivalent to the existence of a universal formula in terms of all underlyinga�ne connections, cf. 2.13.The existence of invariant operators which are not strongly invariant isdue to symmetries of the curvature of a Cartan connection. Suppose that wewrite an expression in terms of absolutely invariant derivatives and checkwhether the result is P{equivariant. Otherwise put, we can compute theobstruction against being equivariant which usually contains expressions in-volving the curvature of the Cartan connection and its derivatives. In thecase of a strongly invariant operator, these obstructions vanish algebraically.



20 ANDREAS �CAP, JAN SLOV�AK, AND VLADIM�IR SOU�CEKBut the jets of the curvature of any Cartan connection have certain symme-tries, basically due to the Bianchi identity, see e.g. [7, 4.9]. This implies thatexpressions that do not vanish algebraically, still may vanish whenever thejet of the curvature of a Cartan connection is inserted, and this is preciselywhat happens in the case of the critical powers of the Laplacian.3.7. Twisted invariant operators. Besides the completely reducible rep-resentations (which come from the reductive subgroup G0) there is a secondclass of particularly simple representations of the group P . Namely one cantake a representation of the full (semisimple) group G and restrict it to P .These representations have particularly nice features in the case of the atmodel since they give rise to trivial homogeneous bundles. There are manyways to see that, but the most appropriate one for our purposes is to asso-ciate to any element v in a representation V of G a global nonzero sectionof the associated bundle G �P V. To do this, we just have to specify a P{equivariant map G! V, and we de�ne this map simply by g 7! g�1�v. Thismap is even G{equivariant and not only P{equivariant.There is a simple generalization of this result. Suppose that W is anyrepresentation of P . Then sections of W (G=P ) are in bijective correspon-dence with P{equivariant maps G ! W. Now we de�ne a map on sectionsof homogeneous bundles�(W (G=P ))
V! ��W (G=P )
 V (G=P )�s 
 v 7! (g 2 G 7! s(g)
 g�1�v)and one immediately veri�es that this is an isomorphism of G{modules.In particular, this implies that if W0 is another P{representation and D :�(W (G=P )) ! �(W 0(G=P )) is an invariant di�erential operator, then wecan pull back D 
 idV: �(W (G=P ))
V! �(W 0(G=P ))
Valong these isomorphisms to get an invariant operatorDV: ��W (G=P )
 V (G=P )�! ��W 0(G=P )
 V (G=P )�:This operator is called the twisted invariant operator corresponding to Dand V.Notice that the above isomorphism between the spaces of sections of theassociated bundles induces an isomorphism �J r(W) 
 V ' �J r(W 
 V) ofP{modules, for all P{modules W and G{modules Vand all orders r. Thus,for strongly invariant operators D, we may extend the construction of thetwisted invariant operators to natural operators DV acting on all geome-tries (G; !) of the type (G;P ) and the resulting operators are again stronglyinvariant. Let us remark that a completely algebraic treatment of this con-struction has been worked out (in the case of the AHS-structures) in [6].In particular, we obtain the strongly invariant twisted operators DV forall �rst order invariant operators D on the homogeneous vector bundles andall G{modules V.3.8. Twisted exterior derivatives. The standard exterior derivatives don the di�erential forms on G=P are �rst order invariant operators (since



BERNSTEIN{GELFAND{GELFAND SEQUENCES 21they are even invariant under the action of all di�eomorphisms of G=P ), sowe can apply the construction above to get the twisted exterior derivativesdV: ���nT �(G=P )
 V (G=P )�! ���n+1T �(G=P )
 V (G=P )�for n = 0; : : : ; dim(G=P ). Moreover, the operators dVare strongly invariant,since they are of �rst order, and so there are the corresponding P{modulehomomorphisms on the semi{holonomic jet modules. Since we will need itlater, we will compute these homomorphisms explicitly.Let us start with the ordinary exterior derivative. We have already notedin 3.1 that the exterior derivative of functions equals the absolutely invariantderivative. To compute the exterior derivative for general di�erential forms,we �rst have to describe nicely the identi�cation of n{forms with smoothequivariant functions G! �np+. Throughout, we are going to identify �np+with the space of n{linear alternating maps from g� �= g=p to K. Now usingthe identi�cation of the tangent bundle of G=P with G�P g� described in3.1, one easily veri�es that the relation between a form ' 2 
k(G=P ) andthe corresponding function s : G! �np+ is given by(p�')(g)(!�1g (X1); : : : ; !�1g (Xn)) = s(g)(X1; : : : ; Xn);where p�' is the pullback of ' along the projection p : G! G=P , and the Xiare in g�. Note that this formula remains correct for Xi 2 g if one interpretss(g) as an n{linear map on g which vanishes if at least one argument lies inp.Lemma. Let s and ds be the functions on G corresponding to di�erentialforms ' and d' on G=P , respectively. Then the formula for the exteriorderivative reads asds(X0; : : : ; Xn) = nXi=0(�1)i(r!s)(g)(Xi)(X0; : : : ; î; : : : ; Xn) +Xi<j (�1)i+js(g)([Xi; Xj]; X0; : : : ; î; : : : ; ĵ; : : : ; Xn)where ! is the left Maurer-Cartan form on G and, as usual, the hat denotesomission.Proof. To compute the function corresponding to d', we just have to evalu-ate p�(d')(g) = d(p�')(g) on vector �elds of the form ~X(g) = !�1g (X). Wehave d(p�')( ~X0; : : : ; ~Xn) = nXi=0(�1)i ~Xi�(p�')( ~X0; : : : ; î; : : : ~Xn) ++Xi<j (�1)i+j(p�')([ ~Xi; ~Xj]; ~X0; : : : ; î; : : : ; ĵ; : : : ; ~Xn):Inserting p�' from above and evaluating at g, we see directly that the �rstsummand agrees with the �rst summand in the claimed formula, whichclearly gives n+1 times the alternation of (r!s)(g) evaluated at (X0; : : : ; Xn).For the second summand, we just have to note that by the Maurer{Cartanequation for ! we have [ ~Xi; ~Xj] = ^[Xi; Xj]. Thus, this summand gives exactlythe other part of the required formula.



22 ANDREAS �CAP, JAN SLOV�AK, AND VLADIM�IR SOU�CEKNow let us pass to the general case of a V (G=P ){valued n{form, whereV is a representation of the whole group G. Any such form can be writtenas a �nite sum of expressions of the form '
 ~v, where ' 2 
n(G=P ) and ~vis the global section of V (G=P ) corresponding to v 2 Vas in 3.7 above. Byde�nition, the twisted exterior derivative is given by dV('
 ~v) = (d')
 ~v.Now let s be the function corresponding to ' and denote by ~v also thefunction corresponding to the global section. From above, we thus see thatdV('
 ~v) is represented by the function which maps (X0; : : : ; Xn) to(�) nXi=0(�1)i(r!s)(g)(Xi)(X0; : : : ; î; : : : ; Xn)~v(g) ++Xi<j (�1)i+js(g)([Xi; Xj]; X0; : : : ; î; : : : ; ĵ; : : : ; Xn)~v(g):By de�nition of the absolutely invariant derivative, we haver!(s
 ~v)(X) = r!s(X)
 ~v + s 
 (r!~v(X))and the in�nitesimal version of G{invariance of ~v says thatr!~v(g)(X) = �X�(~v(g)):Thus we may rewrite the �rst summand in (�) as(��) nXi=0(�1)ir!(s
 ~v)(g)(Xi)(X0; : : : ; î; : : : ; Xn) ++ nXi=0(�1)iXi�(s(g)(X0; : : : ; î; : : : ; Xn)~v(g)):Finally note that the second term in (��) adds up with the second term in(�) to the value of the standard Lie algebra di�erential@ : Cn(g�;V) = �ng�� 
V! Cn+1(g�;V)(cf. 4.1 for the explicit formula) applied to the map s(g)
 ~v(g) evaluated on(X0; : : : ; Xn). Thus we may summarize:3.9. Proposition. The twisted exterior derivative dVon G=P is a stronglyinvariant operator. The P{homomorphism �J 1(�np+ 
 V) ! �n+1p+ 
 Vwhich induces dV is given by(f0; Z 
 f1) 7! @(f0) + (n+ 1)Z ^ f1;where we view elements of �np+ 
 V as n{linear alternating maps fromg� to V and Z ^ f1 denotes the alternation of the map (X0; : : : ; Xn) 7!B(Z;X0)f1(X1; : : : ; Xn).3.10. Corollary. The Lie algebra di�erential @ satis�es(W �@(f)� @(W �f)) = (n+ 1) Xj��j�jW j �� ^ [W; ��]�ffor f 2 �np+
Vand W 2 p+, where �� and �� are homogeneous dual basesof g� and p+ with respect to the Killing form.



BERNSTEIN{GELFAND{GELFAND SEQUENCES 23Proof. The claim can be veri�ed by a nice and elementary, but tedious al-gebraic computation. However, the previous proposition o�ers the followingsimple argument:We know that the formula for the strongly invariant operatordV(f0; Z 
 f1) = @(f0) + (n+ 1)Z ^ f1is P{equivariant. Thus for all f0, f1 2 V, Z 2 p+, W 2 p+ we obtain theequality of the following two expressionsdV(W �(f0;Z 
 f1)) = dV((W �f0;W �(Z 
 f1) +X �� 
 [W; ��]�f0) == @(W �f0) + (n+ 1)W �(Z ^ f1) + (n+ 1)X �� ^ [W; ��]�f0W �(@(f0) + (n+ 1)Z ^ f1) = W �(@f0) + (n+ 1)W �(Z ^ f1):This yields the required formula.3.11. The covariant exterior derivatives. From proposition 3.9 we geta canonical curved analog of the twisted exterior derivatives on all manifoldswith a parabolic geometry of the type (G;P ). It should be remarked thatwe may obtain another curved analog as follows. For any parabolic geome-try (G; !) on M , we consider the extended bundle ~G = G �P G, which is aprincipal G{bundle overM . It is a classical observation that the Cartan con-nection ! induces a principal connection ~! on ~G. Now ifVis a representationof G, then we can view the corresponding natural bundle VM = G �P Valso as VM = ~G �G V, and thus we have the induced linear connection onthis bundle. The covariant exterior derivative with respect to this connectiongives a natural operator on VM{valued forms on M . If s : ~G ! �kp+
V isthe equivariant function corresponding to a k-form ' on M , then the valueof the latter operator is a (k + 1)-form on M , given by the formulad~!s(u)(X0; : : : ; Xn) = kXi=0(�1)ir~!Xis(u)(X0; : : : ; î; : : : ; Xk) ++Xi<j (�1)i+js(u)([Xi; Xj ]; X0; : : : ; î; : : : ; ĵ; : : : ; Xk)where X0; : : : ; Xk 2 g�, u 2 ~G, r~!Xis(u) means the derivative of s in thedirection of the horizontal vector at u determined by Xi, and there arethe standard omissions of arguments in the expressions on the right handside. Indeed, d~! is de�ned as the pullback of the standard d on ~G by thehorizontal projection of ~!, applied to the pullback of the k-form ' onM bythe projection p : ~G ! M . Since the curvature of ~! produces vertical �eldson ~G, the above formula equals to the standard evaluation of d(p�') on thehorizontal lifts of vector �elds on M .These operators coincide with the twisted exterior derivatives on the ho-mogeneous space but they di�er in general. The explicit general comparisonis as follows:Lemma. LetVbe a G-module, VM the corresponding natural vector bundleover a manifold M equipped with a parabolic geometry (G; !). The covariant



24 ANDREAS �CAP, JAN SLOV�AK, AND VLADIM�IR SOU�CEKexterior derivative d~! on �kT �M 
 VM , k > 0, and the twisted exteriorderivative dVon the same space satisfyd~!' = dV'+ i��'where �� is the torsion{component of the curvature of ! and i��' is theusual insertion operator, i.e. the alternation of '(��(X0; X1); X2; : : : ; Xk)over the arguments.Proof. The key to the required formula is in the expressions (�) and (��) in3.8. Namely, the latter expressions which were derived on the homogeneousspaces describe also the twisted exterior derivatives in general, but we haveto be aware that instead of the bracket [Xi; Xj] in (�) we have to plug in!(u)([!�1(Xi); !�1(Xj)]) = [Xi; Xj]� �(u)(Xi; Xj):At the same time, for all u 2 G � ~G, the covariant derivative r~! of a sections : ~G ! V relates to the absolute invariant derivative asr~!s(u)(X) = r!s(u)(X) +X�s(u)(since the horizontal �elds given by ~! equal to !�1(X) minus the funda-mental �eld �X).Combining the latter two facts, we see that exactly the expressioni��'(u)(X0; : : : ; Xk) =Xi<j (�1)i+j'(u)(��(Xi; Xj); X0; : : : ; î; : : : ; ĵ; : : : ; Xk)has to be added to dV(u)'(X0; : : : ; Xk) in order to obtain the covariantderivative. This is exactly the evaluation of the insertion operator, cf. [24,8.2].The latter lemma shows that our twisted exterior di�erentials dVare cer-tain torsion adjusted versions of the standard covariant exterior derivatives.In particular, even in the case V= R the twisted derivative dR equals to theusual exterior derivative d if and only if the geometry is torsion{free.3.12. Remarks. (1) As we saw in 3.8, the isomorphism�(W (G=P ))
V�= �(W (G=P )
 V (G=P ))of G{modules induces an isomorphism �J r(W) 
 V �= �J r(W 
 V) of P{modules for any P{representation W and G{representation V. This can alsobe proved algebraically along the lines of [6]. This isomorphism can thenbe used to de�ne twisted versions of any strongly invariant operators in acompletely algebraic way. Using this picture, the subsequent developmentsin this paper can be viewed as a curved analog of the Jantzen{Zuckermanntranslation principle in representation theory. The �rst version of such acurved translation procedure appeared in the context of 4{dimensional con-formal geometry in [15], see also [12].(2) The twisted exterior derivatives give a sequence�(VM)! 
1(M ;VM)! � � � ! 
max(M ;VM)! 0;of invariant di�erential operators, where sections and forms are smooth inthe real case and holomorphic in the complex case. In the case of the at



BERNSTEIN{GELFAND{GELFAND SEQUENCES 25model, this sequence is just the pullback of the tensor product of the (smoothor holomorphic) de Rham sequence with V, so it is a resolution of the con-stant sheaf V. In the case of a general parabolic geometry, it fails to be acomplex. Actually, it is easy to verify that the composition dV� dV is justgiven by the action of the curvature of !. Thus, in the case of a at parabolicgeometry, we still get a complex, which by Lemma 3.11 coincides with thecomplex given by the covariant exterior derivative with respect to the atlinear connection induced by the Cartan connection. Note however, that ona at parabolic geometry bundles corresponding to representation of G areno more trivial in general.(3) As a G0{module, one can split any representation W of P as �Wjaccording to eigenvalues of the grading element E 2 g0. Clearly, the action ofp+ maps gi
Wj toWj+i . In particular, we can apply this to �np+
Vto splitthe space 
n(M ;VM) into homogeneous components, and analyze how thetwisted exterior derivative behaves with respect to this splitting. From theformula in Proposition 3.9 it is obvious that dVnever lowers homogeneousdegree and the component of the same homogeneous degree as the inputis just the Lie algebra di�erential @ composed with the given form. Thus,the homogeneous component of degree zero of dVis algebraic and equals @.This observation is crucial for the subsequent development. Using the factthat the Lie algebra cohomology of g� with coe�cients in g admits a Hodgetheory (which we will discuss in the next section), we will show that we canreplace the sequence of remark (2) above by a di�erent sequence in whichonly sections of completely reducible bundles occur, and which is a complexcomputing the same cohomology if the original sequence was a complex.4. Curved analogs of Bernstein{Gelfand{Gelfand resolutionsIn this section, we �rst discuss the Hodge{structure on the standard com-plex for the cohomology H�(g�;V) for a g{module V. Then we come to thecore of the paper, the construction of a huge class of distinguished naturaloperators on all parabolic geometries.4.1. We have already mentioned the standard complex for the cohomol-ogy H�(g�;V) in 3.8. The chain groups in this complex are the groupsCn(g�;V) = �ng��
V, which are viewed as the spaces of n{linear alternat-ing maps from g� to V. The di�erential@ : Cn(g�;V)! Cn+1(g�;V)is de�ned by@(f)(X0; : : : ; Xn) = nXi=0(�1)iXi�f(X0; : : : ; î; : : : ; Xn) ++Xi<j (�1)i+jf([Xi; Xj]; X0; : : : ; î; : : : ; ĵ; : : : ; Xn);where the hats denote omission. Clearly, if we start with a representationVof the group G, then @ is a homomorphism of G0{modules, and it is wellknown that @ � @ = 0.The crucial fact for us is that on this standard complex there is a Hodgetheory, which was �rst introduced for complex simple Lie algebras in [25].



26 ANDREAS �CAP, JAN SLOV�AK, AND VLADIM�IR SOU�CEKThe most conceptual way to describe this Hodge structure is to use thenatural duality between g� and p+ via the Killing form. This is a dual-ity of G0{modules, but if we consider g� as a P{module via the adjointaction and the identi�cation with g=p, then it even is a duality of P{modules by invariance of the Killing form. Thus, given a representationV of g and its dual V�, we can naturally identify Cn(p+;V�) with the dualP{module of Cn(g�;V). Thus, the dual map to the Lie algebra di�erential@ : Cn(p+;V�)! Cn+1(p+;V�) can be viewed as a linear map@� : Cn+1(g�;V)! Cn(g�;V)which is called the codi�erential . From the above, it is obvious that the codif-ferential is a G0{homomorphism and @��@� = 0. Moreover, one immediatelyveri�es that the Lie algebra di�erential for p+ is even a P{homomorphismand thus the same is true for @�.A formula for @� can be easily computed for elements of the form Z0 ^� � �^Zn
 v, where the Zi are in p+ and v is in V. Pairing this element witha multilinear map  2 Cn+1(p+;V�), we simply get  (Z0; : : : ; Zn)(v). Usingthis, one immediately computes that@�(Z0 ^ � � � ^ Zn 
 v) = nXi=0(�1)i+1Z0 ^ � � � î � � � ^ Zn 
 Zi�v ++Xi<j (�1)i+j [Zi; Zj ] ^ � � � î � � � ĵ � � � ^ Zn 
 v:From this formula, it is again obvious that @� is a P{homomorphism.Using Lie theory, one constructs an inner product on the spaces of cochains,with respect to which @ and @� are adjoint operators. The proof for thisfact in the generality we need it is only a rather simple extension of resultsavailable in the literature, see e.g. [34, 35]. For the sake of completenessand the convenience of the reader, we give a complete proof in AppendixAppendix B.4.2. This adjointness result has a number of important consequences: Firstof all one gets a harmonic theory for the cohomology H�(g�;V). We de�nethe Laplacian � = @ � @� + @� � @:Then for each n this is a G0{endomorphism of Cn(g�;V). Moreover, the ad-jointness implies that ker(�) = ker(@)\ker(@�) and we have a G0{invariantsplitting Cn(g�; V ) = im(@)� ker(�)� im(@�):This implies then that the cohomology group Hn(g�;V) is isomorphic (asa G0{module) to the subspace ker(�) � Cn(g�;V). Moreover, the situa-tion between @ and @� is completely symmetric, so we can as well com-pute the cohomology groups H�(g�;V) as ker(@�)= im(@�). This is moresuitable for our purposes, since, as we have noticed above, @� is even aP{homomorphism. This also implies that (even as a G0{module) the coho-mology group Hn(g�;V) is dual to Hn(p+;V�).Thus, we get a canonical action of P on the cohomology groupsHn(g�;V).We claim, that this module is completely reducible, i.e. a direct sum of



BERNSTEIN{GELFAND{GELFAND SEQUENCES 27irreducibles. To prove this, we only have to show that p+ acts trivially on thecohomology groups. Fortunately, there is the following simple observationLemma. Let Z 2 p+ and f 2 Cn(g�;V) �= �np+ 
 V. Consider Z�f 2Cn(g�;V) and Z ^ f 2 Cn+1(g�;V), as de�ned in 3.9. Then@�(Z ^ f) = �Z�f � Z ^ @�(f):Proof. This is a direct consequence of the general formula for @� in 4.1.Now, one immediately concludes that the p+{action maps ker(@�) to im(@�),and thus in particular the induced action on the cohomology groups is trivial.In [25], B. Kostant computed the cohomology groups H�(p+;V) in thecase when g is complex and simple and V is a complex irreducible represen-tation. The basic idea in the proof is to analyze the action of the Laplacian� in terms of Casimir operators.In fact, our construction of the sequences of natural operators will notneed the explicit knowledge of the cohomologies. On the other hand, the fullpower of Kostant's theorem is necessary in order to compare the resultingsequences with the standard BGG{resolutions in representation theory.Let us also remark here, that the knowledge of the second cohomologieswith values in g determines nicely the structure of the curvature of normalparabolic geometries, see e.g. [35, 30].4.3. A sketch of the construction. Let us return to the twisted de Rhamsequence �(VM)! 
1(M ;VM)! � � � ! 
max(M ;VM)! 0on a manifold M equipped with a parabolic geometry (G; !). For each i,
i(M ;VM) is the space of sections (smooth in the real case, holomorphic inthe complex setting) of the natural bundle associated to the representation�ip+
V. The maps @, @�, and � de�ned above induce maps on the spaces ofsections, which we denote by the same symbols. Moreover, since these mapsare induced by pointwise operations the Hodge decomposition of �ip+ 
Vgives rise to a Hodge decomposition
i(M ;VM) = im(@)� ker(�)� im(@�):One has to be careful, however, that this decomposition is not P{invariantbut just G0{invariant, since @� is a P{homomorphism but @ and � are not.Thus the latter decomposition makes explicit geometrical sense only after areduction of G to G0, cf. the discussion in 2.13.Since @� is a P{homomorphism, the kernel ker(@�) and the image im(@�)are the spaces of sections of natural subbundles of �nT �M
VM . Moreover,from 4.2 we know that the quotient ker(@�)= im(@�) can be identi�ed withthe space of sections of the bundle associated to the (completely reducible)representation HnV= Hn(g�;V) of P , so we get an algebraic natural operatorfrom the subset ker(@�) of 
n(M ;VM) to the space of smooth sections of thenatural bundle corresponding to the representation HnV. If E is an irreduciblecomponent of HnV, then we can further project onto this component to getan algebraic natural operator ker(@�)! �(EM).On the other hand, HnV can be identi�ed with ker(�) � �np+ 
 V as aG0{module, so we may view any section of the corresponding bundle as a



28 ANDREAS �CAP, JAN SLOV�AK, AND VLADIM�IR SOU�CEKVM{valued n{form, but this is not a natural operator. The main point ofthe following will be that one can construct a natural di�erential operatorL from sections of the bundle corresponding to HnV to VM{valued n{formsin ker(@�), which has this inclusion as the lowest homogeneous component.Otherwise put, one can split the algebraic projection � constructed aboveby a natural di�erential operator L. Moreover, it will turn out that thisoperator is fully determined by the following surprising fact: For each section� 2 �(HnVM) there exists the unique section L(�) 2 ker(@�) � 
n(M ;VM)such that � � L(�) = � and dV(L(�)) 2 ker(@�) � 
n+1(M ;VM).ker(@�)�
��

ker(@�)�
��: : : //

dV �L ;;vvvvvvvvvvv �(H iVM)LOO dV �L 88qqqqqqqqqqq
// �(H i+1V M)LOO

// : : :Summarizing the prospective achievement, the twisted exterior derivativeswill produce plenty of natural di�erential operators indicated by the dottedarrows in the diagram.The idea for the construction of this natural di�erential operator L is fairlysimple. Recall from 3.9 that the lowest homogeneous component of dVequalsthe Lie algebra di�erential @. Suppose we have a section s in the bundlecorresponding to HnV, which is homogeneous of some degree i. Then it lies inker(�) and thus in particular in ker(@), so the homogeneous component ofdegree i of dV(s) is automatically zero. The idea is now to extend s to ~s insuch a way that dV(~s) is as small as possible. The homogeneous componentof degree i+ 1 of dV(s) can be split into components in im(@), ker(�), andim(@�), and the best we can do to kill it is to add to s an element si+1 whichis homogeneous of degree i+1 such that @(si+1) is the negative of the im(@){component of dV(s) in degree i+ 1. There is a freedom in the choice of si+1which can be �xed by requiring that si+1 2 im(@�) (which is a complementto ker(@) by the adjointness). But this allows us already to compute si+1:Since @�(si+1) = 0 we see that �(si+1) = @�(@(si+1)). But @(si+1) is just thenegative of the im(@){part of the homogeneous component of degree i + 1of dV(s), so this is known. Moreover, by de�nition � commutes both with@ and @�, and ker(�) \ im(@�) = f0g. Thus � restricts to an isomorphismim(@�)! im(@�). Hence we can compute si+1 by applying ��1 � @� to thehomogeneous component of degree i+ 1 of dV(s). Similarly we can continueto add an appropriate homogeneous component of degree i+ 2 and so on.From this description it is not at all obvious that this construction pro-duces a natural operator, since the map ��1 involved in the construction isnot a P{homomorphism, and the subsequent steps of the construction usedV� @ which is not natural either. Below we will manage, however, to workout the procedure sketched above within the framework of homomorphismsbetween semi{holonomic jet modules. Thus the resulting operators L willbe even strongly invariant.4.4. Each P{module Venjoys a decompositionV= Vi0 �Vi0+1 � � � � �Vi0+k



BERNSTEIN{GELFAND{GELFAND SEQUENCES 29as a G0{module, where the submodules Vi are distinguished by the require-ment that the grading element E 2 g0 (cf. 2.1) acts by scalar multiplicationby i. The action of the elements Z 2 gj then maps Vi into Vi+j and so foreach j = 0; : : : ; k the subspaceVj := Vi0+j�� � ��Vi0+k is a P{submodule ofV. In particular, this decomposition of an irreducible G{module V, viewedas P -module, runs fromV�k toVk, where Vk is the P{submodule generatedby the highest weight of V.Now, let Ei0 be an irreducible component of Hn(g�;V), on which thegrading element acts by multiplication by i0. Then we can view Ei0 as a G0submodule of ker(�) � �np+ 
V and we write E for the P{submodule in�np+ 
Vgenerated by Ei0 . LetE = Ei0 � � � � � Ei0+rbe the aboveG0{module decomposition according to eigenvalues of the grad-ing element. Then the action of g` maps each Ei0+i to Ei0+i+` . For eachi = 1; : : : ; r+ 1 we have the P{submodule Ei as above, so we can form thequotient E=E i , which is as a G0{module isomorphic to Ei0 � � � � � Ei0+i�1.In particular, E=E1 is again the irreducible module Ei0 we started with butnow viewed as a P{module, and E=E r+1 = E.Lemma. (1) E � ker(@�) and E1 � im(@�).(2) The Laplacian � restricts to a G0{isomorphism Ei0+i ! Ei0+i for eachi = 1; : : : ; r.Proof. (1) The �rst part is clear, since ker(@�) is a P{submodule which byconstruction contains Ei0 . Since we have already seen in Lemma 4.2 thatthe action of p+ maps ker(@�) to im(@�), the second part is also clear.(2) We have already noted in 4.3 above that � restricts to an automorphismon im(@�). Hence it su�ces to prove that �(Ei0+i) � Ei0+i. By Corollary3.10, we have for all e 2 E, Z 2 g1@(Z�e) = Z�@(e)� (n+ 1) Xj��j=1 �� ^ [Z; ��]�e:Applying @� to the �rst term we get Z��(e).Let us �rst take e0 2 Ei0 , and consider �(Z�e0) = @�(@(Z�e0)). Then the�rst term vanishes while each summand in the second term is contained in@�(g1 ^ g0�Ei0 ) � @�(g1 ^ Ei0 ). Since Ei0 � ker(@�), Lemma 4.2 implies that@�(g1^Ei0 ) � g1�Ei0 � Ei0+1. Thus, we see that �(Ei0+1) � Ei0+1. Now onecan proceed inductively in the same way to show that �(Ei0+i) � Ei0+i.4.5. The actual construction of the splitting operators is a little tricky. Theproblem is that the individual steps in the construction sketched in 4.3 areinduced by maps on jet{modules which are not P{module homomorphismsbut only restrict to P{module homomorphisms on appropriate submodules,which also have to be constructed during the procedure.For j � i � 0 we denote by �ji the canonical projection E=E j ! E=E i ,which is a homomorphism of P{modules. Clearly, �ii is the identity and�ji � �kj = �ki for i � j � k. By pi : J 1(E=E i) ! E=E i we denote thefootpoint projection, which is a P{homomorphism, too. For any element  in a general G0{module, we denote by  i the component of  on which the



30 ANDREAS �CAP, JAN SLOV�AK, AND VLADIM�IR SOU�CEKgrading element E acts by multiplication by i0 + i. Note that the mapping 7!  i is only a G0{homomorphism and not a P{homomorphism. Finally,let us denote by ji : E=E i ! E=E i+1 the G0{homomorphism given by theinclusion Ei0 �� � ��Ei0+i�1 ! Ei0�� � ��Ei0+i. Again, this is obviously not aP{homomorphism. Finally, let Alt : p+
�np+
V! �n+1p+
Vdenote thealternation mapping. This is a P{homomorphism preserving homogeneousdegrees.For i = 1; : : : ; r+1 consider now the module J 1(E=E i ). A typical elementof this module is a pair (e;  ), with e 2 E=E i and 2 p+ 
 E=E i � p+ 
 �np+ 
V:Now we de�ne a mapping Li : J 1(E=E i)! E=E i+1 byLi(e;  ) = ji(e)� (n+ 1)��1@�((Alt( ))i):In particular, if  = Z 
 f for Z 2 p+ and f 2 E=E i , thenLi(e; Z 
 f) = ji(e)� (n+ 1)��1@�((Z ^ f)i):Now the main technical step in the construction is the following4.6. Proposition. The maps Li : J 1(E=E i) ! E=E i+1 have the followingproperties:(1) Li is a G0{homomorphism and �i+1i � Li = pi.(2) For 	 2 J 1(E=E i) and W 2 g1, we haveLi(W �	)�W �Li(	) = ��1�W �(� � ji � (Li�1 � J 1(�ii�1)� pi)(	))�:In particular, L1 is a P{homomorphism.Proof. (1) The fact that Li is aG0{homomorphism follows immediately fromthe fact that J 1(E=E i) �= E=E i�(p+
E=E i) as a G0{module, see 3.2 and thede�nition of Li. Moreover, since Alt, @�, and � all preserve homogeneities,the last term in the de�nition of Li is homogeneous of degree i0 + i, so itlies in the kernel of �i+1i and the second part follows.(2) Clearly, it su�ces to check this for elements 	 of the form (e; Z 
 f)with e; f 2 E=E i and Z 2 p+. By de�nition of the action on jets, see 3.2,we see that W �(e; Z 
 f) has footpoint W �e, while the homogeneous part ofdegree i0 + i of the second component is given byXj��j=1 �� 
 [W; ��]�ei�1 +W �(Z 
 f)i�1:Consequently,Li(W �(e; Z 
 f)) = ji(W �e)� (n+ 1)��1@�( Xj��j=1 �� ^ [W; ��]�ei�1)�� (n+ 1)��1@�(W �(Z ^ f)i�1):By Corollary 3.10 the second term on the right hand side of this equationjust gives��1@�(@(W �ei�1)�W �@(ei�1)) = W �ei�1 � ��1(W ��(ei�1));where we have used that @� is a P{homomorphism, ei�1 and W �ei�1 liein the kernel of @�, and that we are in a region where the Laplacian isinvertible. On the other hand, we clearly have ji(W �e) +W �ei�1 = W �ji(e),



BERNSTEIN{GELFAND{GELFAND SEQUENCES 31since W 2 g1 and ei�1 is the highest nonzero homogeneous component ofe. Finally, we clearly have W �Li(e; Z 
 f) = W �ji(e), since the rest lies inthe component of maximal homogeneity, on which p+ acts trivially. Thus,we have arrived atLi(W �(e; Z 
 f))�W �Li(e; Z 
 f) == ���1(W ��(ei�1))� (n+ 1)��1(W �@�((Z ^ f)i�1));where we have used once more the fact that @� is a P{homomorphism.On the other hand, consider J 1(�ii�1)(e; Z 
 f). The footpoint of thiselement is just �ii�1(e), while in the jet part, the component of maximalhomogeneity must coincide with (Z 
 f)i�1. Consequently, we getLi�1(J 1(�ii�1)(e; Z 
 f)) = ji�1(�ii�1(e))� (n+ 1)��1@�((Z ^ f)i�1):Subtracting e = pi(e; Z 
 f) from this, we get�ei�1 � (n+ 1)��1@�((Z ^ f)i�1);and the formula follows. In the case i = 1, we getL1(W �	)�W �L1(	) = ���1(W �(� � j1 � p1)(	));which vanishes, since Ei0 � Ker(�). Hence, L1 is equivariant for the actionof g1 and thus a P{homomorphism by (1) and 2.4.4.7. Now we inductively de�ne subspaces ~J 1(E=E i) � J 1(E=E i) by~J 1(E=E1) = J 1(E=E1)~J 1(E=E i+1) = J 1(�i+1i )�1( ~J 1(E=E i))\ Ker(Li � J 1(�i+1i )� pi+1):Proposition. For each i = 1; : : : ; r+ 1 the space ~J 1(E=E i) � J 1(E=E i) isa P{submodule and Li restricts to a homomorphism ~J 1(E=E i ) ! E=E i+1of P{modules. Moreover, for each k < i we haveJ 1(�ik)� ~J 1(E=E i)� � ~J 1(E=Ek );and on ~J 1(E=E i) we have �ik+1 � pi = Lk � J 1(�ik).Proof. In the case i = 1, the �rst two properties are satis�ed by de�nition of~J 1(E=E1) and Proposition 4.6(2), while the last two properties are triviallysatis�ed. If we inductively assume that the result has been proved for i� 1,then J 1(�ii�1)�1( ~J 1(E=E i�1)) is a P{submodule of J 1(E=E i), and Li�1 �J 1(�ii�1) � pi de�nes a P{homomorphism from this submodule to E=E i ,so ~J 1(E=E i) is a P{submodule. Moreover, Proposition 4.6(2) immediatelyimplies that the restriction of Li to this submodule is equivariant under theaction of g1 and thus Li restricts to a P{homomorphism on that submoduleby Proposition 4.6(1) and 2.4. Moreover, we get the last two properties inthe case k = i� 1.For k < i � 1, note �rst that �ik = �i�1k � �ii�1 immediately implies thatJ 1(�ik)� ~J 1(E=E i)� � ~J 1(E=Ek ) by induction. Finally, we computeLk � J 1(�ik) = Lk � J 1(�i�1k ) � J 1(�ii�1) = �i�1k+1 � pi�1 � J 1(�ii�1) == �i�1k+1 � �ii�1 � pi = �ik+1 � pi;



32 ANDREAS �CAP, JAN SLOV�AK, AND VLADIM�IR SOU�CEKby functoriality of J 1, induction, and the de�nition of the jet prolongationof a homomorphism.For k � 2 and i = 1; : : : ; r+ 1 we inductively de�ne~J k(E=E i) := J 1( ~J k�1(E=E i)) \ �J k(E=E i):By Proposition 4.7 and 3.4 it follows inductively that ~J k(E=E i) is a P{submodule in both modules on the right hand side of the de�nition. For i =1, we obtain ~J k(E=E1) = �J k(E=E1), so we simply get the full semiholonomicjet{module in this case. Moreover, a simple inductive argument shows forall ` < k, and i ~J k(E=E i ) � �J `( ~J k�`(E=E i))\ �J k(E=E i):For each of the homomorphisms Li : ~J 1(E=E i)! E=E i+1 we can restrictthe semiholonomic jet prolongation �J k(Li) to the submodule ~J k+1(E=E i) ��J k( ~J 1(E=E i)) to obtain a P{homomorphism�J k(Li) : ~J k+1(E=E i)! �J k(E=E i+1):4.8. Theorem. Let Ei0 be an irreducible component in the cohomology HnVwhich generates the P{submodule E in �np+ 
V, cf. 4.3. For each k � 1and i = 1; : : : ; r+ 1 we have�J k(Li)� ~J k+1(E=E i)� � ~J k(E=E i+1):In particular, the compositionL := Lr � �J 1(Lr�1) � : : : � �J r�1(L1)de�nes a P{homomorphism L : �J r(E=E1) ! E. Since by de�nition E is aP{submodule of �np+
V, this homomorphism induces a strongly invariantoperator �(Ei0M) ! Ker(@�) � 
n(M ;VM), which splits the algebraicprojection Ker(@�)! �(Ei0M) described in 4.3.Proof. Let us �rst consider the case k = 1. So we have to show thatJ 1(Li)� ~J 2(E=E i)� � ~J 1(E=E i+1). By de�nition of ~J 1(E=E i+1), we �rsthave to consider the composition J 1(�i+1i ) � J 1(Li) = J 1(�i+1i � Li). ByProposition 4.6(1), this equals J 1(pi). Since ~J 2(E=E i) � �J 2(E=E i), this pro-jection coincides with the restriction of the canonical projection �J 2(E=E i)!J 1(E=E i), and since ~J 2(E=E i) � J 1( ~J 1(E=E i)), this canonical projectionhas values in ~J 1(E=E i). Thus, we have veri�ed thatJ 1(Li)� ~J 2(E=E i)� � J 1(�i+1i )�1� ~J 1(E=E i)�:But then it also follows that Li � J 1(�i+1i ) � J 1(Li) coincides with thecomposition of Li with the canonical projection ~J 2(E=E i) ! ~J 1(E=E i),which by de�nition of the jet prolongation of a homomorphism (see 3.2)coincides with pi+1 � J 1(Li) and the proof in the case k = 1 is complete.The case k � 2 now immediately follows from the de�nitions by induc-tion. Thus, also the existence of L and the corresponding strongly invariantoperator is clear. The fact that this operator splits the algebraic projectionfollows from the fact that by Lemma 4.4(1) this algebraic projection is in-duced by the canonical projection E ! E=E1 and the fact that �i+1i �Li = pifrom Proposition 4.6(1).



BERNSTEIN{GELFAND{GELFAND SEQUENCES 33Next, we consider the composition of dVwith the operator correspondingto L. The corresponding homomorphism on jet modules can be computedas the restriction to �J r+1(E=E1) of dV� J 1(L).4.9. Proposition. For each irreducible G-module V, and irreducible G0{submodule Ei0 � HnV= Hn(g�;V), the compositiondV� J 1L : �J r+1(E=E1)! �n+1p+ 
Vhas values in ker @�. The composition with the projection to the cohomology�H : (�np+ 
 V) \ (ker@�) ! Hn+1V = Hn+1(g�;V) gives the P -modulehomomorphism �H � dV� J 1L : �J r+1(E=E1)! Hn+1V :For each n = 0; : : : ; dimM � 1, there is the strongly invariant di�erentialoperator DV: �(HnVM)! �(Hn+1V M)whose restrictions to the subbundles E0M are determined by the above P{module homomorphisms �J r+1(E=E1)! Hn+1V .Proof. Consider �rst the map @� � dV : J 1(E) ! �np+ 
V. By de�nitionof dV, Lemma 4.2, and using the fact that E � Ker(@�), we see that thismaps (e; Z 
 f) 2 J 1(E) to @�@(e) + (n+ 1)@�(Z ^ f) = �(e)� (n+ 1)Z�f ,so @� � dV : J 1(E) ! E. Now Theorem 4.8 applied to J 1(Lr) shows, thatJ 1(L) has values in the submodule ~J 1(E) � J 1(E), and we claim that@� � dVrestricts to zero on that submodule.To simplify notations, let us write p : J 1(E) ! E for the footpoint pro-jection pr+1 and �i for �r+1i . For i � r + 1 consider the P{homomorphism�i �@��dV: J 1(E) ! E=E i . By de�nition, this maps (e; Z
f) to �i(�(e))+(n+1)�i(@�(Z^f)). Since the Laplacian and @� both preserve homogeneousdegrees, we may rewrite the �rst summand as �(�i(e)) and the second sum-mand as (n+ 1)�i(@�(Z ^ �i�1(f))).On the other hand, consider J 1(�i�1) : J 1(E) ! J 1(E=E i�1). This maps(e; Z
f) to (�i�1(e); Z
�i�1(f)), and applying Li�1 to this element, we getji�1(�i�1(e))� (n+ 1)��1@�((Z ^ �i�1(f))i). Finally, �i � p maps (e; Z
 f)to �i(e). Consequently, � � (�i � p� Li�1 � J 1(�i�1)) maps (e; Z 
 f) to�(�i(e))� ji�1(�(�i�1(e))) + (n+ 1)@�((Z ^ �i�1(f))i);and the last summand in this expression equals(�i � ji�1 � �i�1)((n+ 1)@�(Z ^ f));since @� preserves homogeneous degrees. Hence, we see that on J 1(E) weget the equation�i � @� � dV� ji�1 � �i�1 � @� � dV= � � ��i � p� Li�1 � J 1(�i�1)�:In fact, this equation is exactly what we were aiming at in the motivationfor the whole construction in 4.3. But on the submodule ~J 1(E), the righthand side of the above formula vanishes identically by Proposition 4.7. Thus,iterated application of this formula shows that on ~J 1(E) we have@� � dV= �r+1 � @� � dV= jr � �r � @� � dV= � � �= j1 � �1 � @� � dV:



34 ANDREAS �CAP, JAN SLOV�AK, AND VLADIM�IR SOU�CEKBut �1 � @� � dVmaps (e; Z 
 f) to �(�1(e)), which vanishes since Ei0 iscontained in the kernel of the Laplacian, so we have proved @��dV�J 1(L) =0. All the rest is now an immediate consequence.4.10. De�nition. Let (G; !) be a (real or complex) parabolic geometryon a manifold M . The construction above has given rise to a sequence ofstrongly invariant operators DV0 //�(H0VM) DV
//�(H1VM) DV

// : : : DV
//�(Hdim(G=P )V M) //0 :which is called the Bernstein{Gelfand{Gelfand sequence or BGG{sequencedetermined by the G-module V.All bundles in this sequence correspond to completely reducible represen-tations of P , so they all split into direct sums of bundles corresponding toirreducible representations. Let us also remark that the construction appliesto both real and complex settings. Next, we will show that in the at case thissequence is a resolution of the constant sheaf V. Since by Kostant's versionof the Bott{Borel{Weil theorem, the bundles occurring in this resolution inthe complex case are exactly the same bundles as in the Bernstein{Gelfand{Gelfand resolution, we have obtained curved analogs of this resolution evenin the real case.The main step towards the proof that we often get a resolution is formu-lated in the next lemma for the general real curved case. For the complexanalog see below.4.11. Lemma. Let (G; !) be a real parabolic geometry on a manifold Mand let s 2 
n(M ;VM) be a VM{valued n{form. Then:(1) There is an element t 2 
n�1(M ;VM) such that s+dV(t) lies in ker(@�).(2) If s and dV(s) both lie in ker(@�), then s = L(�H(s)).(3) If d2V(ker(@�)) � ker(@�), then the diagram
0(M ;VM) dV // 
1(M ;VM) dV // : : :V 55kkkkkkk

))SSS
SS

SS �(H0VM)LOO DV
// �(H1VM)LOO DV

// : : :is commutative. In particular, DV�DV= 0 whenever dV� dV= 0.Proof. (1) Put G0 = G=P+ and choose a global G0{equivariant section� : G0 ! G as indicated in 2.13. Then we get a smooth map � : G ! P+characterized by u = �(p(u))��(u) for all u 2 G, and u 7! (p(u); �(u)) is adi�eomorphism G ! G0�P+. Using this, we get an isomorphism (dependingon �) between 
n(M ;VM) and the space of smooth G0{equivariant func-tions G0 ! �np+ 
V. But ��1 � @� is a G0{homomorphism �np+ 
V!�n�1p+ 
V such that e� @(��1 � @�(e)) 2 ker(@�) for all e 2 �np+ 
V.Now, let s : G0 ! �np+ 
 V be the G0{equivariant map correspond-ing to the lowest homogeneous component sj of the given n{form s suchthat @�(sj) 6= 0. Passing from ���1 � @� � s back to a P{equivariant mapt : G ! �n�1p+ 
V, we see that the homogeneous components up to de-gree j of @�(s + dV(t)) vanish on the image of � and thus on the whole



BERNSTEIN{GELFAND{GELFAND SEQUENCES 35G by equivariancy. Inductively, we can �nd an element t with the requiredproperties.(2) Put s0 = �H(s). By construction of the operators L, we know thatL(s0) 2 ker(@�), �H(L(s0)) = s0, and dV(L(s0)) 2 ker(@�). Thus, we see thats�L(s0) 2 im(@�) and dV(s�L(s0)) 2 ker(@�). Let aj be the lowest possiblynonzero homogeneous component of s � L(s0). Then the lowest possiblynonzero component of dV(s�L(s0)) is @(aj). Since ker(@�) is complementaryto im(@) we must have @(aj) = 0. But on the other hand, we know thataj 2 im(@�) which is complementary to ker(@), so we must have aj = 0.(3) For s 2 �(HnVM), consider the element dV(L(s)) 2 
n+1(M ;VM). ByProposition 4.9, this lies in ker(@�). Moreover, since L(s) 2 ker(@�), ourassumption on d2V implies that dV(dV(L(s))) 2 ker(@�). Hence from (2) weget dV(L(s)) = L(�H(dV(L(s)))) = L(DV(s)).The last claim is obvious.4.12. Lemma. Let (G; !) be a complex parabolic geometry on a complexmanifold M . Then the second and third assertion in Lemma 4.11 remainvalid with the same assumptions, while the claim 4.11(1) requires the ad-ditional assumption that the holomorphic bundle G ! G0 admits a globalholomorphic G0-equivariant section. This additional requirement is alwaysful�lled locally.Proof. All arguments in the proof of (2) and (3) in 4.11 are on the level ofthe P -modules and so they go equally through for both real and complexsettings. The only di�erence in (1) is the argument which constructs theglobal section by means of the smooth partition of unity. Once we assumethe existence of the global section, the rest is clear again. Now, any point inM has an open neighborhood U �M such that both G and G0 are trivial overU . Since G0 � P+ and P are di�eomorphic, and the map in one direction isobviously holomorphic, they are biholomorphic. Thus, the complex parabolicgeometry GjU ! U admits appropriate global holomorphic G0{equivariantsection.4.13. Theorem. Let (G; !) be a real parabolic geometry of the type (G;P )on a manifold M , V be a G{module. If the twisted de Rham sequence0 //
0(M ;VM) dV //
1(M ;VM) dV // : : : dV //
dim(G=P )(M ;VM) //0 :is a complex, then also the Bernstein{Gelfand{Gelfand sequence0 //�(H0VM) DV
//�(H1VM) DV

// : : : DV
//�(Hdim(G=P )V M) //0de�ned in 4.10 is a complex, and they both compute the same cohomology.The same statement is true for complex parabolic geometries (G; !) underthe additional requirement that G ! G0 = G=P+ admits a global holomorphicG0{equivariant section.Remark. In particular, the complex version of the Theorem may be refor-mulated as follows: If the twisted de Rham sequence induces a complex onthe sheaf level, then the same is true for the Bernstein{Gelfand{Gelfand se-quence. In particular, if the twisted de Rham sequence induces a resolutionof V, then so does the BGG{sequence.



36 ANDREAS �CAP, JAN SLOV�AK, AND VLADIM�IR SOU�CEKNow, the original representation theoretical version of the (generalized)BGG{resolution follows immediately by duality. Moreover, let us notice thatthe global G0{equivariant section as required in the Theorem always existsover a dense open submanifold in the homogeneous space G=P (the so calledbig cell).Proof. As we saw in Lemma 4.11, the BGG{sequence forms a complex when-ever the twisted de Rham does. So let us assume, we deal with complexes.Since d2V= 0, 4.11(3) implies that L is a morphism of the correspondingcomplexes, hence the mapping�(HnVM) 3 s0 7! L(s0) 2 
n(M ;VM)induces a morphism between the cohomologies.Next, suppose that s 2 
n(M ;VM), n � 1 is such that dV(s) = 0. By4.11(1) we �nd an element t 2 
n�1(M ;VM) such that s+dV(t) 2 ker(@�).But then dV(s+ dV(t)) = 0 so s+ dV(t) = L(�H(s+ dV(t))) by 4.11(2), andthus the mapping de�ned above is surjective.Finally, let us assume that s0 2 �(Hn�1V M) is such that there exists at 2 
n�1(M ;VM) with dV(t) = L(s0). Then by 4.11(1) we may without lossof generality assume that t 2 ker(@�). But by assumption dV(t) = L(s0), sothis is also contained in ker(@�), and hence t = L(�H(t)) by 4.11(2), and thusL(s0) = dV(L(�H(t))) and applying �H on both sides we get s0 = DV(�H(t)),and so we get an isomorphism in the cohomology groups.4.14. Corollary. Let (G; !) be a torsion free real parabolic geometry of type(G;P ) onM . Then the de Rham cohomology ofM with coe�cients in K = Ror C is computed by the (much smaller) complex0 //�(H0KM) DK
//�(H1KM) DK

// : : : DK
//�(Hdim(G=P )K M) //0 :Proof. The covariant exterior di�erential corresponding to the choice of thetrivial P{module K coincides with the usual exterior di�erential d. Accord-ing to Lemma 3.11, the exterior covariant di�erential coincides with ourtwisted exterior di�erential for all torsion{free geometries. Thus the state-ment follows from 4.13.4.15. Corollary. Let (G; !) be a at real parabolic geometry. Then for anyrepresentation V of G the BGG{sequence0 //�(H0VM) DV

//�(H1VM) DV
// : : : DV

//�(Hdim(G=P )V M) //0is a complex, which computes the twisted de Rham cohomology of M withcoe�cients in the bundle VM , which is de�ned as the cohomology of thecomplex given by the covariant exterior derivative with respect to the linearconnection on VM induced by the Cartan connection !, see 3.11.The importance of this corollary lies in the fact that while at parabolicgeometries are locally isomorphic to the homogeneous model G=P , they maybe very di�erent from G=P from a global point of view. Just keep in mindthe broad variety of smooth manifolds admitting a locally conformally atRiemannian metric. In particular, the bundle VM is not trivial in general,



BERNSTEIN{GELFAND{GELFAND SEQUENCES 37so the twisted de Rham cohomology is a less trivial object than in thehomogeneous case.On the other hand, we may always consider the obvious at parabolicgeometry on the trivial P{bundle over Rdim(G=P ) �= g�. In this case, thetwisted de Rham cohomologies are obviously zero, so Corollary 4.15 providesglobal resolutions of the constant sheaf V in this case. Simple instances ofsuch sequences are of basic importance in various areas of mathematics, seefor example [14].4.16. Remark. As we have seen already, the P{modules HnVare completelyreducible and so the natural bundles HnVM decompose into direct sums ofirreducible bundles. Consequently, also the operators DV split into sumsof operators between the irreducible natural bundles. In the case of thehomogeneous bundles, the latter operators (and sometimes also their non-trivial compositions) are usually referred to as standard invariant operators.In particular, our construction provides a distinguished curved analog foreach of those standard operators.As we have underlined already in the introduction, no deep representa-tion theoretical results had to be applied in the construction of the BGG{sequences and in the proof of Theorem 4.13. On the other hand, the fullinformation of the Kostant's version of Bott{Borel{Weil theorem on the Liealgebra cohomologies is strictly necessary in order to get more explicit infor-mation about the individual standard operators and the overall structure ofthe BGG{sequence in the at case. Moreover, further non-trivial operatorswith curvature contributions in their symbols may appear in general.Let us also remark that the explicit formulae for the standard operatorswere given in closed form in the terms of the underlying linear connectionson M in [10] for all parabolic geometries with irreducible tangent bundles,i.e. for all cases with j1j{graded Lie algebra g. We believe that the techniquedeveloped there should be extendible to the general case, too.4.17. Remark. In the at case, the twisted de Rham complex can beviewed as a �ltered complex with the �ltration given by homogeneous de-grees. The fact that the lowest homogeneous component of dV is just @implies that the di�erential on the associated graded complex is exactly @.Associated to this �ltration there is a spectral sequence which obviouslyconverges and computes the twisted de Rham cohomology. Now from theconstruction of the operators DV it is obvious that when passing to theappropriate subquotients, they induce the higher di�erentials in this spec-tral sequence. Usually, these higher di�erentials are only well de�ned on theappropriate subquotients, but due to the fact that we have a (fairly sim-ple) Hodge structure on the associated graded complex, we can get a globalde�nition in our setting. 5. ExampleWe shall illustrate the power of our results in the simple case of 5{dimensional partially integrable almost CR{structures, cf. Example 2.9. Webelieve that this simple geometry reects many of the general features ofparabolic geometries and we can still write down the whole BGG{sequences



38 ANDREAS �CAP, JAN SLOV�AK, AND VLADIM�IR SOU�CEKvery explicitly at the same time. We hope that based on this example, thereader is able to imagine the vast amount of invariant operators which ourmain theorems produce for all parabolic geometries.Let M be a smooth manifold of odd dimension 2n + 1 together with adistinguished rank n complex subbundle TCRM of the tangent bundle TM .Then the Lie bracket of vector �elds induces a skew{symmetric bundle mapLR : TCRM � TCRM ! TM=TCRM , the real Levi{Form. (M;TCRM) iscalled a partially integrable almost CR{manifold if and only if L is non{degenerate and totally real, i.e. L(J(�); J(�)) = L(�; �) for all �; � 2 TCRM ,where J denotes the almost complex structure on TCRM . In that case,choosing a local trivialization of TM=TCRM , L is the imaginary part of aHermitian form. Here we consider the case where n = 2, soM has dimension5 and this Hermitian form is positive de�nite (for an appropriate choice ofthe local trivialization).Typical examples of such manifolds are smooth hypersurfaces in a six{dimensional smooth manifold N endowed with an almost complex structure~J , which satisfy a non{degeneracy and an integrability condition. In thiscase, we put TCRM = TM \ ~J(TM) and J = ~J jTCRM . To understandthe non{degeneracy and integrability conditions, it is more convenient topass to complexi�ed tangent bundles. Since TCRM is a complex bundle, itscomplexi�cation TCRC M splits into a direct sum T1;0M � T0;1M of a holo-morphic and an antiholomorphic part. Moreover, mapping �; � 2 �(T1;0M)to the class of �i[�; ��] de�nes a bundle valued Hermitian formL : T1;0M � T1;0M ! TCM=TCRC M =: QM;the Levi form. The partial integrability condition from above is then equiva-lent to the fact that [�; �] 2 �(TCRC M) for all sections �; � of T1;0M , and theconditions of positive de�niteness is equivalent to L being positive de�nite inan appropriate local trivialization of QM . (Certainly, these conditions alsomake sense for abstract almost CR manifolds). A partially integrable almostCR manifold is called integrable or a CR{manifold if and only if the sub-bundle T1;0M is involutive. In particular, this is the case for hypersurfacesin complex manifolds.By [7, 4.14], 5{dimensional partially integrable almost CR{manifolds areexactly the normal parabolic geometries corresponding to G = PSU(3; 1)and the parabolic subalgebra of g = su(3; 1) corresponding to the Dynkindiagram � � �. Let us also consider ~G = SU(3; 1) and let P , G0 � G,or ~P , ~G0 � ~G be the corresponding subgroups as in 2.3. Then the semisimplepart of ~G0 is SU(2) and the center of G0 is C .In the Dynkin diagram notation, each (complex) irreducible ~G-module Vis given by the choice of three non{negative integers a; b; cV= �a �b �c :More explicitly, �a �b �c is the highest weight component in SaC 4 
Sb(�2C 4) 
 Sc(C 4�), where Si denotes the i{th symmetric power, and sothese representations integrate to representation of G if and only if a � c iscongruent to 2b modulo four (the center of ~G consist of �1 and �i timesthe identity).



BERNSTEIN{GELFAND{GELFAND SEQUENCES 39The irreducible ~P {modules correspond to choices with b non{negativewhile a and c may be arbitrary integers. Now, b determines the represen-tation of SU(2) while the other two parameters describe the action of thecenter of ~G0. We adopt the convention used in [2], i.e. the parameters givethe linear combination of the fundamental weights of ~g which is the high-est weight of the dual module to V. In this way, the resulting weights forour modules happen to be the same as those in the dual pictures knownfrom representation theory. For our purposes, however, this has no impor-tance and it is enough to say that the distinguished two subbundles T1;0Mand T0;1M in the complexi�ed tangent space and the complexi�ed quotientQM = TCM=TCRC M have duals T �1;0M , T �0;1M (quotients of the complexi�edcotangent bundle), and Q�M , which correspond to the modulesT�1;0 = ��2 �1 �0 ; T�0;1 = �0 �1 ��2; Q� = ��1 �0 ��1:Now, all ~P {modules are tensor products of symmetric powers Sb(T�1;0) andsuitable one-dimensional representations E[a; c] corresponding to the Dynkindiagram �a �0 �c . We shall write Sb(T�1;0)[a; c] for these modules and usethe shorthand Sb[a;c] for the corresponding natural bundles. In particular,Sb[a;c] = Sb(T�1;0)[a; c] = �a�2b �b �cT �0;1 = T �1;0[2;�2] = S1[2;�2]S0[�1;�1] = E[�1;�1] = Q�S0[�4;0] = �2T �1;0 
Q�:Another important bundle is the dual to the kernel of the Levi form (kerL)� �T �1;0 
 T �0;1 which corresponds to S2[2;�2].All natural bundles Sb[a;c] exist on manifoldsM with the so called SU(3; 1){structures, i.e. we have to choose coverings of the Cartan P{bundle G to thestructure group ~P . This is clearly equivalent to the choice of a �xed line bun-dle E[1; 0] such that its fourth tensor power is �2T1;0M 
 QM . This is ananalogous situation to natural bundles and natural operators in conformalRiemannian geometry which often depend on the choice of a spin structure.Using the explicit description of the cohomology from Kostant's Bott{Borel{Weil theorem we obtain explicitly all natural bundles appearing inour main theorems. The computations are done fairly simply in terms of theDynkin diagram notation, see [2] for the details. Furthermore, using elemen-tary �nite dimensional representation theory one easily shows that there areno homomorphisms between the semi{holonomic jet modules correspondingto the items in the neighboring columns of the BGG{sequences, except thosewhich are indicated in Figure 1. Let us also notice that the orders of theoperators are easily read o� the homogeneities of the bundles with respectto the action of the grading element in G0 and the homogeneity of Sb[a;c] isa+ c� b. Thus we can summarize:5.1. Theorem. For each SU(3; 1){module V = �a �b �c , the BGG{se-quence of invariant di�erential operators shown on Figure 1 exists on all
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BERNSTEIN{GELFAND{GELFAND SEQUENCES 41This complex is a special instance of the so called Rumin complex on con-tact geometries, [28], see also [18] for a re�ned version for the CR{structures.In the homogeneous case, this complex was also mentioned in [2]. Similarquestions were also studied by Lychagin earlier, see e.g. [23] and the refer-ences therein. Notice that the dimensions of the individual columns are 1, 4,5, 5, 4, 1 (opposed to dimensions 1, 5, 10, 10, 5, 1 in the de Rham complex).Appendix A. In�nite jets and Verma modulesThe aim of this appendix is to provide di�erential geometers with basicinformation on the links between jets and Verma modules, and in particularto prove the correspondence between invariant di�erential operators andhomomorphisms of generalized Verma modules used in 2.6.A.1. We have seen in 2.6 that invariant operators �(E)! �(F ) betweenhomogeneous vector bundles over G=P are in bijective correspondence withP{homomorphisms J1(E)o ! Fo, which factorize over some Jr(E)o.First note that sections of E can be identi�ed with smooth functions G!E, which are P{equivariant. Since this identi�cation is purely algebraic, itgives an identi�cation of in�nite jets at o of sections of E with P{equivariantin�nite jets of smooth functions G ! E at e 2 G. Now it is easy to verifythat in the picture of smooth equivariant functions, the action of G is givenby (g�s)(g0) = s(g�1g0). The corresponding in�nitesimal action of g is givenby (X�s)(g) = �(RX�s)(g), where RX denotes the right{invariant vector�eld on G generated by X 2 g = TeG. For X 2 p, the in�nitesimal versionof equivariancy of s implies that (X�s)(g) = X�(s(g)), but for general Xthe value (X�s)(g) depends on the one{jet of s at g. Thus we do not get aninduced action of g on �nite jets, but for in�nite jets we get a well de�nedaction of g. Since this action is clearly compatible with the action of P , itmakes J1(E)o into a (g; P ){module.On the other hand, mapping each X 2 g to the left invariant vector �eldLX generated by X induces an isomorphism between the universal envelop-ing algebra U(g) and the algebra of left invariant di�erential operators onG. Now we get a bilinear map J1(E)o � (U(g) 
 E�) ! K by mapping(j1s(e); D
 �) to �(D(s)(e)), where D is a left invariant di�erential oper-ator and � is an element of the dual representation E� to E, and as abovewe view s as an equivariant function on G. By equivariancy of s this factorsto a bilinear map J1(E)o� (U(g)
U(p) E�)! K because elements of U(p)act algebraically and this can be expressed as an action on �.We claim that the above pairing is compatible with the actions of both gand P . For the action of g, let us take a typical elementX1 
 � � � 
Xn 
 � 2 U(g)
U(p) E�and X 2 g. From above, we know that X�j1s(e) = �j1(RX�s)(e). Pair-ing this with X1 
 � � � 
 Xn 
 �, we get ��((LX1 : : :LXn�RX�s)(e)). Sinceleft invariant vector �elds commute with right invariant ones, this equals��((RX�LX1 : : :LXn�s)(e)). But this depends only on RX(e), so we may aswell replace RX by LX , so this coincides with X
X1
� � �
Xn
� evaluatedon j1s(e).



42 ANDREAS �CAP, JAN SLOV�AK, AND VLADIM�IR SOU�CEKThe action of b 2 P on U(g) 
U(p) E� is induced by mapping D 
 �to b�D 
 b��, where (b�D)(s) = D(s � rb�1) � rb and rb denotes the rightmultiplication by b. This obviously maps the anihilator of the space of P{equivariant functions to itself and thus descends to an action on U(g)
U(p)E� . If s is equivariant, then (s � rb�1)(g) = b�(s(g)), and thus (b�D)(s)(g) =b�(D(s)(gb)). But this implies that pairing j1s(e) with b�D 
 b�� we get(b��)((b�D)(s)(e)) = �(D(s)(b)). On the other hand, the action of b onJ1(E)o is given by b�j1s(e) = j1(s�`b�1)(e), where `b denotes the left mul-tiplication by b. Thus pairing b�1�j1s(e) with D
� we get �(D(s � `b)(e)),which by left invariance of D coincides with �(D(s)(b)).Now for any k 2 N, we have the natural projection J1(E)o ! Jk(E)o.On the other hand, the universal enveloping algebra U(g) has a natural (in-�nite) �ltration K = U0(g) � U1(g) � : : : such that U(g) = [i2NU i(g).In the picture of left invariant di�erential operators on G, this is just the�ltration by the order of operators. This �ltration clearly induces a �ltra-tion F i on U(g)
U(p) E� , and each �ltration component is a P{submodule(but not a g{submodule). The pairing of an element of Fk with an elementj1(s)(e) 2 J1(E)o clearly depends only on jks(e), so we get an inducedparing between Fk and Jk(E)o, and this induced pairing is obviously non{degenerate and still compatible with the P{actions, so since both sides are�nite dimensional, they are dual P{modules.Let us remark at this point that it is also possible to put locally convextopologies on the spaces in question, such that they become topologicallydual (g; P ){modules. Namely, one has to view J1(E)o as the limit of thesystem � � � ! Jk(E)o ! Jk�1(E)o ! : : : , while U(g) 
U(p) E� has to betopologized as a direct sum of �nite dimensional spaces.A.2. Let E and F be P{representations, E and F the corresponding bun-dles and ' : Jk(E)o ! Fo = F a P{homomorphism. By the duality shownabove, we can view the dual map '� as a P{homomorphism F� ! Fk �U(g)
U(p)E� . Conversely, if we have a P{homomorphism F� ! U(g)
U(p)E� ,then this has values in some F i since F� is �nite dimensional, so dualiz-ing it corresponds to a P{homomorphism J i(E)o ! Fo. Consequently, wesee that the space of invariant operators �(E) ! �(F ) is isomorphic toHomP (F�;U(g)
U(p) E�).By Frobenius reciprocity the latter space is isomorphic toHom(g;P )(U(g)
U(p) F� ;U(g)
U(p) E�):This isomorphism is quite simple to prove: If ' : F� ! U(g) 
U(p) E� is aP{homomorphism, then ~�(A
�) = A�'(�) de�nes a (g; P ){homomorphismU(g)
 F� ! U(g)
U(p) E� , and since ' is a P{homomorphism, this factorsto a (g; P ){homomorphism � between the required spaces. Conversely, weput '(�) = �(1
�) and this clearly is a P{homomorphism if � is a (g; P ){homomorphism.Appendix B. Adjointness of @ and @�B.1. As promised in the beginning of Section 4, we show that the operators@ and @� are adjoint operators with respect to a certain inner product on



BERNSTEIN{GELFAND{GELFAND SEQUENCES 43Cn(g�;V). To construct this inner product, we have to distinguish betweenthe real and the complex case. Let us start with the case where g and Vare complex. Since the grading element E 2 g0 is semisimple, we can �nda Cartan subalgebra h � g which contains E. Then each root space forthis Cartan subalgebra is contained in some gi. Let u be a compact realform of g with a Cartan subalgebra h0 contained in h, and let � be thecomplex conjugation with respect to this real form. By de�nition of E, themap ad(E)�ad(E) acts on gi by multiplication by i2, so for the Killing formwe have B(E;E) > 0. Consequently, we must have �(E) = �E, and thus�(gi) = g�i for all i = �k; : : : ; k. Now one immediately veri�es directly thatB�(X; Y ) := �B(X; �(Y )) is a positive de�nite Hermitian inner product ong, such that the decomposition g = g�k � � � � � gk is an orthogonal directsum. In particular, this induces a Hermitian inner product on g�.Next, since u is a compact real form, there is a positive de�nite Hermitianinner product h ; i on V such that the elements of u act as skew{Hermitianoperators. But this immediately implies that for each X 2 g and v1; v2 2 V,we have hX�v1; v2i = �hv1; �(X)�v2i. Together with the inner product ong� constructed above we get a positive de�nite Hermitian inner product onCn(g�;V) for each n.In the real case, the situation is slightly more complicated. In this casewe have to construct appropriate involutions � on the individual simplefactors separately, and we have to distinguish between the case where thecomplexi�cation of a simple factor is again simple and the case where it isnot. Note that the simple factors of a jkj{graded Lie algebra are themselvesj`j{graded for some ` � k and that the grading element of g is just the sumof the grading elements of the simple factors.If we have a real simple algebra g whose complexi�cation is not simple,then it is well known that g is actually the underlying real Lie algebra of acomplex simple Lie algebra. In this case, we can proceed as above to get acompact real form u � g and the corresponding involution �.In the case where both g and its complexi�cation gC are simple, we choosea Cartan subalgebra h � gC which contains the element E 2 g. By [29,Expos�e 11, Th�eor�eme 3] there is a compact real form u � gC with Cartansubalgebra h0 � h such that the complex conjugation � with respect to ucommutes with the complex conjugation with respect to g, and thus �(g) =g. The involutions on the simple factor together de�ne an involution of g andas above one uses the Killing form on g and � to get a positive de�nite innerproduct on g and on g�. If the representationVis not already complex, thenwe can pass to its complexi�cation to get a Hermitian inner product suchthat hX�v1; v2i = �hv1; �(X)�v2i as above, an in both cases the real part ofthis Hermitian product gives a positive de�nite inner product on Vwhichwe use together with the inner product on g� to get a positive de�nite innerproduct on Cn(g�;V).B.2. Proposition. The di�erential @ : Cn(g�1;V) ! Cn+1(g�1;V) andthe codi�erential @� : Cn+1(g�1;V)! Cn(g�1;V) are adjoint operators withrespect to the inner products constructed in B.1 above.
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