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1 IntroductionIt was observed by Douglas and Hull [1] that D-branes on T2 with a constantNeveu-Schwarz (NS) two-form potential B give rise to an e�ective world-volumetheory on a non-commutative torus. Even though this initial observation wasre-considered and generalized by many authors [2{4], all the subsequent work isrestricted to 
at backgrounds. A perturbative analysis along the lines of [4], on theother hand, shows that the quantization of world-volume geometries should be amuch more general phenomenon which persists in the case of curved backgrounds.In this work we shall present the �rst non-perturbative (in �0) investigation ofworld-volume geometries in a curved string background with non-vanishing NS3-form �eld H = dB. 1 An exact treatment of D-branes in curved backgroundsis possible within the framework of boundary conformal �eld theory. Here weillustrate the basic techniques and some general features of the resulting world-volume geometries in a particular example, namely the SU(2) WZW theory, andstudy D-branes in the WZW model associated with the gluing condition Ja = �Ja.We shall argue that their world-volumes may be regarded as fuzzy two-sphereswhen the level k is sent to in�nity, i.e. when the background becomes 
at. For�nite level, H is non-zero and we shall �nd non-associative deformations of thesefuzzy spheres, which are closely linked to the theory of quantum groups. While thein�nite level result can be predicted from the semi-classical analysis in [5] togetherwith the general phenomenon of world-volume quantization in 
at backgrounds [1],our results on the �nite level provide a non-trivial extension of the standard rules.Apparently, many features of the world-volume geometry are not captured by theperturbative treatment of D-branes on group manifolds that was suggested recentlyin [6].We shall follow a general procedure which allows us to extract world-volume geom-etry from the world-sheet description of any (generalized) D-brane, even when it isgiven in purely algebraic terms. The essential input data are the operator productexpansions (OPE) of boundary �elds (open string vertex operators). Since theydepend on the ordering of the operators, it is not surprising that the brane world-volume obtained in this way is a non-commutative space, in general. We shall seethat non-associativity may show up as well.Our approach is inspired by a project initiated by J. Fr�ohlich and K. Gaw�edzkiin [7] (see also [8] for earlier ideas in the same direction), where it was proposedto construct non-commutative target space geometries from OPEs of closed stringvertex operators. This was developed further in [9, 10]. It appears, however,1Recall that the curvature is linked to the �eld strength H by the string's equation of motion.1



Figure 1: World-sheet diagrams for closed resp. open string interaction. Having assignedvertex operators to the legs, they can be read as structure constants for the multiplicationof two operators, projected on the third channel. In the closed string case, the in-comingoperators can be interchanged with the help of world-sheet di�eomorphisms, while theordering of open string vertices is �xed up to cyclic permutations.that non-commutative geometry emerges in a more natural way and on a morefundamental level in the open string case, cf. the picture below. Our �ndings add tothe growing evidence that brane physics surpasses classical geometry { even thoughthe emergence of a non-commutative world-volume need not necessarily mean thata D-brane behaves non-geometrically in the sense of the criterion formulated in [11].This criterion rests on a comparison of low-energy e�ective �eld theories in thestringy and in the large-volume regime, and we do not attempt to test it in thepresent paper. But we would like to point out that the structures contained inthe non-commutative world-volume also form the main ingredient of the e�ectiveaction of the brane.While we have chosen the SU(2)k example mainly because of its simplicity andbecause there exists a semi-classical curved background picture, it is also an im-portant ingredient of the CFT formulation of the Neveu-Schwarz 5-brane, seee.g. [12]. Given that questions like stability of the con�guration can be clari�ed,our �ndings should be relevant for the geometry of D-branes in the presence of astack of 5-branes. Similarly, our SU(2) WZW results could be applicable in thestudy of branes on an AdS3 � S3 string background, see e.g. [13,14].2 World-volume geometry { from the 
at case to arbitrary backgroundsBefore we show how one can read o� fuzzy geometry from branes in the WZWmodel, let us brie
y review the emergence of non-commutative spaces in the morestandard case of branes in 
at n-dimensional Euclidean space Rn, or on a 
at torusTn. Consider a D-brane which is localized along a p-dimensional hyper-plane Vp2



in the target, with tangent space TVp. The conformal �eld theory associated withsuch a Euclidean D-brane is de�ned on the upper half of the complex plane. It con-tains an n-component free bosonic �eld X = (X�(z; �z)); � = 1; : : : ; n; subject toNeumann boundary conditions in the directions along TVp and Dirichlet boundaryconditions for components perpendicular to the world-volume of the brane. Fromthe free bosons, one may obtain various new �elds, in particular the open stringvertex operators Vk(x) = : exp(ikX(x)) : for all k 2 TVp ;which can be inserted at any point x on the real line. When there is no magnetic�eld on the brane, the OPE of these U(1)-primaries reads (with �0 = 12 and forx1 > x2) Vk1 (x1)Vk2 (x2) = (x1 � x2)k1k2=2 Vk1+k2(x2) + : : : ; (2.1)where the dots indicate less singular non-primary contributions. We can rewritethis relation by introducing the objectsf(X(x)) � V [f ](x) := 1(2�)p=2 ZTVp dpk f̂(k) Vk(x)for each function f : Vp ! C with Fourier transform f̂(k). Then the boundaryOPE (2.1) translates into a \de�nition" of pointwise multiplication of functions,V [ f ](1) V [ g ](0) = V [ f � g ](0) + : : : : (2.2)We have specialized to coordinates x1 = 1 and x2 = 0 for convenience, arbitraryinsertion points can be recovered via conformal covariance.The e�ect of switching on a B-�eld is described by adding the termSB = 12� Z dzd�z B��@X�(z; �z)�@X�(z; �z) (2.3)to the action of the original theory without B-�eld. One can easily see that thisis a pure boundary term with no in
uence on the bulk properties of the theory.It only changes the boundary conditions. If we assume for de�niteness that Vp isspanned by the �rst p coordinates x�; � = 1; : : : ; p, the new boundary conditionsread (with z = x+ iy)@yX�(z; �z) = B��@xX�(z; �z) for z = �z and �; � = 1; : : : ; p : (2.4)This means that the (exact) free boson propagator becomes (x1; x2 2 R)hX�(x1)X�(x2) iB = � (��� +���S ) log jx1 � x2j � i �2 ���A sign(x1 � x2) (2.5)3



where �S and �A denote the symmetric resp. anti-symmetric part of the matrix� = (1�B)(1 +B)�1 . Explicitly,�A = 2B �B�1 : (2.6)In particular, when B is large we obtain �A � 2B�1, which means that �A is thePoisson bi-vector corresponding to the symplectic form B. Eq. (2.5) immediatelyyields the boundary OPE for a non-vanishing B-�eld,Vk1(1)Vk2 (0) = e�i�2 kt1�Ak2 Vk1+k2(0) + : : : :As before, this can be used to de�ne a (deformed) product ? for functions throughV [f ](1)V [g](0) = V [f ? g](0) + : : : ; where now( f ? g )(x) := ei �2 ���A @x�@y� f(x)g(y) jy=x : (2.7)This is the associative, non-commutative Moyal-Weyl product of functions f; g onthe world-volume Vp of the brane. In the context of the derivation we have given,non-commutativity of ? arises because the ordering of boundary �elds in generaldoes matter, cf. the sign-term in eq. (2.5). The algebra of functions with product(2.7) is, of course, the non-commutative brane world-volume uncovered by Douglasand Hull using a di�erent approach. It is a deformation of the ordinary algebra offunctions, with deformation parameter(s) given by (the matrix) �A.In [4], the term (2.3) was viewed as a bulk perturbation of the B = 0 theory,i.e. techniques of conformal perturbation theory were applied to the operatorexp(�SB) being inserted into arbitrary correlation functions of the B = 0 the-ory. This perturbative analysis, which can be extended to arbitrary �-models (atleast in the case dB = 0), leads to a string theoretic picture of Kontsevich's quan-tization of Poisson manifolds [15], see also the work of Cattaneo and Felder [16].It clearly displays that the quantization of world-volume geometries should beexpected beyond the case of constant B-�elds. This will be con�rmed throughour exact analysis of the WZW model (see discussion of the limit k ! 1 be-low). As we remarked in the introduction, new phenomena are bound to occurwhen dB does not vanish. In such cases, the classical world-volume of a branecomes equipped with some generalization of an ordinary Poisson-structure, andthere exists no general notion of \quantization" for such geometries. Hence, theinvestigation of branes in a non-vanishing NS 3-form �eld strength H = dB canteach us new lessons on how to quantize certain non-Poisson geometries. In ourexample of branes on SU(2) we shall recover some variants of well-known quantumgroup algebras. 4



Our formulation of the simple example of 
at branes in a constant B-�eld motivatesthe following general procedure: When we want to associate non-commutativespaces to branes which are given as boundary conditions on the world-sheet, wetake the OPE of boundary �elds (open string vertex operators corresponding tointernal excitations of the brane) as a basic input. Then we choose a suitable subsetof boundary �elds (e.g. primaries as above) and use them as abstract generatorsof an algebra of \functions" on the (non-commutative) world-volume of the brane,with multiplication table given by the boundary OPE (projected onto the subset,and evaluated at x1 = 1 and x2 = 0, say).Further comments on this general prescription will be given later, but now wewould like to test it in the case of SU(2) WZW models, where the semi-classicalpicture provides certain expectations as to how the \quantized world-volume" ofbranes should look like.3 D-branes in the SU(2) WZW model3.1 Semi-classical analysis. The SU(2) WZW model at level k describesstrings moving on a three-sphere S3 of radius R � pk, which is equipped with aconstant NS 3-form �eld strengthH � 1pk 
 = 1pk fabc �a ^ �b ^ �c ;where 
 denotes the usual volume form on the unit sphere, and �a are componentsof the 1-form dgg�1. In superstring theory, this geometry appears in the spacetransverse to a stack of k NS 5-branes. These branes act as sources for k unitsof NS 3-form 
ux through a three-sphere surrounding their (5+1)-dimensionalworld-volume.The world-sheet swept out by an open string in S3 is parametrized by a mapg : H ! SU(2) from the upper half-plane H into the group manifold SU(2)�= S3.From this �eld g one obtains Lie algebra valued chiral currentsJ(z) = �k (@g)g�1 ; �J(�z) = k g�1 �@gas usual. We shall be interested in maximally symmetric D-branes on SU(2), whichare characterized by the gluing condition J(z) = �J(�z) along the boundary z = �z.They were analyzed from a semi-classical point of view in [5], and we shall brie
yrecall the �ndings of this approach. (For a detailed path integral description ofbranes in SU(2), see [17].)We �rst decompose the tangent space ThSU(2) at each point h 2SU(2) into a part5



T jjhSU(2) tangential to the conjugacy class through h and its orthogonal comple-ment T?h SU(2) (with respect to the Killing form). In [5], the following two basicobservations were made:1. With gluing conditions of the type J = �J, the endpoints of open strings onSU(2) are con�ned to conjugacy classes, i.e.(g�1@xg)? = 0 :2. Along the individual branes, i.e. along the conjugacy classes of SU(2), thegluing condition becomes(g�1@yg)jj = Ad(g) + 1Ad(g)� 1(g�1@xg)jj :Except for two degenerate cases, namely the points e and �e on the group man-ifold, the conjugacy classes are two-spheres in SU(2). Taking into account theusual correspondence between pkg�1@g and the 
at space coordinate @X, recall-ing that the metric on the three-sphere scales with k, and comparing with thegluing conditions (2.4), we infer that the D-branes associated with J = �J carry anon-vanishing 2-form potential (B-�eld)B = 1 + Ad(g)1�Ad(g) : (3.1)In the limit k!1 the three-sphere grows and approaches 
at 3-space. One canparameterize it by a parameter X taking values in the Lie algebra su(2), such thatg � 1 +X. Then, the formula for the B-�eld readsB � �2 (ad(X))�1 :This is the Kirillov 2-form on the spheres in the algebra su(2)= R3.Extrapolating formula (2.6) to our curved background, we can construct a bi-vector�A = 2B �B�1 = 12 (Ad(g�1)�Ad(g) ) :Introducing an orthonormal basis ea in su(2), and the left- and right-invariantvector �elds eaL; eaR on the group manifold, one can give an elegant formula for thebi-vector �A, �A = 12 eaL ^ eaR :6



The Schouten bracket of �A (which generally characterizes the deviation from theJacobi identity) is of the form� := [�A;�A ] = 16 fabc (eaL � eaR)(ebL � eaR)(ecL � ecR) :Here fabc are the Lie algebra structure constants, the same as those in the expres-sion for the �eld strength H. This calculation makes sense for an arbitrary simpleLie group. In general, the right hand side does not vanish and gives the obstruc-tion for the Jacobi identity. In the case of G =SU(2), � vanishes for dimensionalreasons: It is a 3-vector tangent to the 2-dimensional conjugacy classes. In thein�nite volume limit k!1, the bi-vector �A becomes�A = ad(X) ;which is the Kirillov-Kostant Poisson bi-vector. Consequently, the geometry ofthe limiting theory k =1 is very close to the well-known situation of 
at branesin a 
at background with constant B-�eld, and we expect that the world-volumealgebras of our branes in the WZW model will be quantizations of two-spheres.For �nite k, however, the background is curved and carries a non-vanishing NS3-form H. This will result in a non-associative deformation of the k =1 theory.Since the three indices of the new object H can relate three-fold products withdi�erent positions of brackets, the violation of associativity will turn out to berather mild. The semi-classical extension of the above analysis shows that, for�xed gluing conditions, only a �nite number of SU(2) conjugacy classes satisfy aDirac-type 
ux quantization condition [5]. These \integer" conjugacy classes arethe two points e and �e along with k� 1 of the spherical conjugacy classes (thosepassing through the points diag(exp(i�j=k); exp(�i�j=k)) for j = 1; : : : ; k� 1).3.2 Exact CFT description. The WZW model on the upper half-plane isknown in enough detail to support and specify the rather crude arguments of theprevious subsection by an exact CFT analysis. In fact, for the situation we aredealing with (gluing conditions J = �J in a \parent" CFT on the full complex planewith diagonal modular invariant partition function), Cardy [19] was able to listall [20] possible boundary conditions. There exist k+1 of them, di�ering in the bulk�eld one-point functions (brane charges) and labeled by an index � = 0; 12 ; : : : ; k2 .Without entering a detailed description of these boundary theories [19], we recallthat their state spaces have the formH� = MJ NJ�� HJ (3.2)7



where HJ , J = 0; 12 ; : : : ; k2 , denote irreducible highest weight representations of thea�ne Lie algebra cSU(2)k, and where NKIJ are the associated fusion rules. Note thatonly integer spins J appear on the right hand side of (3.2).There exists a variant of the state-�eld correspondence which assigns a boundary�eld  (x) to each element j i 2 H� (see e.g. [21]). In particular, the SU(2) WZWboundary theory labeled by � contains SU(2)-multiplets associated to primaryboundary �elds, namely	J(x) = ( Jm(x)) with J = 0; 1; : : : ;min(2�; k� 2�)and m = �J; : : : ; J . All these boundary �elds are de�ned for arguments x on thereal line and their correlators have, in general, no unique analytic continuationinto the upper half-plane.In the 
at target case, we chose U(1)-primaries as generating elements of the world-volume algebra. Now, it is more appropriate not to break the group symmetry byhand and, therefore, to keep the full SU(2)-multiplets 	J (x). For a �xed orderx > y of arguments on the real line, the OPE of two such boundary �elds reads Ii (x)  Jj (y) � XK;k (x� y)hI+hJ�hK [ I J Ki j k ] ck;�IJK  Kk (y) ; (3.3)where hJ is the conformal dimension of 	J and [:::] denote the Clebsch-Gordancoe�cients of the group SU(2). The latter simply compensate for the di�erenttransformation behavior of the �elds on the left and right hand side under theaction of the zero-mode subalgebra of cSU(2)k. Hence, the non-trivial informationin (3.3) is contained in the new structure constants C = (ck;�IJK).In a consistent theory, these must obey sewing constraints, which were �rst an-alyzed by Lewellen in [22]; see also [20]. Recently, these constraints were recon-sidered by Runkel [23] for the A-series of Virasoro minimal models. His �ndingscarry over to SU(2) WZW models on the upper half-plane and show that the onlypossible solution to the sewing constraints is given by the fusing matrix F of theWZW theory, ck;�IJK = F�K [ � �I J ]k : (3.4)It is one of the fundamental results on the relation between quantum groups andconformal �eld theory (see e.g. [24]) that the fusing matrix of the WZW model isobtained from the 6J symbols of the quantum group algebra Uq(su(2)) accordingto F�K [ � �I J ]k = f I J K� � � gq where q = e 2�ik+2 : (3.5)8



In the limit q! 1, the 6J symbols of the quantum group algebra approach those ofthe classical algebra U(su(2)), thus the structure constants ck;�IJK of the boundaryOPE become 6J symbols of the group SU(2) when the level k is sent to in�nity.Note that in this limit, the conformal dimensions hJ = J(J + 1)=(k + 2) tend tozero so that the OPEs (3.3) of boundary �elds become regular as in a topologicaltheory.4 D-brane geometry, fuzzy two-spheres, and quantum groupsWe are now prepared to follow the procedure sketched at the end of Section 2 andto read o� the world-volume geometry of branes in the SU(2)-WZW model. So letus think of the boundary �elds  Ii = V (Y Ii ) as being assigned to elements Y Ii ofsome vector space, and let us use the operator product expansion (3.3,3.4,3.5) tode�ne a multiplication by the prescriptionY Ii ? Y Jj = XK;k [ I J Ki j k ] ck;�IJK Y Kk : (4.1)As in (3.3), the summation on the right hand side runs from K = 0 to a maximalspin Kmax = min(I+J; k�I�J; 2�; k�2�). First, we shall investigate this productin the limiting case k = 1, where it produces a familiar algebraic structure.Passing to �nite levels leads to the following two changes: There is a k-dependentdeformation of structure constants C, cf. (3.5), and the range of the summation in(4.1) becomes a function of the level, Kmax = Kmax(k). We shall separate thesetwo phenomena by looking at an intermediate case where k is non-rational andwhere we omit the k-dependent restriction on the K-summation.In�nite level k =1: Recall that, in the case of in�nite level, the structure con-stants C in eq. (4.1) are given by the 6J symbols of the group SU(2). The semi-classical analysis showed that H ! 0, so we expect the world-volume algebra tobe associative. Indeed this can be con�rmed using the Biedenharn-Elliot (or pen-tagon) relation for the 6J symbols, along with the fact that 6J symbols of theform (3.5) vanish whenever K > 2�. Hence, for in�nite level our relations de�nean in�nite set of associative algebras S2�; � = 0; 12; : : : ; with �nite linear basesconsisting of dim (S2�) = (2� + 1)2 elements.Since the dimension of each of these algebras is a perfect square, one may alreadysuspect that they are full matrix algebras, i.e. that S2� �=MN (C ) with N = 2�+1.To describe the isomorphism, we �rst note that MN (C ) admits an action of thegroup SU(2) by conjugation with group elements evaluated in the N -dimensionalrepresentation of SU(2). Under this action, the SU(2)-moduleMN (C ) decomposes9



into a direct sum of irreducible representations V J ,MN (C ) �= MN�1J=0 V J : (4.2)Only integer J appear, so this agrees with the decomposition of the state spaceH�; � = (N�1)=2; in eq. (3.2) for boundary WZW models at su�ciently large (orin�nite) level k. Thus, we can identify our elements Y Jj with a basis of the spacesV J . The isomorphism (4.2) allows to work out multiplication rules for any two suchbasis elements from the multiplication of N�N -matrices. The result [25] turns outto coincide with our formula (4.1), which shows that S2� and MN (C ); N = 2�+1;are indeed isomorphic as associative algebras.The non-commutative spaces S2� are known as fuzzy spheres and are obtainedwhen one quantizes functions on a two-sphere with the usual Poisson structure(see e.g. [26] and references therein). The two-spheres may also be identi�edwith co-adjoint orbits of SU(2). According to Kirillov, their quantization givesall representations of the Lie algebra su(2) or of its universal enveloping algebraU(su(2)). Note that the size N = 2� + 1 of our matrices agrees with the numberof components for an su(2)-multiplet of spin �. Hence, through the investigationof maximally symmetric branes on SU(2) at k = 1, we have recovered Kirillov'stheory of co-adjoint orbits.Finite non-rational level k: Let us stress that this case does not appear among theexact boundary theories above (for non-compact WZW models, it is the genericsituation). We include it here merely as an intermediate step before presenting thestructure for �nite integer level k. To be more precise, we consider the algebrasspanned by Y Jj with relations (4.1) in which the structure constants C are given bythe 6J symbols (3.5) of the quantum group algebra Uq(su(2)), but with summationover the same range as in the case k =1.The resulting algebras S2�;q with q = exp(2�i=(k+ 2)) not a root of unity cease tobe associative. But they are still quasi-associative in the sense thatY Ii ? (Y Jj ? Y Kk )(� Iin 
 � Jjm 
 �Kkl )(') = (Y In ? Y Jm) ? Y Kl (4.3)where the �L denote representations of U(su(2)) and where ' 2 U(su(2))
3 isDrinfeld's \re-associator" [27]. The proof of this statement is sketched in theappendix.When we perform a standard quasi-classical limit, commutators are replaced bythe brackets corresponding to the bi-vector �A. For a general compact simpleLie group �A fails to satisfy the Jacobi identity. This corresponds to the leadingnon-vanishing term in the 1k -expansion of the re-associator ',' = 1 + 16kfabcea 
 eb 
 ec + : : :10



where ea is, as above, an orthonormal basis in the Lie algebra, and fabc are thecorresponding structure constants. When applied to the relation (4.3), the Liealgebra generators ea act by the adjoint vector �elds (eaL � eaR). In the case ofG =SU(2) this leads to vanishing of the �rst order correction to the associativitylaw. This is in accordance with vanishing of [�A;�A] in this case. Note that evenin the SU(2) case higher order corrections to the associativity law do not vanish.Let us brie
y mention that our quasi-associative algebras S2�;q are closely connectedto associative deformations of the fuzzy sphere which employ the Clebsch-Gordancoe�cients of the deformed Uq(su(2)) instead of their classical analogs. Somedetails on these algebras and their associativity can be found in the appendix. Fornow, let us only remark that they are factors of the quantum spheres introduced byPodle�s in [28]. Their relation to our algebras S2�;q is based on the fact that one canobtain the Clebsch-Gordon maps of classical Lie algebras from their q-deformedcounterparts with the help of Drinfeld's \twist element" F 2 U(su(2))
2. Thelatter provides the following factorization formula for the re-associator:' = (id
�)(F�1) (e
 F�1) (F 
 e) (�
 id)(F )where � denotes the co-product of U(su(2)). Combining these two roles of thetwist element F , one can show that our algebras S2�;q are \twist equivalent" toassociative factors of a Podle�s sphere or, more explicitly, to the same matrix alge-bras MN (C ); N = 2�+1; as in the case of in�nite level. Hence, we simply recoverthe representations for the usual q-deformation of U(su(2)) at generic values of thedeformation parameter.Finite integer level k: The associated algebras Ak� are spanned by the generatorsY Jm with the label J chosen from the set J = 0; 1; : : : ;min(2�; k� 2�). Multiplica-tion of these elements is de�ned through eq. (4.1) with structure constants C nowgiven by the 6J symbols of Uq(su(2)) at the root of unity q = exp(2�i=(k + 2)).In addition, the summation on the right hand side is now restricted to run fromK = 0 to min(I + J; k� I � J; 2�; k � 2�). Viewed as SU(2)-modules, the linearspaces Ak� decompose as follows:Ak� �= ( S2� for 0 � � � k4S2k=2�� for k4 � � � k2 :Again, the algebras Ak� are only quasi-associative, and they provide examples ofthe geometries considered in [29]. Using the concept of representations introducedin [30], it is not di�cult to show that each of the quasi-associative algebras Ak�possesses precisely one indecomposable representation on a vector space W � of11



dimension dimW � = ( 2� + 1 for 0 � � � k4k� 2� + 1 for k4 � � � k2 :According to our previous discussion, the algebras Ak� and their representations onW �; � = 0; 12 ; : : : ; k2 , generalize Kirillov's theory of co-adjoint orbits to quantumgroups at roots of unity. In other words, the algebras Ak� we obtain are \quanti-zations" of integer conjugacy classes on SU(2). Summing over all possible branesectors, i.e. over the index �, we construct a deformed universal enveloping algebra.Of course, quantum group algebras were constructed within the framework of chiralconformal �eld theory before, see e.g. [27,31{33]. As long as we avoid roots of unity,our new derivation from boundary conformal �eld theory reproduces well-knownalgebraic structures. Di�erences between the two approaches occur only when qis a root of unity. In that case, boundary conformal �eld theory improves uponthe old constructions in two respects. First of all, the theory gives \physical"representations exclusively so that there is no need for additional truncations.Furthermore, the dimensions dimW � of the representation spaces are invariantunder the simple current symmetry which interchanges � and k=2 � �.When we increase the level k, the radius of the three-sphere grows and we can �tmore and more branes into the background. At the same time, the 3-form �eldstrength decreases and the world-volume algebras become \more associative" {while their non-commutativity survives.This is to be compared to the non-commutative targets obtained in [7,9,10] fromclosed strings: The k!1 limit of these targets is simply the classical group SU(2).The di�erent behavior of closed and open string geometry may be explained asfollows: Both closed and open strings feel the presence of the NS 3-form �eld Hat �nite level. Open strings are also sensitive to the concrete choice of a 2-formpotential B, while closed strings \see" only its cohomology class. In the 
at spacelimit k = 1, the cohomology becomes trivial while B itself stays non-zero and isresponsible for non-commutativity on the brane.5 Summary and outlookWe have derived non-commutative world-volume algebras for D-branes in theSU(2) WZW model, using a general scheme that can be applied to arbitrary branesgiven as conformal boundary conditions, including supersymmetric cases. In theprocess, we have seen how abstract objects from the CFT description, like Cardy'sboundary states and Runkel's OPE coe�cients, acquire a geometrical meaning { ifin terms of non-commutative (and sometimes non-associative) spaces. The SU(2)12



WZW model provides just the simplest example of a string background with anon-vanishing 3-form �eld strength H, but we think that it illustrates quite nicelymuch of the behavior one should expect from more complicated backgrounds. Inparticular, the discussion of SU(2) branes carries over to boundary WZW modelswith other structure groups G (at least in the compact case) and leads to a quanti-zation of integer conjugacy classes in G. It might be interesting to investigate alsobranes that are not maximally symmetric, i.e. where the gluing conditions respectonly a subalgebra of the maximal chiral symmetry algebra [34].Boundary CFT yields world-volumes independently of whether limiting classicalpictures are available or not, and it actually provides more structure than a mereset of non-commutative algebras. Connes' program [35] shows that, in order totalk about the geometry of a non-commutative space, it is necessary to �x further\spectral data", including a Hilbert space on which the (associative) world-volumealgebra and a generalized Dirac or Laplace operator act. How these data canbe extracted from a CFT has been discussed, for the bulk case, in [7, 9]. Theimportance of the Laplace operator, which is related to the conformal HamiltonianL0, can also be seen in the context of our de�nition of non-commutative world-volumes: In order to re-derive the OPE of boundary operators from the algebraicstructure of the world-volume, the spectrum of conformal dimensions must beknown, cf. the remark after eq. (2.2).In a CFT on the upper half-plane, additional structure is available, e.g. in the formof boundary condition changing operators which induce transitions between twodi�erent boundary conditions �; �. The OPE of the boundary �elds 	I(x) withboundary condition changing operators gives rise to bi-modulesB�� over the world-volume algebras of the two associated branes. In the case of D-branes on a groupmanifold, these bi-modules allow to construct tensor products for representations ofthe associated quantum group. OPEs involving two boundary condition changingoperators provide even more data, namely a full braided tensor category.Some comments on our general scheme to extract a world-volume algebras fromthe boundary CFT description of branes are in order. It involves a choice of\generating elements" among the boundary �elds. From a pure CFT perspective,one could restrict to primary operators only, or one could work with all boundaryoperators and thus with an in�nite-dimensional world-volume. In a sense, thelatter algebra would include all internal excitations of the \static" space de�nedusing primary �elds. The WZW case, where it proved natural to keep the fullgroup multiplets associated with primary boundary �elds, suggests that there aredistinguished \intermediate" choices. For a large class of CFTs, the appropriategeneralization of the lowest-dimension spaces of WZW models is likely to be givenby the special subspaces introduced in [36]; see also [37].13



Placing the CFT into a string theory context can remove the arbitrariness andprovide clear guidelines as to which world-volume generators to select from theboundary �elds: String theory contains additional parameters like �0, and the rel-evant generators of the world-volume algebra are those surviving in some limitingregime. E.g. in the 
at background case, one can remove all higher excitations bysending �0 to zero while keeping the B-�eld �nite; see [38] and also [1]. It maybe possible that a number of interesting limits exists; then one expects that theworld-volume of a brane can look very di�erent in di�erent regimes, and that fullstring theory can \interpolate" between those geometries.The next task would be to calculate the e�ective action on the { in general non-commutative { world-volume of the brane. The lowest-order terms are, of course,already given by our \multiplication table" (the OPE coe�cients). In principle,higher-order contributions can be computed from the same data, but in practiceone still needs to integrate over world-sheet moduli.In the context of the Douglas-Hull model, the e�ective �eld theories were foundto be non-commutative supersymmetric gauge theories with some amount of non-locality [1{3,39{41]. Seiberg and Witten could show that these models are equiva-lent to ordinary gauge theories on a 
at brane [38]. It remains to be seen whetherclassical structures are stretched further when more general CFT backgrounds aretaken as a starting point. Perhaps it is worthwhile to compare the induced �eldtheories with existing models on fuzzy geometries (see e.g. [42]).It would also be interesting to investigate further the relation between world-volume non-commutativity as introduced in [1] and non-commuting moduli asdiscovered by Witten [43]. Both phenomena can be traced back to failures inlocality properties of boundary �elds { see [44,45] for the case of moduli { so thatthere exists a direct connection between the brane's intrinsic \fuzziness" and theway it \perceives" its ambient target.Acknowledgements: We would like to thank I. Brunner, C. Chu, R. Dijkgraaf,M. Douglas, J. Fr�ohlich, J. Fuchs K. Gaw�edzki, O. Grandjean, P. Ho, J. Hoppe,C. Klim�c��k, N. Landsman, G. Moore, A. Polychronakos, G. Reiter, A. Schwarz, C.Schweigert, S. Shatashvili, I.T. Todorov and especially J. Teschner for useful andstimulating discussions. V.S. is grateful to the DAAD for support and to the AEIPotsdam for hospitality.Note added: After this work was completed, another approach to the geometryof branes in WZW models based on exact CFT methods was presented in [47].14



Appendix: (Quasi-)associativityHere we collect some basic material on Clebsch-Gordan maps, 6J -symbols andthe (quasi-)associativity of various algebras mentioned in the main text. Let usdenote by � I the irreducible representation of Uq(su(2)) with spin I. By de�nition,Clebsch-Gordan maps Cq(IJ jK) : V I 
 V J ! V K intertwine between the actionsof Uq(su(2)) on the product module V I 
 V J and the irreducible module V K. 6Jsymbols enter the theory through the basic relationCq(MKjL) (Cq(IJ jM)
 idK) = XP f L K MI J P gq Cq(IP jL) (idI 
 Cq(JKjP )) :(A.1)They obey a number of fundamental equations. For our purposes, the Biedenharn-Elliot (pentagon) relation is the most important one. With the spin labels set tothe values that we need below, it impliesXM f L K MI J P gq f I J M� � � gq fM K L� � � gq = f J K P� � � gq f I P L� � � gq (A.2)Relations (A.1,A.2) hold for generic q and at the classical point q = 1 where weare dealing with representation theory of ordinary Lie algebras.Let us now study the algebra generated by Y Ii for I = 0; 1; : : : 2� and jij � I withthe multiplication rulesY Ii ? Y Jj = XK;k [ I J Ki j k ]q f I J K� � � gq Y Kk : (A.3)The Clebsch-Gordan coe�cients on the right hand side are obtained from themaps C(IJ jK) once we have selected a basis in each representation space V L.Associativity of this algebra is rather easy to prove with the help of eqs. (A.1) and(A.2):(Y Ii ? Y Jj ) ? Y Kk = XL;l;M;m [ I J Mi j m ]q [ M K Lm k l ]q f I J M� � � gq fM K L� � � gq Y Ll= XL;l;M;P;p [ J K Pj k p ]q [ I P Li p l ]qf L K MI J P gq f I J M� � � gq fM K L� � � gq Y Ll= XL;l;P;p [ J K Pj k p ]q [ I P Li p l ]q f J K P� � � gq f I P L� � � gq Y Ll= Y Ii ? (Y Jj ? Y Kk ) 15



For the special case q = 1 this computation proves the associativity of the world-volume algebra in the limit k = 1. When the level k is �nite and non-rational,however, the de�ning relation for our algebra S2�;q from Sect. 4 employs the unde-formed Clebsch-Gordan maps along with the deformed 6J symbols. Hence, usingrelation (A.1) for q = 1, we generate an undeformed 6J symbol in our computationabove. The latter cannot be absorbed with the help of the pentagon identity, sincewe have to deal with a product of one undeformed and two deformed 6J symbols.At this point, Drinfeld's re-associator ' 2 Uq(su(2))
3 plays a decisive role becauseof its fundamental propertyC(MKjL) (C(IJ jM)
 idK)('�1)IJK = XP f L K MI J P gq C(IP jL) (idI 
 C(JKjP ))where ('�1)IJK = (� I 
 � J 
 �K)('�1) : V I 
 V J 
 V K ! V I 
 V J 
 V K :Note that this relation involves Clebsch-Gordan maps of the Lie algebra and q-deformed 6J -symbols at the same time. ' allows to modify the proof we have givenfor the associativity of the algebra (A.3) such that we obtain the quasi-associativityproperty (4.3).A relation between our quasi-associative algebra S2�;q and the associative q-deform-ation of the fuzzy sphere can be established with the help of Drinfeld's twistelement F . By de�nition, it maps the deformed and undeformed Clebsch Gordanmaps onto each other,Cq(IJ jK)(� I 
 � J )(F ) = C(IJ jK) :This property becomes crucial in showing that the quasi-associative algebra fornon-rational k is \twist-equivalent" to the associative q-deformed fuzzy sphere.Some details on the notion of twist equivalence can be found e.g. in Section 7.3of [46].
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