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This workshop was a consequence of 2 activities which took place
at the Erwin Schrédinger Institute (ESI) in Vienna, Austria simultane-
ously in 1998: Spectral Geometry (organized by L. Friedlander and V.
Guillemin) and Schrodinger operaters with magnetic fields (organized
by I. Herbst, T. Hoffmann-Ostenhof and J. Yngvason). Already during
these activities in spring 1998 it became obvious that the 2 topics have
a great overlap and that researchers in the one field can profit from
discussions with experts in the other field. In fact the overlap in the
workshop was even stronger, colleagues who had participated in the
Spectral Geometry activity gave talks on Schrodinger operators and
colleagues from Schrodinger operators discussed Spectral Geometry.
The following abstracts and open problems should document this.
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Some Eigenvalue Comparison Results for Domains in S and
for Annular Domains in R"*

MARK S. ASHBAUGH

Abstract

For bounded domains in Euclidean space, various inequalities be-
tween the Dirichlet and Neumann eigenvalues of the Laplacian are
known. The main contributions are due to Payne (1955), Aviles (1986),
and Levine and Weinberger (1986), culminating in the 1991 proof by
Leonid Friedlander that the (k + 1)th Neumann eigenvalue is always
less than or equal to the kth Dirichlet eigenvalue. We report on our re-
cent progress toward extending some of these prior results to bounded
domains in homogeneous spaces (such as the sphere S").

In addition, we present some monotonicity results for the behavior
of the first eigenvalue of the Dirichlet Laplacian on a domain with
a moveable hole, such as the region in the plane between two circles
(nested, but nonconcentric), which we call an eccentric annular domain.

The main new results are based on joint work with Lotfi Hermi
(Dirichlet-Neumann eigenvalue comparisons for S”, etc.) and Thierry
Chatelain (eccentric annular domains). Earlier joint results with Rafael
Benguria and Howard Levine (separately) also make appearances.

Open Problems

We begin by listing several open problems concerning the eigenval-
ues of the Dirichlet Laplacian on a bounded domain in Euclidean space
R™ We denote the eigenvalues (counting multiplicities) by {A,, }>o_,.

1. A conjecture of Payne, Pdlya, and Weinberger [28]: For a
bounded domain € C R", show that

Am A
(1) =2 for m > 4.
Am A1 ball

Indeed, it would be of interest to find any general bound better than
1 + 4/n (this is the bound which was established by Payne, Pdlya,
and Weinberger in their original paper [28]; see also [27] for Ay/Ay).
Inequality (1) was established for m = 1 with a nonstrict inequality in

'Partially supported by National Science Foundation (USA) grant DMS-
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[5], [7], and for m = 2 and 3 in [6] and [8], respectively. In fact, [8]
shows that the m = 2 and 3 cases follow from the stronger inequality
AsfA2 < (A2/A1)|ban. This inequality is an easy consequence of the
m = 1 result and the fact that any eigenfunction for A, has exactly two
nodal domains. The m =1 case of (1) (with <) has often been referred
to in the literature as the Payne-Pdlya-Weinberger (PPW) conjecture.
The conjecture above might then be referred to as the extended PPW
conjecture.

2. A second conjecture of Payne, Pélya, and Weinberger [28]: For
a bounded domain © C R?, show that

Ao+ A3 A+ A3

2 <

2) AT

The analogous conjecture for 2 C R” reads

3) )\2+)\3—|’"'—|’)\n—|—1S)\Q—I_)\S—I'"'—I')\n—l—l
)\1 )\1

In R?, for example, the right-hand side of (2) is approximately 5.077

(this is the value of (A2 4+ A3)/A; for a disk, which is twice the value of

A2/ Ay for a disk), while the best upper bound currently established for
(A2 + A3)/Aq for an arbitrary domain is only approximately 5.507 (see

disk

n-ball

[11]).
3. Find the optimal upper bound for
A3
4 73
) .

among all bounded domains ) contained in R* (or R"), and find the
shape of domain that maximizes it. In R? the best upper bound found
so far is approximately 3.831 (see [11]), while the highest value of A3/
found so far is approximately 3.2 (the exact value here is 35/11 and
occurs for the rectangle having sides in the proportion v/8: v/3, which
is easily found to give the maximum of A3/A; over all rectangles).

A related problem is that of minimizing A3 over all domains in R”
of fixed n-volume (or just over domains in R? of fixed area). For some
discussion of this problem, see Problems 7 and 8 in [2] (but please note
that inequalities (27)-(30) have been withdrawn as conjectures, since
(27) and (28) are certainly not generally valid, and therefore (29) and
(30) are in doubt for all dimensions n > 3 as well).

4. For bounded convexr domains ) contained in R”, show that
32
?7
where d denotes the diameter of 2. Indeed, one might conjecture the
same inequality for the Schrédinger operator H = —A + V(«), where
the potential V' is a convex function on € (convexity of V' is needed to
avoid “double-well” situations). In fact, the positive results discussed
below were all established in this setting (i.e., for Schrédinger operators

(5) Ay — A >
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with convex potentials). Versions of inequality (5) with a smaller con-
stant on the right-hand side are known. For example, Yu and Zhong
[38] obtained the lower bound 72/d? (i.e., (5) but without the factor of
3 on the right). Earlier, Singer, Wong, Yau, and Yau [31] had obtained
the weaker lower bound 72/4d*. Theirs was the first general result of
this type, and was certainly the inspiration for all later results in the
area. The best general bound so far obtained is that of Ling [18], who
obtained the bound 4K (0)?/d?, where K (o) denotes the complete ellip-
tic integral of the first kind and o is a parameter which can be estimated
in terms of quantities occurring in the problem. Since K (o) is always
larger than 7/2, Ling’s bound is always better than that of Yu and
Zhong (and it implies that we can put 7%/d? as a strict lower bound).
For some further work in this area, see [32]. Also, the one-dimensional
case of (5) (for a Schrodinger operator with a convex potential) was
established by Lavine in [17].

Inequality (5) was first suggested by van den Berg [14] in 1983 in
connection with some questions in statistical mechanics (see ineq. (65)
on p. 636, but be aware that there is an extra factor of % on the right-
hand side due to his use of the operator H = —%A). Later, not knowing
of van den Berg’s paper, (5) was conjectured by Rafael Benguria and
myself [4] in connection with our work on lower bounds on eigenvalue
gaps for Schrodinger operators which was motivated in part by the
work of Singer, Wong, Yau, and Yau. If (5) could be established, it
would tell us that the way to minimize the gap Ay — Ay among convex
domains is to take a rectangular parallelopiped having all but one of
its dimensions tiny. Indeed, this is the intuition behind the conjecture.
For another conjecture having a similar intuition behind it, see Problem
10 in Section 6 of [9] (this problem is also listed as Problem 10 in [2],
and is related to Question 5 on p. 157 of [26]). The conjecture (5)
above also occurs as Problem 9 in [9].

We next turn to conjectures for the first, or fundamental, eigenvalue
of the biharmonic operator in two classical settings: the vibration of a
clamped plate, and the buckling of a clamped plate.

5. Rayleigh’s conjecture for the “vibrating clamped plate” in di-
mensions n > 4. For dimension n = 2, the characteristic frequencies of
vibration of a clamped plate in the shape of 2 are determined by the
eigenvalues I'; of the clamped plate eigenvalue problem

A*w=Tw inQCR?
Jw

(6) w:():% on JQ.

This problem has only discrete spectrum consisting of positive eigen-
values of finite multiplicity and which accumulate only at infinity. We
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list them in ascending order with multiplicities included as {I';}32,.

Thus,

As in the membrane problem, it is often the first eigenvalue which holds
the greatest interest, and that is indeed the case here. For the purpose
of stating Rayleigh’s conjecture, we focus only on I'y, and since our
main interest is in how it varies with the domain © we denote it I'; ().
Rayleigh’s conjecture asserts that among all domains @ C R? of a given
area the one giving the minimal value to I'y is the disk, or, in symbols,

(8) [1 () = T (97),

where ()™ denotes the disk of the same area as ().

By extension, we continue to refer to the n-dimensional version of
this problem as the vibrating clamped plate problem, and to the ex-
tension of Rayleigh’s conjecture to this setting as Rayleigh’s conjecture.
All the properties spelled out above for the two-dimensional problem
are also true of the n-dimensional one. In the n-dimensional setting,
one should, of course, understand * as the n-ball having the same
n-volume as ().

Rayleigh’s conjecture for the vibrating clamped plate problem is
known to hold in 2 and 3 dimensions. The two-dimensional case (which
one might well regard as the Rayleigh conjecture for the clamped plate)
was established by Nadirashvili in 1993 (see [19], and also [20], [21]),
while the three-dimensional case was established by Ashbaugh and Ben-
guria in 1995 (see [10]), using a variant of Nadirashvili’s approach. The
approach of Ashbaugh and Benguria was then applied to the higher-
dimensional cases, n > 4, by Ashbaugh and Laugesen [13], who ob-
tained bounds of the form (8) but with an extra (positive, dimension-
dependent) factor less than one occurring on the right-hand side. This
extra factor presumably makes the inequality nonoptimal (and there-
fore nonisoperimetric as well). Ashbaugh and Laugesen’s paper shows
that the Ashbaugh-Benguria approach cannot succeed for dimension
n > 4, but it does not suggest that (8) cannot hold. Indeed, if any-
thing it still suggests that (8) is quite viable. For more discussion of
these issues, and for a general overview of the methods which have
proved successful so far, see [12], [3]. Among the prior literature, the
works of Szegé [33], [34] (see also Note F of Pélya and Szegé’s book
[29]) and Talenti [35] are especially noteworthy.

6. The Pdlya—Szegé conjecture for the critical buckling load of a
clamped plate in all dimensions n > 2. In 2 dimensions, the critical
buckling load of a clamped plate in the shape of {2 is determined by
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the first eigenvalue of the buckling problem
A*v=—AAv  in Q C R?

v
(9) U:()Za_n on JQ.

As for the vibrating clamped plate problem, this problem has solely
discrete spectrum consisting of positive eigenvalues of finite multiplicity
with infinity as the only accumulation point. We denote the eigenvalues
{A;}2, (with multiplicities included). Again we concentrate on the
first eigenvalue, and, to emphasize its dependence on the domain (2,
we denote it by A;(€2). As in the problem of the vibration of a clamped
plate, one can ask if A;(€Q) takes its least value among all domains of
a given area at the disk. This question seems to have first been asked
by Pélya and Szego around 1950, and to have first appeared in print
under their names in their book on isoperimetric inequalities [29] in
1951. On the other hand, it should be noted that Szegd’s paper [33]
dealing with a special case of the conjecture already appeared in 1950.
This paper had some technical flaws, which Szeg6 corrected in 1958
(see [34]). The argument of [33] was, in fact, included in an addition
(Note F) to [29]. The jumbled dates occurring here are due to the
delayed publication of [29], as explained in the preface: the main part
of the book was already finished in 1948, but the delay allowed them
to include some later material as well (as added “Notes”).

The Polya-Szego conjecture for Ay asserts that among all domains
) C R? of a given area the one giving the least value of A; is the disk,
or, in symbols,

(10) A () = Ay (47),

where ()™ denotes the disk of the same area as ().

As before, both the buckling problem for the clamped plate and the
Poélya-Szego conjecture for its first eigenvalue may easily be generalized
to n dimensions (we just need to take Q* as the n-ball having the same
n-volume as ). We shall also refer to the generalized problem as the
buckling problem for the clamped plate, although again the physical
motivation centers on the two-dimensional case.

It turns out that the Polya-Szego conjecture for the buckling prob-
lem is in a less satisfactory state than is Rayleigh’s conjecture for the
vibrating clamped plate, in that the Pélya-Szego conjecture remains
open for all dimensions n > 2. In another sense, though, the situation
is more or less analogous. Just as in the case of Rayleigh’s conjecture,
there is a special case that was handled by Szegé [33], [34] (see also
[29]). In addition, the approach used by Ashbaugh and Laugesen to
establish weaker versions of (8) can be carried over to the buckling prob-
lem and yields a weaker version of (10) which has the same form but
contains an unwanted dimension-dependent factor on the right-hand
side.
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Beyond this (and this has no analog for the vibrating clamped plate
problem), there is a second, seemingly unrelated, way to arrive at these
same nonoptimal bounds. The alternative approach is to combine the
inequality of Payne [22],

(11) AL(Q) > A(Q) for Q@ € R”

(where A\3(€) denotes the second eigenvalue of the Dirichlet Laplacian),
with Krahn’s inequality for A»(Q),

(12) A2(€) > 227X (%) for Q C R™

This inequality of Krahn was proved near the end of his longer paper
[16] on the Faber-Krahn inequality, the main purpose of which was
to establish the Faber-Krahn inequality in all dimensions n > 3. It
is an easy consequence of the Faber-Krahn inequality for A; and the
fact that any eigenfunction for A, has exactly two nodal domains. The
first people to realize that these two inequalities could be combined
to yield an explicit lower bound for A; were Bramble and Payne [15],
who gave the two-dimensional bound. However, they formulated the
inequality directly, rather than as an inequality of the form (10) with a
nonoptimal constant. It is not at all clear why the two approaches give
rise to exactly the same (nonoptimal) constants in the inequalities for
A1(9) that they yield, but they do. The papers [13], [12], [2], and [3]
all contain more discussion and information on the Pélya-Szegé conjec-
ture. In particular, the variation with n of the nonoptimal constants
which occur in the best bounds yet proved is of interest. The factor of
nonoptimality turns out to go to 1 as n goes to infinity.

Other well-known problems which come to mind are the Pdlya con-
jectures for the Dirichlet and Neumann eigenvalues of the Laplacian,
the nodal line conjecture for simply connected domains in the plane,
and the Pompeiu problem. There is a large literature on each of these,
toward which a start can be made by consulting a number of the ref-
erences cited below.

Many of the problems given or mentioned above and also several
additional problems are discussed in [9] (see Section 6), [2], and [3]
(see Section 4). More problems can be found in Payne’s papers [23],
[24], [25], [26]. There are also the extensive problem collections of Yau
[36], [37] and the list of Arnol’d et al. [1] that might be consulted.
Obviously, the problems suggested by the other participants at the
Matrei workshop are of great interest as well.

Acknowledgements

The author is grateful for the hospitality of the Erwin Schrodinger
Institute (ESI) in Vienna. In particular, he would like to thank Thomas



8

Hoffmann-Ostenhof and Leonid Friedlander for the opportunity to par-
ticipate in the Workshop on Geometrical Aspects of Spectral Theory
held at Matrei, July 5-12, 1999.

(1]

References

V. 1. Arnol’d, M. I. Vishik, Yu. II’yashenko, A. S. Kalashnikov, V. A. Kon-
drat’ev, S. N. Kruzhkov, E. M. Landis, V. M. Millionshchikov, O. A. Oleinik,
A. F. Filippov, and M. A. Shubin, Some unsolved problems in the theory of
differential equations and mathematical physics, Russian Math. Surveys 44:4
(1989), 157-171 [translation of Uspekhi Mat. Nauk 44:4 (1989), 191-202].
M. S. Ashbaugh, Open problems on eigenvalues of the Laplacian, Ana-
lytic and Geometric Inequalities and Applications, Th. M. Rassias
and H. M. Srivastava, editors, Kluwer Academic Publishers, Dordrecht, The
Netherlands, 1999 (to appear).

M. S. Ashbaugh, Isoperimetric and unwersal inequalities for eigenvalues,
Proceedings of the ICMS Instructional Conference on Spectral
Theory and Geometry (Edinburgh, 1998), E. B. Davies and Yu. Sa-
farov, editors, London Mathematical Society, London, 1999 (to appear).

M. S. Ashbaugh and R. D. Benguria, Optimal lower bounds for eigenvalue
gaps for Schrodinger operators with symmetric single—well potentials and re-
lated results, Maximum Principles and Eigenvalue Problems in Par-
tial Differential Equations, P. W. Schaefer, editor, Pitman Research Notes
in Mathematics Series, vol. 175, Longman Scientific and Technical, Harlow,
Essex, United Kingdom, 1988, pp. 134-145.

M. S. Ashbaugh and R. D. Benguria, Proof of the Payne-Pdlya—Weinberger
conjecture, Bull. Amer. Math. Soc. 25 (1991), 19-29.

M. S. Ashbaugh and R. D. Benguria, Isoperimetric bound for As/As for the
membrane problem, Duke Math. J. 63 (1991), 333-341.

M. S. Ashbaugh and R. D. Benguria, A sharp bound for the ratio of the first
two eigenvalues of Dirichlet Laplacians and extensions, Annals of Math. 135
(1992), 601-628.

M. S. Ashbaugh and R. D. Benguria, Isoperimetric bounds for higher eigen-
value ratios for the n-dimensional fired membrane problem, Proc. Roy. Soc.
Edinburgh 123A (1993), 977-985.

M. S. Ashbaugh and R. D. Benguria, Isoperimetric inequalities for eigenvalue
ratios, Partial Differential Equations of Elliptic Type, Cortona, 1992,
A. Alvino, E. Fabes, and G. Talenti, editors, Symposia Mathematica, vol. 35,
Cambridge University Press, Cambridge, 1994, pp. 1-36.

M. S. Ashbaugh and R. D. Benguria, On Rayleigh’s conjecture for the clamped
plate and its generalization to three dimensions, Duke Math. J. 78 (1995),
1-17.

M. S. Ashbaugh and R. D. Benguria, Bounds for ratios of the first, second,
and third membrane eigenvalues, Nonlinear Problems in Applied Math-
ematics: In Honor of Ivar Stakgold on his 70th Birthday, T. S. Angell,
L. Pamela Cook, R. E. Kleinman, and W. E. Olmstead, editors, Society for
Industrial and Applied Mathematics, Philadelphia, 1996, pp. 30-42.

M. S. Ashbaugh, R. D. Benguria, and R. S. Laugesen, Inequalities for the
first eigenvalues of the clamped plate and buckling problems, General In-
equalities 7 (Oberwolfach 1995), C. Bandle, W. N. Everitt, L. Losonczi,
and W. Walter, editors, International Series of Numerical Mathematics, vol.
123, Birkhauser, Basel, 1997, pp. 95-110.



[13]
[14]
[15]

[16]

[27]

[28]

[29]

9

M. S. Ashbaugh and R. S. Laugesen, Fundamental tones and buckling loads of
clamped plates, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 23 (1996), 383-402.
M. van den Berg, On condensation in the free-Boson gas and the spectrum of
the Laplacian, J. Stat. Phys. 31 (1983), 623-637.

J. H. Bramble and L. E. Payne, Pointwise bounds in the first biharmonic
boundary value problem, J. Math. and Phys. 42 (1963), 278-286.

E. Krahn, Uber Minimaleigenschaften der Kugel in drei und mehr Dimensio-
nen, Acta Comm. Univ. Tartu (Dorpat) A9 (1926), 1-44. [English transla-
tion: Minimal properties of the sphere in three and more dimensions, Edgar
Krahn 1894-1961: A Centenary Volume, U. Lumiste and J. Peetre,
editors, IOS Press, Amsterdam, The Netherlands, 1994, pp. 139-174.]

R. Lavine, The eigenvalue gap for one-dimensional convex potentials, Proc.
Amer. Math. Soc. 121 (1994), 815-821.

J. Ling, A lower bound for the gap between the first two eigenvalues of
Schrodinger operators on conver domains wn S™ or R™, Mich. Math. J. 40
(1993), 259-270.

N. S. Nadirashvili, An isoperimetric inequality for the principal frequency of
a clamped plate, Dokl. Akad. Nauk 332 (1993), 436-439 (in Russian) [English
translation in Phys. Dokl. 38 (1993), 419-421].

N. S. Nadirashvili, New wsoperimetric inequalities in mathematical physics,
Partial Differential Equations of Elliptic Type, Cortona, 1992,
A. Alvino, E. Fabes, and G. Talenti, editors, Symposia Mathematica, vol.
35, Cambridge University Press, Cambridge, 1994, pp. 197-203.

N. S. Nadirashvili, Rayleigh’s conjecture on the principal frequency of the
clamped plate, Arch. Rational Mech. Anal. 129 (1995), 1-10.

L. E. Payne, Inequalities for eigenvalues of membranes and plates, J. Rational
Mech. Anal. 4 (1955), 517-529.

L. E. Payne, Isoperimetric inequalities for eigenvalues and their applica-
tions, Autovalori e autosoluzioni, Centro Internazionale Matematico Estivo
(C.I.LM.E.) 2° Ciclo, Chieto, 1962, pp. 1-58.

L. E. Payne, Isoperimetric inequalities and their applications, STAM Review
9 (1967), 453-488.

L. E. Payne, On two congectures in the fired membrane eigenvalue problem,
J. Appl. Math. and Phys. (ZAMP) 24 (1973), 721-729.

L. E. Payne, Some comments on the past fifty years of isoperimetric in-
equalities, Inequalities: Fifty Years On from Hardy, Littlewood, and
Pdélya, W. N. Everitt, editor, Marcel Dekker, New York, 1991, pp. 143-161.
L. E. Payne, G. Pélya, and H. F. Weinberger, Sur le quotient de deux
fréquences propres consécutives, Comptes Rendus Acad. Sci. Paris 241
(1955), 917-919.

L. E. Payne, G. Pdlya, and H. F. Weinberger, On the ratio of consecutive
eigenvalues, J. Math. and Phys. 35 (1956), 289-298.

G. Pdlya and G. Szegd, Isoperimetric Inequalities in Mathematical
Physics, Annals of Mathematics Studies, number 27, Princeton University
Press, Princeton, New Jersey, 1951.

R. Schoen and S.-T. Yau, Lectures on Differential Geometry, Conference
Proceedings and Lecture Notes in Geometry and Topology, vol. 1, Interna-
tional Press, Boston, 1994.

I. M. Singer, B. Wong, S.-T. Yau, and S. S.-T. Yau, An estimate of the gap
of the first two eigenvalues in the Schrodinger operator, Ann. Scuola Norm.
Sup. Pisa Cl. Sci. (4) 12 (1985), 319-333.

R. G. Smits, Spectral gaps and rates to equilibrium for diffusions in convex

domains, Mich. Math. J. 43 (1996), 141-157.



10

[33] G. Szegb, On membranes and plates, Proc. Nat. Acad. Sci. (USA) 36 (1950),
210-216.

[34] G. Szegd, Note to my paper “On membranes and plates”, Proc. Nat. Acad.
Sci. (USA) 44 (1958), 314-316.

[35] G. Talenti, On the first eigenvalue of the clamped plate, Ann. Mat. Pura Appl.
(Ser. 4) 129 (1981), 265-280.

[36] S-T. Yau, Problem section, Seminar on Differential Geometry, S.-
T. Yau, editor, Annals of Mathematics Studies, number 102, Princeton Uni-
versity Press, Princeton, 1982, pp. 669-706 [reprinted as pp. 277-314 of [30]].

[37] S-T. Yau, Open problems in geometry, Differential Geometry: Partial
Differential Equations on Manifolds, Proceedings of Symposia in Pure
Mathematics, vol. 54, part 1, R. Greene and S.-T. Yau, editors, American
Mathematical Society, Providence, Rhode Island, 1993, pp. 1-28 [reprinted
as pp. 365—-409 of [30]].

[38] Q. H. Yu and J.-Q. Zhong, Lower bounds of the gap between the first and
second eigenvalues of the Schrodinger operator, Trans. Amer. Math. Soc. 294

(1986), 341-349.

Asymptotics for the spectrum of the Dirichlet Laplacian on
horn-shaped regions and ( functions on cross-sections

MICHIEL VAN DEN BERG AND M. LIANANTONAKIS

Abstract

Let Q be an open bounded set in R™~! with a piecewise smooth
boundary, and starshaped with respect to (0,...,0) € R™1. We ex-
tend a result of G. V. Rozenbljum for the spectrum of the Dirichlet
Laplace operator for {(:L',y) ER” :ye(l+a)Qa > 0} in R™,
where o > 0. For 2m — 1> a > (1 —m 4+ [(m — 1)(9m — 17)]'/?) /2 >
a > 0 we obtain two-term asymptotics and a remainder estimate for
the Dirichlet counting function. For o« > 2m — 1 or m > 2 and
(1 —m+ [(m—1)(9m — 17)]"/?)/2 > a > 0 we recover Rozenbljum’s
result for the leading term of the Dirichlet counting function together
with an improved remainder estimate.

Open Problem

Let &, ||¢||2 = 1, be the first eigenfunction of the Dirichlet Laplace
operator on an open, bounded and convex set D, with inradius p and
diameter d. Show that

16l < e pA=3m8 16

with ¢,, independent of D.
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The conjecture is based on a result on the asymptotic behaviour
for the L*™ norm of the first eigenfunction ¢ of the Dirichlet Laplace
operator on a conic sector over a geodesic disc B, in " ! as n — 0.

An inequality between Dirichlet and Neumann eigenvalues

LEONID FRIEDLANDER

Abstract

Let  be a centrally symmetric, bounded domain with a C'* bound-
ary. Denote by A the smallest eigenvalue of the Dirichlet Laplacian
that corresponds to an odd eigenfunction, and let 1 be the smallest
positive eigenvalue of the Neumann Laplacian that corresponds to an
even eigenfunction. D.Jerison and N.Nadirashvili conjectured that, if
the domain 2 is convex, then A > p. We proved this inequality un-
der a less restrictive assumption, namely that the boundary of € is of
non-negative mean curvature.

Open Problem

For closed manifolds and for manifolds with smooth boundary, the
heat trace asymptotics is well known, and its coefficients can be com-
puted (at least, in principle). This is not the case for manifolds with
corners. Several authors obtained the formula for the free term of the
heat trace asymptotics for a planar polygon (the Laplacian is taken
with the Dirichlet boundary conditions):

2
2 24
2. =
Y

the sum is taken over all angles of the polygon. This formula is rather
non-trivial, and I do not know any good interpretation of it. (It is just
a result of rather tedious computations.)

I think that it would be very interesting to find a way of computing
the coefficients in the heat trace expansion for manifolds with corners
in any dimension. Probably, the understanding of the expansion for a
three-dimensional polyhedron would be the key to solving the general
problem. Anyway, it is a good starting point.
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Nodal sets for superconducting states in a non simply
connected domain.

BERNARD HELFFER

Abstract

Motivated by a paper by J. Berger and K. Rubinstein and in contin-
uation of our previous work (in collaboration with Maria and Thomas
Hoffmann-Ostenhof and M. Owen), we analyze the nodal sets of some
extrema of the following Ginzburg-Landau functional G5 (A > 0,k >
0) defined in a nonsimply connedted domain @ C R? and for pairs

(u, A) such that
ue H'(Q,C) , AeH]

loc

(R*,R?) , curlA=0
by

Ghr(u, A) = / )\(—|u|2 + |u|4) +[(V — iA)u|2d:1;1 dxy
Q

+ k2 |curl A — H.|* dxy dz.
R2

Here H. is a C§° function on R? representing the external magnetic
field. As classical , the analysis of the extrema goes through the analy-
sis of solutions of the corresponding Fuler-Lagrange equation which is
called in this context Ginzburg-Landau equation. This equation admits
always (i. e. for all A > 0) the so called normal solution: v =0, 4 = A,
where A, is sucht that curl A, = H.. We show that for A near the lowest
cigenvalues AV of the Neumann realization of the magnetic Laplacian
in Q: Ay, = —(V —iA.)?, other bifurcated solutions exist and we
analyze their nodal sets.

Holonomic constraints in classical and quantum mechanics
R. FROESE AND I. HERBST

Abstract

We constrain a system of non-relativistic particles moving in R” to
a smooth submanifold M by imposing a large force which draws the
system into M. Thus we consider a Hamiltonian

1
H(QA) = 5{p.p) + V(@) + AW (2),
where W = 0 on M and W > 0 off M. We consider the limiting

behavior of classical and quantum orbits as A " oco. Much work has
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been done on the classical case when the given initial conditions con-
verge (as A ' o0) to those with finite energy. (See [RU], [Ta], [A],
[G], [BS].) But in quantum mechanics the uncertainty principle makes
infinite energy initial conditions (in the directions orthogonal to the
manifold) more natural. We consider this situation in both classical
and quantum mechanics [FH].

The quantum problem divides into two parts: energy considerations
and dynamics. The problem of energy has been considered in a general
setting in [HS1, HS2] and in many different particular situations (see,
for example, [S], [DE], [FK]). Computations show the existence of new
potential terms in the Hamiltonian resulting from intrinsic and mean
curvatures of M (see [To], [dC1], [dC2], [AD]). The last paper gives ref-
erences to the path integral literature. The most interesting aspect of
our treatment of the quantum problem is seeing how the quantum dy-
namics, e~V incorporates the averaging over fast variables familiar
from classical dynamics [FH]. In another very different context a re-
lated averaging procedure arises in the very long time behavior (¢/€*) of
classical periodic orbits perturbed by a vanishingly small (GW) random
perturbation [F].
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Open Problem: Decay Patterns of Solutions to the
Schrodinger Equation

I. HERBST

Consider an L? solution of the Schrodinger equation
(—A4+ V) =X

in R”. Define the rate of exponential decay, ay(w), in direction w €
S as

c(w) = sup{3 > 0 exp(Bla))w € LX(C)

for some open cone C' containing w}.

Let ay(x) = ay <|§—|> |].
The Agmon metric gives a lower bound for ey, () in many situations

[A];

ay(e) = p(z),

and if » > 0 outside a compact set there tends to be equality in (1) [CS].
Although it is probably true that (1) is actually an equality generically
[H], there are many situations where (1) is far from optimal [FHHOHO)].
At this point it is not known what controls the decay rate of eigenfunc-
tions in the generalized n-body problem, even in two dimensions. But
there is a conjecture in [FH1].

Consider a simpler problem. Suppose —A = A\ in an open cone
C' in R" (no boundary conditions are imposed). If n = 2 and A > 0
there are results [FH2] similar to the trigonometric convexity known
for analytic functions [T]. If n = 2 and A < 0 the results are similar but
more complex [FH2]. But as far as I know, for n > 3 there is virtually
nothing known of a general nature, even if A = 0.
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Multiplicity of eigenvalues of 2-dimensional Laplacians
THoMAS HOFFMANN-OSTENHOF

Abstract

This is joint work with M. Hoffmann-Ostenhof, P. Michor and
N. Nadiashvili, as well as joint work with B. Helffer, M. Hoffmann-
Ostenhof and N Nadirashvili. The spectrum of a 2- dlmensmnal Lapla-
cian on a closed compact surface with genus zero is considered. It
is shown that the multiplicity m of the k-th eigenvalue A, (counting
with multiplicity) satisfies for & > 3, m(A;) < 2k — 3. This result
has appeared in M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof and
N. Nadirashvili. 7On the multiplicity of eigenvalues of the Laplacian
on surfaces” Ann. of Global Anal. and Geometry 17, 43-48, (1999).
Thereby we could also include a potential. The same result holds also
for membranes with Dirichlet boundary conditions. This is to appear
in GAFA 1999 and is an ESI Preprint by T.Hoffmann-Ostenhof, P.
Michor and N. Nadirashvili. Furthermore the situation is discussed
when for the membrane case a Z, symmetry is present, this means
the Hamiltonian is invariant with repect to a rotation by 27 /n. Then
the groundstate eigenvalues in the various symmetry sectors can be
ordered and have multiplicity either 1 or 2. While for the case without
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symmetry the method of proof relies on the combination of a suitable
version of Eulers polyhedral formula, an analysis of nodal sets and
Courants nodal theorem in order to get some topological obstructions
one has to use in addition variational methods and perturbation argu-
ments for for the groundstate eigenvalues in symmetry sectors. This
work is presently being written up in collaboration with B. Helffer, M.
Hoffmann-Ostenhof and N. Nadiarashvili. It has also consequences for
Aharanov-Bohm Hamiltonians and twodimensional periodic Hamilto-
nians defined on a strip.

Open Problems

Problem 1: Consider for a 2-dimensional Laplacian the function

M(k) = s]1\14p m(Ax)

where M either denotes a surface of genus zero or a membranes. It is
known from the results above that M(k) grows at most linearly for &
large. The question is what is the asymptotics of M (k). The standard
sphere show a Vk growth.

Problem 2: Consider a membrane D with smooth boundary. For
the second eigenfunction uy define N'(uz) = {z € D :uy = 0}. Ques-
tion: Prove or disprove that

Length of N (uz) <1/r
Perimeter of 0D

This would mean that for the disk this ratio is maximised.

Estimates for periodic and Dirichlet eigenvalues of the
Schrodinger operator

T. KAPPELER AND B. MITYAGIN

Abstract

Consider the Schrodinger equation —y” + Vz = Az for a complex
valued potential V' of period 1 in the weighted Sobolev space H" of
2-periodic functions f: R — C,

HY = HE = {f(z) = Y f(k)e™ ||| f]lu < oc}

k=—o00
where

[ fllw = (QZw(k)2 |f(k)|2)1/2

k
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and w = (w(k))rez denotes a symmetric, submultiplicative weight se-
quence. Denote by A, = A, (V) (n > 0) the periodic eigenvalues of

—% + V when considered on the interval [0, 2], listed in such a way
that Ay, gy = n?7%2 4 0(1) and by p, = (V) (n > 1) the Dirichlet
eigenvalues of —% + V' considered on [0, 1] listed in such a way that

o = n2m? 4 0(1).

Theorem There exist (absolute) constants Ky, Ky > 0, so that for
any 1-periodic potential V' in H",
D w(2n)* ey — Aaua | < Ki(1+[[V]]w)"
n>N
and
Y w(2n) |, = donl® < K (14 [[V]]w)™,
n>N
where N := K{(1 + [|V|[.)?.

Lifshitz tails for random Schrodinger operators with
negative singular Poisson potential

FrREDERIC KLOPP

Abstract

This talk is devoted to the description of the low energy behaviour
of the density of states of a family of random Schrodinger operators; it
is based on the paper [5] written in collaboration with L. Pastur. Let
V :R? — R be a function such that

V=W+W

where

H1 for some C' > 0 and any = € R%, |Vi(z)| < Ce ke,

H2 the function V; is compactly supported and satisfies V5 € LP(RY)
where p > p(d) and p(d) =2 if d < 2 and p(d) = d/2 if d > 3,

H3 for some set of positive measure &, V‘g < 0.

Define the random potential

n Vale) = [ Vi = yim(erdy

where m(w, dy) is a random Poisson measure of concentration p. V,,
is an ergodic random field on R¢. Consider the random Schrodinger
operator

(2) H,=-A+V,.
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One has

THEOREM 1 ([2]). Under the assumptions made above, H, is es-
sentially self-adjoint on C°(R?) w-almost surely.

Under our assumptions on V', we know that the almost sure spectrum

of H, is ¥ =R ([9, 2]).
The integrated density of states

Let A be a cube centered at 0 in RY. We define HBA to be the
Dirichlet restriction of H, to A. Pick £ € R. Consider the quantity

(3) 1
Noa(F) = mﬂ{eigenvalues of H”, smaller than or equal to E}.
o :

Then one has

THEOREM 2 ([2]). Under the assumptions made above, there exists
a non random, non decreasing, non negative, right continuous function
N(E) such that, w-almost surely, for all E € R, E a continuity point
of N, Nya(E) converges to N(E) as A ezhausts R?.

N(FE) is the integrated density of states (IDS) of H,. As N is non
decreasing, one can define its distributional derivative dN. It is a
positive measure and is supported on the almost sure spectrum of H,
(see [2, 9]). One proves the following result

THEOREM 3. For ¢ € C3°(R), we have
(4) (v, dN) = E(tr(1eoae(Ho)loo))-

where C(0,1) is the cube of center 0 and side length 1, 1¢(0qy its char-
acteristic function and E(-) denotes the expectation with respect to the
Poisson process.

Formula (4) is well known under more restrictive assumptions on the
potential V,, i.e. for less singular single site potentials V' (see [9]).

The asymptotics of the IDS

To describe the asymptotic behavior of N(F) near —oo, we will
need to define an auxiliary operator. For g € R, define

(5) H(g) = —A+gV.

Under our assumptions on V', V' is relatively form bounded with respect
to —A with relative bound 0. Hence, H(g) admits a unique self-adjoint
extension. Let o(H(g)) denote its spectrum. It is lower semi-bounded.
The infimum of o(H(g)) i.e. the ground state energy of H(g) will be
denoted by E(g). Let ¢, be the respective ground state i.e. the unique
positive normalized eigenfunction of H(g) associated to energy E(g)
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([10, 11]). In the sequel it will often be more convenient to work with
FE_(g) = —F(g) instead of E(g) itself. From assumption H3, one easily
infers that F_(g) — 400 when g — 4o0o. Moreover E_ is strictly
increasing in a neighborhood of +o00. Let ¢ be an inverse of £_ in a
neighborhood of +o00. ¢ is strictly increasing.

In the regular (classical) case, it was found that ¢ is governing the
first term asymptotic of log N (cf [9, 8]). In the singular (quantum)
case, the singular set of V' will play a special part in the asymptotics.
To measure this role, we introduce the notion of asymptotic ground
state 1.e.

DEFINITION 1. Let g € (1, 400) + 1, € H'(R?). We will say that
Y, 1s an asymptotic ground state if and only if

e the vector v, is normalized.
e Jdgo > 1, lp > 0 such that Vg > go, supptp, C C(0,1y) (where
C(x,1) denotes the cube of center x and side length /).

" ((H(g) = E(9)) )]

[E(9)]

We prove the existence of an asymptotic ground state. For a € R?, we
define the translation 7, by 7,V (x) = V(2 — a) and we define

_ T gl{(r.V = V)by, ¥,)| _
= oot [l o}

— 0 as g =+ +o0.

If Ay, # 0, then we define a*(¢,) := inf Ay,. Moreover, we define A
to be the union of all Ay,. We prove that A # (. We define

(7) o :=inf A.
Then we prove

THEOREM 4. Under the assumptions H1, H2 and H3, for suffi-
ciently large F, one has

—(1+a"d)g(E)log g(E)(1 + o(1))
(8) <log N(=E) < —g(E)logg(E)(1 + o(1)).

One may complain that Theorem 4 is somewhat imprecise in that
it only gives a two sided estimate. But, as we will see below, this is in
some way unavoidable as the true asymptotic does not only depend on
g but also on the singular set of the negative part of V. More precisely,
as can be seen from Theorem 6 (and from the proof of Theorem 4), the
asymptotics of the IDS depends on the way the eigenfunction associated
to the lowest eigenvalue for the operator —A + gV’ concentrates near
the singular set of the negative part of V' as g becomes large. In general
the correction also depends on the geometry of the singular set. For
example, if the singular set is a segment (e.g. a dislocation), one can
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see that neither the lower nor the upper bound given by Theorem 4
are sharp. The two sided estimate (8) can be made more precise if we
know more on V.

The first and simplest example we give is the case when V is
bounded from below, reaches its minimum at a single point, say 0,
and is continuous near 0. Then one easily proves that o* = 0 and the
upper and lower bounds in (8) coalesce to give
(9 log N(~E) _~ _—g(E)logg(E).

—+oo
We will now give other results that, we think, enclose most of the
physically relevant examples.
Let v_ be the essential infimum of V' and assume that V' is bounded
from below, say

HY’ —oo <v_ < 0.
It is easy to show that g(E)~ E/|v_| when E — +o0c. We obtain

THEOREM 5. Under the assumptions Hi1, H2 and H1’, one has

(10) log N(—FE) ~ —g(E)logg(FE) ~ £logE.

E—+co E—4oco v_
Here and in the sequel a ~ b will always mean a = b(1 + o(1)).

This result extends (9) removing the continuity assumption near the
minimum.

Consider now an example a bit more singular. In this case, d = 2
and

Va(z) =log_|z|, «€R”

where, for a > 0, log_ @ = min{log ,0}. Using the inequality log_ |z|+
log R <log_ R|z| <log|z| for 0 < R < 1 and the variational principle
for the ground state energy, one shows that, in this case,

E_(g) ~ g/2log g hence g(F) o 2F/log . One also shows that
g—+oo — 40
o = 0 for this single site potential. Therefore, Theorem 4 tells us that

log N(—F) e —g(E)logg(F) e —2F.

Hence, the asymptotic formula (9) is also valid for certain mildly sin-
gular potentials.

Another case where one can find an asymptotic for log N is when V'
has only power law singularities. Let ¢ be a positive integer and pick ¢
positive exponents (1;)i=1..., and ¢ functions (h;(8))i=1,..., continuous
on the sphere S4~!. For 1 <i < ¢, consider the potentials
M where 0(x) = -

~al

(11) Vi(z) =

vy

E
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Assume that

12) oo, ritd=12,
v .
2if d > 3.

Then V; is relatively form bounded with respect to —A with relative

bound 0 and we can consider the operators H' = —A 4+ V; with form

domain H'(RY). For 1 <i < g, E; denotes the ground state energy of

H'. Now we assume that

H1” e there exists ¢ distinct points (z;);=1.., in R? and ¢ con-
tinuous compactly supported function (W;);=1,..., such that

W;(0) = 1 such that

q

(13)  Va(w) =3 Wilw —z)Vilw —20) = ) _ 7, (WiVi) ().

=1
o for some 1 <1y < ¢, we have F;, < 0.
Notice that assumption H1” implies assumptions H2 and H3. Define

(14) v =sup {v; 1 <i < ¢gsuch that E; <0},

(15)  E_ =sup {|E2|, 1 <i < gsuch that E; <0 and v; = I/T},
1

16 =

In this case, we compute a* = af and prove

THEOREM 6. Under the assumptions H1 and H1”, one has
log N(—E) ~ —(1+ald)g(E)log g(E)
E—+oo

(17) d— I/T E 1-vt/2 E
Pty (1 T3 ) (E—> log (E—>

Assumptions H1 and H1” include most physically interesting cases
as, for example, the 3-dimensional attractive screened Coulomb poten-

1V () e
tia )= —

||
[6]); thus

. In this case we have a* = ot =1 and F_ =1 (see

log N(—=E) ~ —2VElogk.
E—+oo
There is another physically interesting case that has not been discussed
here: it is the case of point potentials [4].
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Open Problems

HorsT KNORRER

Problem:
Let ay,--- ,ay; by, -+ ,b, be real numbers. For a permutation = € 5,
set
e(m) =
Sigﬂﬂ' if Ar(1) < blv Ar(1) + Ar(2) < 627 T, 0r(1) + -+ Qr(n) < bn
0 otherwise

Here sign 7 is the signum of the permutation 7. Is there a constant C'

independent of n, ay, -+ ,a,; by, -+ , b, such that
‘ Z e(w)‘ < C"Vnl
TESH

Problem:

Let I' be a lattice in R% For a real valued analytic function on the torus

R?/T ( = periodic potential) and k € R?let F,(k; V) be the n*® Floquet
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eigenvalue of —A+V, that is the pth eigenvalue of the operator —A 4V
on the space {¢) € H? _(R?) ‘ V(x4 7) ="V p(x) for all vy € T'}.

We say that two periodic potentials Vi, V, are Floquet isospectral if
E.(k, V1) = E.(k,V3) for all n and all & € R% V; and Vj are trivially
Floquet isospectral, if Va(z) = Vi(£x +t) for some vector ¢t € R? or if
there are perpendicular vectors v, w € R? and pairs of onedimensional
isospectral periodic potentials py, ps and ¢y, g2 such that Vi(z) = py(a -
v) + qi(z - w) and Va(x) = pa(z - v) + gz - w).

Question: Are there nontrivial pairs of Floquet isospectral two dimen-
sional periodic potentialsI’

Some known Results:

[G.Eskine, J.Ralston, E.Trubowitz: On isospectral periodic potentials
in R, CPAM 37, 715-753 (1984)] show the existence of “large” sets of
periodic potentials V' to which there are no nontrivial Floquet isospec-
tral potentials. The case that —V -V 4+ V acts on a topologically non-
trivial Hermitian line bundle over R?/T" is discussed in [V.Guillemin:
Inverse spectral results on two dimensional tori. J.American Math. So-
ciety 3, 375-387 (1990)]. Any potential that is isospectral to a constant
potential is itself constant (see e.g. [H.Knérrer, E. Trubowitz: A direc-
tional compactification of the complex Bloch variety. Comm. Math.
Helvetici 65, 114-149 (1990)]). Observe that this is not the case for

complex valued potentials; any potential of the form

V(ry,as) = Z V(m, n) g2mimaitnes)

m,n

with V(m,n) = 0 unless m > 0, |n/m| < 1/2 is Floquet isospectral to
the potential 0.

There is also a preprint by O.Veliev on inverse problems for periodic
potentials in dimension > 2.

Problem:

For a lattice I' in R? set

o(l)={l4[*|y eI}

We say that ' has arbitrary long gaps in its spectrum, if for every ¢ > 0
there is an interval [ of length ¢ in Ry such that I No(I') = 0. Let L
be the set of all lattices, and X the set of all I' € L that have arbitrary

long gaps in their spectrum.
Question: Does L\ X have measure zerol’

Some known Results:

[Th.Kappeler: On double eigenvalues of Schrodinger operators on two—
dimensional tori. J. Functional Analysis 115, 166-183 (1993)] shows
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that rational lattices lie in X, and that X is a set of second Baire
category in L.

Mathematics of photonic crystals
PETER KUCHMENT

Abstract

The burgeoning young area of research on photonic crystals is a
dream of an applied mathematician: it is of paramount practical im-
portance, most of its problems are precisely formulated in exact math-
ematical terms and remain unresolved, and resolving them requires a
wide range of mathematical tools ranging from analytic operator func-
tions to several complex variables, to algebraic geometry, to PDEs, to
probability theory, to numerics. A photonic crystal is an artificial pe-
riodic dielectric medium that is an optical analog of semiconductors.
Its main property is existence of a ”"complete band gap”, i.e. of an in-
terval of frequencies for which electromagnetic waves cannot propagate
in the medium. Creation of such a material promises to bring about
a technological revolution. The talk provides a brief overview of the
mathematical component of the photonic crystal problem. The major
part of it deals with various aspects of spectral theory of differential
and pseudodifferential operators and operator pencils (Maxwell opera-
tor, its scalar counterparts, Dirichlet to Neumann operators on graphs,

ODEs on graphs, etc.).

New bounds on the constants L., appearing in the
Lieb-Thirring inequalities

ARI LAPTEV

Abstract

We show how a matrix version of the Buslaev-Faddeev-Zakharov
trace formulae for a one-dimensional Schrodinger operator leads to
Lieb-Thirring inequalities with sharp constants L%{d with v > 3/2 and
arbitrary d > 1.

Improved estimates on the constants L. 4, for 1/2 < v <3/2,d € N
in the inequalities for the eigenvalue moments of Schrodinger operators
are established.
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Open Problems

Let H be a Schrodinger operator
H=-A-V

in the space of vector functions

PRLCT) = us [ (o)l do < oc),

where V' is a non-negative Hermitian m x m matrix-valued potential
satisfying ||V|lcn € LY*(R%). Let N(H) be the number of negative
eigenvalues of H.

1. Prove or disprove the following matrix version of the Cwikel-Lieb-
Rosenblum (CLR) inequality: that is if d > 3 and m > 2 then there is
a constant My 4 < oo independent of m such that

N(H) < M07d/tr V2 dx,

2. Let Lg 4 be the corresponding constant appearing in the scalar case.

Is it true that My 4 = Lo 4 if the inequality My 4 < oo is provedI’

A simple analytic proof of the glueing formula for the
analytic torsion in the presence of a general
(nonunimodular) flat bundle

MATTHIAS LESCH

Abstract

In recent years there has been considerable progress in understand-
ing the mechanism behind the celebrated Cheeger—Miller Theorem on
the equality of analytical and combinatorial torsion. Both torsions
are numerical invariants of a compact manifold and a representation
of its fundamental group. The combinatorial torsion is well-defined
only if the representation is unimodular. In the present work I will
restrict myself to finite-dimensional representations, though it should
be mentioned that there is considerable interest in infinite-dimensional
representations [3].

The Cheeger—Muiiller theorem states that for unitary representations
the analytical torsion (an invariant of the spectrum of the Laplacians
on forms) equals the combinatorial torsion (a combinatorial invariant)
[4, 6]. For more general representations there is a defect between
these two invariants which, in principle, can be calculated [1]. If the
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boundary of the manifold is nonempty, the defect is nontrivial already
for unitary representations [5].

A completely different approach to the Cheeger—Miiller Theorem,
however only in the case of a trivial representation, was invented by S.
Vishik [7]. J. Briining and the author jointly extended Vishik’s method
to nonlocal well-posed boundary value problems to obtain a new proof
of the glueing formula for the n-invariant [2].

This is the starting point of the present work. I showed that the
method of loc. cit. can be used to give a rather straightforward proof
of the glueing formula for the analytic torsion. I do not impose any re-
strictions on the representation of the fundamental group except finite—
dimensionality. This generalizes the above mentioned result of Vishik
and also later work of Burghelea, Kappeler and Friedlander. As an
application I can present a Cheeger—Miller type theorem on mani-
folds with boundary which is in the spirit of [1]. The manifold with
boundary case is nontrivial since for non—unitary representations of the
fundamental group the ’doubling trick’ of [5] is not applicable.
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Open Problems

Let ' C CPY be an algebraic variety in complex projective space.
Locally, C' is the common zero locus of a set of homogeneous polyno-
mials. We denote by ¥ := singC' the singular locus of C' and we equip
C'\ ¥ with a hermitian metric induced from such a metric on CPV (e.g.
the Fubini-Study metric).

1. dimcC' = 1: C is a complex algebraic curve and it is well-
known (cf. [2]) that C'\ ¥ is compact surface with isolated asymptot-
ically cone-like singularities. Hence the conical analysis invented by
J. Cheeger [3, 4] applies and one can show that the basic results of
Spectral Geometry hold for C'\ ¥. As these basic results we consider
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e The GauBi-Bonnet Theorem [7] and the index theorem for the
J-operator [2].
e The discreteness of the Laplacian, more precisely, the Friedrichs
extension of the Laplacian [4].
e The complete short-time asymptotics of the heat trace of the
Laplacian [1].
Furthermore, in [1] it is shown that the spectrum of the Laplacian
detects whether ¥ is nonempty or not.
2. dimg C' > 1: The problem I want to address here is: What can
one say about the spectral theory of the Laplacian in higher dimen-
sions' Only some partial results are known:

o The L?-Stokes Theorem in the complex case and the fact that it
is wildly wrong for real varieties (cf. e.g. [8],[5]).

e Discreteness of the Laplacian on functions [6] and, for varieties
with isolated singularities, on forms except in degree dimc C' [5].

e Hodge Theory [8].
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Smooth perturbation theory of unbounded operators
PeETER W. MIicHOR

Abstract

All presented results can be found in:

[1] Kriegl, Andreas; Michor, Peter W.: The Convenient Setting of
Global Analysis. Mathematical Surveys and Monographs, Volume: 53,
American Mathematical Society, Providence, 1997.

or:

[2] Alekseevky, Dmitri; Kriegl, Andreas; Losik, Mark; Michor, Peter
W.: Choosing roots of polynomials smoothly, Israel J. Math 105 (1998),
p. 203-233.

THEOREM 0.1. Let t — A(t) be a smooth curve of unbounded self-
adjoint operators in a Hilbert space with common domain of definition
and with compact resolvent. Then the eigenvalues of A(t) may be ar-
ranged in such a way that each eigenvalue is C1.

Suppose moreover that no two of the continuously chosen eigenval-
ues meet of infinite order at any t € R if they are not equal. Then the
eigenvalues and the eigenvectors can be chosen smoothly in t, on the
whole parameter domain.

That A(t) is a smooth curve of unbouded operators means the fol-
lowing: There is a dense subspace V' of the Hilbert space H such that
V is the domain of definition of each A(?), and such that A(¢)* = A(t)
with the same domains V', where the adjoint operator A(t)* is de-
fined by (A(t)u,v) = (u, A(t)*v) for all v for which the left hand side is
bounded as function in u € H. Moreover we require that ¢ — (A(t)u,v)
is smooth for each u € V and v € H.

With the help of the catesian closed calculus for locally convex
spaces as explained in [1] one can show that in turn the following
mappings are smooth:

t — A(t)u is smooth R — H for each u € V.

t — A(t) is smooth R — L(V;, H), with the topology of uniform
convergence on compact parts of smooth curves in V;, where the Hilbert
space V; is V' with inner product (u,v): = (u, A(t)v).

t,z,urs (A(t)—2)"'u is smooth into H for ¢t € R, z in the resolvent
set, and v € H.

The proof of the theorem (which was not presented) at later stages
also involves results about choosing roots of polynomials smoothly.
These were presented in some details. See [2].
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Schrodinger Operators on Graphs and Symplectic Geometry
SERGEY P. Novikov

Abstract

Since 1997 (Uspekhi Math Nauk-Russia Math Surveys, 1997,n 6)
the present author published a series of works dedicated to the Spectral
Theory of the Schrodinger Operators on Graphs (discrete and contin-
uous) (see the volume of Conference dedicated to the 60th birthday of
V.Arnold, "Schrodinger Operators on Graphs and Symplectic Geom-
etry”, Fields Institute, Toronto, 1999, and the Asian Math Journal,
volume dedicated to the 70th birthday of Mikio Sato, ”Schrodinger
Operators on Graphs and Topology”, December 1998).

The 1-homology-valued symplectic form (”Symplectic Wronskian”)
on the spaces of solutions has been constructed. This quantity plays
fundamental role in the construction of the Scattering Theory for the
Graphs with tails. In particular, the unitarity properties of scattering
are elementary topological and symplectic phenomena. Nonlinear sys-
tems also were considered recently in the joint work with A.Schwarz

(Uspekhi, 1999, n 1).

CRITICAL METRICS FOR SPECTRAL ZETA
FUNCTIONS

KATE OKIKIOLU

Abstract

Let M be a closed compact n-dimensional manifold with n odd.
For a metric ¢ on M, let A be the Laplace-Beltrami operator with
eigenvalues 0 < A; < Ay... and corresponding L*-orthonormalized
eigenfunctions ¢, ¢g,.... The spectral zeta function for A is given by

Z(s) = Z A7

when s > n/2. It extends to a meromorphic function for s € C.
The determinant of A is defined by det’ A = e=%'®), For k fixed, Z(k)
defines a functional on the space of metrics. When £ is an integer we
consider metrics of a given volume and give a description of the critical
metrics for Z(k) in terms of the Schwartz kernel of A=F. We show that
when k < n/2, every critical metric for (—1)+1/27(k) has finite
index. Similarly, every critical metric for (—1)("=Y/2 det’ A has finite
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index, so det’ A behaves like Z(1) in this respect. When k& > n/2 the
series Z(k) is summable and the behavior of Z(k) close to a critical
metric go depends on the local zeta function

Z(k,2) = 3Nyl

at go. In particular, if Z(k,z) < (2/n)Z(k) for some x, then Z(k) has
an essential saddle point at go, that is neither Z (k) nor —Z(k) has finite
index. It is not known whether there is a critical metric satisfying this
condition. On the other hand, if Z(k,x) > (2/n)Z (k) then —Z(k) has

finite index. This condition holds for all homogeneous spaces.

Absolute Continuity of Periodic Schrodinger Operators
ZHONGWEI SHEN

Abstract

This talk concerns the Schrodinger operator —A +V(x) in R%, d >
3, with periodic potential V. Under the assumption V' &€ Ld/2(Rd), it is

loc
shown that the spectrum of —A+V/(x) is purely absolutely continuous.
The condition on the potential V' is optimal in the context of L? spaces.
The proof relies on certain uniform Sobolev inequalities on the d-torus.
We also establish the absolute continuity of —A + V/(x) with certain

periodic potential V in the weak-L%? space.

On the Bethe-Sommerfeld conjecture for the polyharmonic
operator

ALEXANDER V. SOBOLEV

Abstract

Let H = H® = (—=A)'+V be the polyharmonic operator in L*(R?),
d > 2, perturbed by a real-valued potential V' periodic with respect to
a lattice ' C R% The spectrum of H is known to consists of a union of
closed intervals called spectral bands, possibly separated by spectrum
free intervals called spectral gaps. We prove that the spectrum of the
operator H has finitely many spectral gaps under suitable conditions
on the order [ and dimension d. To state the result in the precise form
introduce some notation. For each A € R define the quantity m(A) to
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be the number of spectral bands covering the point A. Also, define
_J1, d#1 modd4,
= 3, d=1 mod 4.
Then the following two theorems hold.

THEOREM 0.2. Suppose that the real-valued function V' is bounded.
If Al > d + p, then

(1) m(A) > OXF,

for all sufficiently large values of X, with a positive constant C' inde-
pendent of V' and X.

THEOREM 0.3. Suppose that'V is an infinitely smooth periodic func-
tion. Then the estimate (1) holds under the condition 41 > d + 1 — 2.

Open Problem

Let I' ¢ R% d > 2 be a lattice with a fundamental domain Q. De-
note by #(k, p) the number of the lattice points inside the ball B(k, p)
of radius p > 0 centered at the point —k € R% We are interested in the
variation of the number #(k, p) when both k and the radius p change.
It is clear that as p — oo, the leading term of #(k, p) is given by the
volume vol(p) of the ball B(0,p). It is also known that for large p

d—p
(2) / |#(k,,0) — VOl(p)|dk >cpZ,
Q
with a positive constant ¢ and the number

_J1, d#1 modd4,
= 3, d=1 mod 4.

This estimate immediately leads to the point-wise bounds
maxg #(k,p) > vol(p) + c,od;_M,

ming #(k, p) < vol(p) — c,od;_M,

(3)

and hence
(4) max #(k, p) —min #(k, p) > 7.

If one assumes that the lattice is rational, then the latter estimate is
known to hold with the exponent d — 2 instead of (d — p)/2.
Questions: Is it possible to prove either of the bounds (2) or (3)
with p =1 for all dimensionsI’
Can one find an estimate of the form (4) with an exponent greater
than (d — u)/2 without the assumption that the lattice is rationall’
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Hearing analytic plane domains with the symmetry of an
ellipse

STEVEN ZELDITCH

Abstract

Let D be the class of real analytic plane domains with the symmetry
of an ellipse, i.e. an up-down symmetry and a right-left symmetry. As-
sume that at least one symmetry axis is non-degenerate as a bouncing
ball orbit of the billiard flow. We will sketch the proof of the following
theorem: Two domains in the class D with the same Dirichlet spectrum
are isometric.

Open Problems

Problem 1: Metrics with maximal multiplicities.

Suppose that ¢ is a metric on S? with the property that the mul-
tiplicities of its distinct eigenvalues are precisely the same as for the
standard metric, i.e. my = 2k 4+ 1. Is g the standard metricl’

Discussion: This problem was posed by S.T. Yau after some work
of M. Engman and S.Y. Cheng. In the paper, "Maximally degenerate
Laplacians’. Ann. Inst. Fourier (Grenoble) 46 (1996), I proved that ¢
must be a Zoll metric (all geodesics closed) with the property that its
Laplacian A is isopectral to Ag + 5, where Ag is the standard Lapla-
cian, and S is a smoothing operator. I also gave an ‘integral geometry’
condition on ¢g. In ‘Fine structure of Zoll spectra’. J. Funct. Anal.
143 (1997), 415-460. I further showed that the projections Il onto
eigenspaces were asymptotic to all orders to the standard projections.
Thus, the spectral theory of A, seems to have ‘infinite order contact’
with the spectral theory of Ag. The problem whether ¢ is the stan-
dard metric remains open. There are analogous problems on higher
dimensional spheres, etc.

Problem 2: Sup-norms of eigenfunctions.

Hormander proved in the 60’s that the sup norm ||| of an eigen-
function A¢y = A2¢, of the Laplacian on a compact Riemannian man-
ifold (M, g) satisfies: ||oa||ee << A“Z". This estimate is sharp in the
sense that it is achieved for (M, g) = (5", go), the standard metric on
the n-sphere.

The proof is that N(A z) := E]‘:AJSA [fa, (2)]* = CL X" + R(A, )
where R(A, ) << X"~' uniformly in z. Observe that [¢, (z)]* <<
R(A, z) to conclude the sup-norm estimate. Here, << means ‘bounded
by a constant independent of x.’

Question 1: For which manifolds M does there exist a metric g
achieving this boundl’
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There should exist topological restrictions. Heuristically, the point
at which ¢, achieves its sup-norm should be a point of recurrence for
the geodesic flow. Roughly speaking, there should exist a ‘point’ such
that almost all geodesics leaving that point return to that point at a
fixed time. This poses well-known topological conditions on M (cf. the
book of Besse, Manifolds all of whose geodesics are closed.)

At the opposite extreme, there exist metrics (e.g. flat metrics on
irrational tori) for which ||¢y]]eo << 1.

Question 2: For which M does there exist a g such that ||¢y]]. << 1
Must (M, g) be a flat torusl’

In a forthcoming paper with J. Toth, we will prove that the answer
is yes for (at least broad classes) of metrics with completely integrable
geodesic flow.

Breit-Wigner approximations
VESSELIN PETKOV AND MACIEJ] ZWORSKI

Abstract

For operators with a discrete spectrum, {)\f}, the counting function
of A;’s, N(A), trivially satisfies N(A 4 d) — N(A —4) = > .0y, ((A —
4, A+ 9]). In scattering situations the natural analogue of the discrete
spectrum is given by resonances, A; € Cy, and of N(A), by the scatter-
ing phase, s(A). The relation between the two is now non-trivial and
we prove that

sA+8)—s(A=0)= Y we, (A, [A=86A+8])+ OGN,
[Aj—Al<e

where we, is the harmonic measure of the upper of half plane and § can
be taken dependent on A. This provides a precise high energy version
of the Breit-Wigner approximation, and relates the properties of s(\)
to the distribution of resonances close to the real axis.
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