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2Some Eigenvalue Comparison Results for Domains in Sn andfor Annular Domains in Rn 1Mark S. AshbaughAbstractFor bounded domains in Euclidean space, various inequalities be-tween the Dirichlet and Neumann eigenvalues of the Laplacian areknown. The main contributions are due to Payne (1955), Aviles (1986),and Levine and Weinberger (1986), culminating in the 1991 proof byLeonid Friedlander that the (k + 1)th Neumann eigenvalue is alwaysless than or equal to the kth Dirichlet eigenvalue. We report on our re-cent progress toward extending some of these prior results to boundeddomains in homogeneous spaces (such as the sphere Sn).In addition, we present some monotonicity results for the behaviorof the �rst eigenvalue of the Dirichlet Laplacian on a domain witha moveable hole, such as the region in the plane between two circles(nested, but nonconcentric), which we call an eccentric annular domain.The main new results are based on joint work with Lot� Hermi(Dirichlet-Neumann eigenvalue comparisons for Sn, etc.) and ThierryChatelain (eccentric annular domains). Earlier joint results with RafaelBenguria and Howard Levine (separately) also make appearances.Open ProblemsWe begin by listing several open problems concerning the eigenval-ues of the Dirichlet Laplacian on a bounded domain in Euclidean spaceRn. We denote the eigenvalues (counting multiplicities) by f�mg1m=1.1. A conjecture of Payne, P�olya, and Weinberger [28]: For abounded domain 
 � Rn, show that�m+1�m < �2�1 ����ball for m � 4:(1)Indeed, it would be of interest to �nd any general bound better than1 + 4=n (this is the bound which was established by Payne, P�olya,and Weinberger in their original paper [28]; see also [27] for �2=�1).Inequality (1) was established for m = 1 with a nonstrict inequality in1Partially supported by National Science Foundation (USA) grant DMS{9870156.



3[5], [7], and for m = 2 and 3 in [6] and [8], respectively. In fact, [8]shows that the m = 2 and 3 cases follow from the stronger inequality�4=�2 < (�2=�1)jball. This inequality is an easy consequence of them = 1 result and the fact that any eigenfunction for �2 has exactly twonodal domains. The m = 1 case of (1) (with �) has often been referredto in the literature as the Payne-P�olya-Weinberger (PPW) conjecture.The conjecture above might then be referred to as the extended PPWconjecture.2. A second conjecture of Payne, P�olya, and Weinberger [28]: Fora bounded domain 
 � R2, show that�2 + �3�1 � �2 + �3�1 ����disk:(2)The analogous conjecture for 
 � Rn reads�2 + �3 + � � �+ �n+1�1 � �2 + �3 + � � �+ �n+1�1 ����n-ball:(3)In R2, for example, the right-hand side of (2) is approximately 5:077(this is the value of (�2 + �3)=�1 for a disk, which is twice the value of�2=�1 for a disk), while the best upper bound currently established for(�2 + �3)=�1 for an arbitrary domain is only approximately 5.507 (see[11]).3. Find the optimal upper bound for�3�1(4)among all bounded domains 
 contained in R2 (or Rn), and �nd theshape of domain that maximizes it. In R2 the best upper bound foundso far is approximately 3:831 (see [11]), while the highest value of �3=�1found so far is approximately 3.2 (the exact value here is 35=11 andoccurs for the rectangle having sides in the proportion p8 : p3, whichis easily found to give the maximum of �3=�1 over all rectangles).A related problem is that of minimizing �3 over all domains in Rnof �xed n-volume (or just over domains in R2 of �xed area). For somediscussion of this problem, see Problems 7 and 8 in [2] (but please notethat inequalities (27)-(30) have been withdrawn as conjectures, since(27) and (28) are certainly not generally valid, and therefore (29) and(30) are in doubt for all dimensions n � 3 as well).4. For bounded convex domains 
 contained in Rn, show that�2 � �1 � 3�2d2 ;(5)where d denotes the diameter of 
. Indeed, one might conjecture thesame inequality for the Schr�odinger operator H = �� + V (x), wherethe potential V is a convex function on 
 (convexity of V is needed toavoid \double-well" situations). In fact, the positive results discussedbelow were all established in this setting (i.e., for Schr�odinger operators



4with convex potentials). Versions of inequality (5) with a smaller con-stant on the right-hand side are known. For example, Yu and Zhong[38] obtained the lower bound �2=d2 (i.e., (5) but without the factor of3 on the right). Earlier, Singer, Wong, Yau, and Yau [31] had obtainedthe weaker lower bound �2=4d2. Theirs was the �rst general result ofthis type, and was certainly the inspiration for all later results in thearea. The best general bound so far obtained is that of Ling [18], whoobtained the bound 4K(�)2=d2, whereK(�) denotes the complete ellip-tic integral of the �rst kind and � is a parameter which can be estimatedin terms of quantities occurring in the problem. Since K(�) is alwayslarger than �=2, Ling's bound is always better than that of Yu andZhong (and it implies that we can put �2=d2 as a strict lower bound).For some further work in this area, see [32]. Also, the one-dimensionalcase of (5) (for a Schr�odinger operator with a convex potential) wasestablished by Lavine in [17].Inequality (5) was �rst suggested by van den Berg [14] in 1983 inconnection with some questions in statistical mechanics (see ineq. (65)on p. 636, but be aware that there is an extra factor of 12 on the right-hand side due to his use of the operator H = �12�). Later, not knowingof van den Berg's paper, (5) was conjectured by Rafael Benguria andmyself [4] in connection with our work on lower bounds on eigenvaluegaps for Schr�odinger operators which was motivated in part by thework of Singer, Wong, Yau, and Yau. If (5) could be established, itwould tell us that the way to minimize the gap �2 � �1 among convexdomains is to take a rectangular parallelopiped having all but one ofits dimensions tiny. Indeed, this is the intuition behind the conjecture.For another conjecture having a similar intuition behind it, see Problem10 in Section 6 of [9] (this problem is also listed as Problem 10 in [2],and is related to Question 5 on p. 157 of [26]). The conjecture (5)above also occurs as Problem 9 in [9].We next turn to conjectures for the �rst, or fundamental, eigenvalueof the biharmonic operator in two classical settings: the vibration of aclamped plate, and the buckling of a clamped plate.5. Rayleigh's conjecture for the \vibrating clamped plate" in di-mensions n � 4. For dimension n = 2, the characteristic frequencies ofvibration of a clamped plate in the shape of 
 are determined by theeigenvalues �i of the clamped plate eigenvalue problem�2w = �w in 
 � R2;w = 0 = @w@n on @
:(6)This problem has only discrete spectrum consisting of positive eigen-values of �nite multiplicity and which accumulate only at in�nity. We



5list them in ascending order with multiplicities included as f�ig1i=1.Thus, 0 < �1 � �2 � �3 � � � � ! 1:(7)As in the membrane problem, it is often the �rst eigenvalue which holdsthe greatest interest, and that is indeed the case here. For the purposeof stating Rayleigh's conjecture, we focus only on �1, and since ourmain interest is in how it varies with the domain 
 we denote it �1(
).Rayleigh's conjecture asserts that among all domains 
 � R2 of a givenarea the one giving the minimal value to �1 is the disk, or, in symbols,�1(
) � �1(
?);(8)where 
? denotes the disk of the same area as 
.By extension, we continue to refer to the n-dimensional version ofthis problem as the vibrating clamped plate problem, and to the ex-tension of Rayleigh's conjecture to this setting as Rayleigh's conjecture.All the properties spelled out above for the two-dimensional problemare also true of the n-dimensional one. In the n-dimensional setting,one should, of course, understand 
? as the n-ball having the samen-volume as 
.Rayleigh's conjecture for the vibrating clamped plate problem isknown to hold in 2 and 3 dimensions. The two-dimensional case (whichone might well regard as the Rayleigh conjecture for the clamped plate)was established by Nadirashvili in 1993 (see [19], and also [20], [21]),while the three-dimensional case was established by Ashbaugh and Ben-guria in 1995 (see [10]), using a variant of Nadirashvili's approach. Theapproach of Ashbaugh and Benguria was then applied to the higher-dimensional cases, n � 4, by Ashbaugh and Laugesen [13], who ob-tained bounds of the form (8) but with an extra (positive, dimension-dependent) factor less than one occurring on the right-hand side. Thisextra factor presumably makes the inequality nonoptimal (and there-fore nonisoperimetric as well). Ashbaugh and Laugesen's paper showsthat the Ashbaugh-Benguria approach cannot succeed for dimensionn � 4, but it does not suggest that (8) cannot hold. Indeed, if any-thing it still suggests that (8) is quite viable. For more discussion ofthese issues, and for a general overview of the methods which haveproved successful so far, see [12], [3]. Among the prior literature, theworks of Szeg}o [33], [34] (see also Note F of P�olya and Szeg}o's book[29]) and Talenti [35] are especially noteworthy.6. The P�olya{Szeg}o conjecture for the critical buckling load of aclamped plate in all dimensions n � 2. In 2 dimensions, the criticalbuckling load of a clamped plate in the shape of 
 is determined by



6the �rst eigenvalue of the buckling problem�2v = ���v in 
 � R2;v = 0 = @v@n on @
:(9)As for the vibrating clamped plate problem, this problem has solelydiscrete spectrum consisting of positive eigenvalues of �nite multiplicitywith in�nity as the only accumulation point. We denote the eigenvaluesf�ig1i=1 (with multiplicities included). Again we concentrate on the�rst eigenvalue, and, to emphasize its dependence on the domain 
,we denote it by �1(
). As in the problem of the vibration of a clampedplate, one can ask if �1(
) takes its least value among all domains ofa given area at the disk. This question seems to have �rst been askedby P�olya and Szeg}o around 1950, and to have �rst appeared in printunder their names in their book on isoperimetric inequalities [29] in1951. On the other hand, it should be noted that Szeg}o's paper [33]dealing with a special case of the conjecture already appeared in 1950.This paper had some technical aws, which Szeg}o corrected in 1958(see [34]). The argument of [33] was, in fact, included in an addition(Note F) to [29]. The jumbled dates occurring here are due to thedelayed publication of [29], as explained in the preface: the main partof the book was already �nished in 1948, but the delay allowed themto include some later material as well (as added \Notes").The P�olya-Szeg}o conjecture for �1 asserts that among all domains
 � R2 of a given area the one giving the least value of �1 is the disk,or, in symbols, �1(
) � �1(
?);(10)where 
? denotes the disk of the same area as 
.As before, both the buckling problem for the clamped plate and theP�olya-Szeg}o conjecture for its �rst eigenvalue may easily be generalizedto n dimensions (we just need to take 
? as the n-ball having the samen-volume as 
). We shall also refer to the generalized problem as thebuckling problem for the clamped plate, although again the physicalmotivation centers on the two-dimensional case.It turns out that the P�olya-Szeg}o conjecture for the buckling prob-lem is in a less satisfactory state than is Rayleigh's conjecture for thevibrating clamped plate, in that the P�olya-Szeg}o conjecture remainsopen for all dimensions n � 2. In another sense, though, the situationis more or less analogous. Just as in the case of Rayleigh's conjecture,there is a special case that was handled by Szeg}o [33], [34] (see also[29]). In addition, the approach used by Ashbaugh and Laugesen toestablish weaker versions of (8) can be carried over to the buckling prob-lem and yields a weaker version of (10) which has the same form butcontains an unwanted dimension-dependent factor on the right-handside.



7Beyond this (and this has no analog for the vibrating clamped plateproblem), there is a second, seemingly unrelated, way to arrive at thesesame nonoptimal bounds. The alternative approach is to combine theinequality of Payne [22],�1(
) � �2(
) for 
 � Rn(11)(where �2(
) denotes the second eigenvalue of the Dirichlet Laplacian),with Krahn's inequality for �2(
),�2(
) > 22=n�1(
?) for 
 � Rn:(12)This inequality of Krahn was proved near the end of his longer paper[16] on the Faber-Krahn inequality, the main purpose of which wasto establish the Faber-Krahn inequality in all dimensions n � 3. Itis an easy consequence of the Faber-Krahn inequality for �1 and thefact that any eigenfunction for �2 has exactly two nodal domains. The�rst people to realize that these two inequalities could be combinedto yield an explicit lower bound for �1 were Bramble and Payne [15],who gave the two-dimensional bound. However, they formulated theinequality directly, rather than as an inequality of the form (10) with anonoptimal constant. It is not at all clear why the two approaches giverise to exactly the same (nonoptimal) constants in the inequalities for�1(
) that they yield, but they do. The papers [13], [12], [2], and [3]all contain more discussion and information on the P�olya-Szeg}o conjec-ture. In particular, the variation with n of the nonoptimal constantswhich occur in the best bounds yet proved is of interest. The factor ofnonoptimality turns out to go to 1 as n goes to in�nity.Other well-known problems which come to mind are the P�olya con-jectures for the Dirichlet and Neumann eigenvalues of the Laplacian,the nodal line conjecture for simply connected domains in the plane,and the Pompeiu problem. There is a large literature on each of these,toward which a start can be made by consulting a number of the ref-erences cited below.Many of the problems given or mentioned above and also severaladditional problems are discussed in [9] (see Section 6), [2], and [3](see Section 4). More problems can be found in Payne's papers [23],[24], [25], [26]. There are also the extensive problem collections of Yau[36], [37] and the list of Arnol'd et al. [1] that might be consulted.Obviously, the problems suggested by the other participants at theMatrei workshop are of great interest as well.AcknowledgementsThe author is grateful for the hospitality of the Erwin Schr�odingerInstitute (ESI) in Vienna. In particular, he would like to thank Thomas



8Ho�mann-Ostenhof and Leonid Friedlander for the opportunity to par-ticipate in the Workshop on Geometrical Aspects of Spectral Theoryheld at Matrei, July 5{12, 1999.References[1] V. I. Arnol'd, M. I. Vishik, Yu. Il'yashenko, A. S. Kalashnikov, V. A. Kon-drat'ev, S. N. Kruzhkov, E. M. Landis, V. M. Millionshchikov, O. A. Oleinik,A. F. Filippov, and M. A. Shubin, Some unsolved problems in the theory ofdi�erential equations and mathematical physics, Russian Math. Surveys 44:4(1989), 157{171 [translation of Uspekhi Mat. Nauk 44:4 (1989), 191{202].[2] M. S. Ashbaugh, Open problems on eigenvalues of the Laplacian, Ana-lytic and Geometric Inequalities and Applications, Th. M. Rassiasand H. M. Srivastava, editors, Kluwer Academic Publishers, Dordrecht, TheNetherlands, 1999 (to appear).[3] M. S. Ashbaugh, Isoperimetric and universal inequalities for eigenvalues,Proceedings of the ICMS Instructional Conference on SpectralTheory and Geometry (Edinburgh, 1998), E. B. Davies and Yu. Sa-farov, editors, London Mathematical Society, London, 1999 (to appear).[4] M. S. Ashbaugh and R. D. Benguria, Optimal lower bounds for eigenvaluegaps for Schr�odinger operators with symmetric single{well potentials and re-lated results, Maximum Principles and Eigenvalue Problems in Par-tial Di�erential Equations, P. W. Schaefer, editor, PitmanResearch Notesin Mathematics Series, vol. 175, Longman Scienti�c and Technical, Harlow,Essex, United Kingdom, 1988, pp. 134-145.[5] M. S. Ashbaugh and R. D. Benguria, Proof of the Payne{P�olya{Weinbergerconjecture, Bull. Amer. Math. Soc. 25 (1991), 19{29.[6] M. S. Ashbaugh and R. D. Benguria, Isoperimetric bound for �3=�2 for themembrane problem, Duke Math. J. 63 (1991), 333{341.[7] M. S. Ashbaugh and R. D. Benguria, A sharp bound for the ratio of the �rsttwo eigenvalues of Dirichlet Laplacians and extensions, Annals of Math. 135(1992), 601{628.[8] M. S. Ashbaugh and R. D. Benguria, Isoperimetric bounds for higher eigen-value ratios for the n-dimensional �xed membrane problem, Proc. Roy. Soc.Edinburgh 123A (1993), 977-985.[9] M. S. Ashbaugh and R. D. Benguria, Isoperimetric inequalities for eigenvalueratios,PartialDi�erentialEquations of Elliptic Type, Cortona, 1992,A. Alvino, E. Fabes, and G. Talenti, editors, Symposia Mathematica, vol. 35,Cambridge University Press, Cambridge, 1994, pp. 1{36.[10] M. S. Ashbaugh and R. D. Benguria, On Rayleigh's conjecture for the clampedplate and its generalization to three dimensions, Duke Math. J. 78 (1995),1{17.[11] M. S. Ashbaugh and R. D. Benguria, Bounds for ratios of the �rst, second,and third membrane eigenvalues, Nonlinear Problems in AppliedMath-ematics: In Honor of Ivar Stakgold on his 70th Birthday, T. S. Angell,L. Pamela Cook, R. E. Kleinman, and W. E. Olmstead, editors, Society forIndustrial and Applied Mathematics, Philadelphia, 1996, pp. 30{42.[12] M. S. Ashbaugh, R. D. Benguria, and R. S. Laugesen, Inequalities for the�rst eigenvalues of the clamped plate and buckling problems, General In-equalities 7 (Oberwolfach 1995), C. Bandle, W. N. Everitt, L. Losonczi,and W. Walter, editors, International Series of Numerical Mathematics, vol.123, Birkh�auser, Basel, 1997, pp. 95{110.



9[13] M. S. Ashbaugh and R. S. Laugesen, Fundamental tones and buckling loads ofclamped plates, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 23 (1996), 383{402.[14] M. van den Berg, On condensation in the free-Boson gas and the spectrum ofthe Laplacian, J. Stat. Phys. 31 (1983), 623{637.[15] J. H. Bramble and L. E. Payne, Pointwise bounds in the �rst biharmonicboundary value problem, J. Math. and Phys. 42 (1963), 278{286.[16] E. Krahn, �Uber Minimaleigenschaften der Kugel in drei und mehr Dimensio-nen, Acta Comm. Univ. Tartu (Dorpat) A9 (1926), 1{44. [English transla-tion: Minimal properties of the sphere in three and more dimensions, EdgarKrahn 1894{1961: A Centenary Volume, �U. Lumiste and J. Peetre,editors, IOS Press, Amsterdam, The Netherlands, 1994, pp. 139{174.][17] R. Lavine, The eigenvalue gap for one-dimensional convex potentials, Proc.Amer. Math. Soc. 121 (1994), 815-821.[18] J. Ling, A lower bound for the gap between the �rst two eigenvalues ofSchr�odinger operators on convex domains in Sn or Rn, Mich. Math. J. 40(1993), 259{270.[19] N. S. Nadirashvili, An isoperimetric inequality for the principal frequency ofa clamped plate, Dokl. Akad. Nauk 332 (1993), 436{439 (in Russian) [Englishtranslation in Phys. Dokl. 38 (1993), 419{421].[20] N. S. Nadirashvili, New isoperimetric inequalities in mathematical physics,Partial Di�erential Equations of Elliptic Type, Cortona, 1992,A. Alvino, E. Fabes, and G. Talenti, editors, Symposia Mathematica, vol.35, Cambridge University Press, Cambridge, 1994, pp. 197{203.[21] N. S. Nadirashvili, Rayleigh's conjecture on the principal frequency of theclamped plate, Arch. Rational Mech. Anal. 129 (1995), 1{10.[22] L. E. Payne, Inequalities for eigenvalues of membranes and plates, J. RationalMech. Anal. 4 (1955), 517{529.[23] L. E. Payne, Isoperimetric inequalities for eigenvalues and their applica-tions, Autovalori e autosoluzioni, Centro Internazionale Matematico Estivo(C.I.M.E.) 2� Ciclo, Chieto, 1962, pp. 1{58.[24] L. E. Payne, Isoperimetric inequalities and their applications, SIAM Review9 (1967), 453{488.[25] L. E. Payne, On two conjectures in the �xed membrane eigenvalue problem,J. Appl. Math. and Phys. (ZAMP) 24 (1973), 721{729.[26] L. E. Payne, Some comments on the past �fty years of isoperimetric in-equalities, Inequalities: Fifty Years On from Hardy, Littlewood, andP�olya, W. N. Everitt, editor, Marcel Dekker, New York, 1991, pp. 143{161.[27] L. E. Payne, G. P�olya, and H. F. Weinberger, Sur le quotient de deuxfr�equences propres cons�ecutives, Comptes Rendus Acad. Sci. Paris 241(1955), 917{919.[28] L. E. Payne, G. P�olya, and H. F. Weinberger, On the ratio of consecutiveeigenvalues, J. Math. and Phys. 35 (1956), 289{298.[29] G. P�olya and G. Szeg}o, Isoperimetric Inequalities in MathematicalPhysics, Annals of Mathematics Studies, number 27, Princeton UniversityPress, Princeton, New Jersey, 1951.[30] R. Schoen and S.-T. Yau, Lectures on Di�erentialGeometry, ConferenceProceedings and Lecture Notes in Geometry and Topology, vol. 1, Interna-tional Press, Boston, 1994.[31] I. M. Singer, B. Wong, S.-T. Yau, and S. S.-T. Yau, An estimate of the gapof the �rst two eigenvalues in the Schr�odinger operator, Ann. Scuola Norm.Sup. Pisa Cl. Sci. (4) 12 (1985), 319{333.[32] R. G. Smits, Spectral gaps and rates to equilibrium for di�usions in convexdomains, Mich. Math. J. 43 (1996), 141{157.



10[33] G. Szeg}o, On membranes and plates, Proc. Nat. Acad. Sci. (USA) 36 (1950),210{216.[34] G. Szeg}o, Note to my paper \On membranes and plates", Proc. Nat. Acad.Sci. (USA) 44 (1958), 314{316.[35] G. Talenti,On the �rst eigenvalue of the clamped plate, Ann. Mat. Pura Appl.(Ser. 4) 129 (1981), 265{280.[36] S.-T. Yau, Problem section, Seminar on Di�erential Geometry, S.-T. Yau, editor, Annals of Mathematics Studies, number 102, Princeton Uni-versity Press, Princeton, 1982, pp. 669{706 [reprinted as pp. 277{314 of [30]].[37] S.-T. Yau, Open problems in geometry, Di�erential Geometry: PartialDi�erential Equations on Manifolds, Proceedings of Symposia in PureMathematics, vol. 54, part 1, R. Greene and S.-T. Yau, editors, AmericanMathematical Society, Providence, Rhode Island, 1993, pp. 1{28 [reprintedas pp. 365{409 of [30]].[38] Q. H. Yu and J.-Q. Zhong, Lower bounds of the gap between the �rst andsecond eigenvalues of the Schr�odinger operator, Trans. Amer. Math. Soc. 294(1986), 341{349.Asymptotics for the spectrum of the Dirichlet Laplacian onhorn-shaped regions and � functions on cross-sectionsMichiel van den Berg and M. LianantonakisAbstractLet 
 be an open bounded set in Rm�1 with a piecewise smoothboundary, and starshaped with respect to (0; : : : ; 0) 2 Rm�1. We ex-tend a result of G. V. Rozenbljum for the spectrum of the DirichletLaplace operator for �(x; y) 2 Rm : y 2 (1 + x)��
; x > 0	 in Rm,where � > 0. For 2m� 1 > � > �1�m+ [(m� 1)(9m� 17)]1=2�=2 �� > 0 we obtain two-term asymptotics and a remainder estimate forthe Dirichlet counting function. For � � 2m � 1 or m > 2 and�1 �m + [(m� 1)(9m � 17)]1=2�=2 � � > 0 we recover Rozenbljum'sresult for the leading term of the Dirichlet counting function togetherwith an improved remainder estimate.Open ProblemLet �, k�k2 = 1, be the �rst eigenfunction of the Dirichlet Laplaceoperator on an open, bounded and convex set D, with inradius � anddiameter d. Show thatk�k1 � cm�(1�3m)=6d�1=6;with cm independent of D.



11The conjecture is based on a result on the asymptotic behaviourfor the L1 norm of the �rst eigenfunction � of the Dirichlet Laplaceoperator on a conic sector over a geodesic disc B� in Sm�1 as � ! 0.An inequality between Dirichlet and Neumann eigenvaluesLeonid FriedlanderAbstractLet 
 be a centrally symmetric, bounded domain with a C2 bound-ary. Denote by � the smallest eigenvalue of the Dirichlet Laplacianthat corresponds to an odd eigenfunction, and let � be the smallestpositive eigenvalue of the Neumann Laplacian that corresponds to aneven eigenfunction. D.Jerison and N.Nadirashvili conjectured that, ifthe domain 
 is convex, then � > �. We proved this inequality un-der a less restrictive assumption, namely that the boundary of 
 is ofnon-negative mean curvature.Open ProblemFor closed manifolds and for manifolds with smooth boundary, theheat trace asymptotics is well known, and its coe�cients can be com-puted (at least, in principle). This is not the case for manifolds withcorners. Several authors obtained the formula for the free term of theheat trace asymptotics for a planar polygon (the Laplacian is takenwith the Dirichlet boundary conditions):X �2 � 224�;the sum is taken over all angles of the polygon. This formula is rathernon-trivial, and I do not know any good interpretation of it. (It is justa result of rather tedious computations.)I think that it would be very interesting to �nd a way of computingthe coe�cients in the heat trace expansion for manifolds with cornersin any dimension. Probably, the understanding of the expansion for athree-dimensional polyhedron would be the key to solving the generalproblem. Anyway, it is a good starting point.



12 Nodal sets for superconducting states in a non simplyconnected domain.Bernard HelfferAbstractMotivated by a paper by J. Berger and K. Rubinstein and in contin-uation of our previous work (in collaboration with Maria and ThomasHo�mann-Ostenhof and M. Owen), we analyze the nodal sets of someextrema of the following Ginzburg-Landau functional G�;k (� > 0; k >0) de�ned in a nonsimply connedted domain 
 � R2 and for pairs(u;A) such thatu 2 H1(
; C ) ; A 2 H1loc(R2;R2) ; curlA = 0by G�;k(u;A) = Z
 �(�juj2 + juj4) + j(r� iA)uj2 dx1 dx2+ k2��1 ZR2 j curlA�Hej2 dx1 dx2:Here He is a C10 function on R2 representing the external magnetic�eld. As classical , the analysis of the extrema goes through the analy-sis of solutions of the corresponding Euler-Lagrange equation which iscalled in this context Ginzburg-Landau equation. This equation admitsalways (i. e. for all � > 0) the so called normal solution: u = 0; A = AewhereAe is sucht that curlAe = He. We show that for � near the lowesteigenvalues �(1) of the Neumann realization of the magnetic Laplacianin 
: �Ae = �(r � iAe)2, other bifurcated solutions exist and weanalyze their nodal sets.Holonomic constraints in classical and quantum mechanicsR. Froese and I. HerbstAbstractWe constrain a system of non-relativistic particles moving in Rn toa smooth submanifold M by imposing a large force which draws thesystem into M . Thus we consider a HamiltonianH(�) = 12hp; pi + V (x) + �W (x);where W = 0 on M and W > 0 o� M . We consider the limitingbehavior of classical and quantum orbits as � % 1. Much work has



13been done on the classical case when the given initial conditions con-verge (as � % 1) to those with �nite energy. (See [RU], [Ta], [A],[G], [BS].) But in quantum mechanics the uncertainty principle makesin�nite energy initial conditions (in the directions orthogonal to themanifold) more natural. We consider this situation in both classicaland quantum mechanics [FH].The quantum problem divides into two parts: energy considerationsand dynamics. The problem of energy has been considered in a generalsetting in [HS1, HS2] and in many di�erent particular situations (see,for example, [S], [DE], [FK]). Computations show the existence of newpotential terms in the Hamiltonian resulting from intrinsic and meancurvatures ofM (see [To], [dC1], [dC2], [AD]). The last paper gives ref-erences to the path integral literature. The most interesting aspect ofour treatment of the quantum problem is seeing how the quantum dy-namics, e�itH(�), incorporates the averaging over fast variables familiarfrom classical dynamics [FH]. In another very di�erent context a re-lated averaging procedure arises in the very long time behavior (t=�2) ofclassical periodic orbits perturbed by a vanishingly small (� _W ) randomperturbation [F]. References[AD] L. Anderson and B. Driver, Finite dimensional approximations to Wienermeasure and path integral formulas on manifolds, UCSD preprint, July1998.[A] V. I. Arnold, Mathematical Methods in Classical Mechanics, Springer-Verlag, 1978.[BS] F. A. Bornemann and C. Sch�utte, Homogenization of Hamiltonian systemswith strong constraining potential, Physica D, 102 (1997), 57{77.[dC1] R. C. T. da Costa, Quantum mechanics of a constrained particle, PhysicalReview A 23, no. 4 (1981), 1982{1987.[dC2] R. C. T. da Costa, Constraints in quantum mechanics, Physical ReviewA 25, no. 6 (1982), 2893{2900.[DE] P. Duclos and P. Exner, Curvature-induced bound states in quantumwaveguides in two and three dimensions,Reviews in Mathematical Physics7, no. 1 (1995), 73{102.[FK] A. Figotin and P. Kuchment, Spectral properties of classical waves inhigh contrast media, SIAM Journal of Applied Mathematics 58 (1998),683{702.[F] M. Freidlin,Markov Processes and Di�usion Equations: Asymptotic Prob-lems, Lectures in Mathematics ETH, Birkh�auser, 1996.[FH] R. Froese and I. Herbst, Realizing holonomic constraints in classical andquantum mechanics, preprint.[G] G. Gallavotti, The Elements of Mechanics, Springer-Verlag, 1983.[HS1] B. Hel�er and J. Sj�ostrand, Puits multiples en m�echanique semi-classiqueV, �Etude des minipuits, Current Topics in Partial Di�erential Equations,Kinokuniya Company, Ltd., 133{186 (Volume in honor of S. Mizohata).[HS2] B. Hel�er and J. Sj�ostrand, Puits multiples en m�echanique semi-classiqueVI, Cas des puits sous-vari�et�es, Annales de l'Institut Henri Poincar�e,Physique Th�eorique 46, no. 4 (1987), 353{372.



14[RU] H. Rubin and P. Ungar, Motion under a strong constraining force, Com-munications in Pure and Applied Mathematics 10 (1957), 28{42.[S] M. Schatzman, On the eigenvalues of the Laplace operator on a thin setwith Neumann boundary conditions, Applicable Analysis 61 (1996), 293{306.[Ta] F. Takens, Motion under the inuence of a strong constraining force, inGlobal Theory of Dynamical Systems, Springer Lecture Notes in Mathe-matics 819 (1980), 425{445.[To] J. Tolar, On a quantum mechanical d'Alembert principle, in Group Theo-retical Methods in Physics, Springer Lecture Notes in Physics 313 (1988),268{274.Open Problem: Decay Patterns of Solutions to theSchr�odinger EquationI. HerbstConsider an L2 solution of the Schr�odinger equation(��+ V ) = � in Rn. De�ne the rate of exponential decay, � (!), in direction ! 2Sn�1 as� (!) = supf� � 0 : exp(�jxj) 2 L2(C)for some open cone C containing !g:Let � (x) = � � xjxj� jxj.The Agmon metric gives a lower bound for � (x) in many situations[A], � (x) � �(x);and if  > 0 outside a compact set there tends to be equality in (1) [CS].Although it is probably true that (1) is actually an equality generically[H], there are many situations where (1) is far from optimal [FHHOHO].At this point it is not known what controls the decay rate of eigenfunc-tions in the generalized n-body problem, even in two dimensions. Butthere is a conjecture in [FH1].Consider a simpler problem. Suppose �� = � in an open coneC in Rn (no boundary conditions are imposed). If n = 2 and � � 0there are results [FH2] similar to the trigonometric convexity knownfor analytic functions [T]. If n = 2 and � < 0 the results are similar butmore complex [FH2]. But as far as I know, for n � 3 there is virtuallynothing known of a general nature, even if � = 0.



15References[A] S. Agmon, Lectures on Exponential Decay of Solutions of Second-OrderElliptic Equations, Princeton University Press, 1982.[CS] R. Carmona and B. Simon, Pointwise bounds on eigenfunctions andwave packets in N -body quantum systems, V; lower bounds and pathintegrals, Communications in Mathematical Physics 80, no. 1 (1981),54{98.[FH1] R. Froese and I. Herbst, Exponential bounds and absence of posi-tive eigenvalues for N -body Schr�odinger operators, Communicationsin Mathematical Physics 87 (1982), 429{447.[FH2] R. Froese and I. Herbst, Patterns of exponential decay for solutionsto second order elliptic equations in a sector of R2, Journal d'AnalyseMathematique 49 (1987), 106{134.[FHHOHO] R. Froese, I. Herbst, M. Ho�mann-Ostenhof, and T. Ho�mann-Ostenhof, L2-exponential lower bounds to solutions of the Schr�odingerequation, Communications in Mathematical Physics 87 (1982), 265{286.[H] I. Herbst, Perturbation theory of the decay rate of eigenfunctions inthe generalized N -body problem, Communications in MathematicalPhysics 158, no. 3 (1993), 517{536.[T] E. C. Titchmarsh, The Theory of Functions, ed. 2, Oxford UniversityPress, 1939.Multiplicity of eigenvalues of 2-dimensional LaplaciansThomas Hoffmann-OstenhofAbstractThis is joint work with M. Ho�mann-Ostenhof, P. Michor andN. Nadiashvili, as well as joint work with B. Hel�er, M. Ho�mann-Ostenhof and N. Nadirashvili. The spectrum of a 2-dimensional Lapla-cian on a closed compact surface with genus zero is considered. Itis shown that the multiplicity m of the k-th eigenvalue �k (countingwith multiplicity) satis�es for k � 3, m(�k) � 2k � 3. This resulthas appeared in M. Ho�mann-Ostenhof, T. Ho�mann-Ostenhof andN. Nadirashvili. "On the multiplicity of eigenvalues of the Laplacianon surfaces" Ann. of Global Anal. and Geometry 17, 43-48, (1999).Thereby we could also include a potential. The same result holds alsofor membranes with Dirichlet boundary conditions. This is to appearin GAFA 1999 and is an ESI Preprint by T.Ho�mann-Ostenhof, P.Michor and N. Nadirashvili. Furthermore the situation is discussedwhen for the membrane case a Zn symmetry is present, this meansthe Hamiltonian is invariant with repect to a rotation by 2�=n. Thenthe groundstate eigenvalues in the various symmetry sectors can beordered and have multiplicity either 1 or 2. While for the case without



16symmetry the method of proof relies on the combination of a suitableversion of Eulers polyhedral formula, an analysis of nodal sets andCourants nodal theorem in order to get some topological obstructionsone has to use in addition variational methods and perturbation argu-ments for for the groundstate eigenvalues in symmetry sectors. Thiswork is presently being written up in collaboration with B. Hel�er, M.Ho�mann-Ostenhof and N. Nadiarashvili. It has also consequences forAharanov-Bohm Hamiltonians and twodimensional periodic Hamilto-nians de�ned on a strip. Open ProblemsProblem 1: Consider for a 2-dimensional Laplacian the functionM(k) = supM m(�k)where M either denotes a surface of genus zero or a membranes. It isknown from the results above that M(k) grows at most linearly for klarge. The question is what is the asymptotics ofM(k). The standardsphere show a pk growth.Problem 2: Consider a membrane D with smooth boundary. Forthe second eigenfunction u2 de�ne N (u2) = fx 2 D : u2 = 0g. Ques-tion: Prove or disprove thatLength of N (u2)Perimeter of @D � 1=�:This would mean that for the disk this ratio is maximised.Estimates for periodic and Dirichlet eigenvalues of theSchr�odinger operatorT. Kappeler and B. MityaginAbstractConsider the Schr�odinger equation �y00 + V z = �z for a complexvalued potential V of period 1 in the weighted Sobolev space Hw of2-periodic functions f : R! C ,Hw � HwC := ff(x) = 1Xk=�1 f̂(k)ei�kx j kfkw <1gwhere kfkw := (2Xk w(k)2 jf̂(k)j2)1=2



17and w = (w(k))k2Zdenotes a symmetric, submultiplicative weight se-quence. Denote by �n = �n(V ) (n � 0) the periodic eigenvalues of� d2dx2 + V when considered on the interval [0; 2], listed in such a waythat �2n; �2n�1 = n2�2+0(1) and by �n = �n(V ) (n � 1) the Dirichleteigenvalues of � d2dx2 + V considered on [0; 1] listed in such a way that�n = n2�2 + 0(1).Theorem There exist (absolute) constants K1;K2 > 0, so that forany 1-periodic potential V in Hw,Xn�N w(2n)2j�2n � �2n�1j2 � K1(1 + kV kw)K2and Xn�N w(2n)2j�n � �2nj2 � K1(1 + kV kw)K2;where N := K1(1 + kV kw)2.Lifshitz tails for random Schr�odinger operators withnegative singular Poisson potentialFr�ed�eric KloppAbstractThis talk is devoted to the description of the low energy behaviourof the density of states of a family of random Schr�odinger operators; itis based on the paper [5] written in collaboration with L. Pastur. LetV : Rd! R be a function such thatV = V1 + V2whereH1 for some C > 0 and any x 2 Rd, jV1(x)j � Ce�jxj=C,H2 the function V2 is compactly supported and satis�es V2 2 Lp(Rd)where p > p(d) and p(d) = 2 if d � 2 and p(d) = d=2 if d � 3,H3 for some set of positive measure E, V ��E < 0.De�ne the random potentialV!(x) = ZRd V (x� y)m(!; dy)(1)where m(!; dy) is a random Poisson measure of concentration �. V!is an ergodic random �eld on Rd. Consider the random Schr�odingeroperator H! = ��+ V!:(2)



18One hasTheorem 1 ([2]). Under the assumptions made above, H! is es-sentially self-adjoint on C10 (Rd) !-almost surely.Under our assumptions on V , we know that the almost sure spectrumof H! is � = R ([9, 2]).The integrated density of statesLet � be a cube centered at 0 in Rd. We de�ne HD!;� to be theDirichlet restriction of H! to �. Pick E 2 R. Consider the quantityN!;�(E) = 1Vol(�)]feigenvalues of HD!;� smaller than or equal to Eg:(3)Then one hasTheorem 2 ([2]). Under the assumptions made above, there existsa non random, non decreasing, non negative, right continuous functionN(E) such that, !-almost surely, for all E 2 R, E a continuity pointof N , N!;�(E) converges to N(E) as � exhausts Rd.N(E) is the integrated density of states (IDS) of H!. As N is nondecreasing, one can de�ne its distributional derivative dN . It is apositive measure and is supported on the almost sure spectrum of H!(see [2, 9]). One proves the following resultTheorem 3. For ' 2 C10 (R), we have('; dN) = E(tr(1C(0;1)'(H!)1C(0;1))):(4)where C(0; 1) is the cube of center 0 and side length 1, 1C(0;1) its char-acteristic function and E(�) denotes the expectation with respect to thePoisson process.Formula (4) is well known under more restrictive assumptions on thepotential V! i.e. for less singular single site potentials V (see [9]).The asymptotics of the IDSTo describe the asymptotic behavior of N(E) near �1, we willneed to de�ne an auxiliary operator. For g 2 R, de�neH(g) = ��+ gV:(5)Under our assumptions on V , V is relatively form bounded with respectto �� with relative bound 0. Hence,H(g) admits a unique self-adjointextension. Let �(H(g)) denote its spectrum. It is lower semi-bounded.The in�mum of �(H(g)) i.e. the ground state energy of H(g) will bedenoted by E(g). Let 'g be the respective ground state i.e. the uniquepositive normalized eigenfunction of H(g) associated to energy E(g)



19([10, 11]). In the sequel it will often be more convenient to work withE�(g) = �E(g) instead of E(g) itself. From assumption H3, one easilyinfers that E�(g) ! +1 when g ! +1. Moreover E� is strictlyincreasing in a neighborhood of +1. Let g be an inverse of E� in aneighborhood of +1. g is strictly increasing.In the regular (classical) case, it was found that g is governing the�rst term asymptotic of logN (cf [9, 8]). In the singular (quantum)case, the singular set of V will play a special part in the asymptotics.To measure this role, we introduce the notion of asymptotic groundstate i.e.Definition 1. Let g 2 (1;+1) 7!  g 2 H1(Rd). We will say that g is an asymptotic ground state if and only if� the vector  g is normalized.� 9g0 > 1, l0 > 0 such that 8g � g0, supp g � C(0; l0) (whereC(x; l) denotes the cube of center x and side length l).� jh(H(g) � E(g)) g;  gijjE(g)j ! 0 as g ! +1:(6)We prove the existence of an asymptotic ground state. For a 2 Rd, wede�ne the translation �a by �aV (x) = V (x� a) and we de�neA g = (� > 0; limg!+1 supjaj�g�� �gjh(�aV � V ) g;  gijE�(g) � = 0)If A g 6= ;, then we de�ne ��( g) := infA g . Moreover, we de�ne Ato be the union of all A g . We prove that A 6= ;. We de�ne�� := infA:(7)Then we proveTheorem 4. Under the assumptions H1, H2 and H3, for su�-ciently large E, one has�(1 + ��d)g(E) log g(E)(1 + o(1))� logN(�E) � �g(E) log g(E)(1 + o(1)):(8) One may complain that Theorem 4 is somewhat imprecise in thatit only gives a two sided estimate. But, as we will see below, this is insome way unavoidable as the true asymptotic does not only depend ong but also on the singular set of the negative part of V . More precisely,as can be seen from Theorem 6 (and from the proof of Theorem 4), theasymptotics of the IDS depends on the way the eigenfunction associatedto the lowest eigenvalue for the operator �� + gV concentrates nearthe singular set of the negative part of V as g becomes large. In generalthe correction also depends on the geometry of the singular set. Forexample, if the singular set is a segment (e.g. a dislocation), one can



20see that neither the lower nor the upper bound given by Theorem 4are sharp. The two sided estimate (8) can be made more precise if weknow more on V .The �rst and simplest example we give is the case when V isbounded from below, reaches its minimum at a single point, say 0,and is continuous near 0. Then one easily proves that �� = 0 and theupper and lower bounds in (8) coalesce to givelogN(�E) �E!+1�g(E) log g(E):(9)We will now give other results that, we think, enclose most of thephysically relevant examples.Let v� be the essential in�mum of V and assume that V is boundedfrom below, sayH1' �1 < v� < 0.It is easy to show that g(E)�E=jv�j when E ! +1. We obtainTheorem 5. Under the assumptions H1, H2 and H1', one haslogN(�E) �E!+1�g(E) log g(E) �E!+1 Ev� logE:(10)Here and in the sequel a � b will always mean a = b(1 + o(1)).This result extends (9) removing the continuity assumption near theminimum.Consider now an example a bit more singular. In this case, d = 2and V2(x) = log� jxj; x 2 R2where, for a � 0, log� a = minflog a; 0g. Using the inequality log� jxj+logR � log�Rjxj � log jxj for 0 < R < 1 and the variational principlefor the ground state energy, one shows that, in this case,E�(g) �g!+1 g=2 log g hence g(E) �E!+1 2E= logE. One also shows that�� = 0 for this single site potential. Therefore, Theorem 4 tells us thatlogN(�E) �E!+1�g(E) log g(E) �E!+1�2E:Hence, the asymptotic formula (9) is also valid for certain mildly sin-gular potentials.Another case where one can �nd an asymptotic for logN is when Vhas only power law singularities. Let q be a positive integer and pick qpositive exponents (�i)i=1;:::;q and q functions (hi(�))i=1;:::;q continuouson the sphere Sd�1. For 1 � i � q, consider the potentialsVi(x) = hi(�(x))jxj�i where �(x) = xjxj(11)



21Assume that 0 < �i < (1 if d = 1; 2;2 if d � 3:(12)Then Vi is relatively form bounded with respect to �� with relativebound 0 and we can consider the operators H i = �� + Vi with formdomain H1(Rd). For 1 � i � q, Ei denotes the ground state energy ofH i. Now we assume thatH1" � there exists q distinct points (xi)i=1;:::;q in Rd and q con-tinuous compactly supported function (Wi)i=1;:::;q such thatWi(0) = 1 such thatV2(x) = qXi=1 Wi(x� xi)Vi(x� xi) = qXi=1 �xi(WiVi)(x):(13) � for some 1 � i0 � q, we have Ei0 < 0.Notice that assumption H1" implies assumptions H2 and H3. De�ne�y = sup f�i; 1 � i � q such that Ei < 0g ;(14) E� = sup �jEij; 1 � i � q such that Ei < 0 and �i = �y	 ;(15) �y = 12� �y :(16)In this case, we compute �� = �y and proveTheorem 6. Under the assumptions H1 and H1", one haslogN(�E) �E!+1�(1 + �yd)g(E) log g(E)�E!+1��1 + d � �y2 �� EE��1��y=2 log� EE��(17)Assumptions H1 and H1" include most physically interesting casesas, for example, the 3-dimensional attractive screened Coulomb poten-tial V (x) = �e�jxjjxj . In this case we have �� = �y = 1 and E� = 1 (see[6]); thus logN(�E) �E!+1�2pE logE:There is another physically interesting case that has not been discussedhere: it is the case of point potentials [4].References[1] M. Donsker and S.R.S. Varadhan. Asymptotics for the Wiener sausage. Com-munications on Pure and Applied Mathematics, 28:525{565, 1975.[2] W. Kirsch. Random Schr�odinger operators. In A. Jensen H. Holden, editor,Schr�odinger Operators, number 345 in Lecture Notes in Physics, Berlin, 1989.Springer Verlag. Proceedings, Sonderborg, Denmark 1988.



22[3] F. Klopp. Internal Lifshits tails for random perturbations of periodicSchr�odinger operators. Duke Mathematical Journal, 1999. to appear.[4] F. Klopp and L. Pastur. in progress.[5] F. Klopp and L. Pastur. Lifshitz tails for random Schr�odinger operators withnegative singular Poisson potential. Communications in Mathematical Physics,1999. to appear.[6] L. Landau and L. Lifshitz. M�ecanique quantique, th�eorie non-relativiste. Edi-tions MIR, Moscou, 1966.[7] I.M. Lifshitz, S.A. Gredeskul, and L.A. Pastur. Introduction to the theory ofdisordered systems. Wiley, New-York, 1988.[8] L. Pastur. Behaviour of some Wiener integrals as t! +1 and the density ofstates of the Schr�odinger equation with a random potential. Teor.-Mat.-Fiz,32:88{95, 1977. (in russian).[9] L. Pastur and A. Figotin. Spectra of Random and Almost-Periodic Operators.Springer Verlag, Berlin, 1992.[10] M. Reed and B. Simon. Methods of Modern Mathematical Physics, Vol IV:Analysis of Operators. Academic Press, New-York, 1978.[11] B. Simon. Schr�odinger semigroups. Bulletin of the American MathematicalSociety, 7:447{526, 1982.[12] B. Simon. Lifshitz tails for the Anderson model. Journal of Statistical Physics,38:65{76, 1985.[13] A. Sznitman. Lifshitz tails and Wiener sausages. I. Journal of Functional Anal-ysis, 94:223{246, 1990. Open ProblemsHorst Kn�orrerProblem:Let a1; � � � ; an; b1; � � � ; bn be real numbers. For a permutation � 2 Snset�(�) =(sign � if a�(1) � b1; a�(1) + a�(2) � b2; � � � ; a�(1) + � � �+ a�(n) � bn0 otherwiseHere sign � is the signum of the permutation �. Is there a constant Cindependent of n, a1; � � � ; an; b1; � � � ; bn such that�� X�2Sn �(�)�� � Cnpn!Problem:Let � be a lattice in R2. For a real valued analytic function on the torusR2=� ( = periodic potential) and k 2 R2 let En(k;V ) be the nth Floquet



23eigenvalue of ��+V , that is the nth eigenvalue of the operator ��+Von the space f 2 H2loc(R2) �� (x+ ) = e{ k�  (x) for all  2 �g.We say that two periodic potentials V1; V2 are Floquet isospectral ifEn(k; V1) = En(k; V2) for all n and all k 2 R2. V1 and V2 are triviallyFloquet isospectral, if V2(x) = V1(�x+ t) for some vector t 2 R2, or ifthere are perpendicular vectors v;w 2 R2 and pairs of onedimensionalisospectral periodic potentials p1; p2 and q1; q2 such that V1(x) = p1(x �v) + q1(x � w) and V2(x) = p2(x � v) + q2(x � w).Question: Are there nontrivial pairs of Floquet isospectral two dimen-sional periodic potentials?Some known Results:[G.Eskine, J.Ralston, E.Trubowitz: On isospectral periodic potentialsin Rn, CPAM 37, 715-753 (1984)] show the existence of \large" sets ofperiodic potentials V to which there are no nontrivial Floquet isospec-tral potentials. The case that �r�r+ V acts on a topologically non-trivial Hermitian line bundle over R2=� is discussed in [V.Guillemin:Inverse spectral results on two dimensional tori. J.AmericanMath. So-ciety 3, 375-387 (1990)]. Any potential that is isospectral to a constantpotential is itself constant (see e.g. [H.Kn�orrer, E.Trubowitz: A direc-tional compacti�cation of the complex Bloch variety. Comm. Math.Helvetici 65, 114-149 (1990)]). Observe that this is not the case forcomplex valued potentials; any potential of the formV (x1; x2) =Xm;n V̂ (m;n) e2�{(mx1+nx2)with V̂ (m;n) = 0 unless m > 0; jn=mj � 1=2 is Floquet isospectral tothe potential 0.There is also a preprint by O.Veliev on inverse problems for periodicpotentials in dimension � 2.Problem:For a lattice � in R2 set �(�) = fjj2 ��  2 �gWe say that � has arbitrary long gaps in its spectrum, if for every ` > 0there is an interval I of length ` in R+ such that I \ �(�) = ;. Let Lbe the set of all lattices, and X the set of all � 2 L that have arbitrarylong gaps in their spectrum.Question: Does L nX have measure zero?Some known Results:[Th.Kappeler: On double eigenvalues of Schr�odinger operators on two{dimensional tori. J. Functional Analysis 115, 166-183 (1993)] shows



24that rational lattices lie in X, and that X is a set of second Bairecategory in L. Mathematics of photonic crystalsPeter KuchmentAbstractThe burgeoning young area of research on photonic crystals is adream of an applied mathematician: it is of paramount practical im-portance, most of its problems are precisely formulated in exact math-ematical terms and remain unresolved, and resolving them requires awide range of mathematical tools ranging from analytic operator func-tions to several complex variables, to algebraic geometry, to PDEs, toprobability theory, to numerics. A photonic crystal is an arti�cial pe-riodic dielectric medium that is an optical analog of semiconductors.Its main property is existence of a "complete band gap", i.e. of an in-terval of frequencies for which electromagnetic waves cannot propagatein the medium. Creation of such a material promises to bring abouta technological revolution. The talk provides a brief overview of themathematical component of the photonic crystal problem. The majorpart of it deals with various aspects of spectral theory of di�erentialand pseudodi�erential operators and operator pencils (Maxwell opera-tor, its scalar counterparts, Dirichlet to Neumann operators on graphs,ODEs on graphs, etc.).New bounds on the constants L;d appearing in theLieb-Thirring inequalitiesAri LaptevAbstractWe show how a matrix version of the Buslaev-Faddeev-Zakharovtrace formulae for a one-dimensional Schr�odinger operator leads toLieb-Thirring inequalities with sharp constants Lcl;d with  � 3=2 andarbitrary d � 1.Improved estimates on the constants L;d, for 1=2 <  < 3=2, d 2 Nin the inequalities for the eigenvalue moments of Schr�odinger operatorsare established.



25Open ProblemsLet H be a Schr�odinger operatorH = ��� Vin the space of vector functionsL2(Rd; Cm) = fu : ZRd ku(x)k2Cm dx <1g;where V is a non-negative Hermitian m � m matrix-valued potentialsatisfying kV kCm 2 Ld=2(Rd). Let N(H) be the number of negativeeigenvalues of H.1. Prove or disprove the following matrix version of the Cwikel-Lieb-Rosenblum (CLR) inequality: that is if d � 3 and m � 2 then there isa constant M0;d <1 independent of m such thatN(H) �M0;d Z tr V d=2 dx:2. Let L0;d be the corresponding constant appearing in the scalar case.Is it true that M0;d = L0;d if the inequalityM0;d <1 is proved?A simple analytic proof of the glueing formula for theanalytic torsion in the presence of a general(nonunimodular) at bundleMatthias LeschAbstractIn recent years there has been considerable progress in understand-ing the mechanism behind the celebrated Cheeger{M�uller Theorem onthe equality of analytical and combinatorial torsion. Both torsionsare numerical invariants of a compact manifold and a representationof its fundamental group. The combinatorial torsion is well{de�nedonly if the representation is unimodular. In the present work I willrestrict myself to �nite{dimensional representations, though it shouldbe mentioned that there is considerable interest in in�nite{dimensionalrepresentations [3].The Cheeger{M�uller theorem states that for unitary representationsthe analytical torsion (an invariant of the spectrum of the Laplacianson forms) equals the combinatorial torsion (a combinatorial invariant)[4, 6]. For more general representations there is a defect betweenthese two invariants which, in principle, can be calculated [1]. If the



26boundary of the manifold is nonempty, the defect is nontrivial alreadyfor unitary representations [5].A completely di�erent approach to the Cheeger{M�uller Theorem,however only in the case of a trivial representation, was invented by S.Vishik [7]. J. Br�uning and the author jointly extended Vishik's methodto nonlocal well{posed boundary value problems to obtain a new proofof the glueing formula for the �{invariant [2].This is the starting point of the present work. I showed that themethod of loc. cit. can be used to give a rather straightforward proofof the glueing formula for the analytic torsion. I do not impose any re-strictions on the representation of the fundamental group except �nite{dimensionality. This generalizes the above mentioned result of Vishikand also later work of Burghelea, Kappeler and Friedlander. As anapplication I can present a Cheeger{M�uller type theorem on mani-folds with boundary which is in the spirit of [1]. The manifold withboundary case is nontrivial since for non{unitary representations of thefundamental group the 'doubling trick' of [5] is not applicable.References[1] J. Bismut andW. Zhang: An extension of a theorem by Cheeger and M�uller.Ast�erisque 205 (1992), 235 pp.[2] J. Br�uning and M. Lesch: On the eta{invariant of certain non{local bound-ary value problems. Duke Math. J. 96 (1999), 425{468. dg-ga/9609001[3] D. Burghelea, L. Friedlander, T. Kappeler, and P. McDonald: An-alytic and Reidemeister torsion for representations in �nite type Hilbert mod-ules. Geom. Funct. Anal. 6 (1996), 751{859[4] J. Cheeger: Analytic torsion and the heat equation. Ann. Math. 109 (1979),259{322[5] W. L�uck: Analytic and topological torsion for manifolds with boundary andsymmetry. J. Di�erential Geom. 37 (1993), 263{322[6] W. M�uller: Analytic torsion and R-torsion of Riemannian manifolds. Adv.Math. 28 (1978), 233{305[7] S. Vishik: Generalized Ray-Singer conjecture. I. A manifold with a smoothboundary. Commun. Math. Phys. 167 (1995), 1{102Open ProblemsLet C � CPN be an algebraic variety in complex projective space.Locally, C is the common zero locus of a set of homogeneous polyno-mials. We denote by � := singC the singular locus of C and we equipC n� with a hermitian metric induced from such a metric on CPN (e.g.the Fubini{Study metric).1. dimC C = 1: C is a complex algebraic curve and it is well{known (cf. [2]) that C n � is compact surface with isolated asymptot-ically cone{like singularities. Hence the conical analysis invented byJ. Cheeger [3, 4] applies and one can show that the basic results ofSpectral Geometry hold for C n �. As these basic results we consider



27� The Gau�{Bonnet Theorem [7] and the index theorem for the@{operator [2].� The discreteness of the Laplacian, more precisely, the Friedrichsextension of the Laplacian [4].� The complete short{time asymptotics of the heat trace of theLaplacian [1].Furthermore, in [1] it is shown that the spectrum of the Laplaciandetects whether � is nonempty or not.2. dimC C > 1: The problem I want to address here is: What canone say about the spectral theory of the Laplacian in higher dimen-sions? Only some partial results are known:� The L2-Stokes Theorem in the complex case and the fact that itis wildly wrong for real varieties (cf. e.g. [8],[5]).� Discreteness of the Laplacian on functions [6] and, for varietieswith isolated singularities, on forms except in degree dimC C [5].� Hodge Theory [8]. References[1] J. Br�uning and M. Lesch: On the spectral geometry of algebraic curves. J.reine angew. Math. 474 (1996), 25{66[2] J. Br�uning, N. Peyerimhoff, and H. Schr�oder: The �@{operator on al-gebraic curves. Commun. Math. Phys. 129 (1990), 525{534[3] J. Cheeger: On the spectral geometry of spaces with cone{like singularities.Proc. Nat. Acad. Sci. USA 76 (1979), 2103{2106[4] J. Cheeger: Spectral geometry of singular Riemannian spaces. J. Di�. Geom.18 (1983), 575{657[5] D. Grieser and M. Lesch: On the L2-Stokes theorem and Hodge theory forsingular algebraic varieties. Preprint, 1999. math.FA/9905181[6] P. Li and G. Tian: On the heat kernel of the Bergmann metric on algebraicvarieties. J. Amer. Math. Soc. 8 (1995), 857{877[7] M. Nagase: Gau�{Bonnet operator on singular algebraic curves. J. Fac. Sci.Univ. Tokyo 39 (1992), 77{86[8] W. Pardon and M. Stern: Pure Hodge structure on the L2-cohomology ofvarieties with isolated singularities. Preprint, 1997, alg-geom/9711003



28 Smooth perturbation theory of unbounded operatorsPeter W. MichorAbstractAll presented results can be found in:[1] Kriegl, Andreas; Michor, Peter W.: The Convenient Setting ofGlobal Analysis. Mathematical Surveys and Monographs, Volume: 53,American Mathematical Society, Providence, 1997.or:[2] Alekseevky, Dmitri; Kriegl, Andreas; Losik, Mark; Michor, PeterW.: Choosing roots of polynomials smoothly, Israel J. Math 105 (1998),p. 203-233.Theorem 0.1. Let t 7! A(t) be a smooth curve of unbounded self-adjoint operators in a Hilbert space with common domain of de�nitionand with compact resolvent. Then the eigenvalues of A(t) may be ar-ranged in such a way that each eigenvalue is C1.Suppose moreover that no two of the continuously chosen eigenval-ues meet of in�nite order at any t 2 R if they are not equal. Then theeigenvalues and the eigenvectors can be chosen smoothly in t, on thewhole parameter domain.That A(t) is a smooth curve of unbouded operators means the fol-lowing: There is a dense subspace V of the Hilbert space H such thatV is the domain of de�nition of each A(t), and such that A(t)� = A(t)with the same domains V , where the adjoint operator A(t)� is de-�ned by hA(t)u; vi = hu;A(t)�vi for all v for which the left hand side isbounded as function in u 2 H. Moreover we require that t 7! hA(t)u; viis smooth for each u 2 V and v 2 H.With the help of the catesian closed calculus for locally convexspaces as explained in [1] one can show that in turn the followingmappings are smooth:t 7! A(t)u is smooth R! H for each u 2 V .t 7! A(t) is smooth R ! L(Vt;H), with the topology of uniformconvergence on compact parts of smooth curves in Vt, where the Hilbertspace Vt is V with inner product hu; vit = hu;A(t)vi.t; z; u 7! (A(t)�z)�1u is smooth into H for t 2 R, z in the resolventset, and u 2 H.The proof of the theorem (which was not presented) at later stagesalso involves results about choosing roots of polynomials smoothly.These were presented in some details. See [2].



29Schr�odinger Operators on Graphs and Symplectic GeometrySergey P. NovikovAbstractSince 1997 (Uspekhi Math Nauk-Russia Math Surveys, 1997,n 6)the present author published a series of works dedicated to the SpectralTheory of the Schrodinger Operators on Graphs (discrete and contin-uous) (see the volume of Conference dedicated to the 60th birthday ofV.Arnold, "Schrodinger Operators on Graphs and Symplectic Geom-etry", Fields Institute, Toronto, 1999, and the Asian Math Journal,volume dedicated to the 70th birthday of Mikio Sato, "SchrodingerOperators on Graphs and Topology", December 1998).The 1-homology-valued symplectic form ("SymplecticWronskian")on the spaces of solutions has been constructed. This quantity playsfundamental role in the construction of the Scattering Theory for theGraphs with tails. In particular, the unitarity properties of scatteringare elementary topological and symplectic phenomena. Nonlinear sys-tems also were considered recently in the joint work with A.Schwarz(Uspekhi, 1999, n 1).CRITICAL METRICS FOR SPECTRAL ZETAFUNCTIONSKate OkikioluAbstractLet M be a closed compact n-dimensional manifold with n odd.For a metric g on M , let � be the Laplace-Beltrami operator witheigenvalues 0 < �1 � �2 : : : and corresponding L2-orthonormalizedeigenfunctions �1; �2; : : : . The spectral zeta function for � is given byZ(s) = 1Xj=1 ��sjwhen <s > n=2. It extends to a meromorphic function for s 2 C .The determinant of � is de�ned by det0� = e�Z0(0). For k �xed, Z(k)de�nes a functional on the space of metrics. When k is an integer weconsider metrics of a given volume and give a description of the criticalmetrics for Z(k) in terms of the Schwartz kernel of ��k. We show thatwhen k < n=2, every critical metric for (�1)k+(n+1)=2Z(k) has �niteindex. Similarly, every critical metric for (�1)(n�1)=2 det0� has �nite



30index, so det0� behaves like Z(1) in this respect. When k > n=2 theseries Z(k) is summable and the behavior of Z(k) close to a criticalmetric g0 depends on the local zeta functionZ(k; x) = 1Xj=1 ��kj j�j(x)j2at g0. In particular, if Z(k; x) < (2=n)Z(k) for some x, then Z(k) hasan essential saddle point at g0, that is neither Z(k) nor �Z(k) has �niteindex. It is not known whether there is a critical metric satisfying thiscondition. On the other hand, if Z(k; x) > (2=n)Z(k) then �Z(k) has�nite index. This condition holds for all homogeneous spaces.Absolute Continuity of Periodic Schrodinger OperatorsZhongwei ShenAbstractThis talk concerns the Schr�odinger operator ��+V (x) in Rd; d �3, with periodic potential V . Under the assumption V 2 Ld=2loc (Rd), it isshown that the spectrum of ��+V (x) is purely absolutely continuous.The condition on the potential V is optimal in the context of Lp spaces.The proof relies on certain uniform Sobolev inequalities on the d-torus.We also establish the absolute continuity of �� + V (x) with certainperiodic potential V in the weak-Ld=2 space.On the Bethe-Sommerfeld conjecture for the polyharmonicoperatorAlexander V. SobolevAbstractLetH = H(l) = (��)l+V be the polyharmonic operator in L2(Rd),d � 2, perturbed by a real-valued potential V periodic with respect toa lattice � � Rd. The spectrum of H is known to consists of a union ofclosed intervals called spectral bands, possibly separated by spectrumfree intervals called spectral gaps. We prove that the spectrum of theoperator H has �nitely many spectral gaps under suitable conditionson the order l and dimension d. To state the result in the precise formintroduce some notation. For each � 2 R de�ne the quantity m(�) to



31be the number of spectral bands covering the point �. Also, de�ne� = (1; d 6= 1 mod 4;3; d = 1 mod 4:Then the following two theorems hold.Theorem 0.2. Suppose that the real-valued function V is bounded.If 4l > d+ �, then m(�) � C� d��4l ;(1)for all su�ciently large values of �, with a positive constant C inde-pendent of V and �.Theorem 0.3. Suppose that V is an in�nitely smooth periodic func-tion. Then the estimate (1) holds under the condition 4l > d + �� 2.Open ProblemLet � � Rd; d � 2 be a lattice with a fundamental domain Q. De-note by #(k; �) the number of the lattice points inside the ball B(k; �)of radius � > 0 centered at the point �k 2 Rd. We are interested in thevariation of the number #(k; �) when both k and the radius � change.It is clear that as � !1, the leading term of #(k; �) is given by thevolume vol(�) of the ball B(0; �). It is also known that for large �ZQ j#(k; �)� vol(�)jdk � c� d��2 ;(2)with a positive constant c and the number� = (1; d 6= 1 mod 4;3; d = 1 mod 4:This estimate immediately leads to the point-wise bounds8<:maxk#(k; �) � vol(�) + c� d��2 ;mink#(k; �) � vol(�)� c� d��2 ;(3)and hence maxk #(k; �)�mink #(k; �) � c� d��2 :(4)If one assumes that the lattice is rational, then the latter estimate isknown to hold with the exponent d� 2 instead of (d � �)=2.Questions: Is it possible to prove either of the bounds (2) or (3)with � = 1 for all dimensions?Can one �nd an estimate of the form (4) with an exponent greaterthan (d� �)=2 without the assumption that the lattice is rational?



32Hearing analytic plane domains with the symmetry of anellipseSteven ZelditchAbstractLetD be the class of real analytic plane domains with the symmetryof an ellipse, i.e. an up-down symmetry and a right-left symmetry. As-sume that at least one symmetry axis is non-degenerate as a bouncingball orbit of the billiard ow. We will sketch the proof of the followingtheorem: Two domains in the classD with the same Dirichlet spectrumare isometric. Open ProblemsProblem 1: Metrics with maximal multiplicities.Suppose that g is a metric on S2 with the property that the mul-tiplicities of its distinct eigenvalues are precisely the same as for thestandard metric, i.e. mk = 2k + 1: Is g the standard metric?Discussion: This problem was posed by S.T. Yau after some workof M. Engman and S.Y. Cheng. In the paper, 'Maximally degenerateLaplacians'. Ann. Inst. Fourier (Grenoble) 46 (1996), I proved that gmust be a Zoll metric (all geodesics closed) with the property that itsLaplacian �g is isopectral to �0+ S, where �0 is the standard Lapla-cian, and S is a smoothing operator. I also gave an `integral geometry'condition on g. In `Fine structure of Zoll spectra'. J. Funct. Anal.143 (1997), 415{460. I further showed that the projections �k ontoeigenspaces were asymptotic to all orders to the standard projections.Thus, the spectral theory of �g seems to have `in�nite order contact'with the spectral theory of �0. The problem whether g is the stan-dard metric remains open. There are analogous problems on higherdimensional spheres, etc.Problem 2: Sup-norms of eigenfunctions.H�ormander proved in the 60's that the sup norm jj��jj1 of an eigen-function ��� = �2�� of the Laplacian on a compact Riemannian man-ifold (M;g) satis�es: jj��jj1 << �n�12 : This estimate is sharp in thesense that it is achieved for (M;g) = (Sn; g0); the standard metric onthe n-sphere.The proof is that N(�; x) := Pj:�j�� j��j(x)j2 = Cn�n + R(�; x)where R(�; x) << �n�1 uniformly in x. Observe that j��j(x)j2 <<R(�; x) to conclude the sup-norm estimate. Here, << means `boundedby a constant independent of x.'Question 1: For which manifolds M does there exist a metric gachieving this bound?



33There should exist topological restrictions. Heuristically, the pointat which �� achieves its sup-norm should be a point of recurrence forthe geodesic ow. Roughly speaking, there should exist a `point' suchthat almost all geodesics leaving that point return to that point at a�xed time. This poses well-known topological conditions onM (cf. thebook of Besse, Manifolds all of whose geodesics are closed.)At the opposite extreme, there exist metrics (e.g. at metrics onirrational tori) for which jj��jj1 << 1.Question 2: For whichM does there exist a g such that jj��jj1 << 1Must (M;g) be a at torus?In a forthcoming paper with J. Toth, we will prove that the answeris yes for (at least broad classes) of metrics with completely integrablegeodesic ow. Breit-Wigner approximationsVesselin Petkov and Maciej ZworskiAbstractFor operators with a discrete spectrum, f�2jg, the counting functionof �j 's, N(�), trivially satis�es N(� + �) � N(� � �) = Pj ��j((� ��; �+ �]). In scattering situations the natural analogue of the discretespectrum is given by resonances, �j 2 C + , and of N(�), by the scatter-ing phase, s(�). The relation between the two is now non-trivial andwe prove thats(�+ �)� s(�� �) = Xj�j��j<� !C+ (�j ; [�� �; �+ �]) +O(�)�n�1 ;where !C+ is the harmonic measure of the upper of half plane and � canbe taken dependent on �. This provides a precise high energy versionof the Breit-Wigner approximation, and relates the properties of s(�)to the distribution of resonances close to the real axis.Compiled by Thomas �stergaard S�rensen, ESI, Vienna, Austria.


