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1. Introduction

In a recent paper J. Yngvason and the author [BY99] investigated KMS-states on
a dynamical system (A, a;). The main aim of this investigation consisted in looking for
consequences of Tomita’s modular theory [To67,Ta70]. Let ws be a f—KMS-state of the dy-
namical system, let M be the von Neumann algebra generated by the GNS-representation
of A, and U(t) the induced representation of the dynamical group oy It was assumed
that the cyclic vector €2 is the only vector invariant under U(¢). Since wg is a KMS-state,
the group U(t) is up to a scalefactor the modular group of the pair (M, ). The precise
relation is

Al = U(-B1). (L1)

where the sign is a consequence of the different convention in mathematics and physics.
Since 2 is the only vector invariant under the modular group it follows that M is a factor.
Moreover it was assumed that there exists a von Neumann subalgebra V' C M fulfill-
ing
(i) AdU@)N C N for t>0.
(i) LtJAd U(t)N is dense im M.

This implies by a Reeh—Schlieder type argument [RS61] the cyclicity of £ for N'. Moreover,
N fulfils the condition of half-sided modular inclusion, which implies [Wie93,97] that there
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exists a one—parametric group V(s) with non—negative spectrum. This group has the
following properties:

V(s)Q s € IR,
OV = w” o), o
AdV(1)M
IV (s)Ipm = ( s).

Since there exists a half-sided translation it follows that M is of type III [Bch98].

This theory develops interesting features if one looks at two—dimensional models which
factorize in light cone coordinates. In this situation the time translation U(t) factorizes
also. Therefore, the f—KMS—state is a product state and induces f—KMS—states on every
factor. This implies that the group V(s) factorizes into two groups with non-—negative
spectrum.

Ut) =UT(t) @ U (1),
V(s) =VT(s) V7 (s),

M=MtoMm", (1.3)
ARy = Al DA

H=HTOH".

N7 are defined by V(1) M*VE(—1), where V*(s) is identified with V' (s)@ 1 and similar
definition for V7 (s).

This tensor product structure inspired B. Schroer and H.-W. Wiesbrock [SW99] to
associate with M™ and its commutant in ‘H* a quantum field theory on the line. In
this case the theory becomes a vacuum theory and V*(s) the translation. The algebra
M is identified with the algebra of the positive half-line and the algebra N'* with the
algebra of the set [1,00). The commutant of M™ is identified with the algebra of the
negative half-line. By standard construction one obtains a theory of local observables on
the line provided Q7 is also cyclic for the algebras M™([a,b]). In this setting the algebra
M becomes the algebra of the forward light cone C'*, and the thermal behaviour of the
original theory is a kind of Unruh—effect for the forward light cone.

Inspired by the above results one would like to characterize those two-dimensional
quantum systems and its thermal states, which can be reduced to the above structure.
Moreover, one likes to understand the situation if the theory can not be written as a
tensor product.

2. Assumptions and the tensor product case

We start with a C*—dynamical system (A, o) and assume that wg is a f—KMS—state.
Let (m,,U(t),Q) be the GNS-representation of wg. We assume that § is the only U(t)
invariant vector in the representation space H,. This implies the von Neumann algebra
M :=n(A)” is a factor. In addition we assume that there exists a proper von Neumann
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subalgebra A" of M which has the properties

Q is cyclic for NV,
AdU(#)N C N fort >0,
NAdU(HN = L, (2.1)

{UN} =M

Using modular theory one easily checks that the third and fourth condition are equivalent.

Using the last condition and the fact that, up to a scaling factor, U(¢) is the modular
group of M one concludes by a Reeh-Schlieder [RS61] type argument that € is also cyclic
for M. From these assumptions J. Yngvason and the author [BY99] concluded, that there
exists a one—parametric continuous unitary group V(¢) with non—negative spectrum which

fulfils
V(s)Q = Q,

Ad A?{AV(S) = V(e_zms),
IV (s)Ipm = V(—3),
AdV(I)M = N.

(2,2)

Inspired by the two-dimensional example treated in [BY99] we will assume, there exist
two groups V¥ (s), V ~(s), both with non—negative spectrum. These groups shall fulfil the
following relations

2.1 Assumptions:

VEs)Q = Q,
VIV (s) =V (s)V (1), s.te R
VE(s)V 7 (s) = Vi(s),
AdVESM Cc M, for s>0,
AdVES)M # M, for 5> 0.

S

The last relation implies that VT (s) are half-sided translations. This implies by [Bch92]

Ad A%Vi(s) = Vi(e_zms),

JmVES) T = VE(=s). (2:3)

Using the groups Vi(s) and their properties we show

2.2 Lemma:
Let VE(s) be as above, then the following sets coincide
(1) NAdVE(s)M,
(17) ;he set of elements A € M which commute with VE(s) for all s,
(iii) {UAAVH(s)M'},



(iv) the set of weak limit points of lim AdVT(s)A, A M.

§—> 00

Proof: The set MT of V*(s) invariant elements is contained in every Ad V¥ (s)M.
Hence the sets (ii) are contained in the sets (i). From Ad All, V*(s) = VE(e?™s) we see
that the sets (i) are modular covariant subalgebras of M. On the other hand V*(s) map
the sets (i) onto itself. Hence the restriction of V*(s) and All, to the Hilbert spaces,
generated by the application of the sets (i) to the cyclic vector, commute. Therefore, the
relation Ad All, VE(s) = VE(e?™s) can only hold if V*(s), restricted to the corresponding
Hilbert spaces, are constant. Since ) is separating for the sets (i), we conclude that the
sets (i) are contained in the sets MT.

If A€ MT then it commutes with M’ and also with V*(s). Hence the algebras MT
are contained in the sets (iii). Conversely let A be contained in the sets (iii). Choose
By, By € M’ and look at the function

F(s) := (Q, BiVE(s)AVE(—s)ByQ).
Using the commutation of A with V¥ (s)B,V*(—s) we obtain
F(s) = (Q,BIVE(s)AVE(—s) B VE(s)Q) = (Q, By B, VE(s)AQ).

This implies that F(s) has a bounded analytic extension into the upper complex half-plane.
By the same method we can bring A to the left and obtain

F(s) = (Q,AV*(—5)B, ByQ).

By this relation F(s) has a bounded analytic extension into the lower complex half-plane.
Both continuations together imply that F(s) is a bounded entire analytic function and
hence constant. Therefore, we get

(Q, BiVE(s)AVE(—5)B2Q) = (Q, B1AB,9).
Since Q is cyclic for M’ we see that the sets (iii) are contained in MT.

If A; is a weak limit point of lim AdV*(s)A, then by monotonicity A; is contained
S§—> 00

in every AdV*(s)M. Hence the sets (iv) are contained in the sets (i). If A is invariant
under the action of Vi(s) then it coincides with its limit. Hence M T is contained in the
sets (iv). D

The algebras introduced by the equivalent sets in Lemma 2.2 suggest the following
notation

2.3 Definition:

With the assumptions introduced in this section we set
M =nNAdVT(s)M,
MT =nNAdV ™ (s)M.
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The interchange of signs is inspired by conformal field theory. In that case M™T is the
algebra generated by the fields depending only on the light cone coordinate z™T.

A situation, similar to that of two—dimensional conformal field theory, can be charac-
terized as follows:

2.4 Theorem:

Assume M™T and M~ commute. If one has MTV M~ = M then
(1) M= MTaM™.

(i1) The relative commutant of MT in M is M~ and viceversa.

(i11) wg induces on M™T and on M~ B-KMS-states.

Proof: In the proof of Lemma 2.2 we observed that M™ is a modular covariant
subalgebra of M. Let H* be the closure of MTQ. This space is invariant under VT (s).
Since there is only one vector invariant under V1 (s)V ~(s) it follows that Q is the only
V*(s) invariant vector in H*. Hence by the result explained in [Bch98] one knows that

Q) is also the only invariant vector of Al' in H*. This implies that M* is a factor.
Let (M™)¢ be the relative commutant of M™ in M then M~ C (M™)¢ which implies
MV (MT)? = M. Hence by a result of Takesaki [Tak72] we obtain

M= MTB(MT).
Since the map MT@(M™T)¢ — M is normal we obtain
M= MTGM™.

This is the first statement. The second follows from this formula. Since wg is (£2,.Q2) and
since MT and M~ are both covariant under the action of Al we get that the restriction
of wg to MT and M~ respectively are f—KMS-states. ]

Having a tensor product decomposition of the theory we could try to associate to every
factor a theory on the line as it has been done by Schroer and Wiesbrock [SW99]. Since
this procedure has been explained in the introduction we will not repeat the arguments.
We are more interested in cases where Th. 2.4 fails.

3. Two—dimensional local quantum fields

In addition to the assumption that there exist the two groups V1 (s) and V'~ (s) we will
assume that we are dealing with a quantum field theory of local observables. So we make
the standard assumptions of locality and isotony. By these assumptions the light cone
T, 2~ have a definite meaning. Following the idea of Schroer and Wiesbrock
[SW99] we try to embed our theory into a vacuum theory, so that IR? is mapped onto V7.
This is done by the transformation

coordinates x

(t=e"", £ =e" . (3.1)



Since we are dealing with a two—dimensional theory, and since the chosen coordinates are
light cone coordinates it follows that the transformation (3.1) preserves locality. Therefore,
in the new system we have locality inside the forward light cone. With help of the two
groups V1 (£1) and V=(£7) one can transport locality to all of IR®. Since ws is a KMS-
state it follows that the vector € is not only cyclic but also separating for M, in the new
setting this algebra is M(CT) where CT denotes the forward light cone. The two groups
VH(Er) and V7 (£7) generate the translations V(£) which fulfils spectrum condition. By
the above transformation the modular group of M(CT) is again a geometric transforma-
tion, namely the dilatations. In this setting the algebra A" becomes the algebra of the cone
shifted by the vector (1,1). More precisely we obtain

3.1 Lemma
The transformation Eq. (3.1) sends the lines 1 = const. onto radial lines (T = aé™, 0 <

a < 0o. The lines xg = const. are sent onto hyperboloids ET6~ = const. > 0.

The proof of these statements is trivial.
The fact that the modular group of the forward light cone coincides with the dilatations
has drastic consequences.

3.2 Theorem:

Assume we are dealing with a quantum field theory of local observables in the vacuum sector
which fulfils
duality of the dimension of the Minkowsk: space s two,
Bisognano—Wichmann property of the dimension is 4.

Assume the vector Q is cyclic and separating for the algebra M(CT), the algebra of the
forward light cone. Let (A,J) denote the modular operator and the modular conjugation
of the pair (M(CT),Q). Assume the modular group acts like a dilatation, i.e.

AdA"M(Dyp) = M(Demonrqem2my), @b € CT, (3,2)

where Dy denotes the double cone (a—l—C"")ﬂ(b—l—C‘). Then one has timelike commutation,
i.e. M(D1) and M(D3) commute if the two double cones are timelike separated.

Proof: We want to show that the commutant of M(C™) is M(C~). We obtain the
commutant of M(CT) by transforming this algebra with J, the modular conjugation of
M(CT). Since we know

JAYZAQ = A*Q,  Ae M(CT),
we have to show, that to every A € M(Ct) exists A € M(C~) with
AYZAQ = AQ.
This solves our problem because € is separating for JM(CT).J. To this end we have to

use the modular group Al’. Let us first assume we are dealing with a scalar Wightman
field. In this case we know

ATA(2)Q = Ale ™ 2)Q.
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For x € C7T this expression can be analytically continued into the strip S(—%,O). We
obtain . o .
ATA(2)Q = AT A(2)Q = A(e'™2)Q = A(—2)Q.

Since —z belongs to C'~ we obtain the result in this situation.

The proof of the general situation needs some preparations. We start with
3.3 Lemma:
Let oL (A) = Ai/’\fA(CJr)AA/_\/itt(cﬂ. If ot acts on M(CT) as dilatations, then it acts on
every local algebra as dilatations.

Proof: Since the algebra of any domain is generated by the algebra of double cones,
it is sufficient to show the lemma for algebras of double cones. Let D, 3, b € a + Ct be a
double cone. Then exists a vector = such that a +z € C*. We write Da,b = Dotopye—7
and get M(Dgyp) = AdU(—2)M(Dgta,b+q). With this we obtain

0L(M(Da ) = 0t 0 AdU(=2)(M(Dayapiz)
= AdU(— 2" 2)0t(M(Dagr pra) =
Ad U(—e_zﬂ-tl’)M(De—zm(a+x)7e—2m(b+x)) - M(De—Qm(a—l—x),e—Q”(b—l—x) — e_zﬂ-tl')
= M(De—Qma,e—2”b)'
This shows the lemma. D

Notice that the assumptions of the theorem imply that there exists a PCT—-operator
O. (See [BCH92] for the two—dimensional case and [GL95] for the other case.) Next we

show

3.4 Lemma:

Let W denote a wedge the edge of which contains {0}. Let (Ac, Jo) be the modular operator
and modular conjugation of the algebra of the forward light cone and (Aw, Jw) be those of
the algebra of the wedge, and © be the PCT-operator. Then A, commutes with AL, Jy

and © and ALY, commutes with Jo and ©. Moreover, ) is cyclic and separating for M(C ™)
and Aal is the modular operator of M(C ™).

Proof: From the last lemma we know that Ad Alf, maps M (W) onto itself. Hence it
commutes with Alf, and with Jy . (See [BR79] Thm. 3.2.18.) Since C is invariant under
Lorentz transformations it follows that Aié and Jo commute with the Lorentz transfor-
mations. By assumption All, coincides with the Lorentz boosts of the wedge and hence it
commutes with Aié and Jeo. Since © coincides with JwU(Rw (7)), where Ry (7) is the
rotation which maps W into itself we conclude that © commutes with All, and with Al
From OM(CT)0 = M(C™) we conclude that OA-O = Aal is the modular operator of
M(C™). 0

Proof of the Theorem: Let & € CT be a timelike vector and let W, = W + x. Then

exists a double cone D such that D C CT N Wy, for A in some interval containing 1.
Choose A, B € M(D) and set A = e72™ and denote by U(x) the translations. Define

Fi(s,t) = (AQ, ALAY, BQ) = (AZAQ, Al BQ),
Fy(s,t) = (AQ, AV, ALBQ) = (A AQ, ALBQ).
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From AiIfVM = Ad U(/\:I;)Ailfv we obtaln
Fl(svt) = FZ(Svt)‘

By choice of A, B the function Fj(s,t) can analytically be continued into S(—1,0) x
S(—%,O). We obtain

Fi(s—=,t— =)= (A" JcA*Q, Al Jw,B*Q)
= (0A*Q, 0JcALAY, Jw, B Q).

Let I3 be the interval such that D + (A — 1)z C W, then for A € I, the function Fy(s,t)
can in s be analytically continued into the strip S(—%, 0). We obtain

Fy(s — 1) = (U((A = 1)) AR Jw, U((1 — N)a)A*Q, ALBQ).

With Jw, = AdU(z)Jw we obtain Jw, = Jw, U((N — 1)a) = U((N — 1)Pwa)Jw,, where
Py denotes the reflection in the characteristic two—plane of the wedge W. With this we
get ‘
Fy(s — %,t) = (U((\ — 1):1;)A17V15U((1 — \)Pwx)Jw, A*Q, ALBQ).
Since U(x) fulfils the spectrum condition and since — Py belongs to C™ the last expression
for Fy(s — 3,t) has in ¢ an analytic continuation into the strip S(—%, 0). We obtain with
At = 3) = —A()
Fy(s — %,t - %) — (U(=(A + Da)AREU((1 + A\ Pwa) Jw, A*Q, AL Jc B*Q).

Looking at the set (t € I3) x (Sms = —%) we see by the Malgrange—Zerner theorem
that Fy(s,t) has an analytic continuation in both variables into some set, which has (s €
IR) x (t € I) as boundary points. Therefore, F; coincides with F; in the domain of
analyticity. Using Fl(—%, —%) = Fg(—%, —%) we obtain by the cyeclicity of Q for M(D)
the equation

@chwU((PW — 1)1‘) = @U(Q?)JwU(—J})U(Q(l — Pw)x)Jc
= @JwU((l — Pw)l‘)Jc = @ijcU((PW — 1)1‘)

This relation implies that Jy and Jo commute. Hence Jo commutes also with ©, since it
commutes with the rotation.

We know that ©.Jc0 = J¢ is the modular conjugation of M(C ™). Let A € M(C"")
and B = JoA*Jeo then BQ) and B*§) belong to the domain of Alc/z. Hence by [BR79] Prop.
2.5.9 exists an operator 12[77./\/{(0_) with BQ = AQ. This implies OJcA*Q = ©AOQ.
Hence ©J¢c maps M(CT)Q onto M(CT)Q. Since ©J¢ is unitary and maps 2 onto itself
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we conclude by [BR79] Thm. 3.2.18 that ©.J¢ defines an automorphism of M(C™). Hence
M(C™) is the commutant of M(CT). D

Under special additional assumptions the result of Thm.3.2 has been shown by Buch-
holz and Fredenhagen [BF77].

4. Exit from the conformal trap

In the last section we treated two—dimensional theories of local observables and con-
sidered thermal states such that the Assumptions 2.1 are fulfilled. We saw that this can
only happen for a massless non—-interacting theory. If one wants to treat interacting field
theories one must change Assumptions 2.1. We want to keep the two groups V*(s) but
we have to replace the requirements.

4.1 Assumptions:

AdV7(s )M # M, for s<0.

Vi) =Q,
VIV (s) =V (s)VT(t), st €R?,
VIV (s) = Vi(s),
AdVH(siM c M, for s>0,
AdVT(s)\M Cc M, for s<0,
AdVT(s)M #£# M, for s> 0,
(s)

Also with help of Assumptions 4.1 one can connect the thermal representation with a
vacuum theory. This is done by the transformation

¢t = ex+, (7 =—e " . (4.1)
By this change IR?, descibed by the x—variables, is mapped onto the right wedge, described
by the {é—variables. Also in this situation the transformation (4.1) preserves locality. There-
fore, one has locality in the right wedge. Again with help of the groups V¥ (£1) and VT (£7)
the locality can be transported to all of IR? in the ¢-variables. By this manipulation we
obtain a quantum field theory in the vacuum sector.

4.2 Lemma:

The transformation (4.1) sends the lines x1 = const. onto hyperboloids £T¢~ = —m? and
lines xo = const. onto radial lines £ = —af™, a > 0.

In this setting the thermal state ws can be identified with the Hawking—Unruh effect
for the algebra of the wedge. Coming back to the thermal representation, we find that the
algebra of the forward light cone is a proper subalgebra of M. Therefore, the results of
[BY99] apply. This result can be seen as follows: The relation in the vacuum representation
for positive £ is

AAVHENMW,) = M(W, +£F) € M(W,),
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where this is a proper inclusion. In the z—coordinates the set W, + £, €T > 0 becomes
et >logét,

Hence for (< 1 this set contains the forward light cone in the z—variables. Therefore,
M(C™) is a proper subalgebra for M. The difference to the situation described in the last
section is the fact that for positive s the transformation Ad V7 (s) sends M partly into
the commutant of M.

The conditions of this section or of the last section are compatible with the assumption
that the theory can be written as a tensor product. One must have

MPVMT =M, (4.2)

where M and M~ have to commute and are defined as in Def. 2.3. But in a theory with
lower mass gap we see that Eq. (4.2) is not fulfilled.

5. Conclusions

If we are dealing with a thermodynamical representation of a two—dimensional quan-
tum system, we obtain an extra structure in the following cases: Let z% and z~ be the
light cone coordinates. If the algebras associated with the sets

at > et T >c, (5.1)
or
at >t T <c” (5.2)

are proper subalgebras of the global algebra M, then the thermal representation can be
embedded into a vacuum theory. The original algebra M is in these situations isomorphic
to the algebra of the forward light cone or to the algebra of the right wedge respectively. If
the algebras of the sets (5.1) and (5.2) are not proper subalgebras, then the space dimension
plays only the role of a parameter. The only exception is the relativistic KMS—condition
of Bros and Buchholz [BB94]. But to my knowledge only a few consequences have been
drawn from this condition, e.g. [BB98].

If one has neither our conditions nor the relativistic KMS—condition then one is dealing
with a usual dynamical system which depends on some further parameter. A thermal
representation of a dynamical system (A, o) is called a K-system [Em76] if there exists a
proper subalgebra NV C M = 7,(A)” obeying:

i) AdU)N C N for t>0, (t<0).

(i) QAd Ut)N = CL

(iii) {LtJ AdUN}Y = M.

In this situation exists a one—parametric unitary group V(s) with non—negative spectrum

and the properties:
(1) AdV(1)M = V.
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(i) QAd V(s)M = C1.

(iii) {LSJ AdV(s)M}” = B(H).

The first line follows from the fact that A" fulfils the condition of half-sided modular
inclusion, see Wiesbrock [Wie93,97]. The second line follows from Yngvason and the
author [BY99] and the third line from this and the modular theory.

If we are dealing with a dynamical system, which is a K—system in a thermal repre-
sentation, then one can embed this theory into a ground state representation of a theory
on a line. The algebra M = 7,(.A)” is mapped onto the algebra of the half-line IR, and
the commutant M’ is mapped onto the algebra of IR™. The algebra A is mapped onto
the algebra of the set [1,00) and the group V(s) becomes the translation of the line. The
original time translation U(t) is the modular group of M and acts in this setting like a
dilatation on the half-line IRT. In case that the cyclic vector Q. is also cyclic for the
relative commutant A'¢ = N N M of NV one has a two-sided K-system. In this situation
one also has a representation of the Mobius group. The associated ground state theory is a
theory of local observables. Whether or not this ground state theory is also a chiral theory,
that means it can be mapped onto a theory on the unit circle, depends on the structure
of the algebras M([1,00)) and its relative commutant M([0,1]). For details see [Bch95].

The ground state theories obtained from a K—system are constructed by associating
to the commutant some new "reality”. A consequence of this construction is the fact
that these ground state theories do not describe systems with an energy gap as it ap-
pears in superconductivity, superfluidity, Bose-Einstein condensation, etc. The reason is
a generalization of a result by Sadowski and Woronowicz [SWT71].

5.1 Proposition:

Let mg be a ground state representation of a dynamaical system. Then the two statements
exclude eachother:

(1) We are dealing with a K-system.
(2) The spectrum of the time translation has an energy gap, or the spectrum contains a
Lebesgue singular part, except for {0}.

Proof: Assume we are dealing with a K-system. Let A be the subalgebra which
defines the K—property. The Reeh—Schlieder argument implies that €2 is cyclic for the
algebra A/. This implies that the time translations fulfil the condition of half-sided trans-
lations. Hence by [Bch92] exists between these translations and the modular group of N
the relation

Ad AX/U(S) = U(e_zms).

This implies that the spectrum of U(s) does not have any gap and that, except for {0}, it
is absolutely Lebesgue continuous. O

It might be interesting to look at the embedded theories if one tries to go with the
temperature T to zero. For this investigation one has to assume that the system we are
dealing with is a K-system for every temperature in an interval T' € (0,7p) and for the
same subalgebra of 4. In order to be able to look at the limit we have to choose the correct
coordinates. Up to now we have worked with the modular groups of M and A. In this
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setting the generator of V(s) = el“* is
G =log Ay — A um.
We have to work with the time translation
U(-pt) = All,.
With this notation and U(t) = e/ the operator G becomes
G = [pH +logAn.

If A € M then the vector valued function U(t)AQ has an analytic continuation into the
strip S(0, 3). Hence for T'— 0 U(t) fulfils the spectrum condition. In order to avoid two

groups fulfilling spectrum condition at T = 0 one has to rescale also the group V(s). We
define

Writing W(u) = ef™* we get
1

B

Hence U(t) and W (t) coincide in the limit 7' — 0. Since we had V' = AdV(1)M we get
by this rescaling

F=H+4 =-logAy.

N = AdW(B)M.

This formula does not make sense at T'= 0. Hence there is no conflict with Prop. 5.1. By
all the manipulations M remains the algebra of RT and M’ remains the algebra of IR™.
But it is better to deal with two copies of the real line. The structure of the "real world”
is transported with help of the conjugation J to the ”second world”. Here the order of the
time—axis is reversed.

Since at T = 0 the group U(¢) has a non—negative spectrum it defines an inner
automorphism. By assumption there is only one vacuum which implies that M is a factor
of type I. Therefore, in the limit 7" = 0 one obtains a tensor product of M with its
isomorphic copy, which is the limit of the M’. Consequently we obtain two copies of the
real line. If one takes the other dimension into account one gets two copies of the Minkowski
space. Whether or not this doubling of the space has any relation to the doubling of the
space introduced by Connes and Lott [Co91], which they introduced for the description of
the standard model, can only be answered by future investigations.

The last question we want to discuss is the problem of supersymmetry. After a decade
of discussions on the existence of this supersymmetry in thermal states Buchholz and Ojima
[BO97]| showed that supersymmetry can only exist in a groundstate representation. We
refere to [BO97] for references to earlier papers on this subject. Buchholz and Ojima called
this result the collaps of supersymmetry. This is due to the fact that the generator of the
time translation is no longer positive in thermal representations. I think there is a way
out of this disastrous situation. In order to understand this let us discuss the situation. In
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all thermal representations the Lorentz boosts are broken. This implies the decoupling of
the space translations from the time translations. Mostly, at low temperatures the space
translations are also broken. Usually only some discrete spacial symmetries remain. There-
fore, one can expect that at most the zero component of the supercharge remains, when
passing to thermal representations. Representing the supercharge as a graded derivation
one would like to get into contact with some physical quantity. The only restriction of this
quantity is the requirement that it has to tend to the energy operator H for T — 0. In our
discussion we have met such object, namely the generator of the group W(u). Therefore,
my suggestion for the connection of the supercharge with a generator of some group is

1
s

Here 4§ denotes the graded derivation associated with the supercharge.

There is also no problem with W(u) acting only as a semi—group on the algebra M.
This is due to the fact that the supercharge acts only as graded derivation and not in the
integrated form. In standard theories § maps Bose fields at the point x onto Fermi fields
at the same point x and viceversa. That there might appear derivatives does not cause
any problem. The algebra of a domain G is generated by field operators smeared with
testfunctions vanishing identically outside of G and hence also on the boundary of G. This

(66 +68) = H + = log A

1
2

property is stable under derivations.
The only unsolved problem for this approach to susy is to understand why physical
systems should be K-systems for all temperatures except for those of phasetransitions.
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