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On Thermal States of (1+1){dimensionalQuantum Systems H.J. BorchersInstitut f�ur Theoretische PhysikUniversit�at G�ottingenBunsenstrasse 9, D 37073 G�ottingenAbstract:(1+1){dimensional thermal systems will be investigated and their relation to vacuum theorieswill be explained. Moreover, consequences for the linit T! 0 and for supersymmetry will bediscussed.Mathematics Subject Classi�cation (1991): 81T05,46L10Keywords: Thermodynamical systems, modular theory, supersymmetry, T ! 0 limit1. IntroductionIn a recent paper J. Yngvason and the author [BY99] investigated KMS{states ona dynamical system (A; �t). The main aim of this investigation consisted in looking forconsequences of Tomita's modular theory [To67,Ta70]. Let !� be a �{KMS{state of the dy-namical system, letM be the von Neumann algebra generated by the GNS{representationof A, and U(t) the induced representation of the dynamical group �t. It was assumedthat the cyclic vector 
 is the only vector invariant under U(t). Since !� is a KMS{state,the group U(t) is up to a scalefactor the modular group of the pair (M;
). The preciserelation is �itM = U(��t); (1:1)where the sign is a consequence of the di�erent convention in mathematics and physics.Since 
 is the only vector invariant under the modular group it follows thatM is a factor.Moreover it was assumed that there exists a von Neumann subalgebra N �M ful�ll-ing(i) AdU(t)N � N for t � 0:(ii) [t AdU(t)N is dense imM.This implies by a Reeh{Schlieder type argument [RS61] the cyclicity of 
 for N . Moreover,N ful�ls the condition of half{sided modular inclusion, which implies [Wie93,97] that there1



exists a one{parametric group V (s) with non{negative spectrum. This group has thefollowing properties: V (s)
 = 
; s 2 IR;U(t)V (s)U(�t) = V (e 2�� ts);Ad V (1)M = N ;JMV (s)JM = V (�s): (1:2)Since there exists a half{sided translation it follows that M is of type III [Bch98].This theory develops interesting features if one looks at two{dimensional models whichfactorize in light cone coordinates. In this situation the time translation U(t) factorizesalso. Therefore, the �{KMS{state is a product state and induces �{KMS{states on everyfactor. This implies that the group V (s) factorizes into two groups with non{negativespectrum. U(t) = U+(t) 
 U�(t);V (s) = V +(s) 
 V �(s);M =M+
M�;�itN = �itN+
�itN�;H = H+
H�: (1:3)N� are de�ned by V �(1)M�V �(�1), where V +(s) is identi�ed with V +(s)
1l and similarde�nition for V �(s).This tensor product structure inspired B. Schroer and H.-W. Wiesbrock [SW99] toassociate with M+ and its commutant in H+ a quantum �eld theory on the line. Inthis case the theory becomes a vacuum theory and V +(s) the translation. The algebraM+ is identi�ed with the algebra of the positive half{line and the algebra N+ with thealgebra of the set [1;1). The commutant of M+ is identi�ed with the algebra of thenegative half{line. By standard construction one obtains a theory of local observables onthe line provided 
+ is also cyclic for the algebrasM+([a; b]). In this setting the algebraM becomes the algebra of the forward light cone C+, and the thermal behaviour of theoriginal theory is a kind of Unruh{e�ect for the forward light cone.Inspired by the above results one would like to characterize those two{dimensionalquantum systems and its thermal states, which can be reduced to the above structure.Moreover, one likes to understand the situation if the theory can not be written as atensor product.2. Assumptions and the tensor product caseWe start with a C�{dynamical system (A; �t) and assume that !� is a �{KMS{state.Let (�!; U(t);
) be the GNS{representation of !�. We assume that 
 is the only U(t)invariant vector in the representation space H!. This implies the von Neumann algebraM := �(A)" is a factor. In addition we assume that there exists a proper von Neumann2



subalgebra N of M which has the properties
 is cyclic for N ;AdU(t)N � N for t > 0;\t AdU(t)N = C1l;f[t Ng" =M: (2:1)Using modular theory one easily checks that the third and fourth condition are equivalent.Using the last condition and the fact that, up to a scaling factor, U(t) is the modulargroup ofM one concludes by a Reeh{Schlieder [RS61] type argument that 
 is also cyclicfor N . From these assumptions J. Yngvason and the author [BY99] concluded, that thereexists a one{parametric continuous unitary group V (t) with non{negative spectrum whichful�ls V (s)
 = 
;Ad�itMV (s) = V (e�2�ts);JMV (s)JM = V (�s);Ad V (1)M = N : (2; 2)Inspired by the two{dimensional example treated in [BY99] we will assume, there existtwo groups V +(s); V �(s), both with non{negative spectrum. These groups shall ful�l thefollowing relations2.1 Assumptions: V �(s)
 = 
;V +(t)V �(s) = V �(s)V +(t); s; t 2 IR2;V +(s)V �(s) = V (s);AdV �(s)M �M; for s � 0;AdV �(s)M 6=M; for s > 0:The last relation implies that V +(s) are half{sided translations. This implies by [Bch92]Ad�itMV �(s) = V �(e�2�ts);JMV �(s)JM = V �(�s): (2:3)Using the groups V �(s) and their properties we show2.2 Lemma:Let V �(s) be as above, then the following sets coincide(i) \s AdV �(s)M,(ii) the set of elements A 2 M which commute with V �(s) for all s,(iii) f[s AdV �(s)M0g0, 3



(iv) the set of weak limit points of lims!1AdV �(s)A; A 2 M.Proof : The set M� of V �(s) invariant elements is contained in every AdV �(s)M.Hence the sets (ii) are contained in the sets (i). From Ad�itMV �(s) = V �(e2�ts) we seethat the sets (i) are modular covariant subalgebras of M. On the other hand V �(s) mapthe sets (i) onto itself. Hence the restriction of V �(s) and �itM to the Hilbert spaces,generated by the application of the sets (i) to the cyclic vector, commute. Therefore, therelation Ad�itMV �(s) = V �(e2�ts) can only hold if V �(s), restricted to the correspondingHilbert spaces, are constant. Since 
 is separating for the sets (i), we conclude that thesets (i) are contained in the sets M�.If A 2 M� then it commutes withM0 and also with V �(s). Hence the algebrasM�are contained in the sets (iii). Conversely let A be contained in the sets (iii). ChooseB1; B2 2 M0 and look at the functionF (s) := (
; B1V �(s)AV �(�s)B2
):Using the commutation of A with V �(s)B2V �(�s) we obtainF (s) = (
; B1V �(s)AV �(�s)B2V �(s)
) = (
; B1B2V �(s)A
):This implies that F (s) has a bounded analytic extension into the upper complex half{plane.By the same method we can bring A to the left and obtainF (s) = (
; AV �(�s)B1B2
):By this relation F (s) has a bounded analytic extension into the lower complex half{plane.Both continuations together imply that F (s) is a bounded entire analytic function andhence constant. Therefore, we get(
; B1V �(s)AV �(�s)B2
) = (
; B1AB2
):Since 
 is cyclic forM0 we see that the sets (iii) are contained inM�.If Al is a weak limit point of lims!1AdV �(s)A, then by monotonicity Al is containedin every AdV �(s)M. Hence the sets (iv) are contained in the sets (i). If A is invariantunder the action of V �(s) then it coincides with its limit. Hence M� is contained in thesets (iv).The algebras introduced by the equivalent sets in Lemma 2.2 suggest the followingnotation2.3 De�nition:With the assumptions introduced in this section we setM� = \s Ad V +(s)M;M+ = \s Ad V �(s)M:4



The interchange of signs is inspired by conformal �eld theory. In that case M+ is thealgebra generated by the �elds depending only on the light cone coordinate x+.A situation, similar to that of two{dimensional conformal �eld theory, can be charac-terized as follows:2.4 Theorem:Assume M+ and M� commute. If one has M+ _M� =M then(i) M�=M+
M�.(ii) The relative commutant of M+ in M is M� and viceversa.(iii) !� induces on M+ and on M� �{KMS{states.Proof : In the proof of Lemma 2.2 we observed that M+ is a modular covariantsubalgebra of M. Let H+ be the closure of M+
. This space is invariant under V +(s).Since there is only one vector invariant under V +(s)V �(s) it follows that 
 is the onlyV +(s) invariant vector in H+. Hence by the result explained in [Bch98] one knows that
 is also the only invariant vector of �it in H+. This implies that M+ is a factor.Let (M+)c be the relative commutant of M+ in M then M� � (M+)c which impliesM+ _ (M+)c =M. Hence by a result of Takesaki [Tak72] we obtainM�=M+
(M+)c:Since the mapM+
(M+)c !M is normal we obtainM�=M+
M�:This is the �rst statement. The second follows from this formula. Since !� is (
; :
) andsinceM+ andM� are both covariant under the action of �itM we get that the restrictionof !� to M+ andM� respectively are �{KMS{states.Having a tensor product decomposition of the theory we could try to associate to everyfactor a theory on the line as it has been done by Schroer and Wiesbrock [SW99]. Sincethis procedure has been explained in the introduction we will not repeat the arguments.We are more interested in cases where Th. 2.4 fails.3. Two{dimensional local quantum �eldsIn addition to the assumption that there exist the two groups V +(s) and V �(s) we willassume that we are dealing with a quantum �eld theory of local observables. So we makethe standard assumptions of locality and isotony. By these assumptions the light conecoordinates x+; x� have a de�nite meaning. Following the idea of Schroer and Wiesbrock[SW99] we try to embed our theory into a vacuum theory, so that IR2 is mapped onto V +.This is done by the transformation�+ = ex+; �� = ex� : (3:1)5



Since we are dealing with a two{dimensional theory, and since the chosen coordinates arelight cone coordinates it follows that the transformation (3.1) preserves locality. Therefore,in the new system we have locality inside the forward light cone. With help of the twogroups V +(�+) and V �(��) one can transport locality to all of IR2. Since !� is a KMS{state it follows that the vector 
 is not only cyclic but also separating forM, in the newsetting this algebra isM(C+) where C+ denotes the forward light cone. The two groupsV +(�+) and V �(��) generate the translations V (�) which ful�ls spectrum condition. Bythe above transformation the modular group of M(C+) is again a geometric transforma-tion, namely the dilatations. In this setting the algebra N becomes the algebra of the coneshifted by the vector (1; 1). More precisely we obtain3.1 LemmaThe transformation Eq. (3:1) sends the lines x1 = const. onto radial lines �+ = ���; 0 <� <1. The lines x0 = const. are sent onto hyperboloids �+�� = const: > 0.The proof of these statements is trivial.The fact that the modular group of the forward light cone coincides with the dilatationshas drastic consequences.3.2 Theorem:Assume we are dealing with a quantum �eld theory of local observables in the vacuum sectorwhich ful�lsduality if the dimension of the Minkowski space is two,Bisognano{Wichmann property if the dimension is 4.Assume the vector 
 is cyclic and separating for the algebraM(C+), the algebra of theforward light cone. Let (�; J) denote the modular operator and the modular conjugationof the pair (M(C+);
). Assume the modular group acts like a dilatation, i.e.Ad�itM(Da;b) =M(De�2�ta;e�2�tb); a; b 2 C+; (3; 2)where Da;b denotes the double cone (a+C+)\(b+C�). Then one has timelike commutation,i.e. M(D1) and M(D2) commute if the two double cones are timelike separated.Proof : We want to show that the commutant of M(C+) is M(C�). We obtain thecommutant of M(C+) by transforming this algebra with J , the modular conjugation ofM(C+). Since we know J�1=2A
 = A�
; A 2 M(C+);we have to show, that to every A 2 M(C+) exists Â 2 M(C�) with�1=2A
 = Â
:This solves our problem because 
 is separating for JM(C+)J . To this end we have touse the modular group �it. Let us �rst assume we are dealing with a scalar Wightman�eld. In this case we know �itA(x)
 = A(e�2�tx)
:6



For x 2 C+ this expression can be analytically continued into the strip S(� 12 ; 0). Weobtain � 12A(x)
 = �i(� i2 )A(x)
 = A(ei�x)
 = A(�x)
:Since �x belongs to C� we obtain the result in this situation.The proof of the general situation needs some preparations. We start with3.3 Lemma:Let �tC(A) = �itM(C+)A��itM(C+). If �tC acts on M(C+) as dilatations, then it acts onevery local algebra as dilatations.Proof : Since the algebra of any domain is generated by the algebra of double cones,it is su�cient to show the lemma for algebras of double cones. Let Da;b; b 2 a + C+ be adouble cone. Then exists a vector x such that a+x 2 C+. We write Da; b = Da+x;b+x�xand get M(Da;b) = AdU(�x)M(Da+a;b+a). With this we obtain�tC(M(Da;b)) = �tC �AdU(�x)(M(Da+x;b+x)= AdU(�e�2�tx)�tC (M(Da+x;b+x) =AdU(�e�2�tx)M(De�2�t(a+x);e�2�t(b+x)) =M(De�2�t(a+x);e�2�t(b+x)� e�2�tx)=M(De�2�ta;e�2�tb):This shows the lemma.Notice that the assumptions of the theorem imply that there exists a PCT{operator�. (See [BCH92] for the two{dimensional case and [GL95] for the other case.) Next weshow3.4 Lemma:LetW denote a wedge the edge of which contains f0g. Let (�C ; JC) be the modular operatorand modular conjugation of the algebra of the forward light cone and (�W ; JW ) be those ofthe algebra of the wedge, and � be the PCT{operator. Then �itC commutes with �isW ; JWand � and �itW commutes with JC and �. Moreover, 
 is cyclic and separating forM(C�)and ��1C is the modular operator of M(C�).Proof : From the last lemma we know that Ad�itC mapsM(W ) onto itself. Hence itcommutes with �isW and with JW . (See [BR79] Thm. 3.2.18.) Since C+ is invariant underLorentz transformations it follows that �itC and JC commute with the Lorentz transfor-mations. By assumption �itW coincides with the Lorentz boosts of the wedge and hence itcommutes with �itC and JC. Since � coincides with JWU(RW (�)), where RW (�) is therotation which maps W into itself we conclude that � commutes with �itC and with �itW .From �M(C+)� =M(C�) we conclude that ��C� = ��1C is the modular operator ofM(C�).Proof of the Theorem: Let x 2 C+ be a timelike vector and let Wx = W + x. Thenexists a double cone D such that D � C+ \ W�x for � in some interval containing 1.Choose A;B 2 M(D) and set � = e�2�t and denote by U(x) the translations. De�neF1(s; t) = (A
;�itC�isWxB
) = (��itC A
;�isWxB
);F2(s; t) = (A
;�isW�x�itCB
) = (��isW�xA
;�itCB
):7



From �isW�x = AdU(�x)�isW we obtainF1(s; t) = F2(s; t):By choice of A;B the function F1(s; t) can analytically be continued into S(� 12 ; 0) �S(� 12 ; 0). We obtainF1(s� i2 ; t� i2 ) = (��itC JCA�
;�isWxJWxB�
)= (�A�
;�JC�itC�isWxJWxB�
):Let I2 be the interval such that D + (� � 1)x � Wx, then for � 2 I2 the function F2(s; t)can in s be analytically continued into the strip S(� 12 ; 0). We obtainF2(s � i2 ; t) = (U((� � 1)x)��isWxJWxU((1 � �)x)A�
;�itCB
):With JWx = AdU(x)JW we obtain JWx = JWxU((� � 1)x) = U((� � 1)PW x)JWx , wherePW denotes the reection in the characteristic two{plane of the wedge W . With this weget F2(s � i2 ; t) = (U((� � 1)x)��isWxU((1 � �)PWx)JWxA�
;�itCB
):Since U(x) ful�ls the spectrum condition and since�PWx belongs to C+ the last expressionfor F2(s � i2 ; t) has in t an analytic continuation into the strip S(� 12 ; 0). We obtain with�(t� i2 ) = ��(t)F2(s � i2 ; t� i2 ) = (U(�(� + 1)x)��isWxU((1 + �)PW x)JWxA�
;�itCJCB�
):Looking at the set (t 2 I2) � (=ms = � i2 ) we see by the Malgrange{Zerner theoremthat F2(s; t) has an analytic continuation in both variables into some set, which has (s 2IR) � (t 2 I2) as boundary points. Therefore, F1 coincides with F2 in the domain ofanalyticity. Using F1(� i2 ;� i2 ) = F2(� i2 ;� i2) we obtain by the cyclicity of 
 for M(D)the equation�JCJWU((PW � 1)x) = �U(x)JWU(�x)U(2(1 � PW )x)JC= �JWU((1 � PW )x)JC = �JWJCU((PW � 1)x):This relation implies that JW and JC commute. Hence JC commutes also with �, since itcommutes with the rotation.We know that �JC� = JC is the modular conjugation of M(C�). Let A 2 M(C+)and B = JCA�JC then B
 and B�
 belong to the domain of �1=2C . Hence by [BR79] Prop.2.5.9 exists an operator bA�M(C�) with B
 = bA
. This implies �JCA�
 = � bA�
.Hence �JC mapsM(C+)
 onto M(C+)
. Since �JC is unitary and maps 
 onto itself8



we conclude by [BR79] Thm. 3.2.18 that �JC de�nes an automorphism ofM(C+). HenceM(C�) is the commutant ofM(C+).Under special additional assumptions the result of Thm.3.2 has been shown by Buch-holz and Fredenhagen [BF77].4. Exit from the conformal trapIn the last section we treated two{dimensional theories of local observables and con-sidered thermal states such that the Assumptions 2.1 are ful�lled. We saw that this canonly happen for a massless non{interacting theory. If one wants to treat interacting �eldtheories one must change Assumptions 2.1. We want to keep the two groups V �(s) butwe have to replace the requirements.4.1 Assumptions: V �(s)
 = 
;V +(t)V �(s) = V �(s)V +(t); s; t 2 IR2;V +(s)V �(s) = V (s);AdV +(s)M �M; for s � 0;AdV �(s)M �M; for s � 0;AdV +(s)M 6=M; for s > 0;AdV �(s)M 6=M; for s < 0:Also with help of Assumptions 4.1 one can connect the thermal representation with avacuum theory. This is done by the transformation�+ = ex+; �� = �e�x� : (4:1)By this change IR2, descibed by the x{variables, is mapped onto the right wedge, describedby the �{variables. Also in this situation the transformation (4.1) preserves locality. There-fore, one has locality in the right wedge. Again with help of the groups V +(�+) and V +(��)the locality can be transported to all of IR2 in the �{variables. By this manipulation weobtain a quantum �eld theory in the vacuum sector.4.2 Lemma:The transformation (4:1) sends the lines x1 = const. onto hyperboloids �+�� = �m2 andlines x0 = const. onto radial lines �+ = ����; � > 0.In this setting the thermal state !� can be identi�ed with the Hawking{Unruh e�ectfor the algebra of the wedge. Coming back to the thermal representation, we �nd that thealgebra of the forward light cone is a proper subalgebra of M. Therefore, the results of[BY99] apply. This result can be seen as follows: The relation in the vacuum representationfor positive �+ is AdV +(�+)M(Wr) =M(Wr + �+) �M(Wr);9



where this is a proper inclusion. In the x{coordinates the set Wr + �+; �+ > 0 becomesx+ > log �+:Hence for �+ � 1 this set contains the forward light cone in the x{variables. Therefore,M(C+) is a proper subalgebra forM. The di�erence to the situation described in the lastsection is the fact that for positive s the transformation Ad V �(s) sends M partly intothe commutant ofM.The conditions of this section or of the last section are compatible with the assumptionthat the theory can be written as a tensor product. One must haveM+ _M� =M; (4:2)whereM+ andM� have to commute and are de�ned as in Def. 2.3. But in a theory withlower mass gap we see that Eq. (4.2) is not ful�lled.5. ConclusionsIf we are dealing with a thermodynamical representation of a two{dimensional quan-tum system, we obtain an extra structure in the following cases: Let x+ and x� be thelight cone coordinates. If the algebras associated with the setsx+ > c+; x� > c�; (5:1)or x+ > c+; x� < c� (5:2)are proper subalgebras of the global algebra M, then the thermal representation can beembedded into a vacuum theory. The original algebraM is in these situations isomorphicto the algebra of the forward light cone or to the algebra of the right wedge respectively. Ifthe algebras of the sets (5.1) and (5.2) are not proper subalgebras, then the space dimensionplays only the role of a parameter. The only exception is the relativistic KMS{conditionof Bros and Buchholz [BB94]. But to my knowledge only a few consequences have beendrawn from this condition, e.g. [BB98].If one has neither our conditions nor the relativistic KMS{condition then one is dealingwith a usual dynamical system which depends on some further parameter. A thermalrepresentation of a dynamical system (A; �t) is called a K{system [Em76] if there exists aproper subalgebra N �M = �!(A)" obeying:(i) AdU(t)N � N for t � 0; (t � 0).(ii) \t AdU(t)N = C1l.(iii) f[t AdU(t)Ng" =M.In this situation exists a one{parametric unitary group V (s) with non{negative spectrumand the properties:(i) Ad V (1)M = N . 10



(ii) \s AdV (s)M = C1l.(iii) f[s Ad V (s)Mg" = B(H).The �rst line follows from the fact that N ful�ls the condition of half{sided modularinclusion, see Wiesbrock [Wie93,97]. The second line follows from Yngvason and theauthor [BY99] and the third line from this and the modular theory.If we are dealing with a dynamical system, which is a K{system in a thermal repre-sentation, then one can embed this theory into a ground state representation of a theoryon a line. The algebraM = �!(A)" is mapped onto the algebra of the half{line IR+, andthe commutant M0 is mapped onto the algebra of IR�. The algebra N is mapped ontothe algebra of the set [1;1) and the group V (s) becomes the translation of the line. Theoriginal time translation U(t) is the modular group of M and acts in this setting like adilatation on the half{line IR+. In case that the cyclic vector 
! is also cyclic for therelative commutant N c = N 0 \M of N one has a two{sided K{system. In this situationone also has a representation of the M�obius group. The associated ground state theory is atheory of local observables. Whether or not this ground state theory is also a chiral theory,that means it can be mapped onto a theory on the unit circle, depends on the structureof the algebrasM([1;1)) and its relative commutantM([0; 1]). For details see [Bch95].The ground state theories obtained from a K{system are constructed by associatingto the commutant some new "reality". A consequence of this construction is the factthat these ground state theories do not describe systems with an energy gap as it ap-pears in superconductivity, superuidity, Bose{Einstein condensation, etc. The reason isa generalization of a result by Sadowski and Woronowicz [SW71].5.1 Proposition:Let �0 be a ground state representation of a dynamical system. Then the two statementsexclude eachother:(1) We are dealing with a K{system.(2) The spectrum of the time translation has an energy gap, or the spectrum contains aLebesgue singular part, except for f0g.Proof : Assume we are dealing with a K{system. Let N be the subalgebra whichde�nes the K{property. The Reeh{Schlieder argument implies that 
 is cyclic for thealgebra N . This implies that the time translations ful�l the condition of half{sided trans-lations. Hence by [Bch92] exists between these translations and the modular group of Nthe relation Ad�itNU(s) = U(e�2�ts):This implies that the spectrum of U(s) does not have any gap and that, except for f0g, itis absolutely Lebesgue continuous.It might be interesting to look at the embedded theories if one tries to go with thetemperature T to zero. For this investigation one has to assume that the system we aredealing with is a K{system for every temperature in an interval T 2 (0; T0) and for thesame subalgebra of A. In order to be able to look at the limit we have to choose the correctcoordinates. Up to now we have worked with the modular groups of M and N . In this11



setting the generator of V (s) = eiGs isG = log�N ��M:We have to work with the time translationU(��t) = �itM:With this notation and U(t) = eiHt the operator G becomesG = �H + log�N :If A 2 M then the vector valued function U(t)A
 has an analytic continuation into thestrip S(0; �). Hence for T ! 0 U(t) ful�ls the spectrum condition. In order to avoid twogroups ful�lling spectrum condition at T = 0 one has to rescale also the group V (s). Wede�ne W (u) = V (u� ):Writing W (u) = eiFu we get F = H + 1� log�N :Hence U(t) and W (t) coincide in the limit T ! 0. Since we had N = Ad V (1)M we getby this rescaling N = AdW (�)M:This formula does not make sense at T = 0. Hence there is no conict with Prop. 5.1. Byall the manipulationsM remains the algebra of IR+ and M0 remains the algebra of IR�.But it is better to deal with two copies of the real line. The structure of the "real world"is transported with help of the conjugation J to the "second world". Here the order of thetime{axis is reversed.Since at T = 0 the group U(t) has a non{negative spectrum it de�nes an innerautomorphism. By assumption there is only one vacuum which implies thatM is a factorof type I. Therefore, in the limit T = 0 one obtains a tensor product of M with itsisomorphic copy, which is the limit of the M0. Consequently we obtain two copies of thereal line. If one takes the other dimension into account one gets two copies of the Minkowskispace. Whether or not this doubling of the space has any relation to the doubling of thespace introduced by Connes and Lott [Co91], which they introduced for the description ofthe standard model, can only be answered by future investigations.The last question we want to discuss is the problem of supersymmetry. After a decadeof discussions on the existence of this supersymmetry in thermal states Buchholz and Ojima[BO97] showed that supersymmetry can only exist in a groundstate representation. Werefere to [BO97] for references to earlier papers on this subject. Buchholz and Ojima calledthis result the collaps of supersymmetry. This is due to the fact that the generator of thetime translation is no longer positive in thermal representations. I think there is a wayout of this disastrous situation. In order to understand this let us discuss the situation. In12
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