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WEYL STRUCTURES FOR PARABOLIC GEOMETRIESANDREAS �CAP AND JAN SLOV�AKAbstract. Motivated by the rich geometry of conformal Riemannian mani-folds and by the recent development of geometries modeled on homogeneousspacesG=P with G semisimple and P parabolic,Weyl structures and preferredconnections are introduced in this general framework. In particular, we extendthe notions of scales, closed and exact Weyl connections, and Rho{tensors, wecharacterize the classes of such objects, and we use the results to give a newdescription of the Cartan bundles and connections for all parabolic geometries.1. IntroductionCartan's generalized spaces are curved analogs of the homogeneous spaces G=Pde�ned by means of an absolute parallelism on a principal P{bundle. This verygeneral framework was originally built in connection with the equivalence problemand Cartan's general method for its solution, cf. e.g. [11]. Later on, however, theseideas got much more attention. In particular, several well known geometries wereshown to allow a canonical object of that type with suitable choice of semisimpleG and parabolic P , see e.g. [21]. Cartan's original approach was generalized andextended for all such groups, cf. [31, 25, 35, 8], and links to other areas were discov-ered, see e.g. [4, 3, 12]. The best known examples are the conformal Riemannian,projective, almost quaternionic, and CR structures and the common name adoptedis parabolic geometries.The relation to twistor theory renewed the interest in a good calculus for suchgeometries, which had to improve the techniques in conformal geometry and toextend them to other geometries. Many steps in this direction were done, see forexample [32, 33, 34, 16] for classical methods in conformal geometry, and [2, 1, 15,17, 18] for generalizations.A new approach to this topic, motivated mainly by [26, 3, 4], was started in[9, 10]. The novelty consists in the combination of Lie algebraic tools with theframe bundle approach to all objects and we continue in this spirit here. Our generalsetting for Weyl structures and scales has been also inspired by [1, 14].In Section 2 we �rst outline some general aspects of parabolic geometries and thenwe present the basic objects like tangent and cotangent bundles and the curvatureof the geometry in a somewhat new perspective. This will pave our way to the Weylstructures in the rest of the paper. Our basic references for Section 2 are [8] and [29],the reader may also consult [10]. For the classical point of view of over{determinedsystems, we refer to [31, 35] and the references therein.The Weyl structures are introduced in the beginning of Section 3. Exactly as inthe conformal Riemannian case, the class of Weyl structures underlying a parabolicgeometry on a manifold M is always an a�ne space modeled on one{forms on Mand each of them determines a linear connection on M . Moreover, the di�erencebetween the linear connection induced by a Weyl structure and the canonical Car-tan connection is encoded in the so called Rho{tensor (used heavily in conformalgeometry since the beginning of the century). Next, we de�ne the bundles of scales1991 Mathematics Subject Classi�cation. 53C15, 53A40, 53A30, 53A55, 53C05.1



2 ANDREAS �CAP AND JAN SLOV�AKas certain a�ne line bundles generalizing the distinguished bundles of conformalmetrics, and we describe the correspondence between connections on these line bun-dles and the Weyl structures, see Theorem 3.12. On the way, we achieve explicitformulae for the deformation of Weyl structures and the related objects in Propo-sition 3.9, which o�ers a generalization for the basic ingredients of various calculi.The exact Weyl geometries are given by scales, i.e. by (global) sections of the bun-dles of scales, thus generalizing the class of Levi{Civita connections for conformalgeometries. At the same time, this point of view leads to a new presentation ofthe canonical Cartan bundle as the bundle of connections on the bundle of scales(pulled back to the de�ning in�nitesimal ag structure, cf. 2.7 and 3.12). In the endof Section 3, we de�ne another class of distinguished local Weyl structures whichachieve the best possible approximation of the canonical Cartan connections, seeTheorem 3.16. In the conformal case, these normal Weyl structures improve theconstruction of the Graham's normal coordinates, cf. [24].The last section is devoted to characterizations of all the objects related to achoice of a Weyl structure. More explicitly, the ultimate goal is to give a recipe howto decide which soldering forms and linear connections on a manifoldM equippedwith a regular in�nitesimal ag structure are obtained from a Weyl{structure andto compute the corresponding Rho{tensor. For this purpose, we de�ne the generalWeyl forms and their Weyl curvatures and the main step towards our aim is achievedin Theorem 4.4. Next, we introduce the total curvature of a Weyl form whichis easier to interpret on the underlying manifold than the Weyl curvature. Thecharacterization is then obtained by carefully analyzing the relation between thesetwo curvatures.This entire paper focuses on the introduction of new structures and their niceproperties. We should like to mention that essential use of these new concepts hasappeared already in [10] and [5].Acknowledgements. The initial ideas for this research evolved during the stay ofthe second author at the University of Adelaide in 1997, supported by the AustralianResearch Council. The �nal work and writing was done at the Erwin Schr�odingerInstitute for Mathematical Physics in Vienna. The second author also acknowledgesthe support from GACR, Grant Nr. 201/99/0296. Our thanks are also due to ourcolleagues for many discussions.2. Some background on parabolic geometries2.1. jkj{graded Lie algebras. Let G be a real or complex semisimple Lie group,whose Lie algebra g is equipped with a grading of the formg = g�k � � � � � g0 � � � � � gk:Such algebras g are called jkj{graded Lie algebras.Throughout this paper we shall further assume that no simple ideal of g iscontained in g0 and that the (nilpotent) subalgebra g� = g�k�� � ��g�1 is generatedby g�1. Such algebras are sometimes called e�ective semisimple graded Lie algebrasof k-th type, cf. [19, 31]. By p+ we denote the subalgebra g1� � � �� gk and by p thesubalgebra g0 � p+. We also write g� = g�k � � � � � g�1, and gj = gj � � � � � gk,j = �k; : : : ; k.It is well known that then p is a parabolic subalgebra of g, and actually thegrading is completely determined by this subalgebra, see e.g. [35], Section 3. Thusall complex simple jkj{graded g are classi�ed by subsets of simple roots of complexsimple Lie algebras (i.e. arbitrary placement of crosses over the Dynkin diagramsin the notation of [4]), up to conjugation. The real jkj{graded simple Lie algebrasare classi�ed easily by means of Satake diagrams: the jkj{grading of the complex



WEYL STRUCTURES FOR PARABOLIC GEOMETRIES 3simple g induces a jkj{grading on a real form if and only if (i) only `white' nodesin the Satake diagram have been crossed out, and, (ii) if a node is crossed out,then all nodes connected to this one by the double arrows in the Satake diagramhave to be crossed out too, see [19] or [35] for more details. Very helpful notationalconventions and computational recipes can be found in [4].2.2. Let us recall basic properties of Lie groups G with (e�ective) jkj{graded Liealgebras g. First of all, there is always a unique element E 2 g0 with the property[E; Y ] = jY for all Y 2 gj, j = �k; : : : ; k, the grading element. Of course, E belongsto the center z of the reductive part g0 of p � g.The Killing form provides isomorphisms g�i ' g�i for all i = �k; : : : ; k and, inparticular, its restrictions to the center z and the semisimple part gss0 of g0 arenon{degenerate.Now, there is the closed subgroup P � G of all elements whose adjoint actionsleave the p{submodules gj = gj�� � ��gk invariant, j = �k; : : : ; k. The Lie algebraof P is just p and there is the subgroup G0 � P of elements whose adjoint actionleaves invariant the grading by g0{modules gi, i = �k; : : : ; k. This is the reductivepart of the parabolic Lie subgroup P , with Lie algebra g0. We also de�ne subgroupsP j+ = exp(gj � � � � � gk), j = 1; : : : ; k, and we write P+ instead of P 1+. ObviouslyP=P+ = G0 and P+ is nilpotent. Thus P is the semidirect product of G0 and thenilpotent part P+. More explicitly, we have (cf. [8], Proposition 2.10, or [31, 35])2.3. Proposition. For each element g 2 P , there exist unique elements g0 2 G0and Zi 2 gi, i = 1; : : : ; k, such thatg = g0 expZ1 expZ2 : : : expZk:2.4. Parabolic geometries. Following Elie Cartan's idea of generalized spaces(see [28] for a recent reading), a curved analog of the homogeneous space G=P is aright invariant absolute parallelism ! on a principal P{bundle G which reproducesthe fundamental vector �elds. In our approach, a (real) parabolic geometry (G; !)of type G=P is a principal �ber bundle G with structure group P , equipped with asmooth one{form ! 2 
1(G; g) satisfying(1) !(�Z)(u) = Z for all u 2 G and fundamental �elds �Z , Z 2 p(2) (rb)�! = Ad(b�1) � ! for all b 2 P(3) !jTuG : TuG ! g is a linear isomorphism for all u 2 G.In particular, each X 2 g de�nes the constant vector �eld !�1(X) de�ned by!(!�1(X)(u)) = X, u 2 G. In this paper, we shall deal with smooth real par-abolic geometries only. The one forms with properties (1){(3) are called Cartanconnections, cf. [28].The morphisms between parabolic geometries (G; !) and (G0; !0) are principal�ber bundle morphisms ' which preserve the Cartan connections, i.e. ' : G ! G0and '�!0 = !.2.5. The curvature. The structure equations de�ne the horizontal smooth formK 2 
2(G; g) called the curvature of the Cartan connection !:d! + 12[!; !] = K:The curvature function � : G ! ^2g��
g is then de�ned by means of the parallelism�(u)(X;Y ) = K(!�1(X)(u); !�1(Y )(u)) = [X;Y ]� !([!�1(X); !�1(Y )]):In particular, the curvature function is valued in the cochains for the second coho-mology H2(g�; g). Moreover, there are two ways how to split �. We may considerthe target components �i according to the values in gi. The whole g�{component



4 ANDREAS �CAP AND JAN SLOV�AK�� is called the torsion of the Cartan connection !. The other possibility is toconsider the homogeneity of the bilinear maps �(u), i.e.� = 3kX`=�k+2�(`); �(`) : gi � gj ! gi+j+`:Since we deal with semisimple algebras only, there is the codi�erential @� whichis ajoint to the Lie algebra cohomology di�erential @, see e.g. [23]. Consequently,there is the Hodge theory on the cochains which enables to deal very e�ectivelywith the curvatures. In particular, we may use several restrictions on the values ofthe curvature which turn out to be quite useful.2.6. De�nition. The parabolic geometry (G; !) with the curvature function � iscalled at if � = 0, torsion{free if �� = 0, normal if @� � � = 0, and regular if it isnormal and �(j) = 0 for all j � 0.Obviously, the morphisms of parabolic geometries preserve the above types andso we obtain the corresponding full subcategories of regular, normal, torsion free,and at parabolic geometries of a �xed type G=P . See [10], Section 2, for moredetails.2.7. Flag structures. The homogeneous models for parabolic geometries are thereal generalized ag manifolds G=P . Curved parabolic geometries look like G=Pin�nitesimally. Indeed, the �ltration of g by the p{submodules gj is transfered tothe right invariant �ltration T jG on the tangent space TG by the parallelism !. Thetangent projection Tp : TG ! TM then provides the �ltration TM = T�kM �T�k+1M � � � � � T�1M of the tangent space of the underlying manifold M .Moreover, the structure group of the associated graded tangent space GrTM =(T�kM=T�k+1M ) � � � � � (T�2M=T�1M ) � T�1M reduces automatically to G0since G0 = G=P+ clearly plays the role of its frame bundle. The following lemma isnot di�cult to prove, see e.g. [27], Lemma 2.11.Lemma. Let (G; !) be a parabolic geometry, � its curvature function. Then �(j) = 0for all j < 0 if and only if the Lie bracket of vector �elds on M is compatible withthe �ltration, i.e. [�; �] is a section of T i+jM for all sections � of T iM , and �of T jM . Hence it de�nes an algebraic bracket f ; gLie on GrTM . Moreover, thisbracket coincides with the algebraic bracket f ; gg0 de�ned on GrTM by means ofthe G0{structure if and only if �(j) = 0 for all j � 0.We call the �ltrations of TM with reduction of GrTM to G0 satisfying the verylast condition of the lemma the regular in�nitesimal ag structures of type g=p. Infact, the structures clearly depend on the choice of the Lie group G with the givenLie algebra g. This choice is always encoded already in G0. On the other hand,there are always several distinguished choices, e.g. the full automorphism group ofg, the adjoint group, and the unique connected and simply connected group. Inthe conformal geometries these choices lead to conformal Riemannian manifolds,oriented conformalmenifolds, and (oriented) conformal spin manifolds, respectively.Obviously, the various choices of G do not matter much locally and we shall notdiscuss them explicitly in this paper.The G0 structures on GrTM are equivalent to the frame forms of length onede�ned and used in [8] while the condition �(j) = 0 for all j � 0 is equivalent to thestructure equations for these frame forms imposed in the construction of [8]. In viewof this relation, we also call our bundles G0 equipped with the regular in�nitesimalag structures the P{frame bundles of degree one. In particular, we obtain (see [8],Section 3)



WEYL STRUCTURES FOR PARABOLIC GEOMETRIES 52.8. Theorem. There is the bijective correspondence between the isomorphismclasses of regular parabolic geometries of type G=P and the regular in�nitesimalag structures of type g=p on M , except for one series of one{graded, and one se-ries of two{graded Lie algebras g for which H1(g�; g) is nonzero in homogeneousdegree one.Both types of the exceptional geometries from the Theorem will be mentionedin the examples below.2.9. Example. The parabolic geometries with j1j{graded Lie algebras g are calledirreducible. Their tangent bundles do not carry any nontrivial natural �ltrationand this irreducibility of TM is reected in the name. The classi�cation of all suchsimple real Lie algebras is well known (cf. [22] or 2.1 above). We may list all thecorresponding geometries, up to the possible choices of the groups G0, roughly asfollows:A` the split form, ` > 2 | the almost Grassmannian structures with homoge-neous models of p{planes in R`+1, p = 1; : : : ; `. The choice p = 1 yields theprojective structures which represent one of the two exceptions in 2.8.A` the quaternionic form, ` = 2p + 1 > 2 | the almost quaternionic geome-tries in dimensions 4p, and more general geometries modeled on quaternionicGrassmannians.A` one type of geometry for the algebra su(p; p), ` = 2p� 1.B` the (pseudo) conformal geometries in all odd dimensions 2m+ 1 � 3.C` the split form, ` > 2 | the almost Lagrangian geometries modeled on theGrassmann manifold of maximal Lagrangian subspaces in the symplectic R2`.C` another type of geometry corresponding to the algebra sp(p; p), ` = 2p.D` the (pseudo) conformal geometries in all even dimensions m � 4.D` the real almost spinorial geometries with g = so(p; 2` � p), p = 1; : : : ; `� 2.D` the quaternionic almost spinorial geometries with g = u�(`;H).E6 the split form EI | exactly one type with g0 = so(5; 5)�R and g�1 = R16.E6 the real form EIV | exactly one type with g0 = so(1; 9)�R and g�1 = R16.E7 the split form EV | exactly one type with g0 = EI �R and g�1 = R27.E7 the real form EV II { exactly one type with g0 = EIV �R and g�1 = R27.2.10. Example. The parabolic contact geometries form another important class.They correspond to j2j{graded Lie algebras g with one{dimensional top componentsg2. Thus the regular in�nitesimal structures are equivalent to contact geometricstructures, together with the reduction of the graded tangent space to the subgroupG0 in the group of contact transformations. The only exceptions are the so calledprojective contact structures (C` series of algebras) where more structure has to beadded, see e.g. [8]. The general classi�cation scheme allows a simple formulation forthe contact cases: The dimension one condition on g2 yields the prescription whichsimple roots have to be crossed while the prescribed length two of the grading givesfurther restrictions. The outcome may be expressed as (see [19, 35]):Proposition. Each non{compact real simple Lie algebra g admits a unique grad-ing of contact type (up to conjugacy classes), except g is one of sl(2;R), sl(`;H),sp(p; q), so(1; q), EIV , FII and in these cases no such gradings exist.The best known examples are the non{degenerate hypersurface type CR ge-ometries (with signature (p; q) of the Levi form) which are exactly the torsion freeregular parabolic geometries with g = su(p+1; q+1), see e.g. [8], Section 4.14{4.16.The real split forms of the same complex algebras give rise to the so called almostLagrangian contact geometries, cf. [30].



6 ANDREAS �CAP AND JAN SLOV�AK2.11. Example. The previous two lists of geometries include those with most sim-ple in�nitesimal ag structures. The other extreme is provided by the real parabolicgeometries with most complicated ags in each tangent space, i.e. those correspond-ing to the Borel subgroups P � G. Here we need to cross out all nodes in the Satakediagram and so there must not be any black ones. Thus all real split forms, su(p; p),so(` � 1; `+ 1), and EII list all real forms which admit the right grading.2.12. Natural bundles. Consider a �xed parabolic geometry (G; !) over a man-ifold M . Then each P{module V de�nes the associated bundle V M = G �P Vover M . In fact, this is a functorial construction which may be restricted to allsubcategories of parabolic geometries mentioned in 2.6.Similarly, we may treat bundles associated to any action P ! Di�(S) on amanifoldS, the standard �ber for SM = G�P S.We shall meet only natural vectorbundles de�ned by P{modules in this paper, however.There is a special class of natural (vector) bundles de�ned byG{modulesW. Suchnatural bundles are called tractor bundles, see [2, 7] for historical remarks. We shalldistinguish them by the script letters here and often omit the base manifold Mfrom the notation. We may view each such tractor bundleWM as associated to theextended principal �ber bundle ~G = G �P G, i.e. W = ~G �GW. Now, the Cartanconnection ! on G extends uniquely to a principal connection form ~! on ~G, andso there is the induced linear connection on each such W. With some more carefularguments, this construction may be extended to all (g; P ){modules W, i.e. P{modules with a �xed extension of the induced representation of p to a representationof g compatible with the P{action, see [7], Section 2. One of the achievements ofthe latter paper is the equivalent treatment of the regular parabolic geometriesentirely within the framework of the tractor bundles, inclusive the discussion of thecanonical connections.2.13. Adjoint tractors. It seems that the most important natural bundle is theadjoint tractor bundle A = G �P g with respect to the adjoint action Ad of G on g.The P{submodules gj � g give rise to the �ltrationA = A�k � A�k+1 � � � � � A0 � A1 � � � � � Akby the natural subbundles Aj = G �P gj . Moreover, the associated graded naturalbundle (often denoted by the abuse of notation by the same symbol again)GrA = A�k � � � � � A�1 �A0 � A1 � � � � � Akwith Aj = Aj=Aj+1 is available. By the very de�nition, there is the algebraicbracket on A de�ned by means of the Lie bracket in g (since the Lie bracket isAd-equivariant), which shows up on the graded bundle asf ; g : Ai � Aj !Ai+j :For the same reason, the Killing form de�nes a pairing on GrA such that A�i = A�i,and the algebraic codi�erential @�, cf. 2.5, de�nes natural algebraic mappings@� : ^k+1A1 
 A! ^kA1 
Awhich are homogeneous of degree zero with respect to the gradings in GrA.Similarly to the notation for g, we also write A+ = A1, A� = A=A0 for bundlesassociated either to G or G0. Thus A = A� + A0 + A+, understood either ascomposition series induced by the �ltration, or direct sum of invariant subbundles,respectively.



WEYL STRUCTURES FOR PARABOLIC GEOMETRIES 72.14. Tangent and cotangent bundles. For each parabolic geometry (G; !),p : G !M , the absolute parallelism de�nes the identi�cationG �P (g=p) ' TM; G � g� 3 (u;X) 7! Tp(!�1(X)(u)):In other words, the tangent spaces TM are natural bundles equipped with the�ltrations which correspond to the Lie algebras g� viewed as the P{modules g=pwith the induced Ad{actions. Equivalently, the tangent spaces are the quotientsTM = A=A0of the adjoint tractor bundles. Therefore, the induced graded tangent spaces GrTMare exactly the negative parts of the graded adjoint tractor bundlesGrTM = A�k � � � � � A�1:Moreover, the de�nition of the algebraic bracket on A implies immediately that thebracket induced by the Lie bracket of vector �elds on GrTM for regular in�nitesimalag structures on M coincides with f ; g.Now, the cotangent bundles clearly correspond toT �M = G �P p+ ' A1and so the graded cotangent space is identi�ed withGrT �M = A1 � � � � � Ak:Finally, the pairing of a one{form and a vector �eld is given exactly by the canonicalpairing of A=A1 and A1 induced by the Killing form.2.15. The �rst important observation about the adjoint tractors and their linksto tangent and cotangent spaces is that the curvature K of the parabolic geometry(G; !) is in fact a section of �2(A=A0)� 
 A whose frame form is the curvaturefunction �. Thus, the curvature is a two{form on the underlying manifoldM valuedin the adjoint tractors and all the conditions on the curvature discussed in 2.6 areexpressed by natural algebraic operations on the adjoint tractors.The remarkable relation of both tangent and cotangent spaces to the positive andnegative parts of the adjoint tractors is the most important tool in what follows.In particular, let us notice already here that once we are given a reduction of thestructure group P of G to its reductive part G0, the adjoint tractor bundles areidenti�ed with their graded versions and both tangent and cotangent bundles areembedded inside of A. 3. Weyl{structures3.1. De�nition. Let (p : G !M;!) be a parabolic geometry on a smoothmanifoldM , and consider the underlying principal G0{bundle p0 : G0 !M and the canonicalprojection � : G ! G0. A Weyl{structure for (G; !) is a global G0{equivariantsmooth section � : G0 ! G of �.3.2. Proposition. For any parabolic geometry (p : G ! M;!), there exists aWeyl{structure. Moreover, if � and �̂ are two Weyl{structures, then there is aunique smooth section � = (�1; : : : ;�k) of A1 � � � � � Ak such that�̂(u) = �(u) exp(�1(u)) : : :exp(�k(u)):Finally, each Weyl-structure � and section � de�ne another Weyl-structure �̂ bythe above formula.



8 ANDREAS �CAP AND JAN SLOV�AKProof. We can choose a �nite open covering fU1; : : : ; UNg of M such that both Gand G0 are trivial over each Ui. Since by Proposition 2.3 P is the semidirect productof G0 and P+ it follows immediately that there are smooth G0{equivariant sections�i : p�10 (Ui) ! p�1(Ui). Moreover, we can �nd open subsets Vi such that �Vi � Uiand such that fV1; : : : ; VNg still is a covering of M .Now from Proposition 2.3 and the Baker{Campbell{Hausdor� formula it fol-lows that there is a smooth mapping 	 : p�10 (U1 \ U2) ! p+ such that �2(u) =�1(u) exp(	(u)). Equivariance of �1 and �2 immediately implies that 	(u�g) =Ad(g�1)(	(u)) for all g 2 G0. Now let f : M ! [0; 1] be a smooth function withsupport contained in U2, which is identically one on V2 and de�ne � : p�10 (U1[V2)!p�1(U1 [ V2) by �(u) = �1(u) exp(f(p0(u))	(u)) for u 2 U1 and by �(u) = �2(u)for u 2 V2. Then obviously these two de�nitions coincide on U1\V2, so � is smooth.Moreover, from the equivariance of the �i and of 	 one immediately concludes that� is equivariant. Similarly, one extends the section next to U1 [ V2 [ V3 and byinduction one reaches a globally de�ned smooth equivariant section.If �̂ and � are two global equivariant sections, then applying Proposition 2.3directly, we see that there are smooth maps �i : G0 ! gi for i = 1; : : : ; k such that�̂(u) = �(u) exp(�1(u)) : : : exp(�k(u)). As above, equivariance of �̂ and � impliesthat �i(u�g) = Ad(g�1)(�i(u)) for all g 2 G0. Hence, �i corresponds to a smoothsection of Ai. The last statement of the Proposition is obvious now.3.3. Weyl connections. We can easily relate a Weyl{structure � : G0 ! G toobjects de�ned on the manifoldM by considering the pullback ��! of the Cartanconnection ! along the section �. Clearly, ��! is a g{valued one{form on G0, whichby construction is G0{equivariant, i.e. (rg)�(��!) = Ad(g�1) � ��! for all g 2 G0.Since Ad(g�1) preserves the grading of g, in fact each component ��!i of ��! is aG0{equivariant one form with values in gi.Now consider a vertical tangent vector on G0, i.e. the value �A(u) of a funda-mental vector �eld corresponding to some A 2 g0. Since � is G0{equivariant, weconclude that Tu���A(u) = �A(�(u)), where the second fundamental vector �eld ison G. Consequently, we have ��!(�A) = !(�A) = A 2 g0. Thus, for i 6= 0 the form��!i is horizontal, while ��!0 reproduces the generators of fundamental vector�elds.>From this observation, it follows immediately, that for i 6= 0, the form ��!idescends to a smooth one form on M with values in Ai, which we denote by thesame symbol, while ��!0 de�nes a principal connection on the bundle G0. Thisconnection is called the Weyl connection of the Weyl structure �.3.4. Soldering forms and Rho-tensors. We view the positive components of��! as a one{form P = ��(!+) 2 
1(M ;A1 � � � � � Ak)with values in the bundle A1 � � � � � Ak. We call it the Rho{tensor of the Weyl{structure �. This is a generalization of the tensor Pab well known in conformalgeometry.Since ! restricts to a linear isomorphism in each tangent space of G, we see thatthe form ��!� = (��!�k; : : : ; ��!�1) 2 
1(M;A�k � � � � � A�1)induces an isomorphismTM �= A�k � � � � � A�1 �= GrTM:We will denote this isomorphism by� 7! (��k; : : : ; ��1) 2 A�k � � � � � A�1



WEYL STRUCTURES FOR PARABOLIC GEOMETRIES 9for � 2 TM . In particular, each �xed u 2 G0 provides the identi�cation of Tp0(u)M �=g� compatible with the grading. Thus, the choice of a Weyl structure � providesa reduction of the structure group of TM to G0 (by means of the soldering form��!� on G0), the linear connection on M (the Weyl connection ��!0), and theRho{tensor P.3.5. Remarks. As discussed in 2.7{2.8 above, there is the underlying frame formof length one on G0 which is the basic structure from which the whole parabolicgeometry (G; !) may be reconstructed, with exceptions mentioned explicitly in 2.9and 2.10. By de�nition, for i < 0 and � 2 T iG0 this frame form can be computed bychoosing any lift of � to a tangent vector on G and then taking the gi{component ofthe value of ! on this lift. In particular, we can use T��� as the lift, which impliesthat the restriction of ��!i (viewed as a form on G0) to T iG0 coincides with the gi{component of the frame form of length one. This in turn implies that the restrictionof ��!i (viewed as a form on M ) to T iM coincides with the canonical projectionT iM !Ai = T iM=T i+1M .There is also another interpretation of the objects on M induced by the choice ofa Weyl{structure that will be very useful in the sequel. Namely, consider the form��!�0 = ��!�k � � � � � ��!0 2 
1(G0; g�k � � � � � g0):We have seen above that this form is G0{equivariant, it reproduces the generatorsof fundamental vector �elds, and restricted to each tangent space, it is a linearisomorphism. Thus ��!�0 de�nes a Cartan connection on the principal G0{bundlep0 : G0 !M . In the case of the irreducible parabolic geometries, these connectionsare classical a�ne connections on the tangent space TM belonging to its reducedstructure group G0.3.6. Bundles of scales. As we have seen in 3.3, 3.4 above, choosing a Weyl{structure � : G0 ! G leads to several objects on the manifold M . Now the nextstep is to show that in fact a small part of these data is su�cient to completely�x the Weyl{structure. More precisely, we shall see below that even the linearconnections induced by the Weyl connection ��!0 on certain oriented line bundlessu�ce to pin down the Weyl{structure. Equivalently, one can use the correspondingframe bundles, which are principal bundles with structure group R+. The principalbundles appropriate for this purpose are called bundles of scales.To de�ne these bundles, we have to make a few observations: A principal R+{bundle associated to G0 is determined by a homomorphism � : G0 ! R+. Thederivative of this homomorphism is a linear map �0 : g0 ! R. Now g0 splits as thedirect sum z(g0) � gss0 of its center and its semisimple part, and �0 automaticallyvanishes on the semisimple part. Moreover, as discussed in 2.2 the restriction of theKilling form B of g to the subalgebra g0 is non{degenerate, and one easily veri�esthat this restriction respects the above splitting. In particular, the restriction of Bto z(g0) is still non{degenerate and thus there is a unique element E� 2 z(g0) suchthat �0(A) = B(E�; A) for all A 2 g0.Next, the action of the element E� 2 z(g0) on any G0{irreducible representationcommutes with the action of G0, and thus is given by a scalar multiple of theidentity by Schur's lemma.De�nition. An element E� of z(g0) is called a scaling element if and only ifE� actsby a nonzero real scalar on each G0{irreducible component of p+. A bundle of scalesis a principal R+ bundle L� ! M which is associated to G0 via a homomorphism� : G0 ! R+, whose derivative is given by �0(A) = B(E�; A) for some scalingelement E� 2 z(g0).



10 ANDREAS �CAP AND JAN SLOV�AKHaving given a �xed choice of a bundle L� of scales, a (local) scale on M is a(local) smooth section of L�.3.7. Proposition. Let G be a �xed semisimple Lie group, whose Lie algebra g isendowed with a jkj{grading. Then the following holds:(1) There are scaling elements in z(g0).(2) Any scaling element E� 2 z(g0) gives rise to a canonical bundle L� of scalesover each manifold endowed with a parabolic geometry of the given type.(3) Any bundle of scales admits global smooth sections, i.e. there always exist globalscales.Proof. (1) The grading element E 2 z(g0), cf. 2.2, acts on gi by multiplicationwith i, so it is a scaling element. More generally, one can consider the subspace ofz(g0) of all elements which act by real scalars on each irreducible component of p+.Then each irreducible component determines a real valued functional and thus ahyperplane in that space, and the complement of these �nitely many hyperplanes(which is open and dense) consists entirely of scaling elements.(2) Let p+ = �p� be the decomposition of p+ into G0{irreducible components,and for a �xed grading element E� denote by a� the scalar by which E� actson p�. The adjoint action de�nes a smooth homomorphism G0 ! Q�GL(p�),whose components we write as g 7! Ad�(g). Then consider the homomorphism� : G0 ! R+ de�ned by �(g) :=Y� j det(Ad�(g))j2a� :The derivative of this homomorphism is given by �0(A) = P� 2a�tr(ad(A)jp� ).Now g� = ��(p�)�, and E� acts on (p�)� by �a� and on g0 by zero, and thusB(E�; A) = tr(ad(A) � ad(E�)) = P� a� tr(ad(A)jp�) �P� a� tr(ad(A)j(p�)� ) =�0(A).(3) This is just due to the fact that orientable real line bundles and thus principalR+{bundles are automatically trivial and hence admit global smooth sections.3.8. Lemma. Let � : G0 ! G be a Weyl{structure for parabolic geometry (G !M;!) and let L� be a bundle of scales.(1) The Weyl connection ��!0 2 
1(G0; g0) induces a principal connection on thebundle of scales L�.(2) L� is naturally identi�ed with G0= ker(�), the orbit space of the free right actionof the normal subgroup ker(�) � G0 on G0.(3) The form �0 � ��!0 2 
1(G0) descends to the connection form of the inducedprincipal connection on L� = G0= ker(�).(4) The composition of �0 with the curvature form of ��!0 descends to the curvatureof the induced connection on L�.Proof. All claims are straightforward consequences of the de�nitions.To see that the Weyl{structure � is actually uniquely determined by the inducedprincipal connection on L� (cf. Theorem 3.12 below), we have to compute how theprincipal connection ��!0 changes when we change �. For later use, we also computehow the other objects induced by � change under the change of the Weyl{structures.So let us assume that �̂ is another Weyl{structure and � = (�1; : : : ;�k) is thesection of A1 � � � � � Ak characterized by �̂(u) = �(u) exp(�1(u)) : : :exp(�k(u)).We shall use the convention that we simply denote quantities corresponding to �̂by hatted symbols and quantities corresponding to � by unhatted symbols. Conse-quently, (��k; : : : ; ��1) and (�̂�k; : : : ; �̂�1) denote the splitting of � 2 TM accordingto �, respectively �̂, and P and P̂ are the Rho{tensors. Finally, let us consider anyvector bundle E associated to the principal bundle G0. Then for any Weyl{structure



WEYL STRUCTURES FOR PARABOLIC GEOMETRIES 11the corresponding principal connection on G0 induces a linear connection on E,which is denoted by r for � and by r̂ for �̂.To write the formulae e�ciently, we need some further notation. By j we denotea sequence (j1; : : : ; jk) of nonnegative integers, and we put kjk = j1+2j2+� � �+kjk.Moreover, we de�ne j! = j1! : : : jk! and (�1)j = (�1)j1+���+jk , and we de�ne (j)mto be the subsequence (j1; : : : ; jm) of j. By 0 we denote sequences of any lengthconsisting entirely of zeros.3.9. Proposition. Let � and �̂ be two Weyl{structures related by�̂(u) = �(u) exp(�1(u)) : : :exp(�k(u));where � = (�1; : : : ;�k) is a smooth section of A1 � � � � � Ak. Then we have:�̂i = Xkjk+`=i (�1)jj! ad(�k)jk � : : : � ad(�1)j1(�`);(1) P̂i(�) = Xkjk+`=i (�1)jj! ad(�k)jk � : : : � ad(�1)j1(�`) +(2) Xkjk+`=i (�1)jj! ad(�k)jk � : : : � ad(�1)j1(P`(�)) +kXm=1 X(j)m�1=0m+kjk=i (�1)j(jm + 1)j! ad(�k)jk � : : : � ad(�m)jm (r��m);where ad denotes the adjoint action with respect to the algebraic bracket f ; g.If E is an associated vector bundle to the principal bundle G0, then we have:r̂�s = r�s + Xkjk+`=0 (�1)jj! (ad(�k)jk � : : : � ad(�1)j1(�`)) � s;(3)where � denotes the map A0 � E ! E induced by the action of g0 on the standard�ber of E.Proof. The essential part of the proof is to compute the tangent map Tu�̂ in apoint u 2 G0. By de�nition, �̂(u) = �(u) exp(�1(u)) : : : exp(�k(u)). Thus, we canwrite the evaluation of the tangent map, Tu�̂��, as the sum of T�(u)rg�Tu���, whereg = exp(�1(u)) : : : exp(�k(u)) 2 P+, and the derivative at t = 0 of�(u) exp(�1(c(t))) : : : exp(�k(c(t)));where c : R! G0 is a smooth curve with c(0) = u and c0(0) = �. By construction,the latter derivative lies in the kernel of T�, where � : G ! G0 is the projection, sowe can write it as ��(�)(�̂(u)) for suitable �(�) 2 p+.Now, for � 2 TuG0, we have �̂�!(�) = !(�̂(u))(Tu�̂��). By equivariance of theCartan connection !, we get !(�(u)�g)(Trg �T���) = Ad(g�1)(!(u)(T���)). Conse-quently, �̂�!(�) = Ad(g�1)(��!(�)) + �(�):Since �(�) 2 p+, this term a�ects only the transformation of the Rho{tensor, anddoes not inuence the changes of ��!i for i � 0. In particular, for the components�̂�!i with i < 0, we only have to take the part of the right degree inead(��k(u)) � : : : � ead(��1(u))(��!(u)(�));(4)and expanding the exponentials, this immediately leads to formula (1).



12 ANDREAS �CAP AND JAN SLOV�AKTo compute the change in the connection, we have to notice that �̂�!0(�) isthe component of degree zero in (4) above. Consequently, if we apply �̂�!0 to thehorizontal lift of a tangent vector on M , the outcome is just this degree zero part.Otherwise put, the horizontal lift with respect to �̂�!0 is obtained by subtractingthe fundamental vector �eld corresponding to the degree zero part of (4) fromthe horizontal lift with respect to ��!0. Applying such horizontal vector �eld to asmooth G0{equivariant function with values in any G0{representation and takinginto account that a fundamental vector �elds acts on such functions by the negativeof its generator acting on the values, this immediately leads to formula (3) byexpanding the exponentials.Finally, we have to deal with the change of the Rho{tensor. Recall that we viewthis as a tensor on the manifoldM , so we can compute P̂i(�) by applying �̂�!i toany lift of �. In particular, we may use the horizontal lift �h with respect to ��!0,so we may assume ��!0(�) = 0. But then expanding the exponentials in (4) andtaking the part of degree i we see that we exactly get the �rst two summands informula (2). Thus we are left with proving that the last summand corresponds to�(�). For this aim, let us rewrite the curve that we have to di�erentiate as�̂(u) exp(��k(u)) : : : exp(��1(u)) exp(�1(c(t))) : : : exp(�k(c(t))):Di�erentiating this using the product rule we get a sum of terms in which one �iis di�erentiated, while all others have to be evaluated at t = 0, i.e. in u. So each ofthese terms reads as the derivative at t = 0 of�̂(u)�conjexp(��k(u)) � : : : � conjexp(��i+1(u))�exp(��i(u)) exp(�i(c(t)))�;where conjg denotes the conjugation by g, i.e. the map h 7! ghg�1. This expressionis just the principal right action by the value of a smooth curve in P which maps zeroto the unit element, so its result is exactly the value at �̂(u) of the fundamentalvector �eld generated by the derivative at zero of this curve. This derivative isclearly obtained by applyingead(��k(u)) � : : : � ead(��i+1(u))to the derivative at zero of t 7! exp(��i(u)) exp(�i(c(t))). By [20], 4.26, and thechain rule, the latter derivative equals the left logarithmic derivative of exp appliedto the derivative at zero of t 7! �i(c(t)). Moreover, the proof of [20], Lemma 4.27,can be easily adapted to the left logarithmic derivative, showing that this gives1Xp=0 (�1)p(p + 1)! ad(�i(u))p(�h��i):Finally, we have to observe that �h��i corresponds to r��i and to sort out theterms of the right degree in order to get the remaining summand in (2).3.10. Example. For all irreducible parabolic geometries, the formulae fromPropo-sition 3.9 become extremely simple. In fact they coincide completely with the knownones in the conformal Riemannian geometry: The grading of TM is trivial, the con-nection transforms as r̂�s = r�s � f�; �g � s;where � is a section of A1 = T �M , and the bracket of � and � is a �eld ofendomorphisms of TM acting on s in an obvious way. Indeed, there are no moreterms on the right{hand side of 3.9(3) which make sense. Next, the Rho{tensortransforms as P̂(�) = P(�) +r��+ 12f�; f�; �gg:



WEYL STRUCTURES FOR PARABOLIC GEOMETRIES 13The formulae for the j2j{graded examples are a bit more complicated. The splittingof TM and the connection and Rho{tensors change as follows�̂�2 = ��2�̂�1 = ��1 � f�1; ��2gr̂�s = r�s+ �12f�1; f�1; ��2gg � f�2; ��2g � f�1; ��1g) � s;P̂1(�) = P1(�) � 16f�1; f�1; f�1; ��2ggg+ f�2; f�1; ��2gg+12f�1; f�1; ��1gg � f�2; ��1g+r��1P̂2(�) = P2(�) � f�1;P1(�)g +r��2 � 12f�1;r��1g+124 ad(�1)4(��2) � 12f�2; f�1; f�1; ��2ggg+ 12f�2; f�2; ��2gg �16 ad(�1)3(��1) + f�2; f�1; ��1gg:3.11. Remark. In applications, one is often interested in questions about the de-pendence of some objects on the choice of the Weyl{structures and then the in-�nitesimal form of the available change of the splittings, Rho's and connections isimportant. In our terms, this amounts to sorting out the terms in formulae 3.9(1){(3) which are linear in upsilons. Thus, the in�nitesimal version of Proposition 3.9for the variations ��i, �r, and �Pi reads��i = � f�1; �i�1g � � � � � f�k+i; ��kg(1) �Pi(�) = r��i � f�1;Pi�1(�)g � � � � � f�i�1;P1(�)g �(2) f�i+1; ��1g � � � � � f�k; ��k+ig�r�s = � (f�1; ��1g+ � � �+ f�k; ��kg) � s:(3)3.12. Proposition 3.9 not only allows us to show that a Weyl{structure is uniquelydetermined by the induced connection on any bundle of scales, but it also leads toa description of the Cartan bundle p : G !M . To get this description, recall thatfor any principal bundle E ! M there is a bundle QE ! M whose sections areexactly the principal connections on E, see [20], 17.4.Theorem. Let p : G ! M be a parabolic geometry on M , and let L� ! M be abundle of scales.(1) Each Weyl{structure � : G0 ! G determines the principal connection on L� in-duced by the Weyl connection ��!0. This de�nes a bijective correspondence betweenthe set of Weyl{structures and the set of principal connections on L�.(2) There is a canonical isomorphism G �= p�0QL�, where p0 : G0 ! M is the pro-jection. Under this isomorphism, the choice of a Weyl structure � : G0 ! G is thepullback of the principal connection on the bundle of scales L�, viewed as a sectionM ! QL�. Moreover, the principal action of G0 is the canonical action on p�0QL�induced from the action on G0, while the action of P+ is described by equation (3)from Proposition 3.9.Proof. (1) Consider the map �0 : g0 ! R de�ning the bundle L� of scales. Takeelements Z 2 p+ and X 2 g�, and consider �0([Z;X]). By assumption, this is givenby B(E�; [Z;X]) = B([E�; Z]; X) for some scaling element E� 2 z(g0). Hence ifwe assume that Z lies in a G0{irreducible component of p+ this is just a nonzeroreal multiple of B(Z;X). In particular, this implies that for each 0 6= Z 2 pi, wecan �nd an element X 2 g�i, such that �0([Z;X]) 6= 0. Moreover, since E� 2 z(g0)we get Ad(g)(E�) = E� for all g 2 G0 and this immediately implies that mappingZ 2 gi to X 7! �0([Z;X]) induces an isomorphism gi �= g��i of G0{modules.



14 ANDREAS �CAP AND JAN SLOV�AKCartan connection !G //

��

QL�
��G0 = G=P+Weyl-structure � @@

// M principal connectioninduced by ��!0^^soldering form ��!� 2 
1(G0; g�)Weyl connection ��!0 2 
1(G0; g0)Rho{tensor P = ��!+ 2 
1(G0:p+) ��!� 2 
1(M ;A�)P 2 
1(M ;A+)Figure 1. Pullback diagram with further objects related to Weyl{structuresTo prove (1), we may as well use the induced linear connection on the line bundleL� = L� �R+R corresponding to the standard representation. For this bundle, themap � from Proposition 3.9 is clearly given by (A � s)(x) = �0(A(x))s(x), where wedenote by �0 : A0 !M �R also the mapping induced by �0 : g0 ! R.We �rst claim that the map from Weyl{structures to linear connections is in-jective. So assume that � and �̂ induce the same linear connection on L� andlet � be the section of A1 � � � � � Ak describing the change from � to �̂. For� 2 T�1M , we have �i = 0 for all i < �1, hence formula (3) of 3.9 reducesto r̂�s = r�s + �0(f�1; �g)s in this case. If �1 would be nonzero, then by theabove argument we could �nd � such that �0(f�1; �g) 6= 0, which would contradictr̂ = r, so �1 must be identically zero. But then for � in T�2M , the change reducesto r̂�s = r�s + �0(f�2; ��2g)s and as above, we conclude that �2 is identicallyzero. Inductively, we get � = 0 and thus �̂ = �.To see surjectivity, assume that r̂ is any linear connection on L�, and let �be any Weyl{structure with induced linear connection r on L�. Then there is aone{form � 2 
1(M ) such that r̂�s = r�s+ � (�)s. Restricting � to T�1M , we can�nd a unique smooth section �1 of A1 such that � (�) = ��0(f�1; �g) for all � inT�1M . Next, consider the map T�2M !M �R given by� 7! � (�) + �0(f�1; ��1g)� 12�0(f�1; f�1; ��2gg);where the �i are the components of � with respect to the Weyl{structure �. Byconstruction, this vanishes on T�1M , so it factors to a map de�ned onA�2, and thusthere is a unique section �2 of A2 such that it equals ��0(f�2; ��2g). Inductively,we �nd a section � such that the Weyl{structure �̂ corresponding to � and �induces the linear connection r̂, cf. formula 3.9(3).(2) Consider any point u 2 G. Proposition 3.2 implies that there is a Weyl{structure� : G0 ! G such that u = �(�(u)). Ifr is the linear connection on L� induced by �,then we see from Proposition 3.9 that the value of r�s(p(u)) for a vector �eld � onM and a section s of L� depends only on �(p(u)), since its change under a change ofthe Weyl{structure depends only on the value of � in p(u). Thus, mapping u to thevalue at p(u) of the principal connection on L� induced by ��!0 is independent ofthe choice of �, so we get a well de�ned bundle map from the bundle G ! G0 to thebundle QL� !M covering the projection p0 : G0 !M . Moreover, from part (1) ofthis proof it follows that this map induces isomorphisms in each �ber, so it leads



WEYL STRUCTURES FOR PARABOLIC GEOMETRIES 15to an isomorphism G ! p�0QL� of bundles over G0. Obviously, the G0{equivariantsections of p�0QL� ! G0 correspond exactly to the induced principal connectionson L�, i.e. the sections of QL� !M .In order to describe the principal action of P on p�0QL� obtained by the aboveisomorphism, one just has to note that for u 2 G0 and g 2 G0 the �bers of p�0QL�over u and u�g are canonically isomorphic since p0(u) = p0(u�g). Thus, the principalright action of G0 is simply given by acting on G0. On the other hand, �x u 2 G0 andan element exp(Z1) : : :exp(Zk) 2 P+ for Zi 2 gi. Via u, the element Zi correspondsto an element �i 2 Ai at the point p0(u). Then the principal right action of P+ isdescribed by the formula (3) of Proposition 3.9 as required.3.13. Closed and exact Weyl{structures. Let us �x a bundle of scales L�for some parabolic geometry. Then the bijective correspondence between Weyl{structures and principal connections on L� immediately leads to two distinguishedsubclasses of Weyl{structures. Namely, we call a Weyl{structure � : G0 ! G closed ,if the induced principal connection on L� (or equivalently the induced linear con-nection r on L�) is at.Moreover, by Proposition 3.7 the bundle L� of scales admits global smooth sec-tions, and any such section gives rise to a at principal connection on L� (whichin addition has trivial holonomy) and hence to a closed Weyl{structure. The closedWeyl{structures induced by such global sections are called exact.Note that in the case of conformal structures, the canonical choice for the bundleof scales is simply the R+{bundle whose smooth sections are the metrics in theconformal class. Thus, the exact Weyl{structures in conformal geometry correspondexactly to the Levi{Civita connections of the metrics in the conformal class.The reason for the names \closed" and \exact" becomes apparent, once onestudies the a�ne structures on the sets of closed and exact Weyl{structures. So letus assume that � is a closed Weyl{structure, and consider any other Weyl{structure�̂ corresponding to the section � = (�1; : : : ;�k) of A1 � � � � � Ak. Now we canreinterpret theorem 3.12(1) together with proposition 3.9 as showing that the setof Weyl{structures is an a�ne space over 
1(M ), in such a way that �xing � thesection � corresponds to the one{form ��;� de�ned by��;�(�) = Xkjk+`=0 (�1)jj! �0 �ad(�k)jk � : : : � ad(�1)j1(�`)� :This identi�cation is obtained simply by pulling back the a�ne structure on thespace of principal connections on L� to the space of Weyl{structures. In particu-lar, the change of the principal connections � and �̂ on L� induced by � and �̂,respectively, is just given by �̂ = � +��;�. But then their curvatures change simplyby �̂ = � + d��;�, so in particular if � is closed then �̂ is closed if and only ifd��;� = 0. Thus, in the same way as Weyl{structures are a�ne over all one{forms,closed Weyl{structures are a�ne over closed one{forms.For exact Weyl{structures, the situation is even simpler. If s and ŝ are two globalsections of L�, then there is a unique smooth function f such that ŝ(x) = e�f(x)s(x).It is then well known that the associated principal connections simply change by�̂ = � + df , so exact Weyl{structures are a�ne over the space of exact one{forms.3.14. Remark. Another useful observation about exact Weyl geometries is relatedto the identi�cation of L� with G0= ker� from 3.8(2). By the general properties ofclassical G{structures, the sections of such bundles are in bijective correspondencewith reductions of the structure groups to ker� � G0. Thus the holonomy ofthe Weyl connections given by closed Weyl structures is always at most ker�. Inparticular, in j1j{graded cases the scaling element is unique up to scalar multiples,



16 ANDREAS �CAP AND JAN SLOV�AKand the kernel of � is exactly the semisimple part of G0. The same observation isthen true for the closed Weyl geometries locally.3.15. Normal Weyl{structures. Besides the rather obvious closed and exactWeyl{structures discussed above there is a second kind of special Weyl{structures,the so{called normal Weyl{structures. In several respects, they are quite di�erentfrom closed and exact Weyl{structures. On one hand, they are \more canonical"since their de�nition does not involve the choice of a bundle of scales. On the otherhand, in contrast to closed and exact Weyl{structures, which always exist globally,normal Weyl{structures in general exist only locally (over M ). Their existence isclosely related to the existence of normal coordinates for parabolic geometries. Thissubject will be taken up elsewhere. We would like to point out at this place thatthe existence of normal Weyl{structures seems to be a new result even in the caseof conformal structures, where it signi�cantly improves the result on the existenceof Graham normal coordinates, see [24].Since the Rho tensors give the information about the di�erence of the covariantderivative with respect to the Weyl connection and the invariant derivative withrespect to ! along the image of the chosen Weyl{structure �, the \normality" wehave in mind will be described in terms of certain minimality of P. More explicitly,a Weyl{structure � will be called normal at the point x 2 M if it satis�es theproperties imposed in Theorem 3.16. This Theorem also describes completely thefreedom in the choice.Recall that once we have chosen a Weyl{structure, we get an identi�cation of thetangent bundle with its associated graded vector bundle. Thus TM is associatedto G0 and so there is the induced linear Weyl connection on TM . Since the Weyl{structure induces covariant derivatives on all components of the associated gradedof the tangent bundle, the Weyl connection on TM preserves the grading. For thesame reason, we can form covariant derivatives of the Rho{tensor, viewed as aone{form with values in T �M �= A1 � � � � � Ak, which again preserve the grading.3.16. Theorem. Let p : G ! M be a parabolic geometry with underlying G0{bundle p0 : G0 !M and let � : G ! G0 be the canonical projection. Let x 2M be apoint and let u0 2 G0 and u 2 G be points such that �(u) = u0 and p0(u0) = x. Thenthere exists an open neighborhood U of x in M and a Weyl{structure � : p�10 (U )!p�1(U ) such that �(u0) = u and the Rho{tensor P of � has the property that forall k 2 N the symmetrization over all �i of (r�k : : :r�1P)(�0) vanishes at x, so inparticular P(x) = 0. Moreover, this condition uniquely determines the in�nite jetof � in u0.Proof. Consider the Cartan connection ! on G. Since ! restricts to a linear isomor-phism, for each element A 2 g we get the constant vector �eld ~A 2 X(G) de�nedby ~A(v) = !(v)�1(A), cf. 2.4. (Note that for A 2 p this is just the fundamentalvector �eld.) In particular, we may consider the vector �elds ~X for X 2 g�. Nowwe can �nd a neighborhood V of zero in g�, such that for all X 2 V the ow ofX in the point u exists up to time t = 1. De�ne ' : V ! G by '(X) = Fl ~X1 (u).Since Tup � T0' : g� ! TxM is obviously a linear isomorphism, we may assume(possibly shrinking V ) that the maps ', � � ' and p � ' are all di�eomorphismsonto their images, and we put U = p('(V )). For a point v0 2 p�10 (U ) there clearlyexist unique elements X 2 V and g 2 G0 such that v0 = �('(X))�g, and wede�ne �(v0) := '(X)�g. Obviously, this de�nes a smooth G0{equivariant section� : p�10 (U )! p�1(U ) and �(u0) = u.Next, consider a tangent vector � 2 TxM , and its horizontal lift �h 2 Tu0G0 withrespect to the principal connection ��!0. Since ��!�0 de�nes a Cartan connec-tion on p�10 (U ) (see 3.5) we can extend �h uniquely to a vector �eld ~�h such that



WEYL STRUCTURES FOR PARABOLIC GEOMETRIES 17��!�0(~�h) is constantly equal to some X 2 g�. Moreover, ~�h is projectable to avector �eld ~� on U and it is exactly the horizontal lift of ~� (which also justi�es thenotation).Now consider the ow line c(t) = Fl ~Xt (u) = '(tX) in G, which is de�ned forsu�ciently small t. By construction, we have �(�(c(t))) = c(t) for all t. But thisimplies that T��(� � c)0(t) = c0(t), so ��(!)((� � c)0(t)) is constantly equal to X andthus (� � c)(t) = Fl~�t (u0). On the other hand, from the construction it is clear that!(c0(t)) = X 2 g�, so if we consider the function P : G0 ! L(g�; p+) describingthe Rho{tensor, then P(�(c(t)))(X) = 0 for all t. Consequently, all derivativesof this curve in t = 0 vanish. But since � � c is an integral curve of ~�h theseiterated derivatives exactly correspond to iterated covariant derivatives of P indirection � evaluated at �. Thus, we obtain (r� : : :r�P)(�) = 0 for any number ofcovariant derivatives. Using polarization, this implies that the symmetrization of(r�k : : :r�1P)(�0) over all �i vanishes at x.To see that our condition �xes the in�nite jet of the Weyl{structure supposethat �̂ is another normal Weyl structure with �̂(u0) = u and let � = (�1; : : : ;�k)be the section of A1 � � � � � Ak describing the change from � to �̂. We want toshow that the in�nite jet of � vanishes at x = p(u). Since both Weyl{structuresmap u0 to u, we must have �(x) = 0. Next, we know that P(x) = P̂(x) = 0.Since all �i vanish in x, formula (2) from Proposition 3.9 immediately shows thatthis implies r�i(x) = 0 for all i = 1; : : : ; k, so r�(x) = 0. Now, P̂ = 0 and� = 0. On one hand, it follows that r̂P(x) = rP(x) and on the other hand that(r�P̂)(�)(x) = r�(P̂(�))(x). But hitting formula (2) from Proposition 3.9 with r�and symmetrizing over � and �, we always get terms involving some �i or r��i orr�P(�) which all vanish at x, except for one term in the very last line, in which weget a second covariant derivative of some �i. So we see that the symmetrizationsof r̂�P̂(�) and r�r�� coincide. Thus vanishing of the symmetrization of the �rstcovariant derivative implies that the symmetrized second derivative of � is zero,and thus the two{jet of � at x must be zero. Iteratively, one similarly sees that inthe expression of an symmetrized iterated covariant derivative of P we always getterms involving symmetrized iterated covariant derivatives of �i's or P's except forone term coming from the very last line of the transformation formula. As above,one then concludes that vanishing of the symmetrization of the k{fold covariantderivative of P̂ is equivalent to vanishing of the symmetrization of the (k + 1){foldcovariant derivative of � and thus to the k + 1{jet of � in x being trivial.4. Characterization of Weyl{structuresIn the last section, we started with a Weyl{structure for a parabolic geometry(G !M;!) and we constructed several underlying objects on the manifoldM , seeFigure 1 for an illustration. Now we are going to characterize when general objectsof that type actually come from a Weyl structure. In the �nal stage, this will meanexplicit conditions relating the soldering form, linear connection and its torsion andcurvature, together with a procedure building the corresponding Rho{tensors. Thisis quite simple for irreducible geometries, where the soldering form is �xed, andthe whole condition prescribes uniquely the torsion of a G0{connection. The Rho{tensor is then given by a simple formula in terms of the curvature, see Example4.8 below. Of course, the same story gets much more complicated for the generaljkj{graded case. The main step is done in Theorem 4.4 and then a detailed analysisof the curvature ful�lls our goal.



18 ANDREAS �CAP AND JAN SLOV�AKThroughout this section we restrict to the case of regular parabolic geometriesassociated to a jkj{graded semisimple Lie algebra g such that H1(g�; g) is concen-trated in homogeneous degrees � 0, i.e. such that none of the simple jkij{gradedideals is of one of the two types mentioned in 2.8. In the case that such ideals arepresent, a similar characterization is possible, but the conditions are more compli-cated to formulate.4.1. De�nition. Let p0 : G0 ! M be a regular in�nitesimal ag structure, see2.7. A Weyl{form for M is a one{form � 2 
1(G0; g) which is G0{equivariant,i.e. (rg)�� = Ad(g�1) � � for all g 2 G0, reproduces the generators of fundamentalvector �elds, i.e. � (�A) = A for all A 2 g0 and has the property that for each i < 0the restriction of �i to T iG0 coincides with the gi{component of the frame form ofdegree one on G0 induced by the regular in�nitesimal ag structure, see 2.7 and 3.5.By 3.3 and 3.4, for any Weyl{structure � : G0 ! G, the pullback ��! is a Weyl{form for M . As in 3.4, the condition of the restriction of �i to T iG0, i < 0, meanson M exactly that the restriction of �i to T iM coincides with the canonical pro-jection T iM ! Ai. In particular, this implies that �� = ��k � � � � � ��1 induces alinear isomorphism TuG0=VuG0 �= g�, and thus ��0 is a Cartan connection on G0.Completely parallel to the development in 3.3{3.5 we can equivalently interpret aWeyl{form for M as a one form �� 2 
1(M;A�k � � � ��A�1) inducing an isomor-phism between TM and its associated graded bundle, plus a principal connection�0 2 
1(G0; g0) on G0, plus a Rho{tensor P = P� 2 
1(M;A1 � � � � � Ak), so aWeyl{form essentially consists of objects living on M .4.2. Weyl{curvature. Next, for a Weyl{form � for M , we de�ne the Weyl{curvature W of � . As a g{valued two form on G0, it is de�ned byW (�; �) = d� (�; �) + [� (�); � (�)]:>From the fact that � is G0{equivariant and reproduces the generators of fun-damental vector �elds, one immediately concludes that W is horizontal and G0{equivariant, so it descends to an A{valued two form onM . Taking into account theidenti�cation of TM with A�, we can also view W as a section of L(�2A�;A).Finally note that any section � of L(�2A�;A) can be split according to homoge-neous degrees. We denote by �(`) the homogeneous part of degree `, i.e. �(`)(�; �) 2Ai+j+` for sections � of Ai and � of Aj with i; j < 0.Lemma. Let p0 : G0 ! M be a regular in�nitesimal ag structure. Then anyWeyl{form � 2 
1(G0; g) has the property that W (`) = 0 for all ` � 0.Proof. Consider � 2 �(Ai) and � 2 �(Aj), for i; j < 0. Then �n(�) = 0 for n < iand �m(�) = 0 for m < j, so for ` < 0 if m+ n = i+ j + ` then [�n(�); �m(�)] = 0.Thus, in this case, the de�nition of W (`)(�; �) can be rewritten as W (`)(�; �) =d�i+j+`(�; �) = ��i+j+`([�; �]). By de�nition of a Weyl{form,W (`)(�; �) thus equalsthe class of the bracket �[�; �] in T i+j+`M=T i+j+`+1M . But according to 2.7, wein particular know that the bracket of any section of T iM with a section of T jMlies in T i+jM , so since ` < 0, we must have W (`) = 0.Next, for ` = 0, we can writeW (0)(�; �) = d�i+j(�; �) + f�; �g = ��i+j([�; �]) + f�; �g:Again, �i+j([�; �]) is just the class of the bracket in T i+jM=T i+j+1M and so thevanishing ofW (0) is just the remaining part of the de�nition of regular in�nitesimalag structures, see 2.7.



WEYL STRUCTURES FOR PARABOLIC GEOMETRIES 194.3. De�nition. Let p0 : G0 ! M be a regular in�nitesimal ag structure. Thena Weyl{form � 2 
1(G0; g) is called normal if and only if its Weyl{curvature W 2�(L(�2A�;A)) satis�es @�(W ) = 0, where @� : L(�2A�;A)) ! L(A�;A) is thebundle map induced by the Lie algebra codi�erential, see 2.13.4.4. Theorem. Let (p : G ! M;!) be a regular parabolic geometry and let p0 :G0 ! M be the underlying regular in�nitesimal ag structure. Then a Weyl{form� 2 
1(G0; g) for M is coming from some Weyl{structure � : G0 ! G, i.e. � = ��!,if and only if � is normal.Proof. First we show that for any Weyl{structure � : G0 ! G the Weyl{form ��!is normal. By the de�nition in 4.2 the Weyl{curvature W is a g{valued two{formon G0, given byW (�; �) = d��!(�; �) + [��!(�); ��!(�)] = ��(d! + 12 [!; !])(�; �):Thus, W is simply the pullback along � of the curvature of the Cartan connection! on G0. By de�nition of a normal parabolic geometry, this curvature is @�{closed,so the same is true for W .Now, let us assume that we have given an arbitrary normal Weyl{form � 2
1(G0; g). Moreover, let us choose any bundle L� of scales for the parabolic geometryin question. Since �0 is a principal connection on G0, it induces a principal connectionon L�, which by Theorem 3.12 in turn gives rise to a unique Weyl{structure � : G0 !G such that the connection on L� induced by ��!0 coincides with the connectioninduced by �0. We claim that � = ��!, which will conclude the proof.Consider the di�erence � � ��! 2 
1(G0; g). For i < 0, we know from ourassumptions that both �i and ��!i coincide on T iG0 with the frame form of degreeone. In particular, the di�erence �i���!i vanishes on T iG0 for all i < 0. Since T 0G0is just the vertical bundle of G0 and since both �0 and ��!0 are principal connectionson G0, we see that �0 � ��!0 vanishes on T 0G0, too. Finally, if we put T iG0 to bethe zero section for i > 0, then �i���!i vanishes on T iG0 for all i = �k; : : : ; k. Letus inductively assume that �i � ��!i vanishes on T i�n+1G0 for all i and some n.Then consider the restriction of �i � ��!i to T i�nG0, which can be viewed asa map T i�nG0=T i�n+1G0 ! gi. For each i such that i � n � 0, the forms �i�nand ��!i�n coincide on T i�nG0 and induce an isomorphismT i�nG0=T i�n+1G0 !G0 � gi�n. Consequently, we get a unique map � : G0 ! L(g�; g) which has valuesin maps homogeneous of degree n, such that (�i � ��!i)(�) = �(�i�n(�)) for all� 2 T i�nG0.Next, letW (n) be the homogeneous component of degree n of the Weyl{curvatureof � viewed as a function G0 ! L(�2g�; g) (having values in the maps homogeneousof degree n), and let ~W (n) be the corresponding object for ��!. We claim that forall X, Y 2 g�~W (n)(X;Y ) = W (n)(X;Y ) � [X;�(Y )] + [Y;�(X)] + �([X;Y ]) =(1) = W (n)(X;Y ) � (@ ��)(X;Y ):Let us postpone the proof of this claim and assume it is true for a while. SincebothW (n) and ~W (n) are @�{closed, this implies @��@�� = 0, which implies @�� = 0since @ and @� are adjoint, see 2.5. Since H1(g�; g) is concentrated in non-positivedegrees of homogeneity, this implies � = 0 for n > k and �(X) = [Z;X] for somesmooth Z : G0 ! gn for n � k. But in the latter case, the proof of Theorem 3.12(1)shows that since �0 and ��!0 induce the same principal connection on L�, we musthave Z = 0, and thus � = 0. Hence, �i and ��!i coincide on T i�nG0 for all i < n,for i = n this follows since n > 0 and thus both �n and ��!n are horizontal, whilefor i > n it is trivially satis�ed. Thus the result follows by induction.



20 ANDREAS �CAP AND JAN SLOV�AKSo we are left with the proof of (1) only. Let us �x X 2 gi, Y 2 gj, i; j < 0. Byde�nition,W (n)(u)(X;Y ) = d�i+j+n(��1�0 (X); ��1�0 (Y )) + [� (��1�0 (X)); � (��1�0 (Y ))]i+j+n;where the index in the bracket means that we just have to take the component ingi+j+n. For ~W (n) we get the analogous formula with all � 's replaced by ��!.Next, observe that both ��1�0 (X) and ��!�1�0(X) lie in T iG0 � T i+jG0 and sim-ilarly for Y . From above, we know that ��!i+j+n(�) = �i+j+n(�) � �(�i+j(�)) forall � in T i+jG0. Taking the exterior derivative of this equation and keeping in mindthat �i+j vanishes on T iG0 and T jG0, we see that for � 2 T iG0 and � 2 T jG0 weget d��!i+j+n(�; �) = d�i+j+n(�; �)� �(d�i+j(�; �)):Since W (0) = 0, the second term (including the � sign) can be rewritten as�([�i(�); �j(�)]), and we may as well replace � by ��! in this expression. Thus,we see that~W (n)(X;Y ) = d�i+j+n(��!�1�0(X); ��!�1�0(Y )) + �([X;Y ]) ++ [��!(��!�1�0(X)); ��!(��!�1�0(Y ))]i+j+n:Now we have to distinguish a few cases: Let us �rst assume that i + n > 0. Then��!�1�0(X) = ��1�0 (X), and ��!(��!�1�0(X)) = � (��1�0 (X)) � �(X), and �(X) 2gi+n � p+. In particular, this implies that[��!(��!�1�0(X)); ��!(��!�1�0(Y ))]i+j+n == [� (��1�0 (X)); ��!(��!�1�0(Y ))]i+j+n � [�(X); Y ]:Secondly, if i+ n = 0 then �(X) 2 g0, and thus ��!�1�0(X) = ��1�0 (X) + ��(X). Thein�nitesimal version of equivariance of �i+j+n then implies thatd�i+j+n(��!�1�0(X); ��!�1�0(Y )) = d�i+j+n(��1�0 (X); ��!�1�0(Y ))� [�(X); Y ];since i + j + n = j in this case. On the other hand both ��!(��!�1�0(X)) and� (��1�0 (X)) in this case are congruent to X modulo p+, so[��!(��!�1�0(X)); ��!(��!�1�0(Y ))]i+j+n = [� (��1�0 (X)); ��!(��!�1�0(Y ))]i+j+n:Finally, suppose that i+n < 0, so �(X) 2 gi+n � g�. Then ��!�1�0(X) is congruentto ��1�0 (X+�(X)) modulo T i+n+1G0. Since the bracket of a section of this subbundlewith a section of T jG0 is a section of T i+j+n+1G0 and �i+j+n vanishes on the lattersubbundle, we conclude thatd�i+j+n(��!�1�0(X); ��!�1�0(Y )) = d�i+j+n(��1�0 (X); ��!�1�0(Y )) ++ d�i+j+n(��1�0 (�(X)); ��!�1�0(Y )):Since W (0) = 0, the last term can be rewritten as �[�(X); Y ]. As above, both��!(��!�1�0(X)) and � (��1�0 (X)) are congruent toX modulo p+, so again the bracketterm makes no problem.Hence we see, that in any case we get~W (n)(X;Y ) = d�i+j+n(��1�0 (X); ��!�1�0(Y )) + [� (��1�0 (X)); ��!(��!�1�0(Y ))]i+j+n �� [�(X); Y ] + �([X;Y ]):Doing the same changes to Y instead of X we obtain the required equality (1), andthe whole proof of the theorem is �nished.



WEYL STRUCTURES FOR PARABOLIC GEOMETRIES 214.5. Remark. If one does not assume that H1(g�; g) is concentrated in non-positive degrees, i.e. if one allows g to contain one of the two simple factors men-tioned in 2.8, then H1(g�; g) is concentrated in homogeneous degrees less or equalto one. Thus, the above proof shows that � = ��! if � is normal and has the prop-erty that the restrictions of �i and ��!i to T i�1G0 coincide for all i. This conditionis then fairly simple to interpret for any concrete choice of such structure.4.6. In the proof of Theorem 4.4, we observed that for aWeyl{structure � : G0 ! Gthe Weyl{curvature W of the Weyl{form ��! is exactly the pullback along � of thecurvature � of the normal Cartan connection ! on G. This allows us to computethe change of the Weyl{curvature under a change of the Weyl{structure. Supposethat �̂ is another Weyl{structure and � = (�1; : : : ;�k) is the smooth section ofA1 � � � � � Ak describing the change from � to �̂, see Proposition 3.2, i.e.�̂(u) = �(u) exp(�1(u)) : : :exp(�k(u)):Equivariance of the Cartan connection ! immediately implies that the curvature� is equivariant, i.e. viewing � as a two form on G with values in g, we have�(v�g)(Trg��; T rg��) = Ad(g�1)(�(v)(�; �)) for g 2 P and �; � 2 TvG. Puttingv = �(u) and g = exp(�1(u)) : : :exp(�k(u)), we see from the proof of Proposition3.9 that for � 2 TuG0 the element Tu�̂�� is congruent to TrgTu��� modulo verticalelements, which are killed by the curvature anyhow. Thus, viewing W and Ŵ asg{valued two forms on G0, we get Ŵ (�; �) = Ad(g�1)(W (�; �)). Moreover, to getthe interpretation of our two Weyl curvatures W and Ŵ as A{valued two forms onM , we just have to apply the above de�nition to lifts of vector �elds on M , andthe result is independent of the choice of the lifts since W is horizontal. Keepingin mind that the Lie{bracket in g corresponds to the algebraic bracket of sectionsof A and expanding the exponentials in Ad(g�1) as in the proof of Proposition 3.9we arrive (with notation as in 3.9) atŴi(�; �) = Xkjk+`=i (�1)jj! ad(�k)jk � : : : � ad(�1)j1(W`(�; �)):(1)>From this formula, one can also derive a formula describing the change ofW viewedas a section of L(�2A�;A) taking into account the change of the identi�cationof TM with A� described by (1) in Proposition 3.9, and thus a formula for thechange of the individual homogeneous components W (`). The only point that isimportant for us here is that the homogeneous component W (1) of degree one isactually independent of �. This can be immediately veri�ed from the above formula,taking into account that W (`) = 0 for all ` � 0.4.7. Remark. The results obtained so far in principle allow to give a descriptionof the Cartan bundle and the Cartan connection completely in terms of data on themanifold M . More precisely, if we start from a regular in�nitesimal ag structureunderlying some parabolic geometry, then we may proceed as follows: Choose ascaling element E� 2 z(g0), and consider the corresponding homomorphism � :G0 ! R+ described in the proof of Proposition 3.8. Then form L� = G0 �G0 R+.From Theorem 3.12(2) we then know that the Cartan bundle G is just the pullbackof the bundle of principal connections on L�, and we have a description of theprincipal action. Moreover, a choice of a principal connection on L� is just thechoice of a global section of the bundle of connections, so its pullback is a smoothG0{equivariant section � : G0 ! G. Any Cartan connection ! on G is uniquelydetermined by its pullback ��! by equivariance. Thus, describing the canonicalnormal Cartan connection on G is equivalent to �nding a normal Weyl{form on G0which induces a given connection on L�.



22 ANDREAS �CAP AND JAN SLOV�AK4.8. Example. Let us look more closely at the irreducible parabolic geometries.Here the regular in�nitesimal ag structures are just G0{structures on M in thesense of classical G{structures. The Weyl forms are � = ��1 + �0 + �1 where ��1 :TG0 ! g�1 is the �xed soldering form for M , �0 is any linear connection on Mbelonging to the �xed G0{structure and �1 is any one{form in 
1(M ;T �M ). Now,W�1 = d��1 + [��1; �0];i.e. the torsion of the connection �0. The individual components of W have ho-mogeneities one, two, and three and so they have to be @�{closed separately. Thecondition @�W�1 = 0 means that the torsion of �0 is harmonic and this is the partof W independent of the choice of the Weyl{structure. Next,W0 = d�0 + 12 [�0; �0] + [��1; �1]which is the curvature R of the connection �0 plus some additional term. Theco{closedness of W0 imposes a condition on the choice of �1, while @�W1 alwaysvanishes since its values are in the trivial vector space.We shall see later that the resulting system of equations for the tensor �1 isalways solvable, except for the projective structures (where the �rst cohomology isconcentrated in degree one). Moreover, we shall prove an explicit algebraic formulafor the necessary choice for the Rho{tensor: �1 = ��1@�R. Expanding this formulain the case of the conformal (pseudo) Riemannian geometry, we obtain the wellknown Rho{tensor used heavily by many authors since the beginning of this century,while d�1 happens to be exactly another well known tensor, the Cotton{York tensor.As mentioned above, this computation may be understood as an alternativefor the explicit construction of the canonical Cartan connection for all irreducibleparabolic geometries.4.9. Total curvature. The explicit construction of a normal Weyl{form dependsa lot on the structure in question, a detailed treatment in the case of partiallyintegrable almost CR{structures of hypersurface type will appear in [6]. Here wejust describe the basic ingredient of this procedure. The upshot of this is thatthe condition on a Weyl{form � being normal can be step by step reduced to acondition on ��0 only, at the same time computing step by step the components ofthe Rho{tensor P = �+.The �rst step in this direction is to replace the Weyl curvature of a Weyl{form� by 2{forms de�ned by splitting the structure equations for � . The curvature ofthe Cartan connection ��0 is the 2{form K�0 2 
2(G0; g�) given byK�0(�; �) = d��0(�; �) + [��0(�); ��0(�)]:On the other hand, we de�ne the 2{form K+ 2 
2(G0; p+) byK+(�; �) = d�+(�; �) + [�+(�); �+(�)]:Motivated by conformal geometry, we call K+ the Cotton{York{tensor associatedto the Weyl{form � . We write K = K�0+K+ and we call it the (total) curvature of� . Since ��0 is a Cartan connection, it is well known that its curvature is horizontaland G0{equivariant, so it can be viewed as a two form on M , with values in thebundle A�k�� � ��A0. On the other hand, since �+ is by assumptionG0{equivariantand horizontal, the part K+ descends to M , too. Finally, taking into account theisomorphism TM �= A� = A�k � � � � � A�1, we can �nally view K as a smoothsection of the bundle L(�2A�;A) over M .The reason for introducing this curvature is that it is more closely related tousual invariants of the Weyl{form than the Weyl{curvature, cf. Example 4.8. Onthe other hand, we shall see that there still is a simple relation between curvatureand Weyl{curvature.



WEYL STRUCTURES FOR PARABOLIC GEOMETRIES 23To get explicit expressions for the components of K, recall that the component�0 of any Weyl{form � is a principal connection on G0, and thus induces a linearconnection r on each of the bundles Ai. Let us also recall that �i are identi�edwith forms 
1(M ;Ai) for all negative i.4.10. Proposition. Let p0 : G0 ! M be a regular in�nitesimal ag structure, let� 2 
1(G0; g) be a Weyl{form for M , and let K be its total curvature, viewed as anA{valued two form on M with A`{component K`. Then for all vector �elds � and� on M we have:(1) K`(�; �) = r�(�`(�)) �r�(�`(�)) � �`([�; �]) +P i;j<0i+j=`f�i(�); �j(�)g, for ` < 0.(2) For � 2 Am we get fK0(�; �); �g = Rm(�; �)(�), where Rm is the curvature ofthe linear connection r on Am.Moreover, if we view K as a section of L(�2A�;A) and consider ` > 0, then thehomogeneous component K(`) of K depends only on the restrictions of �i to T i�`G0for all i � 0 and on the restrictions of �i to T i�`+1G0 for i > 0.Proof. By de�nition, for ` < 0 the function G0 ! g` corresponding to K`(�; �) isgiven byd�`(�h; �h) + Xi;j�0;i+j= [̀�i(�h); � j(�h)] == �h��`(�h)� �h��`(�h) � �`([�h; �h]) + Xi;j�0;i+j=`[�i(�h); �j(�h)];where the superscript h denotes the horizontal lift with respect to the principal con-nection �0. But now �`(�h) : G0 ! g` is exactly the smooth function correspondingto the section �`(�) of A`, so the function �h��`(�h) corresponds to r�(�`(�)) andsimilarly for the second term. On the other hand, [�h; �h] is a lift of the vector �eld[�; �], so since �` is horizontal for ` < 0, we see that the function �`([�h; �h]) corre-sponds to the section �`([�; �]) of A`. Finally, for the last sum one only has to takeinto account that �0 vanishes on horizontal lifts and the bracket in g correspondsto the algebraic bracket on A.If ` = 0, the de�nition ofK0 reduces to d�0(�h; �h) and this exactly represents thecurvature of the principal connection �0, so the result follows immediately, takinginto account that the action of g0 on gm is given by the Lie bracket in g and thuscorresponds to the algebraic bracket A0 �Am !Am.To verify the statements about homogeneous degrees, take sections � of Ai and� of Aj, and let ~� be the (unique) section of T iM such that �n(~�) = 0 for alli < n < 0, �i(~�) = �, and similarly for ~�. Then for ` > 0, K(`)(�; �) = Ki+j+`(~�; ~�).If i + j + ` < 0, then the above formula just gives us�0i+`r~�� � �0j+`r~�� � �i+j+`([~�; ~�]):This is completely independent of the components �n for n > 0. If we allow a changeof � without changing the restriction of �n to Tn�` for all n � 0, then this meansthat ~� is changed at most by a section of T i+`+1M . In particular, if the �rst termin the above expression actually occurs, i.e. i+ ` = 0 then ~� is �xed, and moreover,since the restriction of �0 to T�`G0 = T iG0 is �xed, also the covariant derivative is�xed. Similarly one analyzes the second term. Finally, the last term depends onlyon the restriction of � since the bracket of a section of T i+`+1M with a section ofT jM is a section of T i+j+`+1M and this subbundle lies in the kernel of �i+j+`.If i+ j + ` = 0, then K(`)(�; �) = d�0((~�)h; (~�)h), and as above, we see that (~�)hand (~�)h depend only on the appropriate restriction of � . Moreover, the bracket[(~�)h; (~�)h] by construction is a section of T i+jG0, so the whole expression dependsonly on the restriction of �0 to T i+jG0 = T 0�`G0.



24 ANDREAS �CAP AND JAN SLOV�AKFinally, we have to consider the case i + j + ` > 0, so we are dealing with acomponent of K having values in A+. As before, one veri�es that all extensionsand horizontal lifts depend only on the appropriate restrictions of ��0, so whatremains to be discussed is the dependence on P. But viewing P as a section ofL(A�;A+), the statement to be proved reduces to the fact that a homogeneouscomponent of K depends only on homogeneous components of P of strictly smallerdegree. But this is obvious from the de�nition of K+.4.11. Remark. The previous Proposition reveals that the A�{components of thetotal curvature give exactly the torsion of the linear connection �0 corrected by thealgebraic contribution of the Lie bracket in g�, while the component K0 is just thestandard curvature of �0. For a normal Weyl form � this means (using Proposition4.12 below) that the torsion of �0 has the algebraic bracket as its homogeneouscomponent of degree zero, no components of negative degrees, and some positivedegree components. The torsion component of degree one is an invariant of theparabolic structure in question.The key point in the further analysis is that while the total curvature of a Weyl{form is much easier to relate to the underlying structure than its Weyl{curvature,there is the quite simple relation between them described in the next Proposition.4.12. Proposition. Let � 2 
1(G0; g) be a Weyl{form forM , let P 2 �(L(A�;A+))be its Rho{tensor, and let K;W 2 �(L(�2A�;A)) be its total curvature and itsWeyl{curvature, respectively. ThenW (�; �) = K(�; �) + fP(�); �g � fP(�); �g:In particular, W (i) = K(i) for all i � 1.Proof. Let � be a section of Ai and � be a section of Aj , with i; j < 0. To computeW (�; �), we �rst have to view � and � as vector �elds on M via �� : TM �= A�.Then, by construction the section W (�; �) of A corresponds to the function G0 ! ggiven by d� (�h; �h) + [� (�h); � (�h)];where the subscript h denotes the horizontal lift with respect to the principal con-nection �0. Thus, the g0{components of � (�h) and � (�h) are automatically zero, sowe may write [� (�h); � (�h)] = [��(�h); ��(�h)] + [�+(�h); ��(�h)] +[��(�h); �+(�h)] + [�+(�h); �+(�h)]:On the other hand, from the de�nition of the curvature it is clear, that the sectionK(�; �) corresponds to the functiond� (�h; �h) + [��(�h); ��(�h)] + [�+(�h); �+(�h)]:Now �+(�h) is exactly the function corresponding to P(�), while ��(�h) is thefunction corresponding to �. (Actually, by construction ��(�) has values in gj only,but this is not important here.) Since the algebraic bracket f ; g is simply inducedby the Lie bracket on g, the formula for W (�; �) follows immediately.To see the second statement, one just has to notice that the algebraic bracket is byde�nition homogeneous of degree zero, while all nonzero homogeneous componentsof P have degree at least two.4.13. Remark. Note that the latter result, together with the formula (1) for thechange of the Weyl{curvature of a Weyl{structure from 4.6 and the formula (2) forthe change of the Rho{tensor from 3.9, gives us a formula for the change of thetotal curvature of a Weyl{structure under the change of the Weyl{structure.



WEYL STRUCTURES FOR PARABOLIC GEOMETRIES 254.14. The construction of normal Weyl{forms. Now we are ready to describethe procedure of step by step reducing the condition of normality of a Weyl{form� 2 
1(G0; g) to a condition on ��0 and at the same time computing step by stepthe Rho{tensor. From Proposition 4.12 we know that W (1) = K(1) and from 4.6 weknow that this is actually the same expression for any normal Weyl{form. Usually,this can be computed in advance, and thus gives us a condition on the restrictionof �i to T i�1G0 for i � 0. Next, by Proposition 4.12, we haveW (2)(�; �) = K(2)(�; �) + fP(2)(�); �g � fP(2)(�); �g= (K(2) � @P(2))(�; �):If W (2) is to be @�{closed, then this implies that @�(K(2)) = @�@P(2). On the otherhand, since H1(g�; g) is concentrated in homogeneous degrees less or equal to oneand H0(g�; g) = g�k, the Hodge decomposition implies that P(2) = ��1@�@P�@�2for a unique smooth section �2 of A2. Moreover, since P(2) has to have values inA+, it follows that the restriction of ��1@�(K(2)) to A�k � � � � � A�2 must begiven by @(�2), which gives a condition on the restriction of �i to T i�2G0 for i � 0.If this is satis�ed, then �2 is uniquely determined, and we can compute P(2) as��1@�(K(2)) � @�2. Let us notice, how simple the latter step gets for j1j{gradedexamples: then there is no �2, the entire forms P andK0 are of homogeneous degreetwo, and so P is simply obtained in the unique way by the formula P = ��1@�K0promised in Example 4.8.Now this process can be easily iterated. We next consider K(3) which dependsonly on the (known) component P(2) of the Rho{tensor and on the restrictions of�i to T i�3G0 for i � 0. As above, the restriction of ��1@�(K(3)) to A�k�� � ��A�3must be given by @(�3) for a section �3 of A3, which gives conditions on therestrictions of �i for i � 0. If these are satis�ed, �3 is uniquely determined, and wecan compute P(3). Finally, once we have reached K(k), there are no more conditions,since ��0 is already completely determined at this stage, so we only get a way tocompute the remaining homogeneous components of the Rho{tensor.References[1] T.N. Bailey, M.G. Eastwood, Complex paraconformal manifolds: their di�erential geometryand twistor theory, Forum Math. 3 (1991), 61{103.[2] T.N. Bailey, M.G. Eastwood, A. R. Gover, Thomas's structure bundle for conformal, pro-jective and related structures, Rocky Mountain J. 24 (1994), 1191{1217.[3] R.J. Baston, Almost Hermitian symmetric manifolds, I: Local twistor theory; II: Di�erentialinvariants, Duke Math. J. 63 (1991), 81{111, 113{138.[4] R. J. Baston, M. G. Eastwood, The Penrose Transform. Its Interaction with RepresentationTheory, Oxford Science Publications, Clarendon Press, 1989.[5] D. M. J. Calderbank, Di�erential bilinear invariants on curved BGG sequences, PreprintMS-99-010, Edinburgh[6] A. �Cap, On partially integrable almost CR{manifolds of hypersurface type, in preparation.[7] A. �Cap, A. R. Gover, Tractor Calculi for parabolic geometries, Preprint ESI 792, electroni-cally available on www.esi.ac.at.[8] A. �Cap, H. Schichl, Parabolic Geometries and Canonical Cartan Connections, Preprint ESI450, electronically available at www.esi.ac.at, to appear in Hokkaido Math. J.[9] A. �Cap, J. Slov�ak, V. Sou�cek, Invariant operators on manifolds with almost Hermitian sym-metric structures, I. Invariant di�erentiation, Acta Math. Univ. Commenianae 66 (1997),33{69, electronically available at www.emis.de; II. Normal Cartan connections, Acta Math.Univ. Commenianae 66 (1997), 203{220, electronically available at www.emis.de; III. Stan-dard Operators, ESI Preprint 613, to appear in Di�. Geom. Appl. (2000), electronicallyavailable at www.esi.ac.at.[10] A. �Cap, J. Slov�ak, V. Sou�cek, Bernstein{Gelfand{Gelfand sequences, ESI Preprint 722,electronically available at www.esi.ac.at.[11] E. Cartan, Les espaces �a connexion conforme, Ann. Soc. Pol. Math. 2 (1923), 171{202.
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