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WEAKENING HOLONOMYANDREW SWANNThese notes are based on a I talk I gave at the Erwin SchrödingerInternational Institute for Mathematical Physics, Vienna, on the 20thOctober, 1999. This is work in progress, partly based on joint work withF. M. Cabrera and M. D. Monar and partly results of myPh. D. studentRichard Cleyton. It is a pleasure to thank the Erwin SchrödingerInstitute and the organisers of the program on Holonomy Groups inDi�erential Geometry for their kind hospitality.1. IntroductionSuppose (M;g) is a Riemannian manifold. One fundamental pieceof data determined by g is the restricted holonomy group Hol. If weassume that Hol acts irreducibly on TM , which is the case ifM is com-plete and irreducible, then the main classi�cation theorem implies thateither (M;g) is locally isometric to a symmetric space K=Hol or Holis one of SO(n), U(n), SU(n), Sp(n), Sp(n)Sp(1), G2 or Spin(7) (see[3]). Studying the geometries determined by these holonomy groupsone �nds that ifM 6= SO(n) or U(n), then g is automatically Einstein.This may be restated as follows.Theorem 1.1. Suppose G is a proper connected subgroup of SO(n)that acts irreducibly on Rn and if n is even suppose that G 6= U(n=2).Let (M;g) be an n-dimensional Riemannian manifold with structuregroup G. If M admits a torsion-free G-connection then g is Einstein.A natural question is:Are there weaker conditions than the existence of a torsion-free connection that imply useful restrictions on the curva-ture?In 1971, Gray [9] provided one such notion which he called �weak ho-lonomy�. He studied this idea for the groups G that act transitivelyon the sphere. For the groups SO(n), Sp(n), Sp(n)U(1), Sp(n)Sp(1)and Spin(7), the weak holonomy condition implies that the holonomygroup reduces and we obtain no new geometries. However, for U(n),SU(n) and G2 Gray found that the weak holonomy condition does giveJoint ESI/Odense preprint. 1



2 ANDREW SWANNGroup GeometryU(n), SU(n) Nearly Kähler, i.e., (rXJ)(X) = 0Einstein if n = 3G2 d' = ��', � 6= 0Einstein with s > 0Spin(9) Not EinsteinTable 1. The geometries determined by weak holonomy groupsacting transitively on a sphere when the holonomy does notreduce to that group.new structures. Very recently Th. Friedrich has shown that the groupSpin(9) also occurs as a weak holonomy group [7]. These results aresummarised in Table 1.As the table indicates, the only new examples of Einstein structuresare provided by nearly Kähler six-manifolds and seven-dimensionalmanifolds with weak holonomy G2. Many examples of the latter areknown. For example each Alo�-Wallach space SU(3)=U(1)k;`, given byembedding U(1) in SU(3) viaexp(i�) 7! diag(exp(ik�); exp(i`�); exp(�i(k + `)�));carries a homogeneous metric with weak holonomy G2 [1]. Also non-homogeneous examples can be constructed from non-homogeneous 3-Sasakian metrics in dimension 7 by using the results of [8]. In the caseof nearly Kähler six-manifolds that are not Kähler, the only examplesknown are 3-symmetric spaces, so these are homogeneous. Moroianu& Semmelmann have a proof that there are no other homogeneousexamples [10].As far as I know Gray's condition has not been studied for other G-structures. This may be because his de�nition is not particularly easyto work with. More in the spirit of Gray's other work would be to lookfor G-structures which admit a connection whose torsion is `simple'.This is the approach I wish to take.2. Torsion and CurvatureFix a closed connected Lie subgroup G of SO(n). Suppose that Mis an n-dimensional manifold with a reduction of its structure groupto G. Let g be the corresponding Riemannian metric and write r forthe Levi-Civita connection.



WEAKENING HOLONOMY 3Ifr0 is anyG-connection onM , then the di�erencer�r0 is tensorialand is a one-form with values in (the bundle associated to) the Liealgebra so(n) of SO(n). If � is any one-form with values in the Liealgebra g of G, then r0 + � is also a G-connection. It is now easy tosee:Lemma 2.1. If G is a subgroup of SO(n) and M is a Riemannianmanifold with a G-structure, then there is a unique G-connection ~rsuch that the Levi-Civita connection satis�esr = ~r+ �with � an element of T �M 
 g? � T �M 
 so(n).De�nition 2.2. We call the connection ~r of Lemma 2.1 the naturalmetric connection of the G-structure.The torsion of ~r is given by T ~r(X;Y ) = �YX � �XY . Moreover,this torsion determines � byg(�XY;Z) = 12�g(T ~r(X;Z); Y )� g(T ~r(X;Y ); Z)+ g(X;T ~r(Y;Z))�:We will therefore often abuse terminology and refer to � as the torsionof ~r.Write V for the representation of G on Rn. Then � is an elementof the bundle associated to the representation V 
 g?. Let us assumethat � lies in a subrepresentation W � V 
 g?. It is now possible todeduce some restrictions on the Riemann curvature tensor R of M .The curvature R of the Levi-Civita connection is an element ofS2(so(n)). Using so(n) = g� g? we obtain the decompositionS2(so(n)) = S2(g)� S(g
 g?)� S2(g?);and a corresponding splitting of R:R = Rg +Rm +R?:We can re�ne this decomposition further. Let b : S2(�2V ) ! �4Vbe the map de�ned byb(�)(X;Y;Z;W ) = �(X;Y;Z;W ) + �(X;Z;W; Y )+ �(X;W; Y; Z):The space K(g) := ker b \ S2(g) consists of elements in S2(g) thatsatisfy the Bianchi identity, and so is the space of algebraic curvaturetensors whose holonomy lies in G.We write S2(g) = K(g) � K(g)? and use this to make a splittingRg = Rg0 + Rg1. Note that b is injective on K(g)?, so the fact that



4 ANDREW SWANNR satis�es the Bianchi identity b(R) = 0 implies that Rg1 is uniquelydetermined by Rm +R? viab(Rg1) = �b(Rm +R?):To obtain information on Rm and R?, let us locally choose a tensor 'on M (not necessarily of pure type) such that(a) Lie stabSO(n) ' = g, and(b) ~r' = 0,where Lie stabSO(n) ' denotes the Lie algebra of the stabiliser of ' un-der the action of SO(n). One can �nd such a '0 satisfying condition (a)at a given point. Suppose '0 2 Lsi=1 V 
ri, for a minimal set of inte-gers r1; : : : ; rs. Let Ui be the trivial submodule of V 
ri , for i = 1; : : : ; s.Then Ui de�nes a subbundle of tensor algebra of TM and the restric-tion of ~r to Ui is �at, so we may locally extend '0 to a tensor 'satisfying (b).Now consider the action of the curvature R on '. We haveR:' = Rm:'+R?:':Moreover, R:' determines Rm and R?. On the other handR:' = a(rr') = a(r( ~r'+ �:')) = a(r(�:'))= a(( ~r�):') + a(�2:');where a denotes the alternation map. From this we see that if � lies in asubrepresentationW of V 
g?, then Rm+R? lies in the representationV 
W +W 
W . Note that Rg1 2 V 
W +W 
W too, since Rg1 isdetermined by Rm +R?.Write S20V for the space of trace-free symmetric tensors on V . Thenthe trace-free Ricci tensor lies in S20V and the vanishing of this compo-nent of R is exactly the Einstein condition. The above discussion nowimplies that R is Einstein provided Rg0 and Rg1 + Rm + R? are bothEinstein. We thus have:Theorem 2.3. Suppose M is a manifold with structure group G 6SO(n). Let V denote the representation of G on TM and supposethat the torsion � lies in the subrepresentation W � V 
 g?. Then asu�cient condition for M to be Einstein is(a) (V 
W +W 
W ) \ S20V = f0g, and(b) any element of K(g) is Einstein.The simplest case is when the representation W is trivial. Thisoccurs precisely when � is invariant under the action of G.



WEAKENING HOLONOMY 5De�nition 2.4. We say that the M is a Riemannian manifold withinvariant torsion if the structure group of M reduces to a proper sub-group G of SO(n) and the torsion � of the natural metric connectionfor this G-structure is invariant under the action of G.3. ExamplesLet us consider some examples of manifolds with invariant torsionand see how they relate to Theorem 2.3. We begin with Gray's weakholonomy structures that are Einstein.3.1. Weak Holonomy G2. We have G = G2 and V is the irreduciblerepresentation on R7. Thenso(7) = �2V = g2�Vso g? = V and V 
 g? certainly contains a trivial representation. Infact V 
 g? = V 
 V = R� V � g2�S20Vas a sum of irreducible modules.Taking � 2 W = R, we have V 
 W + W 
 W = V + R whichhas no subrepresentation in common with S20V , which is irreducible.Therefore condition (a) of Theorem 2.3 is satis�ed.For condition (b), we have that K(g2) is the algebraic space of cur-vature tensors of metrics with holonomy G2. But all such metrics areRicci �at and condition (b) holds. (In fact, K(g2) is an irreduciblerepresentation of dimension 77.) Thus for these G2-structures, � 2 Rimplies that M7 is Einstein.The tensor ' in the proof of Theorem 2.3 may be taken to be thefundamental 3-form of the G2-structure [4]. The condition that � liesin R implies that r' = �:' is an invariant tensor in V 
 �3V . But�3V = R� V � S20Vand so V 
�3V contains a unique invariant summand. This is spannedby the four-form �', so we have d' = a(r') = ��' and the structurehas weak holonomy G2. Conversely, for � 6= 0, a metric with weakholonomy G2 always has invariant torsion � = c'.3.2. Nearly Kähler Six-Manifolds. Let U(n) act irreducibly onV = R2n. Then V is the real representation underlying �1;0 and wewrite V = [�1;0]. In this case u(n)? = [�2;0], so in order for V 
 u(n)?to have a trivial summand we need an isomorphism of [�1;0] with [�2;0].For the dimensions of these two representations to be equal we have tohave n = 3. However, even in that case the centre of U(3) acts on these



6 ANDREW SWANNtwo representations with di�erent weights. We therefore conclude thatthere is a trivial summand only with respect to the action of SU(3).So we must take G = SU(3) and V = [�1;0]. We then have V 
 g?containsW = 2R. For this choice ofW , condition (a) of Theorem 2.3 issatis�ed. Condition (b) is also satis�ed, as metrics of holonomy SU(3)are Ricci-�at. Therefore, an SU(3)-structure with invariant torsion � 22R is Einstein.For � 6= 0, these are exactly the nearly Kähler six-manifolds that arenot Kähler. Notice that the structure group of such a manifold alwaysreduces from U(3) to SU(3) as d! + i�d! trivialises �3;0.3.3. Holonomy Representations. Suppose G acts irreducibly on Vvia the holonomy representation of a Riemannian metric. Assume thatG 6= SO(dimV ). Looking at each individual case, one can see that theonly times where g? contains a copy of V are (i) G = SU(3), V = [�1;0]and (ii) G = G2, V = R7. We thus have:Proposition 3.1. Suppose M is a Riemannian manifold with non-zero invariant torsion. If the structure group G acts on TM via aholonomy representation, then M is either a six-dimensional nearlyKähler manifold or M is a seven-dimensional manifold with weak ho-lonomy G2.3.4. Representations of SU(2). Let us consider the case when G =SU(2) and V is an irreducible representation of G. This implies thatV 
 C = SkC 2, the kth symmetric power of C 2 , for some integer k.This representation only admits an invariant metric if k is even. Thecondition that V 
su(2)? contains a trivial representation then impliesthat k � 2 (mod 4) and that k 6= 2. One can now check that conditions(a) and (b) of Theorem 2.3 are satis�ed. Therefore, if they exist, suchstructures will give an Einstein metric in dimensions 4r + 3 for r > 0.Two examples can be easily found. For r = 1, the space M7 =Sp(2)=Sp(1), with Sp(1) embedded maximally in Sp(2) has complex-i�ed isotropy representation S6C 2 and the only invariant metric is astructure with invariant torsion SU(2). Similarly, for r = 2, M11 =G2 =SU(2), again with SU(2) maximally embedded, is isotropy irre-ducible and carries an Einstein metric with invariant torsion. We willsee later that these are the only examples that arise from this familyof representations of SU(2).3.5. Homogeneous Spaces. Let M = K=G be a reductive homoge-neous space with K and G semi-simple and compact. Write k = g+ p,then TeM = p and the negative h�; �i of the Killing form induces a pos-itive de�nite g-invariant inner product on p and hence a Riemannian



WEAKENING HOLONOMY 7metric on M . The canonical connection on M is a G-connection withtorsion �(X;Y;Z) = h[X;Y ]; Zi, for left-invariant vector �elds X, Yand Z.If p is an irreducible g-module thenM = K=G is isotropy irreducible.These spaces have been classi�ed by Wolf [13]. One can check directlythat condition (b) is satis�ed for all these spaces. However, with W =R, it is not always the case that V = p satis�es condition (a), eventhough K=G is well-known to be Einstein.3.6. Three-Sasakian Manifolds. 3-Sasakian manifolds give anotherclass of Einstein manifolds with invariant torsion. However, in thisneither condition (a) nor condition (b) is satis�ed.4. General ResultsSome general results may be obtained by studying conditions (a)and (b) of Theorem 2.3 in more detail.First we note that for any representation W in V 
 g? will have Ras a subrepresentation of W 
W . Thus condition (a) implies that S20Vdoes not contain a trivial representation. It is straightforward to checkthat V is then forced to be irreducible.For irreducible representations V , condition (b) is easy to satisfygiven the current state of knowledge of the holonomy classi�cation. Letus consider Berger's approach to the holonomy problem [2] as explainedby Bryant [5] and Schwachhöfer [11].De�nition 4.1. Let G be a subgroup of SO(n). De�ne the Bergeralgebra g of G byg = fR(X;Y ) : R 2 K(g); X; Y 2 V gIt is easy to showLemma 4.2. The Berger algebra g is an ideal of g, i.e., g / g, andK(g) = K(g).Berger two necessary conditions for g to be a holonomy algebra, ifG acts irreducibly on Rn. The �rst is that K(h) should be strictlysmaller than K(g) for any proper subalgebra h of g. This may berephrased as g = g. The second criteria comes from considerationof the possible covariant derivatives of curvature tensors. It turns outthat this second condition merely distinguishes holonomy groups whichcan only occur for symmetric spaces from the others. The work onexistence of metrics with non-symmetric holonomies now implies thateach algebra satisfying Berger's �rst criterion is the holonomy algebraof some torsion-free connection.



8 ANDREW SWANNTheorem 4.3. g is a holonomy algebra of an irreducible Riemannianmanifold if and only if g = g.We may thus calculate the space K(g) by considering all ideals of gand comparing them with holonomy representations.Corollary 4.4. Suppose G is a proper subgroup of SO(n) acting irre-ducibly on V = Rn. Then K(g) consists only of Einstein tensors unlessn is even and g = u(n=2).Proof. If G is simple then either g is a holonomy algebra or g = f0gand there is nothing to prove.Suppose G is not simple and that f0g 6= g 6= g. If g acts irreduciblyon V then the only possibility we have to rule out is g = u(n=2), if n iseven. However u(n=2) is maximal in so(n), and so the fact that thecontainments g < g < so(n) are strict, rule out this case.If the representation of h1 := g on V is reducible then g = h1� h2.Depending on the type of the representation V , we may decomposeV 
 C as a sum of 1, 2 or 4 tensor products of irreducible hi-modulesover C . If hi is not Abelian, we �nd that V is the isotropy representationof a Grassmann symmetric space. The space of curvature tensors forsuch representations are known and the condition g = h1 can not besatis�ed. If one hi is Abelian, then a direct calculation shows that thereare no non-trivial curvature tensors with values in h1.We now return to condition (a) of Theorem 2.3. When W is a triv-ial representation and V is irreducible, (a) is equivalent to S20V notcontaining a copy of V .Lemma 4.5. If V is irreducible, � lies in a trivial submodule of V 
g?and S20V has no submodule isomorphic to V , then � is a three-form� � �3V .Proof. If V 
 g? contains a trivial summand, then we have V � g? ��2V . Now, under the action of SO(n), we haveV 
�3V = V + �3V + U; (4.1)where U is irreducible, and we also haveV 
 S20V = S3V + U: (4.2)Our hypotheses imply that for the action of G, (4.2) contains no trivialsubmodules. In particular, UG = f0g. Therefore, any trivial submod-ule of (4.1) lies in either V or �3V . But V is irreducible, so any trivialmodule is in �3V .



WEAKENING HOLONOMY 9Thus for V irreducible, condition (a) of Theorem 2.3 forces the tor-sion to be totally skew. This is interesting, as such a totally skewcondition on torsion seems to be natural in physical consideration offor example hyperKähler geometries with torsion [6].Interestingly, Lemma 4.5 has a converse.Proposition 4.6. If M is a Riemannian manifold with a G-structurewhose natural metric connection has torsion � and � is a three-form,then ~r� does not contribute to the curvature of the Levi-Civita connec-tion and condition (a) of Theorem 2.3 can be replaced by(a0) W 
W \ S20V = f0gProof. The tensor ~r� is a sum of four tensors  (X;Y;Z;W ) whichare totally skew in their last three entries. The corresponding elementof S2(�2V ) is~ (X;Y;Z;W ) =  (X;Y;Z;W )�  (Y;X;Z;W )+  (Z;W;X; Y )�  (W;Z;X; Y ):Now one can check directly that ~ is skew in its �rst two indices and~ (Y;Z;W;X) = � ~ (X;Y;Z;W ). Therefore ~ is a four-form and soorthogonal to the kernel of the Bianchi map b : S2(�2V )! �4V .As we have already seen, for W trivial and V irreducible, condi-tion (a0) of Proposition 4.6 is satis�ed. We therefore have:Theorem 4.7. Let (M;g) be a Riemannian manifold with structuregroup G acting irreducibly and for which the natural torsion is invariantand totally-skew. Suppose that the structure group is not SO(n) orU(n=2). Then g is Einstein.In certain cases we can show uniqueness of the Einstein metric.Theorem 4.8. Let (M;g) be a complete Riemannian manifold satis-fying the hypotheses of Theorem 4.7 with structure group G and tan-gent representation V . Suppose that the space of invariant three-forms(�3V )G on M is one-dimensional and that the scalar curvature of Mis non-zero. If g 6= g2, then M is homogeneous and isometric to anisotropy irreducible space.Sketch Proof. If the Berger algebra g is non-trivial then it acts on Vpreserving �. Proposition 3.1 then implies that g = f0g, as we havespeci�cally excluded the other cases apart from su(3). But for su(3)the space of invariant three-forms has dimension 2 rather than 1, sothis case does not occur.



10 ANDREW SWANNNow we see that Rg0 = 0 and by Proposition 4.6 Rm = 0. Thus R isalgebraically determined by the torsion �. Write R = R(�2).As the space of invariant three-forms is one-dimensional, locallythe � is proportional to a ~r-parallel three-form '. Write � = f'.Then R(�2) = f2R('2), and in particular the scalar curvature s(�2) =f2s('2). But s(�2) is constant, as g is Einstein, and s('2) is constant,since it is parallel for ~r. Therefore, f is constant under the hypothesisthat s(�2) 6= 0.We thus have that ~r� = 0 and ~rR = 0. By de�nition this meansthat ~r is an Ambrose-Singer connection. Results of Tricerri & Van-hecke [12] imply that M is a homogeneous space with isotropy groupstabR \ stab �. However, this group contains G, and so M is isotropyirreducible.Example 4.9. One instructive example might be helpful at this point.As mentioned above, the Alo�-Wallach spaces Mk;` = SU(3)=U(1)k;`carry invariant metrics of weak holonomy G2. However, in dimen-sion 7 we also have the isotropy irreducible space M7 = Sp(2)=Sp(1)with isotropy representation S6C 2. Theorem 4.8 applies to the SU(2)-structure of M7 and shows that this is the only complete metric withinvariant torsion.Now G2 has a subgroup SU(2) that acts on the seven-dimensionalrepresentation of G2 as S6C 2. Remarkably, the space of invariant ten-sors in T 
 �2T � is the same for both groups.If we look parameters k and ` such that Mk;` carries such an SU(2)-structure we �nd that topologically the only solution is k = 1 and` = 4. Thus M1;4 has an invariant metric with weak holonomy G2 anda reduction of the structure group to the seven-dimensional irreduciblerepresentation of SU(2). Theorem 4.8 implies that with respect tothe structure group SU(2), M1;4 can not be a manifold with invarianttorsion, even though it has invariant torsion with respect to G2. Wecan see that this is not a contradiction by considering the relationsr = ~rg2 + �g2= ~rsu(2) + �su(2)This implies �su(2) = �g2 +( ~rg2 � ~rsu(2)). The last bracket takes valuesin g2	 su(2) and there is no particular reason for it to vanish. Thus,if �g2 is invariant, this will not imply that �su(2) is. However, the con-verse is true, and the SU(2)-structure on M7 is also a metric of weakholonomy G2.Giving this result it is therefore interesting to �nd representations Vof G for which the dimension of (�3V )G is at least 2, as these would



WEAKENING HOLONOMY 11give some hope of giving non-homogeneous Einstein structures. It isinteresting to remark that there are isotropy irreducible spaces thatsatisfy this condition. For example, if G is a simple group with Liealgebra not equal to su(2) or sp(2) then the isotropy irreducible spaceSO(dimG)Ghas at each point a two-dimensional family of invariant three-formsif G is not of type An, n > 3, and a four-dimensional family in theseremaining cases. There therefore appears to be a second natural three-form for these representations and it would be interesting to determinethat and to see whether non-homogeneous Einstein structures can beconstructed. References[1] H. Baum, T. Friedrich, R. Grunewald, and I. Kath, Twistors and Killing spin-ors on Riemannian manifolds, B. G. Teubner Verlagsgelellschaft, Stuttgart,Leipzig, 1991.[2] M. Berger, Sur les groupes d'holonomie des variétés à connexion a�ne et desvariétés riemanniennes, Bull. Soc. Math. France 83 (1955), 279�330.[3] A. L. Besse, Einstein manifolds, Ergebnisse der Mathematik und ihrer Gren-zgebiete, 3. Folge, vol. 10, Springer, Berlin, Heidelberg and New York, 1987.[4] R. L. Bryant, Metrics with exceptional holonomy, Ann. of Math. 126 (1987),525�576.[5] , Recent advances in the theory of holonomy, eprint math.DG/9910059,October 1999.[6] F. Delduc and G. Valent, New geometry from heterotic supersymmetry, Clas-sical Quantum Gravity 10 (1993), 1201�1215.[7] Th. Friedrich, Weak Spin(9)-structures on 16-dimensional Riemannian mani-folds, preprint, preliminary version, December 1999.[8] K. Galicki and S. Salamon, Betti numbers of 3-Sasakian manifolds, Geom.Dedicata 63 (1996), 45�68.[9] A. Gray, Weak holonomy groups, Math. Z. 123 (1971), 290�300.[10] A. Moroianu and U. Semmelmann, Private communication, October 1999.[11] L. J. Schwachhöfer, Connections with irreducible holonomy representations,preprint, September 1999.[12] F. Tricerri and L. Vanhecke, Curvature homogeneous Riemannian manifolds,Ann. Scient. Éc. Norm. Sup. 22 (1989), 535�554.[13] J. A. Wolf, The geometry and topology of isotropy irreducible homogeneousspaces, Acta Math. 120 (1968), 59�148, see also [14].[14] , Correction to the geometry and topology of isotropy irreducible homo-geneous spaces, Acta Math. 152 (1984), no. 1-2, 141�142.Department of Mathematics and Computer Science, University ofSouthern Denmark, Odense University, Campusvej 55, 5230 Odense M,DenmarkE-mail address: swann@imada.sdu.dk


