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DELTA AND SINGULAR DELTA LOCUS FOR ONE
DIMENSIONAL SYSTEMS OF CONSERVATION LAWS

MARKO NEDELJKOV

ABSTRACT. A condition for existence of singular and delta shock waves for systems
of conservation laws is given in the paper. The systems considered here have fluxes
which are linear in one of the dependent variables. The condition obtained here
is analogous to the one for the standard Hugoniot locus. Three different solution
concept are used in the paper: associated solution in Colombeau sense, limits of
nets of smooth functions together with Rankin-Hugoniot conditions and a kind of a
measure valued solutions.

1. INTRODUCTION

The aim of this paper is to give some criterion for which certain classes of func-
tion nets, called delta and singular shock waves, satisfy the following system of
conservation laws

(1) ue + (fr(w)v+ f2(u))e =0
(2) ve + (g1(u)v + g2(u))e =0,

in an approximated sense. Here, f;, g;, ¢ = 1,2 are smooth functions, polynomially
bounded together with all their derivatives, and w, v : R x R4 — R satisfy

(3) u(z,0) = ug, © <0, u(e,0) =uy, x>0
v(2,0) = wvg, £ <0, v(z,0) = vy, z > 0.

A pair of nets (u.,v:) € D', ¢ € (0,1), is a solution in an approximated sense if

<uat + (fl(ua)va + f2(u€))x’ 1/)> —0
<vat + (gl(ua)va +g2(u€))x’ 1/)> —0

as € — 0, for every ¢ € D(R x Ry). In order to have a well defined composition
of functions we use families of smooth function which can be viewed as represen-
tatives of Colombeau functions ([1], [9]) or families of piecewise constant functions
which are called box approximations. For the first case we will use the space of
generalized functions, G4, and the concept of a approximate solution defined in [10].
In the second case we use the standard Rankin-Hugoniot conditions for systems of
conservation laws like in [6].

Roughly speaking, delta and singular shock wave are pairs of nets (u., v.) which
converge to sums of step and delta functions in D’. They will be precisely defined
bellow. Let us remark that singular shock waves have similarities to infinite narrow
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solitons which are introduced by Maslov and Omel’anov [8]. Further results in
this direction for systems of conservation laws can be found in the paper [3] from
Danilov, Maslov and Shelkovich.

For a given point (ug,vp) € R? a delta (singular delta) locus is a subset of
R? consists of points (u1,v1) for which there exists a delta (singular) shock wave
joining (ug, vg) and (u1,v1). This definition is an analogue of the definition of the
classical Hugoniot locus in the case of piecewise constant solutions (shock waves)
for Riemann problem.

Admissibility condition for such shocks could be the overcompressiveness like in

[6], [11], [4] and [5], i.e.
Az (ug, vg) > Ar(ug, vo) > ¢ > Aa(ug, v1) > Ar(ug, v),

where ¢ is a speed of the delta or singular shock wave, A1, Ay are the eigenvectors
for the system, (ug,vo) and (uy,v1) denotes left and right hand side initial value,
respectively. Let us remark that the hyperbolicity condition is not used in the
construction of approximate solutions.

Like in the classical theory of Hugoniot locus, the (singular) delta locus can be
used for construction of solutions containing also a rarefaction wave on the left or
on the right hand side of a singular or delta shock.

Our investigations are motivated by Keyfitz and Kranzer ([6]) who found singular
shock wave solutions to the system

(4) uy + (u2 —v)y =0

i —ct
in the form wu.(z,t) = G.(x — ct) + ay/—p (x ¢ ), ve(w,t) = He(x — ct) +
5 5

€
by the Riemann initial data (3), p? := ¢=1p?(- /) converges to the delta distribution
and p', i = 1,3 converge to zero in D’ as ¢ — 0. This system is included in our
general system (1), (2). Our paper shows that their approach is sufficiently general
for solving (1), (2).

An example of a system with a delta shock wave solution 1s

2
a“t r—ct . .
—p? ( ), where (G, and H, converge to appropriate step functions defined
€

(5) up + (uz)x =0
v+ (uv)y =0

examined in [11]. The solution is of the form wu.(x,t) = G.(x — ct), ve(x,t) =
H.(z —et)+ std.(x —ct), where G, and H, are the same as before and J, is a delta
net. By adding a viscosity term Tan, Zhang and Zheng ([11]) proved that the limit
of vanishing viscosity solutions is a solution of this form. Let us notice that there
i1s no additional ”singular” term in u.. Here, the delta shock wave will be used to
denote that there are no other terms in a solution except approximations of step
functions and the delta distribution.

Systems which are to follow have the similar form of solutions as (5), that is they
do not contain term added to G and a delta net is a part of v..
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Oberguggenberger ([9]) proved that for

I
o

(6) e+ (u*/2)e
v + (wv)y =

o

the viscosity limit is a delta shock wave.
By using Le Flock and Vol’pert definition of the product, Hayes and Le Flock
([5]) found a delta shock wave solution to

(7) U + (uz)x =0
v+ ((u—1)v)y; = 0.

They also proved that the vanishing viscosity limit exists and it is equal to the
solution of (7).
Finally, Ercole ([4]) proved that the system

(8) ur + f(u)y =0
vt + (g(uw)v)y = 0,

with some minor assumptions on f and g, has a delta shock solution as a limit of
vanishing viscosity solutions.

The differences between system (4) and systems (5)-(8) are obvious. Only system
(4) has second dependent variable in the first flux function and it can not be solved
with delta shock waves.

In this paper we will not use the viscosity approximation. The existence and
convergence of vanishing viscosity solutions is not a trivial task even for some
specific choice of a function in the flux. An example of this one can find in Dafermos-
DiPerna paper [2].

All the systems considered here have a flux which is a linear function in one
variable and this will be a general form of a flux for which we find a delta locus. The
interpretation of a limit of ¢? where ¢ is a delta net brings difficulties. Colombeau
proved in [1] that ¢2 defines an element in the space of the generalized functions
which is not associated with any classical distribution.

In all the cited papers a delta locus is a subset of R? with the non-zero Lebesgue
measure. In general, this set is just a curve, but for systems (5)-(8) our procedure
gives the same locus as it was already obtained. Singular delta locus is an set with
non-zero Lebesgue measure in general.

In the sequel we shall consider only solutions which equals to initial data for
every ¢ (also after regularization when we use smooth nets) at the initial time.
This means that the “value” of the Heaviside function in zero does not have any
influence, for example.

The paper is organised as follows. In Section 2 the algebra of generalized func-
tions, delta and singular shock wave solution are precisely defined. In Section 3 we
give a form of approximate solutions which will be used in finding delta locus’s for
smooth functions f;, ¢;, ¢ = 1,2. Roughly speaking, the main property of approx-
imations 1s a distribution of a “mass” of singular part on the left and right-hand
side from zero. Properly placed right and left hand sided masses determines the
delta locus. For the use of a delta locus in constructions of admissible solutions one
has to remove the points for which the overcompressiveness do not hold.
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A box approximation solution is used in Section 4 and it gives the same delta
locus as in the case of Colombeau generalized functions. Theorem 1 applied to
systems (5)-(8) gives the results previously obtained in the quoted papers. System
(4) can not be solved by this procedure.

A concept and construction of a solution in a certain measure space is given
in Section 5. Approximated solutions constructed in Section 3 converge to this
solution.

In Section 6 systems with polynomial fluxes are examined. There exists a broad
class of polynomials for which we can find singular delta locus of the non-zero
Lebesgue measure modifying u. by adding a net which converge to zero but some
of its powers do not. In fact we use an idea of [6] adopted for arbitrary polynomials.
In contrast to the singular shock wave solution obtained in [6], we have to assume
that singular parts of approximations u. and v, have disjoint supports. This can
be omitted if f; and ¢; are constants, or linear functions in w.

There are many open problems concerning the system (1), (2). For example one
can try to obtain a limit of viscosity self-similar solutions to the system like it was
done in Dafermos and DiPerna’s paper [2]. Also, one can try to describe singular
shock wave solution formally obtained as a net of approximate solutions by using
a weighted measure space as it was done by Keyfitz and Kranzer in [6].

2. DEFINITIONS

We shall briefly recall some of the definitions of Colombeau algebra given in
[10]. Let R3 =T x (0, 00), }RT?I_ =R x [0,00) and CF°(€2) be the algebra of smooth
functions on £ bounded together to all its derivatives. Let C’go (}Ri) be a set of all
functions w € C*°(R?%) such that ulg 0,7y € C5° (R x (0,T)) for every 7> 0. Let
us remark that every element of Cp° (}Ri) has a smooth extension up to the line
{t =0}, i.e. Cp°(RY) = CF° (}RT?I_) This is also true for C’go(Ri).

Eng(R3) is the set of all maps G': (0,1) x R} = R, (¢, x,1) — G<(x,1), smooth
for every e € (0,1), which satisfy:

For every («, 3) € N2 and T > 0, there exists N € N such that

sup  |9207G.(z, 1) = O(e™N), as e = 0
(z,t)ER X (0,T)

./\fg(]R?I_) is the set of all G, € ‘(/‘M,Q(R?l—) which satisfy:
For every (o, 3) € N2, a € R and T > 0

sup 0287 G (x,1)| = O(e%), as e — 0.
(z,t)ER X (0,T)

The differential algebra gg(}Ri) of generalized functions is the factor algebra
gg(Ri) = gM,g(Ri)/Ng(Ri)~

By G will be denoted a class in G, which has a representative G € Exr 4.

Since C7° (R3) = e (}RT?I_) one can define a restriction of a generalized function
to {t = 0} as follows. For given G € G,(IR3), its restriction Gl;=o € G4(IR) is the
class which contain a function G.(x,0). Similarly, G(z — ct) € G4(R) is defined
with G.(z — ct) € Epr4(R).

Let us note that if f is a smooth function polynomially bounded together with
all its derivatives, then the composition f(G), G € G, is well-defined.
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Let u € D} (R). Fix an element ¢ € D(R), ¢(x) > 0, 2z € R, [ ¢(2)dz = 1,
supp$ C [—1,1]. Let ¢.(x) = e~ ¢(x/e), x € R. Then

ty 1w — class of u* ¢,

defines an embedding of D} .. (R) into G,4(IR). Obviously, ¢y commutes with deriva-
tive. We shall call a generalized function G a step function if it equals ¢4 (u), where
u 1s a step function in the usual sense. The delta generalized function is given by
a representative ¢.. In the sequel we shall omit the subscript ¢.

An element G € G4(Q) is associated with v € D’(Q) if for some (and hence
every) representative G, of G, G. — u in D'(Q2) as ¢ = 0. It will be denoted by
G ~ u. Two generalized functions G and H are associated, G~ H if G — H ~ 0.

A generalized function G is of the bounded type if

sup |G:(z,t)] = O(1) as ¢ = 0,
(z,t)ER X (0,T)

for every T > 0.
The initial data for the Riemann problem are regularized in the following way.

Let
Up, T < 0

ulax>0a

v0a$<0
vy, & > 0.

01 (x) :{

The initial data are now (G, i) where G; = ©1 % ¢, and H. = O3 * ¢.. This means
that a solution to system (1), (2) satisfies

and ©,(z) = {

us(2,0) = Ge (), Ge(x) = ug, # < —¢, Go(x) = uy, ¢ > ¢,
ve(2,0) = H. (%), Heo(x) = vo, # < —&, He(x) = v1, © > ¢,

where (. and H, are of the bounded type, i.e. they are uniformly bounded with
respect of €. Generalized functions of this type are called the generalized step func-
tions. One will see that the results obtained here will be valid for all representatives
of step functions which satisfy these conditions. Let us remark that if u. is a func-
tion satisfying the above conditions, this will be true for every its power «™, m € I,
also.

Definition 1. (Generalized functions) (U, V) € Q(Ri) is a singular shock wave
solution to (1), (2) and (3) if
a)

(9) Us + (A 4 f2(U))e 2 0
(10) Vi + (g1 (U)V 4 g2(U))r ~ 0
(11) Ul=o = G, Vl]i=o = H.

b) U(x,t) & O1(x — ct), where ¢ is a constant (speed of the shock) and V (x,
O (x — ct) + s(t)d(x — ct), where ¢ is the same constant, s € C1([0, 00)), 5(0)
and § is Dirac delta function.

) ~
=0

If in addition U 1s of the bounded type, the solution is called delta shock wave.
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Definition 2. (Box approzimations) A pair of nets (u.,v:) consisting of piecewise
smooth functions is called an approzimated singular shock wave solution to (1), (2)
and (3) if

a)

lim(ue, 60) + (F1 (e )ve + fo(ue), 60) = 0
1im<v5, ¢t> + <g1(ua)va —|—g2(u€), ¢x> =0.

e—0

b) (ue,v:) satisfy (3) for ¢ small enough.

¢) us converge in the distributional sense to ©1(x —ct), where ¢ is a constant (speed
of the shock) and ©1 a step function. v. converge in the distributional sense to
Oz(x — ct) + s(t)d(x — ct), where ¢ is the same constant, s € C1([0, 00)), s(0) = 0,
©2) is a step function and § is Dirac delta function.

If in addition u. is bounded independently on ¢, the solution is called delta shock
wave.

3. (GENERALIZED FUNCTIONS AND DELTA LOCUS

Theorem 1. a) Let fi # const. Then a delta shock wave solution to (9), (10) and
(11) exists if ug # u1, f1(uo) # fi(uy) and

Ji(ur)vr + fa(ur) — fi(uo)vo — fo(uo)
_ g1(uo) fi(u) = g1 (u1) fi(uo)
fl(ul) —fl(uo) ’

where ¢ is the velocity of the delta shock. The set of all pairs of right hand states
(w1, v1) such that (12) holds is called the delta locus for (1), (2) and (3).

b) If fi(ug) = fi(uy) = 0 (specially, if f =0) and g1 Z const, then the delta locus
is the set of all points (uy,v1) such that gy (ug) # g1(u).

e) If f1 = 0 and g1 = b € R, then the delta locus is the set of all points (u1,v1)
such that b(uy — up) = fa(ur) — fa(uo).

Proof. Let ¢ € C3°(R), supp ¢ C [—1,1], [é(x)de =1, ¢ > 0 and let

— A41 A41
DAY (ol VNP (s

2 2 2 2

(12) c=

where D™ + Dt = 1 Let s1(t), s2(t) be smooth functions for ¢ > 0, such that
$1(0) = s2(0) = 0 and A > 0. Since in the general we do not have any information
on the behaviour of fi, f2, g1 and g» we shall try to find delta shock wave solution
in the form

(13) ue (2,1) = Ge(x — ct), ve(x,t) = He (2 — ct) + s(t) D (2 — ct),

where D, 1s defined as above and s is from Definition 1. Let us note that D,
converge to delta function as ¢ — 0. After a substitution of (13) into (1) we have

(14) Get + (J1(G)He + [2(Ge))o + () ([1(Ge) De)r & 0.
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A missing argument of a function means that it equals & — ¢t. Let supp¢ C
[ X, X] x [-T,T], for some X, T > 0. Then

/ (0,Ge (2 — ct) + Bo(f1(Ge (2 — et)) He (2 — ct) + fo(Ge(x — b)) (e, £)dudt
_ / / (G (a—ct) — 1 (G (a—ct)) H. (r—ct) — fo(G. (a—ct)))Dutb(, €) dadt

/ / <(z—ct) — f1(Ge (v—ct)) H. (x—ct) — fo(Ge(z—ct)))0ptp(x, t)dudt

/ / CHE <(x—ct) — fi(Ge(z—ct)) H. (z—ct) — fo(Ge (v—ct)))Iptp(x, t)dedt
- /_ ) /  (6Claet) = R(Gela—et) i o—ct) = Fo(Cea=ct)) Dt )l

=0 + I, + I.

At first let us notice that
T
|I5] < / 2eCCydt — 0, as e = 0,
-7

since all of G, H. and ¢ are bounded independently on . Next,

Il + 13 = / / CUQ f1 UQ)UO fz(Uo))@x’l/)(l‘,t)dl‘dt
+ /_T /_CX a(cul — fi(ur)vg — fa(u1))Optp(, t)dadt
= (cug — fi(ug)vo — fa(ug)) /_T (et — e, t)dt

T
— (Cul — fl(ul)vl — fz(ul)) /_T ’l/)(Ct + E,t)dt
= —(c[u] = [fr(w)v + f2(u)])0|p=ct, as e — 0.

This means that the sum of first two members of (14) is associated to d(z — ct)
multiplied by a constant, i.e.

Get + (J1(G)He + [2(Ge))o & —(clu] = [fi(w)v + f2(u)])d.

In the sequel we shall omit this type of calculations. The function (fi(G.)D:)s
is a derivative of a product of approximations for step and delta function. This
product is associated with the delta function multiplied by a constant, and the
constant depend of a representative of the delta function. This constant as well
as (c[u] — [fi(w)v + f2(u)]) has to be zero. (c[u] — [fi(u)v + f2(u)]) = 0 gives the
Rankine-Hugoniot conditions for G and H. of the first equation, i.e.

_ fi(w)vs + f2(ur) = fi(uo)vo — f2(uo)

up — Ugp
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Now we shall find a representative of the delta function such that f,(G.)D. ~ 0.
Let us note that supp D C [—A,—1]U[1, A], A is a real number greater than 1,
[ D(y)dy = 1 and D.(y) = e~"D(y/e). The condition on supports ensures that the
product of a step function and ¢ will not depend on the regularization of the initial
data. It will depend only on values of a step function away of zero, ffoo D(y)dy

and fo_oo D(y)dy. Thus, we have the following system
-1 A
/ D(y)dy+/ D(y)dy =1
—A 1

-1 A
fitu) [ Do)y + i) [ Dy =0,
.y 1
The solution is given by

_ -t fi(ur) i /b —f1(uo)
D= L PO = Ry S htwr T PO R — Ay
if fi(u1) # fi(uo). In the case when f; = const # 0, we shall find singular shock
solutions of system (1), (2) but for some special forms of f2, g1 and g2. There are
no delta shock solutions of this form (only classical shocks, i.e. s = 0). If f; = 0,

then D~ and DT can be choosen such that
DL A% (91(Go) D)
The only neccesary condition is that g (ug) # g1(u1). If g1 is also a constant then
¢ equals to this constant. The set of all u; for which this is true determines the
delta locus.
When we substitute u. and v. into (2),
Hat + Sl(t)Da - Cs(t)Dat + (gl(Ga)Ha + g2(Ga) + gl(Ga)S(t)Da)x
:Hat + (gl(Ga)Ha + gZ(Ga))x + Sl(t)Da - Cs(t)Dat + S(t)(gl (Ga)Da)x
Since ¢ and H. are representatives of classical step functions, it follows that

Hee 4 (91(Ge)He: + g2(G<))e & —ad,
where « is Rankine-Hugoniot deficit ([6]) given by

a = c(vy —vo) — (g1(ur)v1 + ga(u1) — g1(uo)vo — ga(uo)).
By putting e = 0 one can see that (u1,v1) has to belong to the standard Rankine-
Hugoniot locus (then s = 0, since only the term s'(t) D, is associated with the delta
function multiplied by a constant and all others are associated with the derivative
of the delta function multiplied by some constant). In the case & # 0 the condition
§'(t) = a should be satisfied, which implies that s(¢) = at and
eDL A% (91(Ge) D).
This implies that

_ go(u1)f1(u1) —91(U1)f1(uo)

B fl(u1)—f1(uo)

(since the representative of delta function D, (i.e. D™ and D7) is already deter-
minated). That means that the delta locus is defined as the set of all (u1,v1) such
that (15) holds.

(15)

Remark. In the case when f; = const # 0 the delta locus is the empty set.
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4. BOX APPROXIMATIONS AND DELTA LOCUS

Theorem 1 is also true for the box approximations. In this case D, (y) consists
of two boxes,

-
- —£,0
E,yE[E,]

D.(y)={ Dt

(v) —E,yE[O,E]

0, otherwise.

After the substitution of « and v into (1), by using the standard Rankine-
Hugoniot conditions for step functions, we have

(=[Gl + [[U(G)VH + [-(@)])do + s(t)([[1(G) D] -6
+[f1(G)Da]060 + [fl(G)Da]a(Sa) = 0,

where (04,1) = ¥(a) and []¢ denotes a jump in a point £. Again the same condition
for the speed holds,
[[1(G)H + [>(G)]
[C] ’

and

([(G) D] —cbc ) = fr(uo) D™ e~ (—e) = fi(uo) D™ e~ (9(0) — ¢/ (y))
= f1(uo) D™ e p(0) — fi(uo) D™ (ye),

where y. is some number in [—&,0]. Similarly,

((A(G)D:)ebe o) = —fr(w) DT e p(0) = fi(wa) DT (32),

J: € [0,¢]. Finally,

([f1(G)D:Jodo, ¥y = (= f1(uo) D™ + fi(ur) D¥)e™ 4(0).

Then

([f1(G)Dc]—co—c + [f1(G) D:]odo + [f1(G)D. 0, ¢)
=— fi(uo) D™ (ye) + f1(u1) DT (ge) = (= f1(uo) D™ — fi(u1)D1)y/(0)
=(—/f1(w0) D™ = fi(ur) DY), ),

as € = 0. This gives the following two conditions

D-+Dt =1
fl(UO)D_ + fl(ul)D‘i' = 0

These conditions are the same as in the previous case.
In the similar way as above one can obtain the third condition which defines the
delta locus
g1(ug) D™ —|—g1(u1)D+ =c.
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The analysis of possible cases is the same as for smooth aproximations.

In both cases it seems that one splits delta function in two parts, left delta, §—,
and right one, 61, such that its product with piecewise continuous and bounded
functions is defined by

3 (y)f(y) = lim f(y), where % is — or +.

y—+0*

In the case when system (1), (2) is hyperbolic, admissible part of the delta locus
is the set of (uy,v1) such that Aq(uy,v1) < e < Aj(ug,vg) where Ay < Ay are the
eigenvalues of (1), (2).

Remark. Eigenvalues of (1), (2) equals

A12(u,v) = fi(wv + féQ(u) + g1 (u)

L VUIWv+ () — 91(w)* + 4114 (91 (v + 95(w))
2

If one uses the box approximation then one can see that the hyperbolicity of the
system means Ay # A2 € R, for v = u;, v = v;, ¢ = 1,2 and for v equals some
number depending on ¢ which tends to infinity as ¢ — 0. The last will be true
if fi(u;) # 0, ¢ = 1,2. If one uses smooth approximation, then the question of
hyperbolicity is much more difficult and highly depends on functions in the fluxes.
Overcompressivity condition can be written in the following explicit form

f1(uo)vo + f5(uo) + g1 (uo)
2
V(i (uo)vo + f3(uo) — g1(u0))? + 411 (u0) (g1 (w0) vo + g5 (o))
2

>g1(U0)f1(U1) - 91(U1)f1(uo)
- f1(U1) —fl(uo)
Ji(ur)vr 4 f5(ur) + g1 (ur)
2
VU w)vr + F(un) — g1(w))? +4F1(u1) (g1 (wr) o1 + gh(w))
2

>

_|_

5. MEASURE VALUED SOLUTIONS

In order to explain more simply the concept of solution we use the self similar
solutions to (1) and (2), i.e. w = u(x/t), v = v(x/t). In that case the system is

(16) —yu'(y) + (fi(w(y)v(y) + fo(u(y) =0
(17) —yv' (y) + (91(u(v))v(y) + g2(u(y))) =0,
(18) u(—o0) = ug, u(o0) = uy, v(—00) = vy, v(c0) = vy.

Our aim is to find a solution (u, v), where u is an element of the space of piecewise
continuous functions having the right and left hand limits in all points in R, Pz (R),
while v = (vg....,Um41) belonges to the space 4, M(R) = M((—o0,yo]) x
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M([yo, 11]) x -+ X M([ym, 0)), where y;, ¢ = 0,...,m are some real numbers. In
this case the products fi(u)v and g1 (u)v exist and belong to the space y, .. M(R).
Denote by Mp(IR) the union of all , ., M(R), where {y1, ..., ym } is a finite set
of real numbers defined above.

Let w = (wo, ..., Wmt1) Eyo,....ym M(R),

Wi = mz +7i_16+(' - yi—l) +726_( - yl)a 1= 1a L.,y
wo = Wo + Y0 (- — Y0), W1 = W41 +7m5+(' — Ym),

where w; are the measures with the zero mass in the points {yo, ..., ym}
The mapping ¢ : w— ¢(w) = W € D'(R) is defined in the following way.

w) =W+ (30 +70)3( = y0) + -+ (Ym +F)I(- = ),

where W is the image of W = Wy + - - -+ W41 € M(R) by the usual injection of the
space of measures into the space of distributions. Thus, ¢(w) is a sum of images of

two measures. The first one is a measure which has zero mass at points yo, ..., Ym
and equals wg + - - - 4+ Wy 41 when restricted to R\ {yo, ..., ym}. The second one is
a linear combination of delta measures in the points {yo, ..., ym}-

We say that (u,v) € PL(R) x Mp(IR) is a solution to (16), (17) if
—ye(w)' +o(fi(u)v + f2(u)) =0

—ye(v)' + (g1 (u)v + g2(u))) = 0
inD'.

With such interpretation, for given (ug, vg), the delta locus will be the set of all
pairs (u1,v1) € R? such that there exists a solution in the above sense which is
constant except in one point.

Now we will find the delta locus (with the above definition) for system (16), (17)
and (18). Suppose that yy = ¢ is the point of discontinuity and let

Ug, Yy < c v,y < ¢
U(i‘/):{ ’ , v=w+7y" +76T, where w(y):{ 0

u, Yy >c v,y >

Then
Fi(w)v + fao(u) = fi(u)w + fo(u) + fi(u)(y6~ +7307)
= filw)w + fo(u) + v f1(uo)d™ +Ff1(u1)d™.

After the injection of the above term in D', equation (16) becomes

—yu’ + (fr(w)w + fo(w)) + (/1 (uo) + 7 f1(wr))d" = 0.

The term —yu’ + (fi(u)w + fa(u))’ = const -6 determines the shock wave speed ¢
as usual, i.e. const = 0. So, the term (v f1(uo) + 7 /f1(u1))d’ has to be zero, i.e. we
have

Ji(ur)vy + fa(ur) — fi(uo)vo — fa(uo)

up — Ugp

(19) c=
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and

(20) yfi(uo) + 7 fi(ur) = 0.

Equation (19) defines the speed of the shock and (20) gives the first condition on
~ and 7.

Equation (17) is transformed in the following way. The first term, yv = yw +
yy§~ +y¥dT, is mapped into yw+y(y+7)é € D’. The second term, g1 (u)v+g2(u) =
g1(w)w+ga(u)+g1(uo)¥6~ +g1(u1)76+, is mapped into g1 (u)w+g2(u) + (g1 (uo) v+
g1(u1)%)d € D'. After the substitution of these elements of D’ into (17) we obtain

—yw’ + (g1 (ww+ g2) = e(y + ) (y = ) + (v + 7)oy — ¢)
+(g1(uwo)y + g1 (u1)7)8 (y — ¢) = 0.

Since —yw’ 4+ (g1(w)w + g2)’ = —ad(y — ¢), where « is Rankine-Hugoniot deficit,
a = c(vy —vo) — (g1(u1)v1 + g2(u1) — g1(uo)vo — g2(wo)), ¥ and 7 satisfy

(21) T+y =«
(22) g1(uo)y + g1 (u1)y =c.

The solution to system (20), (21) and (22) in respect of v and 7 exists if

Siluo) fi(ur) O
1 1 —al|#o0.

gl(uo) 91(U1) —C

The result is the same as in the case when the approximations are used. One
can see that s =y +7%, D™ = /s, and DT =7/s.

6. SINGULAR SHOCKS

In the case when the fluxes fi, f2, g1 and g» are polynomials it is often possible
to find a singular shock solution to system (1)-(3) for a larger set of the initial data.
This will be done by adding some terms in u. beside .. When all functions in
the flux are polynomials we can control behaviour of these additional terms in wu..
Suppose that the maximal degree of all polynomials in the fluxes equals m. Let

m m

AW =)@y, f2(y) =Y ay', g1(y) =Y by, ga(y) =Y biy'.
=0 =0

1=0 =0
We will try to find solutions in the form

(23) ue(2,1) = Go(x — ct) + s1()d: (2 — ¢t)
ve(2,1) = He(w — ct) + s2(t) D (2 — ct),
where s;, u = 1,2 and D, are of the same form as before. A net d. is a representative

of the generalized function associated with zero, and it will be described in the proof
of the following theorem.
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Theorem 2. A constant

_ filw)or + fo(wn) = fiuo)vo = fa(wo) _ [fi(w)o + fo(u)]

UL — Ug o [u]

will be called a speed of the singular shock, and

a = c(vi —vo) — (91(u1)v1 + g2(w1) — g1(uo)vo — g2(uo)) = ¢[v] — [g1(w)v + g2]

will be called Rankin-Hugoniot deficit.

A singular shock wave solution to (9)-(11) in the form (23) exists in the following
cases.
a) Let m be an even number. Then there must be possible to find o > 0 such that
there exists a solution (D™ ,d”) € R x Ry to the system

(23) [fi(w)]aD™ + wanod™ = amo + f1(u1)o + vi@mo
[g1(w)]aD™ + [0]bpod™ = b0 + g1(ur)o + V1bmo — cax.

b) Let m be an odd number. One of the two following conditions has to hold.

(1) There exists ¢ € R\ {0} such that there ewists a solution (D~,d~) € R? to
system (23).

(ii) There exists ¢ > 0 such that there exists a solution (D~ ,d”) € R x Ry to the
system

(24) a

=0

[[1(W)]D™ + (@n—1[u] + man[uv] + man, [u])od™
(@ vl+mamulvl+mamul)+af1(ul)+am 10
alg1(w)] D™ + (b1 [u] + mb[uv] + mby [u])od™

=0 (b vy + mbpmuivy + mbpur) + agi(ur) + bp-10 — ca.

The set of all points (ui,vi) € R? for which there exists a singular shock wave
solution is called the singular delta locus.

Proof.
a) Let ¢ € C§°(R), supp ¢ C [-1,1], [ ¢(z)dz =1, ¢ > 0 and let

1/m 1/m
d- x4 afb d+ r — atb
da = ( b—a d) ( b—a2 )) + ( b—a¢ ( b—a2 ’
£ €75 €75 £

where (d7)™ + (d*)™ = 1. Let s1(t), s2(t) be smooth functions for ¢ > 0, 51(0) =
$2(0) =0, and let D, be of the same form as in Theorem 1.

If G, is a representative of a generalized function of the bounded type (some
power of a step function, for example), then

‘/Ga(x — et)dd (x — ct)w(x,t)dxdt‘ < QCgC¢/61_j/m¢1/m(y)dydt

The last term converge to zero as ¢ — 0, for 7 < m. Since the multiplication with
a smooth function preserves association, there holds

(Ge +5(t)d.)! ~ G4, j <m and (G. + s(t)d.)™ ~ G™ + s™ (t)d™.



14 M. NEDELJKOV

Let G (y) be a generalized step function which equals ug for y < —¢ and equals u;
for y > ¢ One can see that G.d" ~ (ugd™ + u1d¥)é(z — ct) from the construction
of d.. Also, the construction of D, i1 d. implies that D.d. ~ 0.

IfL(y) =520, vy, then
T(Ge + s(t)d.) m T(Ge) + s™(t)ymdZ.
After substitution of U, = G.+s1(t)d; and V. = H.+s2(t) D, in system (9)-(11),

[f1(u)v4fa(u)l (
U

one can see that from the first equation that ¢ = Rankin-Hugoniot

condition) and from the second that so(t) = of, where o = ¢[v] — [g1(u)v + ¢2]
is a Rankin-Hugoniot deficit. Further on, after association procedure like in the
proof of Theorem 1 and grouping coefficients in respect of § and ¢’ one finds that

s1(t) = stH™ and (recall that D™ + Dt = (d7)™ + (dt)™ = 1)
[f1(u)]aD™ + [v]ams™d™ = ams™ + fi(ur)a + v1@, ™
[g1(w)]aD™ + [0]byn 37 d™ = b, 8™ + g1(ur)o + V10 8™ — ca.

This proves the first part of the theorem.

b) (i) The proof of the assertion is the same as the one of a). The only difference
1s that §™ has not to be positive.

(i) The construction of d. in the second case is a slightly different. Let ¢ be as
above and

(e (CR) e ()

(e (Tt) @S (R

where (d=)™~1 4 (d+)™~! = 1. Like in the previous case, one can see that

(G4 s(t)d.Y ~ GI, j<m—1and (G +5()d.)™ ' a G714 5™ (1) d !

for every generalized function (. of the bounded type. Because of the specific
definition of d. one can see that G.d* &~ 0 if G; is a generalized step function. The
above means that
D(Ge + 51()de) 2 D(GL) + ot 0 O + s () God? .
Substituting U, = + s1(t)d: and V., = H. + s2(t) D, in system (9)-(11) one
Ua(wutfa(w)] s2(t) = at, where a = ¢[v] — [g1(w)v + g2] like in a).

U

Also, one finds that s;(t) = §*(™=1) and

a[fl( )ID™ 4 (@1 [u] + M, [uv] + may, [u]) 5"~ d™
§gm- 1(

4
o

can see that ¢ =

AmU1 + MAmu1v1 + Mamur) + afi(ur) + dm_18™ -t

g1 (W) D™ + (b1 [u] + mbym [uv] + mbp, [u])§™~d~
—zm- 1([) Ul+mb u1v1 + mby, “1)+ag1(U1)+bm 15 1 eq
This proves the theorem.

In the following corollaries we shall describe singular delta locus in the case
f1 = @ where @ is a nonzero constant. This i1s the case when the delta locus is the
empty set (see Theorem 1).
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Corollary 1. Let fi = a, a # 0 is a constant, and let g1 be non constant function.
a) If m is an even number, then (u1,v1) is in a delta singular locus if apy # 0
(i.e. deg fo = m), there exists o > 0 such that sgn([v]am) = sgn(aa + viamo) and
g1 ()] # 0.

b) If m is an odd number and a, # 0, then the delta singular locus is the set
B2\ {ur € B+ [gu(u)] = 0}.

¢) Let m be an odd number, aym = 0 and am—1 # 0 (i.e. degfo = m —1). Then
(u1,v1) isin a delta singular locus if ac/am—1 < 0 and [g1(u)] £ 0.

Let us note that in the case deg fo < m — 1 the delta singular locus s the empty
set (a = 0 is the condition for Rankin-Hugoniot locus).

Proof. In all of these cases, the condition [g1(u)] # 0 ensures that there always
exists D~ if appropriate d~ exists.

a) The proof easily follows from (24) since D~ is an arbitrary real number.

b) The proof is an immediate consequence of b) (i) in the previous theorem.

c¢) One can see from the first equation in (24) that ¢ = —aa/apm_1 > 0.

Corollary 2. Let fi = a and g1 = b, where a £ 0 and b are some constants.
a) Let ap, and by, be different from zero. Then

(b= c)am — abpy)a

am—lbm - ambm—l
has to be greater than zero, and (uy,v1) is in delta singular locus if

oMma, Ul + a4+ Gy 10

d- = 1
mam, [u] €l0.1]
for o defined above.
b) Let ap # 0 and by, = 0. Then
ca — ba
o =
bm—l
has to be positive, and (uy,v1) is in a delta locus if
d = oMma, Ul + a4+ Gy 10 E [0’ 1]
mag,[u]o
for o defined above.
¢) Let apm =0 and by, 0. Then
—aa
o =
m—1
has to be positive, and (uy,v1) is in a delta locus if
g — omb,u; +ba+b,,_10 — ca €[0,1]

mag,[u]o

for o defined above.
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d) Let am = by, = 0. Then a delta singular locus exist, and it is R?, only if

ca — ba —aq
= > 0.
bm—l m—1

Proof. In all of these cases we are using the second definition of d, and the assertions
follow by solving the system of equations (24) with the unknowns ¢ and d~—.

Remark 1. As in the first section all the calculation can be made for box approxi-
mations.

Remark 2. In [6] the singular parts of functions u and v have nonempty intersection
(even d? = D. a §). This is possible because in the system (4) there are no
multiplication of d. and D, i.e. fi = —1, g1 = 0 are the constants. It is also
possible to choose d. and D. with non-disjoint supports if flux functions are linear
in u. In general case, problems with terms D.dJ can appear. The solution of
Keyfitz and Kranzer is the same as in the case ¢) of Corrolary 2 for m = 3, a = —1,
b =0, amy = 1, by, = 1/3 and b,y = 0. When all points for which the
overcompressibility condition does not hold are extracted, one obtain the same
area as them (it is denoted by @7 in their paper).
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