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DELTA AND SINGULAR DELTA LOCUS FOR ONEDIMENSIONAL SYSTEMS OF CONSERVATION LAWSMarko NedeljkovAbstract. A condition for existence of singular and delta shock waves for systemsof conservation laws is given in the paper. The systems considered here have uxeswhich are linear in one of the dependent variables. The condition obtained hereis analogous to the one for the standard Hugoniot locus. Three di�erent solutionconcept are used in the paper: associated solution in Colombeau sense, limits ofnets of smooth functions together with Rankin-Hugoniot conditions and a kind of ameasure valued solutions. 1. IntroductionThe aim of this paper is to give some criterion for which certain classes of func-tion nets, called delta and singular shock waves, satisfy the following system ofconservation laws ut + (f1(u)v + f2(u))x = 0(1) vt + (g1(u)v + g2(u))x = 0;(2)in an approximated sense. Here, fi, gi, i = 1; 2 are smooth functions, polynomiallybounded together with all their derivatives, and u; v : R�R+! R satisfyu(x; 0) = u0; x < 0; u(x; 0) = u1; x > 0(3) v(x; 0) = v0; x < 0; v(x; 0) = v1; x > 0:A pair of nets (u"; v") 2 D0, " 2 (0; 1), is a solution in an approximated sense ifhu"t + (f1(u")v" + f2(u"))x;  i ! 0hv"t + (g1(u")v" + g2(u"))x;  i ! 0as " ! 0, for every  2 D(R� R+). In order to have a well de�ned compositionof functions we use families of smooth function which can be viewed as represen-tatives of Colombeau functions ([1], [9]) or families of piecewise constant functionswhich are called box approximations. For the �rst case we will use the space ofgeneralized functions, Gg, and the concept of a approximate solution de�ned in [10].In the second case we use the standard Rankin-Hugoniot conditions for systems ofconservation laws like in [6].Roughly speaking, delta and singular shock wave are pairs of nets (u"; v") whichconverge to sums of step and delta functions in D0. They will be precisely de�nedbellow. Let us remark that singular shock waves have similarities to in�nite narrowTypeset by AMS-TEX1



2 M. NEDELJKOVsolitons which are introduced by Maslov and Omel'anov [8]. Further results inthis direction for systems of conservation laws can be found in the paper [3] fromDanilov, Maslov and Shelkovich.For a given point (u0; v0) 2 R2, a delta (singular delta) locus is a subset ofR2 consists of points (u1; v1) for which there exists a delta (singular) shock wavejoining (u0; v0) and (u1; v1). This de�nition is an analogue of the de�nition of theclassical Hugoniot locus in the case of piecewise constant solutions (shock waves)for Riemann problem.Admissibility condition for such shocks could be the overcompressiveness like in[6], [11], [4] and [5], i.e.�2(u0; v0) > �1(u0; v0) � c � �2(u1; v1) > �1(u1; v1);where c is a speed of the delta or singular shock wave, �1; �2 are the eigenvectorsfor the system, (u0; v0) and (u1; v1) denotes left and right hand side initial value,respectively. Let us remark that the hyperbolicity condition is not used in theconstruction of approximate solutions.Like in the classical theory of Hugoniot locus, the (singular) delta locus can beused for construction of solutions containing also a rarefaction wave on the left oron the right hand side of a singular or delta shock.Our investigations are motivated by Key�tz and Kranzer ([6]) who found singularshock wave solutions to the systemut + (u2 � v)x = 0(4) vt +�13u3 � u�x = 0;in the form u"(x; t) = G"(x � ct) + ar t"��x� ct" �, v"(x; t) = H"(x � ct) +a2t" �2�x� ct" �, where G" and H" converge to appropriate step functions de�nedby the Riemann initial data (3), �2" := "�1�2(�=") converges to the delta distributionand �i", i = 1; 3 converge to zero in D0 as " ! 0. This system is included in ourgeneral system (1), (2). Our paper shows that their approach is su�ciently generalfor solving (1), (2).An example of a system with a delta shock wave solution isut + (u2)x = 0(5) vt + (uv)x = 0examined in [11]. The solution is of the form u"(x; t) = G"(x � ct), v"(x; t) =H"(x� ct)+ st�"(x� ct), where G" and H" are the same as before and �" is a deltanet. By adding a viscosity term Tan, Zhang and Zheng ([11]) proved that the limitof vanishing viscosity solutions is a solution of this form. Let us notice that thereis no additional "singular" term in u". Here, the delta shock wave will be used todenote that there are no other terms in a solution except approximations of stepfunctions and the delta distribution.Systems which are to follow have the similar form of solutions as (5), that is theydo not contain term added to G" and a delta net is a part of v".



DELTA AND SINGULAR DELTA LOCUS 3Oberguggenberger ([9]) proved that forut + (u2=2)x = 0(6) vt + (uv)x = 0the viscosity limit is a delta shock wave.By using Le Flock and Vol'pert de�nition of the product, Hayes and Le Flock([5]) found a delta shock wave solution tout + (u2)x = 0(7) vt + ((u� 1)v)x = 0:They also proved that the vanishing viscosity limit exists and it is equal to thesolution of (7).Finally, Ercole ([4]) proved that the systemut + f(u)x = 0(8) vt + (g(u)v)x = 0;with some minor assumptions on f and g, has a delta shock solution as a limit ofvanishing viscosity solutions.The di�erences between system (4) and systems (5)-(8) are obvious. Only system(4) has second dependent variable in the �rst ux function and it can not be solvedwith delta shock waves.In this paper we will not use the viscosity approximation. The existence andconvergence of vanishing viscosity solutions is not a trivial task even for somespeci�c choice of a function in the ux. An example of this one can �nd in Dafermos-DiPerna paper [2].All the systems considered here have a ux which is a linear function in onevariable and this will be a general form of a ux for which we �nd a delta locus. Theinterpretation of a limit of �2" where �" is a delta net brings di�culties. Colombeauproved in [1] that �2" de�nes an element in the space of the generalized functionswhich is not associated with any classical distribution.In all the cited papers a delta locus is a subset of R2 with the non-zero Lebesguemeasure. In general, this set is just a curve, but for systems (5)-(8) our proceduregives the same locus as it was already obtained. Singular delta locus is an set withnon-zero Lebesgue measure in general.In the sequel we shall consider only solutions which equals to initial data forevery " (also after regularization when we use smooth nets) at the initial time.This means that the \value" of the Heaviside function in zero does not have anyinuence, for example.The paper is organised as follows. In Section 2 the algebra of generalized func-tions, delta and singular shock wave solution are precisely de�ned. In Section 3 wegive a form of approximate solutions which will be used in �nding delta locus's forsmooth functions fi, gi, i = 1; 2. Roughly speaking, the main property of approx-imations is a distribution of a \mass" of singular part on the left and right-handside from zero. Properly placed right and left hand sided masses determines thedelta locus. For the use of a delta locus in constructions of admissible solutions onehas to remove the points for which the overcompressiveness do not hold.



4 M. NEDELJKOVA box approximation solution is used in Section 4 and it gives the same deltalocus as in the case of Colombeau generalized functions. Theorem 1 applied tosystems (5)-(8) gives the results previously obtained in the quoted papers. System(4) can not be solved by this procedure.A concept and construction of a solution in a certain measure space is givenin Section 5. Approximated solutions constructed in Section 3 converge to thissolution.In Section 6 systems with polynomial uxes are examined. There exists a broadclass of polynomials for which we can �nd singular delta locus of the non-zeroLebesgue measure modifying u" by adding a net which converge to zero but someof its powers do not. In fact we use an idea of [6] adopted for arbitrary polynomials.In contrast to the singular shock wave solution obtained in [6], we have to assumethat singular parts of approximations u" and v" have disjoint supports. This canbe omitted if f1 and g1 are constants, or linear functions in u.There are many open problems concerning the system (1), (2). For example onecan try to obtain a limit of viscosity self-similar solutions to the system like it wasdone in Dafermos and DiPerna's paper [2]. Also, one can try to describe singularshock wave solution formally obtained as a net of approximate solutions by usinga weighted measure space as it was done by Key�tz and Kranzer in [6].2. DefinitionsWe shall briey recall some of the de�nitions of Colombeau algebra given in[10]. Let R2+ = R� (0;1), R2+ = R� [0;1) and C1b (
) be the algebra of smoothfunctions on 
 bounded together to all its derivatives. Let C1b (R2+) be a set of allfunctions u 2 C1(R2+) such that ujR�(0;T ) 2 C1b (R� (0; T )) for every T > 0. Letus remark that every element of C1b (R2+) has a smooth extension up to the lineft = 0g, i.e. C1b (R2+) = C1b (R2+). This is also true for C1b (R2+).EM;g(R2+) is the set of all maps G : (0; 1)�R2+! R, ("; x; t) 7! G"(x; t), smoothfor every " 2 (0; 1), which satisfy:For every (�; �) 2 N20 and T > 0, there exists N 2 N such thatsup(x;t)2R�(0;T ) j@�x @�t G"(x; t)j = O("�N ); as "! 0:Ng(R2+) is the set of all G" 2 EM;g(R2+) which satisfy:For every (�; �) 2 N20, a 2 R and T > 0sup(x;t)2R�(0;T ) j@�x@�t G"(x; t)j = O("a); as "! 0:The di�erential algebra Gg(R2+) of generalized functions is the factor algebraGg(R2+) = EM;g(R2+)=Ng(R2+).By G will be denoted a class in Gg which has a representative G" 2 EM;g.Since C1b (R2+) = C1b (R2+) one can de�ne a restriction of a generalized functionto ft = 0g as follows. For given G 2 Gg(R2+), its restriction Gjt=0 2 Gg(R) is theclass which contain a function G"(x; 0). Similarly, G(x � ct) 2 Gg(R) is de�nedwith G"(x� ct) 2 EM;g(R).Let us note that if f is a smooth function polynomially bounded together withall its derivatives, then the composition f(G), G 2 Gg is well-de�ned.



DELTA AND SINGULAR DELTA LOCUS 5Let u 2 D0L1 (R). Fix an element � 2 D(R), �(x) � 0, x 2 R, R �(x)dx = 1,supp� � [�1; 1]. Let �"(x) = "�1�(x="), x 2 R. Then�� : u! class of u � �"de�nes an embedding of D0L1(R) into Gg(R). Obviously, �� commutes with deriva-tive. We shall call a generalized function G a step function if it equals ��(u), whereu is a step function in the usual sense. The delta generalized function is given bya representative �". In the sequel we shall omit the subscript �.An element G 2 Gg(
) is associated with u 2 D0(
) if for some (and henceevery) representative G" of G, G" ! u in D0(
) as " ! 0. It will be denoted byG � u. Two generalized functions G and H are associated, G � H if G�H � 0.A generalized function G is of the bounded type ifsup(x;t)2R�(0;T) jG"(x; t)j = O(1) as "! 0;for every T > 0.The initial data for the Riemann problem are regularized in the following way.Let �1(x) = �u0; x < 0u1; x > 0; and �2(x) = � v0; x < 0v1; x > 0:The initial data are now (G;H) where G" = �1 ��" and H" = �2 ��". This meansthat a solution to system (1), (2) satis�esu"(x; 0) = G"(x); G"(x) = u0; x < �"; G"(x) = u1; x > ";v"(x; 0) = H"(x); H"(x) = v0; x < �"; H"(x) = v1; x > ";where G" and H" are of the bounded type, i.e. they are uniformly bounded withrespect of ". Generalized functions of this type are called the generalized step func-tions. One will see that the results obtained here will be valid for all representativesof step functions which satisfy these conditions. Let us remark that if u" is a func-tion satisfying the above conditions, this will be true for every its power um, m 2 N,also.De�nition 1. (Generalized functions) (U; V ) 2 G(R2+) is a singular shock wavesolution to (1), (2) and (3) ifa) Ut + (f1(U )V + f2(U ))x � 0(9) Vt + (g1(U )V + g2(U ))x � 0:(10) U jt=0 = G; V jt=0 = H:(11)b) U (x; t) � �1(x � ct), where c is a constant (speed of the shock) and V (x; t) ��2(x� ct) + s(t)�(x � ct), where c is the same constant, s 2 C1([0;1)), s(0) = 0and � is Dirac delta function.If in addition U is of the bounded type, the solution is called delta shock wave.



6 M. NEDELJKOVDe�nition 2. (Box approximations) A pair of nets (u"; v") consisting of piecewisesmooth functions is called an approximated singular shock wave solution to (1), (2)and (3) ifa) lim"!0hu"; �ti+ hf1(u")v" + f2(u"); �xi = 0lim"!0hv"; �ti + hg1(u")v" + g2(u"); �xi = 0:b) (u"; v") satisfy (3) for " small enough.c) u" converge in the distributional sense to �1(x�ct), where c is a constant (speedof the shock) and �1 a step function. v" converge in the distributional sense to�2(x� ct) + s(t)�(x � ct), where c is the same constant, s 2 C1([0;1)), s(0) = 0,�2) is a step function and � is Dirac delta function.If in addition u" is bounded independently on ", the solution is called delta shockwave. 3. Generalized functions and delta locusTheorem 1. a) Let f1 6� const. Then a delta shock wave solution to (9), (10) and(11) exists if u0 6= u1, f1(u0) 6= f1(u1) andc = f1(u1)v1 + f2(u1) � f1(u0)v0 � f2(u0)u1 � u0(12) = g1(u0)f1(u1) � g1(u1)f1(u0)f1(u1) � f1(u0) ;where c is the velocity of the delta shock. The set of all pairs of right hand states(u1; v1) such that (12) holds is called the delta locus for (1), (2) and (3).b) If f1(u0) = f1(u1) = 0 (specially, if f1 � 0) and g1 6� const, then the delta locusis the set of all points (u1; v1) such that g1(u0) 6= g1(u1).c) If f1 � 0 and g1 � b 2 R, then the delta locus is the set of all points (u1; v1)such that b(u1 � u0) = f2(u1)� f2(u0).Proof. Let � 2 C10 (R), supp� � [�1; 1], R �(x)dx = 1, � � 0 and letD" = D�"A�12 � x+ A+12"A�12 ! + D+"A�12 � x� A+12"A�12 ! ;where D� + D+ = 1 Let s1(t); s2(t) be smooth functions for t � 0, such thats1(0) = s2(0) = 0 and A > 0. Since in the general we do not have any informationon the behaviour of f1, f2, g1 and g2 we shall try to �nd delta shock wave solutionin the form(13) u"(x; t) = G"(x� ct); v"(x; t) = H"(x� ct) + s(t)D"(x� ct);where D" is de�ned as above and s is from De�nition 1. Let us note that D"converge to delta function as "! 0. After a substitution of (13) into (1) we have(14) G"t + (f1(G")H" + f2(G"))x + s(t)(f1(G")D")x � 0:



DELTA AND SINGULAR DELTA LOCUS 7A missing argument of a function means that it equals x � ct. Let supp � �[�X;X]� [�T; T ], for some X;T > 0. ThenZZ (@tG"(x� ct) + @x(f1(G"(x� ct))H"(x� ct) + f2(G"(x� ct))) (x; t)dxdt= ZZ (cG"(x�ct) � f1(G"(x�ct))H"(x�ct) � f2(G"(x�ct)))@x (x; t)dxdt= Z T�T Z ct�"�X (cG"(x�ct) � f1(G"(x�ct))H"(x�ct) � f2(G"(x�ct)))@x (x; t)dxdt= Z T�T Z ct+"ct�" (cG"(x�ct) � f1(G"(x�ct))H"(x�ct) � f2(G"(x�ct)))@x (x; t)dxdt= Z T�T Z Xct+"(cG"(x�ct) � f1(G"(x�ct))H"(x�ct) � f2(G"(x�ct)))@x (x; t)dxdt=I1 + I2 + I3:At �rst let us notice thatjI2j � Z T�T 2"CC dt! 0; as "! 0;since all of G", H" and  are bounded independently on ". Next,I1 + I3 = Z T�T Z ct�"�X (cu0 � f1(u0)v0 � f2(u0))@x (x; t)dxdt+ Z T�T Z ct�"�X (cu1 � f1(u1)v0 � f2(u1))@x (x; t)dxdt= (cu0 � f1(u0)v0 � f2(u0)) Z T�T  (ct � "; t)dt� (cu1 � f1(u1)v1 � f2(u1)) Z T�T  (ct + "; t)dt! �(c[u]� [f1(u)v + f2(u)])�jx=ct; as "! 0:This means that the sum of �rst two members of (14) is associated to �(x� ct)multiplied by a constant, i.e.G"t + (f1(G")H" + f2(G"))x � �(c[u]� [f1(u)v + f2(u)])�:In the sequel we shall omit this type of calculations. The function (f1(G")D")xis a derivative of a product of approximations for step and delta function. Thisproduct is associated with the delta function multiplied by a constant, and theconstant depend of a representative of the delta function. This constant as wellas (c[u]� [f1(u)v + f2(u)]) has to be zero. (c[u]� [f1(u)v + f2(u)]) = 0 gives theRankine-Hugoniot conditions for G" and H" of the �rst equation, i.e.c = f1(u1)v1 + f2(u1)� f1(u0)v0 � f2(u0)u1 � u0 :



8 M. NEDELJKOVNow we shall �nd a representative of the delta function such that f1(G")D" � 0.Let us note that suppD � [�A;�1] [ [1; A], A is a real number greater than 1,R D(y)dy = 1 and D"(y) = "�nD(y="). The condition on supports ensures that theproduct of a step function and � will not depend on the regularization of the initialdata. It will depend only on values of a step function away of zero, R 0�1D(y)dyand R�10 D(y)dy. Thus, we have the following systemZ �1�A D(y)dy + Z A1 D(y)dy = 1f1(u0) Z �1�A D(y)dy + f1(u1) Z A1 D(y)dy = 0:The solution is given byD� := Z �1�a D(y)dy = f1(u1)f1(u1) � f1(u0) ; D+ := Z b1 D(y)dy = �f1(u0)f1(u1)� f1(u0) ;if f1(u1) 6= f1(u0). In the case when f1 � const 6= 0, we shall �nd singular shocksolutions of system (1), (2) but for some special forms of f2, g1 and g2. There areno delta shock solutions of this form (only classical shocks, i.e. s = 0). If f1 � 0,then D� and D+ can be choosen such thatcD0" � (g1(G")D")x:The only neccesary condition is that g1(u0) 6= g1(u1). If g1 is also a constant thenc equals to this constant. The set of all u1 for which this is true determines thedelta locus.When we substitute u" and v" into (2),H"t + s0(t)D" � cs(t)D"t + (g1(G")H" + g2(G") + g1(G")s(t)D")x=H"t + (g1(G")H" + g2(G"))x + s0(t)D" � cs(t)D"t + s(t)(g1(G")D")x:Since G" and H" are representatives of classical step functions, it follows thatH"t + (g1(G")H" + g2(G"))x � ���;where � is Rankine-Hugoniot de�cit ([6]) given by� = c(v1 � v0)� (g1(u1)v1 + g2(u1)� g1(u0)v0 � g2(u0)):By putting � = 0 one can see that (u1; v1) has to belong to the standard Rankine-Hugoniot locus (then s = 0, since only the term s0(t)D" is associated with the deltafunction multiplied by a constant and all others are associated with the derivativeof the delta function multiplied by some constant). In the case � 6= 0 the conditions0(t) = � should be satis�ed, which implies that s(t) = �t andcD0" � (g1(G")D")x:This implies that(15) c = g0(u1)f1(u1) � g1(u1)f1(u0)f1(u1) � f1(u0)(since the representative of delta function D" (i.e. D� and D+) is already deter-minated). That means that the delta locus is de�ned as the set of all (u1; v1) suchthat (15) holds.Remark. In the case when f1 � const 6= 0 the delta locus is the empty set.



DELTA AND SINGULAR DELTA LOCUS 94. Box approximations and delta locusTheorem 1 is also true for the box approximations. In this case D"(y) consistsof two boxes, D"(y) = 8>>>><>>>>: D�" ; y 2 [�"; 0]D+" ; y 2 [0; "]0; otherwise:After the substitution of u and v into (1), by using the standard Rankine-Hugoniot conditions for step functions, we have(�c[G] + [f1(G)H + f2(G)])�0 + s(t)([f1(G)D"]�"��"+[f1(G)D"]0�0 + [f1(G)D"]"�") = 0;where h�a;  i =  (a) and [�]� denotes a jump in a point �. Again the same conditionfor the speed holds, c = [f1(G)H + f2(G)][G] ;andh[f1(G)D"]�"��";  i = f1(u0)D�"�1 (�") = f1(u0)D�"�1( (0) � " 0(y"))= f1(u0)D�"�1 (0) � f1(u0)D� 0(y");where y" is some number in [�"; 0]. Similarly,h[f1(G)D"]"�";  i = �f1(u1)D+"�1 (0) � f1(u1)D+ 0(~y");~y" 2 [0; "]. Finally,h[f1(G)D"]0�0;  i = (�f1(u0)D� + f1(u1)D+)"�1 (0):Then h[f1(G)D"]�"��" + [f1(G)D"]0�0 + [f1(G)D"]"�";  i= � f1(u0)D� 0(y") + f1(u1)D+ 0(~y")! (�f1(u0)D� � f1(u1)D+) 0(0)=(�f1(u0)D� � f1(u1)D+)h�0;  i;as "! 0. This gives the following two conditionsD� +D+ = 1f1(u0)D� + f1(u1)D+ = 0:These conditions are the same as in the previous case.In the similar way as above one can obtain the third condition which de�nes thedelta locus g1(u0)D� + g1(u1)D+ = c:



10 M. NEDELJKOVThe analysis of possible cases is the same as for smooth aproximations.In both cases it seems that one splits delta function in two parts, left delta, ��,and right one, �+, such that its product with piecewise continuous and boundedfunctions is de�ned by��(y)f(y) = limy!0� f(y); where � is � or + :In the case when system (1), (2) is hyperbolic, admissible part of the delta locusis the set of (u1; v1) such that �2(u1; v1) � c � �1(u0; v0) where �1 < �2 are theeigenvalues of (1), (2).Remark. Eigenvalues of (1), (2) equals�1;2(u; v) = f 01(u)v + f 02(u) + g1(u)2� p(f 01(u)v + f 02(u) � g1(u))2 + 4f1(u)(g01(u)v + g02(u))2If one uses the box approximation then one can see that the hyperbolicity of thesystem means �1 6= �2 2 R, for u = ui, v = vi, i = 1; 2 and for v equals somenumber depending on " which tends to in�nity as " ! 0. The last will be trueif f 01(ui) 6= 0, i = 1; 2. If one uses smooth approximation, then the question ofhyperbolicity is much more di�cult and highly depends on functions in the uxes.Overcompressivity condition can be written in the following explicit formf 01(u0)v0 + f 02(u0) + g1(u0)2� p(f 01(u0)v0 + f 02(u0)� g1(u0))2 + 4f1(u0)(g01(u0)v0 + g02(u0))2�g1(u0)f1(u1)� g1(u1)f1(u0)f1(u1)� f1(u0)�f 01(u1)v1 + f 02(u1) + g1(u1)2+ p(f 01(u1)v1 + f 02(u1)� g1(u1))2 + 4f1(u1)(g01(u1)v1 + g02(u1))25. Measure valued solutionsIn order to explain more simply the concept of solution we use the self similarsolutions to (1) and (2), i.e. u = u(x=t), v = v(x=t). In that case the system is�yu0(y) + (f1(u(y))v(y) + f2(u(y)))0 = 0(16) �yv0(y) + (g1(u(y))v(y) + g2(u(y)))0 = 0;(17)(18) u(�1) = u0; u(1) = u1; v(�1) = v0; v(1) = v1:Our aim is to �nd a solution (u; v), where u is an element of the space of piecewisecontinuous functions having the right and left hand limits in all points in R,PL(R),while v = (v0: : : : ; vm+1) belonges to the space y0;:::;ymM(R) = M((�1; y0]) �



DELTA AND SINGULAR DELTA LOCUS 11M([y0; y1])� � � � �M([ym;1)), where yi, i = 0; : : : ;m are some real numbers. Inthis case the products f1(u)v and g1(u)v exist and belong to the space y0;:::;ymM(R).Denote by MF (R) the union of all y0;:::;ymM(R), where fy1; : : : ; ymg is a �nite setof real numbers de�ned above.Let w = (w0; : : : ; wm+1) 2y0;:::;ym M(R),wi = wi + i�1�+(� � yi�1) + i��(� � yi); i = 1; : : : ;m;w0 = w0 + 0��(� � y0); wm+1 = wm+1 + m�+(� � ym);where wi are the measures with the zero mass in the points fy0; : : : ; ymg.The mapping � : w 7! �(w) = W 2 D0(R) is de�ned in the following way.�(w) := W + (0 + 0)�(� � y0) + � � �+ (m + m)�(� � ym);where W is the image of w = w0+ � � �+wm+1 2M(R) by the usual injection of thespace of measures into the space of distributions. Thus, �(w) is a sum of images oftwo measures. The �rst one is a measure which has zero mass at points y0; : : : ; ymand equals w0+ � � �+wm+1 when restricted to Rn fy0; : : : ; ymg. The second one isa linear combination of delta measures in the points fy0; : : : ; ymg.We say that (u; v) 2 PL(R)�MF (R) is a solution to (16), (17) if�y�(u)0 + �(f1(u)v + f2(u))0 = 0�y�(v)0 + �((g1(u)v + g2(u)))0 = 0in D0.With such interpretation, for given (u0; v0), the delta locus will be the set of allpairs (u1; v1) 2 R2 such that there exists a solution in the above sense which isconstant except in one point.Now we will �nd the delta locus (with the above de�nition) for system (16), (17)and (18). Suppose that y0 = c is the point of discontinuity and letu(y) = �u0; y < cu1; y > c ; v = w + �� + �+; where w(y) = � v0; y < cv1; y > c :Then f1(u)v + f2(u) = f1(u)w + f2(u) + f1(u)(�� + �+)= f1(u)w + f2(u) + f1(u0)�� + f1(u1)�+:After the injection of the above term in D0, equation (16) becomes�yu0 + (f1(u)w + f2(u))0 + (f1(u0) + f1(u1))�0 = 0:The term �yu0 + (f1(u)w + f2(u))0 = const �� determines the shock wave speed cas usual, i.e. const = 0. So, the term (f1(u0) + f1(u1))�0 has to be zero, i.e. wehave(19) c = f1(u1)v1 + f2(u1) � f1(u0)v0 � f2(u0)u1 � u0



12 M. NEDELJKOVand(20) f1(u0) + f1(u1) = 0:Equation (19) de�nes the speed of the shock and (20) gives the �rst condition on and .Equation (17) is transformed in the following way. The �rst term, yv = yw +y��+y�+, is mapped into yw+y(+ )� 2 D0. The second term, g1(u)v+g2(u) =g1(u)w+g2(u)+g1(u0)��+g1(u1)�+, is mapped into g1(u)w+g2(u)+(g1(u0)+g1(u1))� 2 D0. After the substitution of these elements of D0 into (17) we obtain�yw0 + (g1(u)w + g2)0 � c( + )�0(y � c) + ( + )�(y � c)+(g1(u0) + g1(u1))�0(y � c) = 0:Since �yw0 + (g1(u)w + g2)0 = ���(y � c), where � is Rankine-Hugoniot de�cit,� = c(v1 � v0) � (g1(u1)v1 + g2(u1)� g1(u0)v0 � g2(u0)),  and  satisfy +  = �(21) g1(u0) + g1(u1) = c:(22)The solution to system (20), (21) and (22) in respect of  and  exists if������ f1(u0) f1(u1) 01 1 ��g1(u0) g1(u1) �c ������ 6= 0:The result is the same as in the case when the approximations are used. Onecan see that s =  + , D� = =s, and D+ = =s.6. Singular shocksIn the case when the uxes f1, f2, g1 and g2 are polynomials it is often possibleto �nd a singular shock solution to system (1)-(3) for a larger set of the initial data.This will be done by adding some terms in u" beside G". When all functions inthe ux are polynomials we can control behaviour of these additional terms in u".Suppose that the maximal degree of all polynomials in the uxes equals m. Letf1(y) = mXi=0 aiyi; f2(y) = mXi=0 aiyi; g1(y) = mXi=0 biyi; g2(y) = mXi=0 biyi:We will try to �nd solutions in the formu"(x; t) = G"(x� ct) + s1(t)d"(x� ct)(23) v"(x; t) = H"(x� ct) + s2(t)D"(x� ct);where si, u = 1; 2 andD" are of the same form as before. A net d" is a representativeof the generalized function associated with zero, and it will be described in the proofof the following theorem.



DELTA AND SINGULAR DELTA LOCUS 13Theorem 2. A constantc = f1(u1)v1 + f2(u1)� f1(u0)v0 � f2(u0)u1 � u0 = [f1(u)v + f2(u)][u]will be called a speed of the singular shock, and� = c(v1 � v0) � (g1(u1)v1 + g2(u1)� g1(u0)v0 � g2(u0)) = c[v]� [g1(u)v + g2]will be called Rankin-Hugoniot de�cit.A singular shock wave solution to (9)-(11) in the form (23) exists in the followingcases.a) Let m be an even number. Then there must be possible to �nd � > 0 such thatthere exists a solution (D�; d�) 2 R�R+ to the system[f1(u)]�D� + [v]am�d� = am� + f1(u1)�+ v1am�(23) [g1(u)]�D� + [v]bm�d� = bm� + g1(u1)�+ v1bm� � c�:b) Let m be an odd number. One of the two following conditions has to hold.(i) There exists � 2 Rn f0g such that there exists a solution (D�; d�) 2 R2 tosystem (23).(ii) There exists � > 0 such that there exists a solution (D�; d�) 2 R�R+ to thesystem �[f1(u)]D� + (am�1[u] +mam[uv] +mam[u])�d�(24) =�(amv1 +mamu1v1 +mamu1) + �f1(u1) + am�1��[g1(u)]D� + (bm�1[u] +mbm[uv] +mbm[u])�d�=�(bmv1 +mbmu1v1 +mbmu1) + �g1(u1) + bm�1� � c�:The set of all points (u1; v1) 2 R2 for which there exists a singular shock wavesolution is called the singular delta locus.Proof.a) Let � 2 C10 (R), supp� � [�1; 1], R �(x)dx = 1, � � 0 and letd" =  d�" b�a2 � x+ a+b2" b�a2 !!1=m +  d+" b�a2 � x� a+b2" b�a2 !!1=m ;where (d�)m + (d+)m = 1. Let s1(t); s2(t) be smooth functions for t � 0, s1(0) =s2(0) = 0, and let D" be of the same form as in Theorem 1.If G" is a representative of a generalized function of the bounded type (somepower of a step function, for example), then����Z G"(x � ct)dj"(x� ct) (x; t)dxdt���� � 2CGC Z "1�j=m�1=m(y)dydtThe last term converge to zero as "! 0, for j < m. Since the multiplication witha smooth function preserves association, there holds(G" + s(t)d")j � Gj"; j < m and (G" + s(t)d")m � Gm" + sm(t)dm" :



14 M. NEDELJKOVLet G"(y) be a generalized step function which equals u0 for y < �" and equals u1for y > " One can see that G"dm" � (u0d� + u1d+)�(x � ct) from the constructionof d". Also, the construction of D" i d" implies that D"d" � 0.If �(y) =Pmi=0 iyi, then�(G" + s(t)d") � �(G") + sm(t)mdm" :After substitution of U" = G"+s1(t)d" and V" = H"+s2(t)D" in system (9)-(11),one can see that from the �rst equation that c = [f1(u)v+f2(u)][u] (Rankin-Hugoniotcondition) and from the second that s2(t) = �t, where � = c[v] � [g1(u)v + g2]is a Rankin-Hugoniot de�cit. Further on, after association procedure like in theproof of Theorem 1 and grouping coe�cients in respect of � and �0 one �nds thats1(t) = ~st1=m and (recall that D� +D+ = (d�)m + (d+)m = 1)[f1(u)]�D� + [v]am~smd� = am~sm + f1(u1)�+ v1am~sm[g1(u)]�D� + [v]bm~smd� = bm~sm + g1(u1)�+ v1bm~sm � c�:This proves the �rst part of the theorem.b) (i) The proof of the assertion is the same as the one of a). The only di�erenceis that ~sm has not to be positive.(ii) The construction of d" in the second case is a slightly di�erent. Let � be asabove andd"=� 2d�"(b� a)��x+ (a + 3b)=4"(b� a)=4 ��1=(m�1)�� 2d�"(b � a)��x+ (3a+ b)=4"(b � a)=4 ��1=(m�1)+� 2d+"(b � a)��x� (3a+ b)=4"(b � a)=4 ��1=(m�1)+� 2d+"(b � a)��x� (a+ 3b)=4"(b� a)=4 ��1=(m�1) ;where (d�)m�1 + (d+)m�1 = 1. Like in the previous case, one can see that(G" + s(t)d")j � Gj"; j < m � 1 and (G" + s(t)d")m�1 � Gm�1" + sm�1(t)dm�1"for every generalized function G" of the bounded type. Because of the speci�cde�nition of d" one can see that G"dm" � 0 if G" is a generalized step function. Theabove means that�(G" + s1(t)d") � �(G") + m�1sm�11 (t)dm�1" +mmsm�11 (t)G"dm�1" :Substituting U" = G" + s1(t)d" and V" = H" + s2(t)D" in system (9)-(11) onecan see that c = [f1(u)v+f2(u)][u] , s2(t) = �t, where � = c[v]� [g1(u)v + g2] like in a).Also, one �nds that s1(t) = ~st1=(m�1) and�[f1(u)]D� + (am�1[u] +mam[uv] +mam[u])~sm�1d�=~sm�1(amv1 +mamu1v1 +mamu1) + �f1(u1) + am�1~sm�1�[g1(u)]D� + (bm�1[u] +mbm[uv] +mbm[u])~sm�1d�=~sm�1(bmv1 +mbmu1v1 +mbmu1) + �g1(u1) + bm�1~sm�1 � c�:This proves the theorem.In the following corollaries we shall describe singular delta locus in the casef1 � a where a is a nonzero constant. This is the case when the delta locus is theempty set (see Theorem 1).



DELTA AND SINGULAR DELTA LOCUS 15Corollary 1. Let f1 � a, a 6= 0 is a constant, and let g1 be non constant function.a) If m is an even number, then (u1; v1) is in a delta singular locus if am 6= 0(i.e. deg f2 = m), there exists � > 0 such that sgn([v]am) = sgn(a� + v1am�) and[g1(u)] 6= 0.b) If m is an odd number and am 6= 0, then the delta singular locus is the setR2 n fu1 2 R : [g1(u)] = 0g.c) Let m be an odd number, am = 0 and am�1 6= 0 (i.e. deg f2 = m � 1). Then(u1; v1) is in a delta singular locus if a�=am�1 < 0 and [g1(u)] 6= 0.Let us note that in the case deg f2 < m� 1 the delta singular locus is the emptyset (� = 0 is the condition for Rankin-Hugoniot locus).Proof. In all of these cases, the condition [g1(u)] 6= 0 ensures that there alwaysexists D� if appropriate d� exists.a) The proof easily follows from (24) since D� is an arbitrary real number.b) The proof is an immediate consequence of b) (i) in the previous theorem.c) One can see from the �rst equation in (24) that � = �a�=am�1 > 0 .Corollary 2. Let f1 � a and g1 � b, where a 6= 0 and b are some constants.a) Let am and bm be di�erent from zero. Then� = ((b� c)am � abm)�am�1bm � ambm�1has to be greater than zero, and (u1; v1) is in delta singular locus ifd� = �mamu1 + a�+ am�1�mam[u] 2 [0; 1]for � de�ned above.b) Let am 6= 0 and bm = 0. Then � = c�� b�bm�1has to be positive, and (u1; v1) is in a delta locus ifd� = �mamu1 + a�+ am�1�mam[u]� 2 [0; 1]for � de�ned above.c) Let am = 0 and bm 6= 0. Then � = �a�am�1has to be positive, and (u1; v1) is in a delta locus ifd� = �mbmu1 + b�+ bm�1� � c�mam[u]� 2 [0; 1]for � de�ned above.
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