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We propose a simple oscillator model for the reduced three-body
problem to understand the stability of orbits with small eccentricity
of the light planet. It models the main short-time features for small
mass ratios of the other bodies. These results are confronted with
the exact mathematical analysis for stability for all times, and with
computer simulation results for bigger mass ratios, where chaotic
features emerge.

I. INTRODUCTION

The three-body problem is very old (see Reference [1] for a historic review
which starts even with the Babylonians) and an immense literature has accu-
mulated over the centuries [2]. How can one think that one can make a new
contribution to it? It is not that we possess new observational data, but the
computer puts us in a better position than previous generations. Any idea which
would have taken years to verify or falsify with a slide rule can now be settled
within seconds. Furthermore, unlike astronomers we can change the mass ratios
at will to understand the various mechanisms and to see when and why things
become chaotic. Of course, a general solution is impossible and would also be too
complicated to be of any use. So we concentrate on some limited but relevant
questions mainly on the restricted three-body problem [3], where one body is so
light that it does not influence the (circular) motion of the two others. The an-
swers to these questions require different tools and we shall formulate them such
that they make use of physical intuition, rigorous analysis and computational
methods.

Question 1. Even if the second body is much lighter than the heaviest one,
its influence on the third is much less than a naive estimate would tell us. For



instance, Mjupiter/ Me ~ 1/1000, but without sun it would take Mars at rest only
about 200 years to fall freely into Jupiter. But its near-Kepler orbit is stable for a
much longer time, merely its eccentricity is about twice that of the Earth. What
is exactly the mechanism which stabilizes the orbit?

Answer 1. The radial motion of nearly circular orbits is like a harmonic os-
cillator, and the influence of Jupiter is like periodic kicks (better pulls). From
the kicked oscillator one knows that the amplitude of the induced oscillations
gets damped again if one is not at a resonance, and the kicks get out of phase.
We shall underpin this by an elementary calculation and illustrate it by computer
simulations below. If resonance conditions apply, the amplitude increases linearly
with time, but then one gets into the nonlinear domain and out of phase with
the kicks. Whether this comes in time to quench the oscillations or whether the
situation is already out of hand depends on the strength of the kicks, i.e. M.

Question 2. In general, for which initial conditions can one guarantee stability
ad aeternitatem?

Answer 2. Since the orbits can become so complex, this question cannot be
settled by naive models and computers cannot calculate to ¢ = co. So this is
the domain of mathematical proofs. Generally there are plenty of even periodic
orbits, but the question is whether the stable sets - apart from that determined
by the Jacobi constant - have finite measure or are even open. For a sweeping
proof one has to be prepared for the worst situation, and any rational frequency
ratio is a possible resonance. Though one can show that for small perturbations
there are regions of finite measure (not open) which are stable, one had to cut
out (perhaps unnecessarily) so many pieces in phase space that for the system
sun + Jupiter + small planet one is still far away from a proof of stability of sets
of finite measure for a mass ratio My/Mg ~ 1072,

Question 3. One has learned at school that if there is no other constant than
the Hamiltonian, the system becomes ergodic. Computer studies show that for
confining potentials |&; — x|, v > 0, the orbits for several particles seem ergodic
on the energy—angular momentum shell [4]. Is this still true here?

Answer 3. According to 2, for small perturbations this is not the case. But
only the computer can give a hint how strong the perturbation has to be for
ergodicity. (1) gives a clue for the mechanism of instability. If the kicks are
too strong so that the planet will spill over and come near the sun or Jupiter
before the quenching becomes effective it will be completely thrown out of its
orbit and there is no stabilizing mechanism any more. A simple estimate shows
that this happens for M;/Mz > 1/100, and then the computer shows that there
are large chaotic regions but they contain islands of regularity. They shrink with



increasing M; /Mg, and look rather weird, not like a submanifold given by another
constant of motion K(z,y,ps, p,) = const. Sometimes they are connected by a

small bottleneck with other parts of the energy shell and the orbit fails to find
the hole in a reasonable time.

The impression one gets from these considerations is that our solar system
must be very cleverly constructed to be stable over such a long time [5,6]. Exten-
sive computer-aided calculations [7] show that the Liapunov time in the planetary
system is of the order of 107 years, much shorter than its age, destroying the hope
of a general stability proof for 4 x 10? years. Jupiter is not too heavy but far
enough from the sun to carry most of the angular momentum. This stabilizes
its plane of motion, otherwise the inclination of the orbits would be random.
Furthermore, all planetary orbits are nearly circular, and the two groups of outer
and inner planets are fairly evenly spaced. Presumably, in the early solar system
there were many more planets, but their orbits did not comply with the above
stability specifications, so they collided, fell into the sun or were thrown out of
the solar system. In the newly-discovered planetary systems [8,9], where the
heaviest planet has about 1/10 of the mass of the central star the orbits of the
other unseen planets must be so chaotic that they cannot provide a sufficiently
well-tempered climate for life to exist.

II. INTUITIVE ARGUMENT

We consider here the situation where the two heavy bodies (“sun and Jupiter”)
make a circular orbit, and the third (the “planet”) has a negligible mass (re-
stricted 3-body problem). Furthermore, all move in the same plane. For the
planet’s motion the configuration space is 2-dimensional, the phase space is 4-
dimensional, and there is one constant of the motion, the Hamiltonian in the
rotating system (equivalent to the “Jacobi constant”). In those parts of phase
space where the planet cannot escape, no other constant is known and we have
the simplest situation of a non-integrable system. We shall start with an almost
circular orbit of the planet, because in our solar system most eccentricities are
small and these orbits are apparently the most stable ones. Without Jupiter the
effective radial potential is

1 L?

Ver(r) = ~toa

and the circular orbit is in the minimum of this potential. Throughout, we use
reduced units for which the sum of the masses Mg + M of the primaries, the sun
- Jupiter distance, and the angular velocity of Jupiter are unity. r is the distance
of the light planet from the sun, and L is its angular momentum. The potential
is depicted in Fig. 1. Now we shall naively guess what the effect of Jupiter might
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FIG. 1. Effective potential Vg for the 2:1 resonance, rqg = 272/3 The dashed curve
is the harmonic approximation for the kicked-oscillator model.

be on an orbit inside its circle. We are interested in mass ratios My /Mg between
10—1 and 10—3, so Jupiter should not immediately throw the planet out of orbit.
Since the force is ~ M|z — ;|72 it should be most noticeable when the planet is
on Jupiter’s side of the sun and Jupiter pulls the planet outward of the minimum
of Veg. Of course, there will also be an azimuthal force, but this will be first
accelerating and then decelerating, so we think it will largely average out and
forget about it. About the force f of Jupiter, we only assume that it is periodic
with a period 7 = 27 /(w — 1), where w is the unpertubed angular velocity of the
planet, that of Jupiter being unity in our units. 7 is the time between successive
conjunctions of Jupiter and the planet. Though the orbit of Jupiter is strictly
periodic, the one of the planet is not, so f(¢t) = f(¢ + 7) is not quite correct.
But we think it is a good approximation. Thus, if we concentrate on the radial
motion of the planet, the complex coordinate z = p, + iw(r — ro), Vig(ro) = 0,
obeys

1) = sl S0, Viplr) = (1)
near the minimum ry. In the solution
1) = () + | Lt e p(r) (2)
the two terms have spectra {w} and {w} U (w — 1)Z, respectively. In particular,
/OT dt’f(t’)em(T_t/) =: e“TK
shows that for all times the change of z during a period T,
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2(7) = e7(2(0) + K), (3)

depends only on w = r53/2 and the constant K. Since the detailed form of f()
does not enter, this gives us confidence that (3) might be a good guess, and we
iterate it to the symplectic map

) 1 — —inwT
z(nt) = "7 (Z(O) + Kei) , nc /. (4)

1 — e—iwﬂ'

To get an idea of the planetary motion, we have in Fig. 2 replaced the effect
of Jupiter by periodic kicks, f(¢) = K'Y, é(t — n7), where, in a generous mood,
we have computed K as half of the total accumulated force of a planet passing
Jupiter on a straight line with the correct minimal distance 1 — ry and relative

velocity v = 1/,/rg — 1,

K My [ee dt(1 —ro) /70
/x _—
1 —

2 o T vt (o2~ )

VR
We do not insist on this hair-raisingly crude approximation, but to our surprise
it worked rather well as will be shown below.

What we learn from (4) is that the periodic pull of Jupiter excites radial
oscillations of the planet, but unless there is a resonance, wr = 2wg, g € 7, for
which the denominator in (4) vanishes, these oscillations eventually get out of
phase with the period of the pull. Thus, after some time there will be a “thrust
reversal”, and the oscillations will be damped again until one comes close to
the original configuration. More in detail, the influence of Jupiter will be most
noticeable near a resonance wr = 21g+¢, g € Z, ¢ < 1. For n <« 1/e, the
relevant factor (1 — e=™7)/(1 — ¢~*7) becomes about n — ien?/2, whereas, for
n ~ 1/e, both p, and r — ro become of order K/e. For ne near m we get thrust
reversal, and for ne near 2r p, and r —ry go back to the order of K. Since K is of
the order M; /Mg ~ 1072, only a small region near w € 7 is dangerous. However,
even wt = 2mg might not be catastrophic because the resonances have a built-in
selfquenching mechanism. If we start, say, with w = 7“53/2 = 2, 7 = 27, then
Tmax = 70 MaXorn<i<an(ngl) 1M z(t) will determine the frequency after some time.
The harmonic approximation to Vig will break down and w becomes r-3/2 £ 2,
Hence, we will get thrust reversal and whether this comes in time before ry.x ~
ro+ nk is close to one depends on the strength of K. To follow this analytically
by improving our crude model is very tedious and at this stage it is better to
consult the computer to see what is going to happen.

For our numerical work in this section the equations of motion are derived
from the Hamiltonian in the (synodic) center-of-mass frame rotating with Jupiter,

T i ey Q
(2 — Mj)24y2Y2  [(x+ My)? 4 y?2v/?

1
= 5(193; +pl) — apy + Ype —
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FIG. 2. Radial planetary motion, perturbed by Jupiter, for various unperturbed cir-
cular-orbit radii ro. The mass ratio Mj/Mg = 0.001/0.999. r(¢) denotes the separation
from the sun. The smooth lines are the “exact” computer-simulation results, and the
dashed lines are for the kicked-oscillator model described in the text. From top to
bottom: ro = 0.55, 0.60, 0.62, and 1/22/3 = 0.62996.
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where the sun and Jupiter are located at (M;,0) and (— Mg, 0), respectively, and
where Mg + M; = 1. They are integrated with a variable-step-size Runge-Kutta
algorithm of fourth order, keeping the energy constant to 10 significant digits for
30,000 Jupiter periods. Since in this section only slightly perturbed cirular orbits
are considered, no regularization of the equations of motion is required [3]. In
all cases, the planet is initially located on the z-axis at (0) = ro — M, with a
velocity in y-direction corresponding to the respective unperturbed circular orbit
(M = 0) with radius ro.

In Fig. 2 we compare the “exact” simulation results (smooth lines) with the
predictions of the kicked-oscillator model (dashed lines) for a perturbed orbit
near and at the 2:1 resonance. The mass ratio M;/Mg = 0.001/0.999. As
before, r(t) denotes the radial distance from the sun. The unperturbed radius rq
corresponds, from top to bottom, to 0.55, 0.60, 0.62, and 272/% = 0.62996, and is
indicated by the labels. According to this model, r(¢) oscillates between the kicks
occuring at the times n7, n = 0,1,2,..., with the unperturbed angular velocity
w and with an amplitude determined from (4). It is surprising that away from
the major 2:1 resonance, which occurs at 7o = 27%/3, this simple model gives a
rather good description of the eccentricity of the orbit. Not unexpectedly, the
model breaks down at the resonance, for which it predicts an undisturbed linear
increase of the amplitude with time, wheras the exact oscillations are damped by
self quenching as mentioned above. From the different scales in Fig. 2 we infer
that the oscillations are much less pronounced when one moves away from the
resonance.

For a given ry close to the resonance, the oscillation amplitudes are propor-
tional to M;/Mg. This is demonstrated in Fig. 3 for ro = 0.60, where M;/M,
is varied between 1/999 and 5/995. For smaller mass ratios < 2/998 the kicked
oscillator model provides a reasonable description of the “exact” simulation re-
sults. It fails for M; /Mg = 5/995 due to the dephasing induced by the frequency
changes in the nonlinear regime of the effective potential.

To study this phase mismatch between the orbit and the periodic pull in
more detail, we show in Fig. 4 the radial oscillations at the 2:1 resonance, ro =
2723 The perturbed amplitude starts to grow linearly with time, until it reaches
the nonlinear regime of the effective radial potential depicted in Fig. 1, and
the trajectory gets out of phase with Jupiter. As a consequence, the radial
displacement is quenched again and the whole process repeated. This phase
mismatch becomes apparent also in Fig. 5, where the time intervals A between
successive maxima of r(¢) in Fig. 4 are plotted at the end of each interval. A
differs significantly from =, which is the unperturbed period of the planet in this
case, equal to half the period of Jupiter. For most of the time, A < 7, and
the phase shift accumulates until the force exerted by Jupiter damps the motion
again. We also deduce from Fig. 4 that the radial oscillations of this w = 2/1
resonance are not symmetrical around ro. The largest amplitudes occur for r < rq,
for which the effective potential V.g increases more steeply than for r > ro. This
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FIG. 4. Radial oscillations of the perturbed planetary orbit for the 2:1 resonance
with Jupiter. The mass ratio Mj/Mg = 0.001/0.999. r is the distance from the sun.

3.20 I I I I I I I I

A 315

3.10 |+

3.05 fr -

3.00 | | | | | | | |
0 50 100 150 200 250 300 350 400

FIG. 5. Time difference A between successive maxima for the perturbed orbit shown
in Fig. 4, plotted at times ¢ at the end of each interval. The unperturbed planetary
period is 7.



subtlety cannot be captured by the kicked-oscillator model and severely limits
our intuition. A closer look at the exact computer-generated trajectories reveals
that the largest amplitudes for 7(¢) mainly occur in a direction not aligned with
Jupiter in our co-rotating frame.
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0.70
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FIG. 6. Radial oscillations of the perturbed planetary orbit for a fractional res-
onance, w = 3/2, with Jupiter. The mass ratio M;/Mg = 0.001/0.999, and the
unperturbed radius ro = (3/2)7%? ~ 0.7631. The smooth lines are the “exact” com-

puter-simulation results, and the dashed lines are for the kicked-oscillator model.

For comparison we show in Fig. 6 also the next fractional resonance for which
w=13/2, 10 = w3 ~0.7631, and 7 = 47. Now the planet is closer to Jupiter,
and K is bigger. The nonlinear regime is reached sooner, and the quenching time
is shorter than before. In spite of the rather complicated structure of r(¢), the
orbit appears to be quasiperiodic with a smooth and ring-shaped Poincaré map.

Unless wr = 2mg, the maximum amplitude in (4) is bounded for all n. Inter-
esting phenomena appear for fractional resonances such as the w = 2/5 resonance
of Jupiter - Saturn (see Fig. 7). There, the first conjunction occurs when Saturn
is at the angle ¢, ¢1/(p1 + 2m) = 2/5 = ¢ = 4n/3, and the next at ¢y = 87/3.
For ¢3 = 127 /3 ~ 0 we are back again. Thus, wr = 47 /3, the force [ is periodic
with period 37 and the amplitude is periodic in n with period 3.

Also fractional resonances like the Saturn-Jupiter 2:5 resonance depicted in
Fig. 7 are not contained in (4). As the figure shows, however, the radial oscil-
lations are small and show an interesting double periodicity. This orbit is not
bound by the Jacobi constant (see Fig. 13) to a finite region in configuration

10
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FIG. 7. Radial oscillations of the perturbed planetary orbit for a fractional 2:5 res-
onance with Jupiter. The mass ratio M;/Mz = 0.001/0.999, and the unperturbed
radius ro = (2/5)7 /% ~ 1.8420.

space. Nevertheless it is stable for a long time due to the action of the Coriolis
forces in the rotating frame.

III. RIGOROUS MATHEMATICS

One of the dogmas of classical statistical mechanics is that even if a system
is not in equilibrium since in addition to H there are some other constants of the
motion a little speck of dust (“Staubkornchen”) will break them and render the
system ergodic. Many great scientists tried to prove that, or even thought that
they could prove it, but finally light was shed on this question by Kolmogorov,
Arnold and Moser (KAM theorem) [14]. What they proved was not that some
constants persist for small perturbations but that in regions of phase space with
a finite measure the orbit stays on a submanifold homeomorphic to a torus.
Thus, for small perturbations the system does not become ergodic. The proof
proceeds as follows. If we have an integrable system with action variables [;
and an unperturbed Hamiltonian H;i([;) and add AH{([;,¢;), ¢; the angular
variables and A the perturbation parameter, then by a canonical transformation

I, — I, we try to cast H = H; + MH| into the form Hy(L;)+ N2 H,(1;, 0;). If

11



successful, we iterate the procedure to get H = Hz + A* H} and keep on to finally
reach, for small A\, H = H,,(I{c0)) for which the orbit remains on an invariant
torus. Thus we are faced with three problems:

a) Do we succeed in the first step, and if not, why not?
b) Under which conditions do we keep succeeding?
¢) Does the procedure converge to an H.,?

a) Standard perturbation theory proceeds as follows: For the transformation
(I,p) = (I,p) weuse a generator S(I,¢): I; = 1,4\ 05/0¢;, ¢; = @i+ 05/01;
such that for some value of I, say [; = 0, the system remains integrable up to

O(A?*). With

oOH —~ :
wi= o HiLg)= Y H(1)e*
J Ir=0 kezm
we set
05 _ —~
@ g7 ' g) = ool D) (7)
then
H = Ho(I) + NHy—o(I) + N HA(1, 3, )) (8)

with Hy(I,¢,0) < oo if everything is sufficiently differentiable. (7) is solved in
Fourier space by

ei(kw)

H(I), (9)

S(LS‘Q):_Z'

and we fail if
a1) (w-k)=0for some 0 #Fk & Z™, or

az) Do diverges.

a;) means that the w; are not linearly independent, 30 # k € Z7, wiky +
waks+. .. +wnk, = 0 and we have the resonance situations considered in Section
II. Although a term in (9) becomes infinite in this case, this does not mean that in
the orbit something becomes infinite. It only means that it cannot be described by
(8). To see this more explicitly consider a simplified “Jupiter—Saturn” resonance

H =211 + 51 4+ Asin(5¢1 — 2¢2) : (10)
. 5.
9'91 = 2, @2 = 5, I =5\ COS(5§01 — 2992) = —512 —

12



p1(t) = @1(0) + 28, pa(t) = 5pa(0) + 5t
I(t) = 11(0) + bAte, (1) = 1,(0) — 2Mte, ¢ = cos(5p1(0) — 2p2(0)).

Thus, nothing drastic happens except that the action variables increase linearly
in time. Mathematically, this is harmless, since the group structure of the time
evolution tells us that the worst case is exponential growth. In reality this would
be catastrophic if it were to go on forever, but we have seen in Section II that the
linear increase of the amplutide of oscillation is quenched by nonlinear effects,
which break the resonance. Nevertheless, in our strategy we have to be prepared
for the worst and stay away from points in phase space where the frequencies are
rationally related. In fact, in our restricted three-body problem we seem to be
in trouble right at the beginning because in the two-body Kepler problem the
angular and radial frequencies (w,,w,) are not only rationally related on some
points but equal in all of phase space where H < 0. This difficulty is spurious
since we have to go into the frame rotating with Jupiter and there (Ref. [13],
4.4.12) the Hamiltonian becomes (M; = u, Mg =1, ;5 = (1,0))

1 P> 1
Hi==-|pP+t)_p =
1 2 (pr—l_ 7“2) p@ r

and w, = w, — 1. (Jupiter is now fixed and for circular orbits w, = rg/Z, so for
ro = 1 we have w, = 0.) However, the perturbation H! = ju(r? —2r cos ¢ +1)~'/2
is not a polynomial in the exponentials of the angle variables since r is rather
complicated when expressed by action-angle variables (Ref. [13],5.3.15,2). Thus
all [A-[thkz)([) will be different from zero and to avoid w,ky + wyk; = 0 we have

to delete all rational w,/w, =1 — r53/2. Since this set is dense in phase space,
H = H*(1}) cannot hold in an open set and we still seem to be in trouble. One
might cherish some hope because this set has no interior points and is of measure
zero. This hope is destroyed by

az). For the series (9) to converge we need not only (w - k) # 0 but it has to
stay sufficciently far away from zero. However, since the rationals are dense in
R we can approximate w, /w, closely by kq/k; if the k’s are sufficiently big. So
the situation can be saved only if the H,, decrease sufficiently with increasing k.
It is known that if H’ is r-times differentiable H decreases with a power r, and
it His analytic it decreases exponentially. Away from r = 1, ¢ = 0 we have the
latter situation, so H,, can beat any power. Thus, if

m
[Hel < ce™ k] =3 1kl
7=1

in the regions of phase space where for some n we have

(w-k) > :

> YO#kEZ” (11)
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there is no problem with the convergence in (9) since

Z || e PlklFi(e k) o
k

We even have analyticity for |Im ¢;| < p. But are there w’s which satisfy (11)?
The good set GG is in our planar case

Ky

Wy kg

e/w
> der L 12
—|k2||k1+kz|n} (12)

so its complement does not only contain all the rationals. It even contains an open

G = {(wr,w@) VEk#0

neighbourhood of each of them. To some extent this agrees with our previous
experience where it did not make much difference whether one is exactly on the
resonance or just close, but now we learn that the bad set GG° is not only dense but
also open. It is surprising that there is still something left over for G, and people
with a brilliant physics intuition thought that it is not. Yet simple consideration
shows that the measure of G° goes with ¢ to zero. We may consider in our case
0 <w,/w, < 1,50 kg and ky have the same sign (say positive) and ky < kg + 1.
Now we just add the length of the dangerous intervals around w,/w, given by
(12). Since they might overlap we get an inequality, which, however, goes in the
right direction,

Wo 5/(4),, kz _|_1 25 1 1
u(—eD)gz - i ( +_)‘ .
wr k2+§1>0 k%-l— W kz>:0 k1+ wr n—1 n ( )

ko >0

Thus for n sufficiently big and for small e, there is a lot left over for G where first
order perturbation theory works.
b) The Iteration.

If we include )\ﬁkzo into H; then the Hamiltonian regains its original form except
that X is replaced by A\?. Before starting the same procedure again we have to
check whether the resonance condition holds. In fact, the new term will add
)\ Hk o to the frequencies and may break a resonance in Hy, the effect we
encountered in Section II. However, by the same token it may also throw us into
a resonance and we have to be able to avoid that by moving a little with the action
variables. This would not help in the simple example (10) where the frequencies
are fixed. One needs at least some quadratic terms in the action variables such

that the Hessian 6 6

If H; is quadratic in the [I; one can manage this with some effort [13], for the

general case we recommend Ref. [18], or for more courageous people the original
paper by Arnold [15].
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¢) The Convergence.
In the terminology of physicists we have carried out a renormalization group
transformation, and now we have to prove that it leads to a fixed point. What
one needs is that for some norm || || at each step ||H} || gets smaller than the
square of the previous one, since the recursive relation

[ H < (1 Hy [[*6"
implies

(o Hi >
75n+2 .

IH, |l < (14)
Thus, if v63||H]|| < 1 for n — oo ||H!|| converges to zero, we have reached our
goal. The constant 4 contains among other things the perturbation parameter
A, and by making it sufficiently small we can always satisfy this inequality. The
estimate of ¢ is very cumbersome and contains also ||C'™!|| and, alas, the price
for stability from now to eternity is high. An estimate by Hénon [17] limits
A to be < 107, Celletti and Chierchia [16] have truncated 3=, Hype'™*) and
got the limit down to 107%, but what one would need is M;/Mg ~ 1073, This
truncation is not mathematically rigorous but physically reasonable since in our
planetary system there are more important influences. This is like in music where
a consonant interval contains higher overtones which are strongly dissonant, but
they are only faintly excited and do not bother us.

Since the question of stability to eternity does not seem to be amenable to a
complete understanding, we turn to another feature of the problem which can be
easily deduced and understood. It is the problem of energy gain by a test planet
interacting with a rotating system. This is of obvious importance as a fuel saving
measure for space travel and leads, in the extreme, to the celebrated example of
a planet gaining so much energy between two rotating binaries that it can push
them to infinity within a finite time [10]. The simple general rule is expressed by
the following

Theorem: (15)
Let a body with coordinates X(¢) rotate around the origin, |X(¢)| = constant,
and interact with the test planet (coordinates x) through a central potential V(r).
Denote by the future (resp. past) half space the half space bounded by the plane
perpendicular to X () and going through X(¢) and the origin, into which X (¢)
moves (resp. which it leaves). Then, if V(r) is attractive (V' > 0), the test planet
gains energy if it is located in the past half space, and loses energy when it is in
the future half space. For repulsive V', it is the other way round.

Proof:
For a potential depending explicitely on the time ¢, the change of the test-planet
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energy [(t) in the fixed frame is simply given by dI//dt = dV/dt. In our case,
V(r)=V(X()—z|) and 9| X (t) — z|*/0t = —2(X(t) - x). Thus,

oV (X(t)-x)
ot |X(t)—a|

which, in the attractive case, is positive in the past half space, (X ~x) < 0, and
negative otherwise. For repulsive potentials, V' < 0, it goes the other way.

Remarks:

1) To accumulate energy, @ has to remain in the past half space for some time
and has to follow X (¢). This gives some intuitive basis for the theorem since it
means that the test planet gains energy as it is dragged along.

2) In our two-dimensional example with the Newton potential V = —pu/r, and
with X (¢) = (cost,sint), we have with polar coordinates (r, ¢) for «: |X(¢)—z| =
(1 —2rcos(¢p — 1) + )2 and dE/dt = prsin(t — ¢)(1 — 2r cos(t — ¢) + r?)~/2
If we assume in a first approximation that @ follows a circular orbit (r,wt) with
w = 1732 the accumulated energy gain between ¢ = 0 and ¢ = 7/(1—w) becomes

/W/(I—W) ” rsin(t(l —w)) o 2/(r* = 1) forr > 1
"o (1 —2rcost(l —w)+7r2)3/2 1 —w | 2/(1 —r?) forr <1

Since w < 1 for an outside orbit, and w > 1 for an inside orbit, the former gains
energy (the test planet is dragged along) and the latter looses energy (it is pulled
back). Since w = r~%?2_ the planet is ejected after one swing if u(r — 1)72 ~ 1.
3) In our system actually both the sun and Jupiter rotate around their center of
gravity, and there is a contribution to (15) also from the sun with the opposite
sign, since the sun goes up when Jupiter moves down. Although the force of the
sun is ~ Mg, its velocity is ~ MZ' and the mass dependence cancels out. Only
the distance matters. If sun and Jupiter are located at (1/2,0) and (—1/2,0),
respectively, then the quadrants Il and IV in the co-rotating frame are energy
increasing, the others energy decreasing.

We illustrate this behavior in Fig. 8 by a trajectory of a test particle in the
synodic, co-rotating frame, for which Jupiter is located at (-1/2,0), and the sun
at (1/2,0). Initially, the particle is at (x,y) = (= cos(a) + 0.5,sin(a)), a = 7/18,
with a synodic velocity (—0.9cos(a),0.9sin(a)) pointing away from the origin.
In the absence of Jupiter, the particle is trapped by the sun with a negative
fixed-frame energy F = —0.095, and follows the dashed trajectory in Fig. 8. For
the same initial conditions but with a mass ratio M;/Mz = 0.1/0.9, the test
particle traces out the smooth line in the Figure. As predicted by (15), between
A and B in the past half space it is attracted by My, and the fixed-frame energy
increases from -0.6465 to 4+0.0668. As follows from Remark 3), the energy F
starts to decrease slightly again between the points B and C' in the first quadrant
as is shown in Fig. 9. For small mass ratios this second-order correction to (15)
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FIG. 8. Example of an unperturbed (dashed) and a perturbed trajectory (full
line, mass ratio Mj/Mg = 1/9) in a synodic, co-rotating coordinate system for
an initial position —cos(a) 4+ 0.5,sin(a)), @ = 7/18, and an initial synodic velocity
(—0.9cos(a),0.9sin(a)). The position of the sun at (1/2, 0) and of Jupiter at (-1/2, 0)
are indicated by dots.

0.08 T T T

0.07 - .

0.06 -

0.05 -

0.04

FIG. 9. Time dependence of the total fixed-frame energy for the perturbed test
particle of Fig. 8. The labels correspond to the positions in Fig. 8.
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becomes neglegible. The final energy in our example remains positive, and the
particle escapes to infinity. Since the trajectory is represented here in the co-
rotating frame, this path to infinity appears as a spiral. It is interesting to note
that some comets actually perform such loops around Jupiter.

In Fig. 10 we show another example of a trajectory in the synodic frame,
for which the test particle is in the past half space between the points A and
B and, as a consequence, gains considerable energy during that time. The time
dependence of the total fixed-frame energy is given in Fig. 11. Between the points
B and C the particle is in the future half plane and loses so much energy that
the subsequent energy gain in the past half space beyond the point C' still leaves
the energy negative asymptotically. The particle remains trapped and does not
escape. Also in this example the mass ratio M; /Mg = 0.1/0.9, and the synodic
locations of the sun and of Jupiter are indicated by the big and small circles,
respectively. The large variation of the energy in Fig. 11 is reminiscent of the
energy oscillations in the Sitnikov problem [11,12].

IV. THE COMPUTER

Let us return for a moment to the self-quenching phenomenon which led to
the introduction of the kicked-oscillator model in Section II. If the perturbation
M /Mg becomes bigger than about 1/100, then the orbit gets out of its harmonic
shelter too soon for the stabilizing factor to become effective, and the orbit will
come close to the sun or Jupiter. Then the test body will be thrown out of its
original circle and the orbit becomes chaotic. This is demonstrated in Fig. 12 for
a few “exact” perturbed trajectories distinguished by the mass ratio M; /M. In
terms of the kicked-oscillator model, for the quenching mechanism to be effective
it is essential that the beat it strictly observed. If the planet is thrown out too far
of its harmonic regime and the frequency of the radial motion becomes strongly
dependent on the amplitude, it never gets the rhythm. Thus, it is bound to
happen that a few kicks will throw the planet beyond the point of no return.
Then there is no stabilizing mechanism, and chaos prevails.

For these large perturbations the analysis of Sect. 3 certainly does not apply,
and the first guess is that then the system becomes ergodic. For this to be true
one first has to make sure that the orbit remains in a compact region in phase
space. If it escapes to infinity then with probability one it has also come from
infinity and one has a scattering situation. In this case one even has the maximal
number of constants of the motion (three in our case) and one is in the opposite
extreme of ergodicity. However, in the synodic rotating frame the Hamiltonian
(6) can be written [13,3]

H = % (e +9)” + (py — 2)] + Q2. y),
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FIG. 10. Perturbed test-particle trajectory in the co-rotating frame displaying mo-
tion in the past half plane (between the points A and B), in the future half plane
(between the points B and ('), and in the past half plane again (beyond C).

FIG. 11. Time dependence of the total energy in the fixed (inertial) frame for the
trajectory in Fig. 10. The labelled points refer to the corresponding locations in Fig.
10.
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FIG. 12. Radial planetary motion, perturbed by Jupiter, for the unperturbed cir-
cular-orbit radius ro = 0.6. The mass ratio Mj/Mg increases from top to bottom as
indicated by the label.
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FIG. 13. The surface Q(z,y) for a mass ratio Mj/Mg = 1/9. The sun is located at
(0.5,0), Jupiter at (-0.5,0).
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FIG. 14. Cut through the Q-surface of Fig. 13 along the z axis. The mass ratio
Mj/Mg = 1/9. The horizontal line corresponds to an energy Fo = —1.795 in the
synodic frame.
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thus like for a particle in a constant magnetic field perpendicular to the plane of
motion and subjected to a potential

1
O, y) = —=(Mor? + Myr2) — =
(l’,y) 2( ol + JTJ) 2 re " 9

1 ( Mgy N %) N Mo My
(see Fig. 13). Here, ro = [(z — 1/2)? + ¥V and rj = [(x + 1/2)* 4+ y*]'/? are
the distance of the planet from the sun and from Jupiter, respectively, where we
use for convenience a co-rotating frame in which the sun is located at (1/2,0) and
Jupiter at (-1/2,0). The regions Q < Fj are time invariant and are compact in
configuration space for sufficiently low synodic energy FEy. So the question is in
this case whether the energy shell H = FEj is covered uniformly by the orbit or
whether it is divided further by hitherto not-discovered constants. We shall see
that neither seems to be the case. Since neither physical intuition nor rigorous
mathematics are in a position to answer this question we have to avail ourselves
of modern computer technology.

Ergodicity means that the time average of the orbit gives a homogeneous den-
sity on the energy shell. The former we have to calculate on the computer and the
latter, §( H(x,y; psypy) — Eo), becomes particularly simple when projected onto
configuration space as follows from the more general Bohr-van Leeuwen-type (see

Ref. [21], 2.5.39,1)

Theorem: (16)
In two dimensions the microcanonical density in configuration space of a particle
in an arbitrary potential and arbitrary magnetic field is constant in the energet-
ically allowed region.

Proof:

H = [(pe = Acle.y)* + (py — Al )?] + Viw.y),

[N

pla,y) = /dpxdpy(S(H — Fy) = /dvxdvy(s (%(Uﬁ + vi) + V(z,y) — EO)
=270 (V(x,y) — Eo)

with v; = p;, — A; and O the step function.

To study this chaotic behaviour in more detail we have followed the dynamical
evolution on the computer. Since we are concerned with long chaotic trajectories,
a regularization procedure according to Birkhoff is used to remove the singulari-
ties at the position of both primaries [20,3]. In combination with a Runge-Kutta
4-th order algorithm with variable time step we ascertain that the energy is con-
served to 10 significant digits over the whole length of the simulation. In Fig.
15 a stroboscopic map reflecting the probability density in configuration space
is shown. The energy Fy = —1.795 was chosen to allow for a narrow channel
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FIG. 15. Probability density in configuration space for a synodic energy Fo = —1.795
corresponding to the horizontal dashed line in Fig. 14. The points of this stroboscopic
map are taken from a single chaotic trajectory lasting for about 30000 Jupiter years.
The mass ratio Mj/Mg = 1/9. The sun in this rotating frame is located at (0.5,0),
Jupiter at (-0.5,0).

between the sun and Jupiter, and corresponds to the dashed horizontal line in
Fig. 15. The initial configuration for this trajectory, which is followed for 30000
Jupiter years, is at the position of the central saddle point between the sun and
Jupiter in Fig 13, with the planet velocity pointing towards the sun. Clearly,
the distribution of points in Fig. 15 is almost homogeneous. The fact that the
theorem does not strictly apply and some accumulation of points appear at the
boundary is a consequence of the fact that the system is not ergodic.

This may be seen more clearly by looking at other phase-space projections,
say onto the (x,v;)-plane, which are harder to treat theoretically. In Fig. 16 a
double-sided Poincaré map in the (x — v,)-plane is shown for the same chaotic
trajectory as in Fig. 15. The plotted points correspond to states for which the
velocities y = v, in y-direction may be positive or negative. The results show
that there are large islands of regularity in the chaotic sea, so the system is not
ergodic. Nevertheless, the consequences of Theorem (16) are quite well satisfied,
and the density in configuration space is nearly homogeneous. In Fig. 16 the
sections of a few regular tori are also shown in some of the regularity islands for
the same energy, £y = —1.795.
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FIG. 16. Double-sided Poincaré map for mass ratio M;/Mg = 1/9 and a synodic
energy Iy = —1.795 corresponding to the horizontal dashed line in Fig. 14. The sun
in the rotating frame is located at (0.5,0), Jupiter at (-0.5,0). In some of the larger
regularity islands the closed sections of regular tori for the same total energy are also
shown.

V. SUMMARY

The (reduced) three-body problem, the cradle and for more than a century a
paradigm of the science of chaotic dynamical systems [22,23], still provides new
and surprisingly simple results. For weakly-perturbed circular orbits one gets
away with a very crude and intuitive kicked-oscillator model, which provides a
good representation of the eccentricity of the test-particle motion. In Section II
we have explored the strengths and limitations of this model. For a small-enough
mass ratio M;/Mg, even resonance conditions may not be catastrophic for the
orbit of the test particle due to a selfquenching mechanism supplied by the nonlin-
earity of the effective potential in the co-rotating frame. For large perturbations,
however, the model is not applicable and only computer simulations may provide
test-particle trajectories for a reasonable length of time.

If one considers conditions for which the test particle may visit the neighbor-
hood of the sun and of Jupiter but is still bounded by the Jacobi constant in
the frame co-rotating with Jupiter, the phase space consists of a chaotic sea with
regularity islands enbedded. The existence of these islands demonstrates that the
system 1is not ergodic in spite of considerable nonlinearities in the potential €.

24



According to Theorem (16) of Section IV, ergodicity requires that the probability
density of the test particle in configuration space is constant in the allowed do-
main. Computer simulations in Section IV demonstrate that this is not strictly
the case due to nonergodicity.

What one really wants to know is what is the measure associated with the
regular domains in phase space, in which the trajectory stays on a toroidal sub-
manifold, for which the characteristic function is an additional constant of the
motion. Only rigorous mathemats is capable of answering this question, if at all.
Impressive progress has been achieved recently by Celletti and Chierchia [16],
although one is still a few orders of magnitude away from this goal. However,
analytical theory in Section III provides a surprisingly simple answer to a less-
ambitous question concerning the gain and loss of the test-particle energy E(t)
in the fixed, inertial frame. Let us consider a synodic co-rotating frame in which
Jupiter is located at (—1/2,0) and the sun at (1/2,0). Then we conclude from
Theorem (15) and the following remarks in Section III that E > 0 whenever
the particle is in the second or fourth quadrant of that frame of reference, and
I < 0 whenever it is in the first or third quadrant. This simple result has been
confirmed by numerical simulations.
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