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Abstract

We develop a theory of currents in metric spaces which extends the classical
theory of Federer—Fleming in euclidean spaces and in Riemannian manifolds.
The main idea, suggested in [20, 21], is to replace the duality with differential
forms with the duality with (k 4 1)-ples (f, 71,..., 7x) of Lipschitz functions,
where k is the dimension of the current. We show, by a metric proof which
is new even for currents in euclidean spaces, that the closure theorem and
the boundary rectifiability theorem for integral currents hold in any complete
metric space F. Moreover, we prove some existence results for a generalized
Plateau problem in compact metric spaces and in some classes of Banach
spaces, not necessarily finite dimensional.
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Introduction

The development of intrinsic theories for area minimization problems was moti-
vated in the 50’s by the difficulty to prove, by parametric methods, existence for
the Plateau problem for surfaces in euclidean spaces of dimension higher than 2.
After the pioneering work of R. Caccioppoli [12] and E. De Giorgi [18, 19] on sets
with finite perimeter, W.H. Fleming and H. Federer developed in [24] the theory
of currents, which leads to existence results for the Plateau problem for oriented
surfaces of any dimension and codimension. It is now clear that the interest of this
theory, which includes in some sense the theory of Sobolev and BV functions, goes
much beyond the area minimization problems that were its initial motivation: as
an example one can consider the recent papers [3, 8, 27, 28,29, 35, 41, 42], to quote
just a few examples.

The aim of this paper is to develop an extension of the Federer—Fleming theory
to spaces without a differentiable structure, and virtually to any complete metric
space; as a byproduct we also show that actually the classical theory of currents
depends very little on the differentiable structure of the ambient space, at least if
one takes into account only normal or rectifiable currents, the classes of currents
which are typically of interest in variational problems. The starting point of our
research has been a very short paper of De Giorgi [20]: amazingly, he was able to
formulate a generalized Plateau problem in any metric space I using (necessarily)
only the metric structure; having done so, he raised some natural questions about
the existence of solutions of the generalized Plateau problem in metric or in Banach
and Hilbert spaces.

The basic idea of De Giorgi has been to replace the duality with differential
forms with the duality with (k + 1)-ples (fo, f1,..., f&), where & is the dimension,
fi are Lipschitz functions in £ and f; is also bounded; he called metric functionals
all functions T defined on the space of these (k+1)-ples which are linear with respect
to fo. We point out that the formal approach of De Giorgi has a strong analogy
with the recent work on J.Cheeger [13] on differentiability of Lipschitz functions on
metric measure spaces: indeed, also in this paper locally finitely many Lipschitz
functions f; play the role of the coordinate functions #1,..., %, in the euclidean
space R". The basic operations of boundary T — 97", push forward 7'+ @uT
and restriction 7' +— T'Lw can be defined in a natural way in the class of metric
functionals; moreover, the mass, denoted by ||T||, is simply defined as the least
measure p satisfying

k
T(fos frveeo )] < 121 Lip(ﬁ)[E \fol du

for all (k + 1)-ples (fo, f1,-.., fx), where Lip(f) denotes the Lipschitz constant of
f. We also denote by M(T) = ||T|(¥) the total mass of T. Notice that in this
setting it 1s natural to assume that the ambient metric space is complete, because
Lip(E) ~ Lip(E) whenever E is a metric space and F is the completion of E.

In order to single out in the general class of metric functionals the currents, we
have considered all metric functionals with finite mass satisfying three independent
axioms:

(1) linearity in all the arguments;

(2) continuity with respect to pointwise convergence in the last k& arguments with
uniform Lipschitz bounds;

(3) locality.

The latter axiom, saying that T'(fo, f1,..., fz) = 0 if f; is constant on a neigh-
bourhood of {fy # 0} for some i > 1, is necessary to impose, in a weak sense,
a dependence on the derivatives of the f;’s, rather than a dependence on the f;



itself. Although df has no pointwise meaning for a Lipschitz function in a general
metric space E (but see [7], [13]), when dealing with currents we can denote the
(k + 1)-ples by the formal expression fodfi A...Adfy, to keep in mind the analogy
with differential forms; this notation is justified by the fact that, quite surprisingly,
our axioms imply the usual product and chain rules of calculus

T(fodfs Ao ANdfs) +T(frdfo N Adf) =T(Ld(fofi) Ao Adfe)

T(fodyr () Ao AN dew(f)) = T(fodet(V(f)) dfv Ao Adfie)

In particular, any current is alternating in f = (f1,..., fx)-
A basic example of k-dimensional current in R” is

Lol(fodfi A ... Adfy) == /R g fodet(V f) da

for any g € LY(R¥); in this case, by the Hadamard inequality, the mass is |g|£*.
By the properties mentioned above, any k-dimensional current in R¥ whose mass is
absolutely continuous with respect to £* is representable in this way. The general
validity of this absolutely continuity property is still an open problem: we are able
to prove it either for normal currents or in the cases &k = 1, & = 2, using a deep result
of D. Preiss [54], whose extension to more than 2 variables seems to be problematic.

In the euclidean theory an important class of currents, in connexion with the
Plateau problem, is the class of rectifiable currents. This class can be defined also
in our setting as

Ri(E) = {T T << H* and is concentrated on a countably H*-rectifiable set}

or, equivalently, as the Banach subspace generated by Lipschitz images of euclidean
k-dimensional currents [g] in R*. In the same vein, the class Z;(E) of integer
rectifiable currents is defined by the property that ¢u (T'L A) has integer multiplicity
in R¥ (i.e. is representable as [¢] for some integer valued g) for any Borel set A C F
and any ¢ € Lip(E, R¥); this class is also generated by Lipschitz images of euclidean
k-dimensional currents [¢] in R* with integer multiplicity.

One of the main results of our paper is that the closure theorem and the bound-
ary rectifiability theorem for integer rectifiable currents hold in any complete metric
space F; this result was quite surprising for us, since all the existing proofs in the
case E = R heavily use the homogeneous structure of the euclidean space and the
Besicovitch derivation theorem; none of these tools is available in a general metric
space (see for instance the counterexample in [17]). Our result proves that closure
and boundary rectifiability are general phenomena; additional assumptions on E
are required only when one looks for the analogues of the isoperimetric inequality
and of the deformation theorem in this context.

If E is the dual of a separable Banach space (this assumption is not really
restrictive, up to an isometric embedding) we also prove that any rectifiable current
T can be represented, as in the euclidean case, by a triplet [M, 6, 7] where M is
a countably H*-rectifiable set, § > 0 is the multiplicity function and 7, a unit k-
vector field, is an orientation of the approximate tangent space to M (defined in

[7]); indeed, we have
T(fodfi A . Adfy) = /M 0 fo(Ard™ f, 7y dH*

where Apd™ f is the k-covector field induced by the tangential differential on M of
f=1{(f1,..., fx), which does exist in a pointwise sense. The only relevant difference
with the euclidean case appears in the formula for the mass. Indeed, in [38] the



second author proved that for any countably #H*-rectifiable set in a metric space
the distance locally behaves as a k-dimensional norm (depending on the point, in
general); we prove that ||T|| = AH* L M, where ), called area factor, takes into
account the local norm of M and is equal to 1 if the norm 1s induced by an inner
product. We also prove that A can always be estimated from below with k~%/2 and
from above with 2* /wy, hence the mass is always comparable with the Hausdorff
measure with multiplicities.

If the ambient metric space £ is compact, our closure theorem leads; together
with the lower semicontinuity property of the map 7' +— M(T), to an existence
theorem for the (generalized) Plateau problem

min {M(T) : T € Ty(E), 9T = S} (1)

proposed by De Giorgi in [20]. However, the generality of this result is; at least in
part, compensated by the fact that even though S satisfies the necessary conditions
95 =0and S € Z_1(F), the class of admissible currents T in (1) could in principle
be empty. A remarkable example of metric space for which this phenomenon occurs
is the three dimensional Heisenberg group Hs: we proved in [7] that this group,
whose Hausdorff dimension is 4, is purely k-unrectifiable for & = 2, 3, 4, i.e.

H* (p(A) =0 for all A C R* Borel, ¢ € Lip(A, Hs) .

This, together with the absolute continuity property, implies the spaces Ry (Hs)
reduce to {0} for k = 2, 3, 4 hence there is no admissible T'in (1) if S # 0. Since a lot
of analysis can be carried on in the Heisenberg group (Sobolev spaces, Rademacher
theorem, elliptic regularity theory, Poincaré inequalities, quasi conformal maps, see
[34] as a reference book), it would be very interesting to adapt some parts of our
theory to the Heisenberg and to other geometries. In this connection, we recall the
important recent work by B.Franchi, R.Serapioni and F.Serra Cassano [25, 26] on
sets with finite perimeter and rectifiability (in an intrinsic sense) in the Heisenberg
group. Related results, in doubling (or Ahlfors regular) metric measure spaces are
given in [6] and [47].

Other interesting directions of research that we don’t pursue here are the exten-
sion of the theory to currents with coefficients in a general group, a class of currents
recently studied by B. White in [62] in the euclidean case, and the connexion be-
tween bounds on the curvature of the space, in the sense of Alexandroff, and the
validity of a deformation theorem. In this connection, we would like to mention the
parametric approach to the Plateau problem for 2-dimensional surfaces pursued in
[49] and the fact that our theory applies well to CBA metric spaces (i.e. the ones
whose curvature in the Alexandrov sense is bounded from above) which are Ahlfors
regular of dimension k since, according to a recent work of B.Kleiner (see [39], The-
orem B), these spaces are locally bi-Lipschitz parameterizable with euclidean open
sets.

With the aim to give an answer to the existence problems raised in [20], we
have also studied some situations in which certainly there are plenty of rectifiable
currents; for instance if F is a Banach space the cone construction shows that the
class of admissible currents 7' in (1) is not empty, at least if S has bounded support.
Assuming also that spt S is compact, we have proved that problem (1) has a solution
(and that any solution has compact support) in a general class of Banach spaces,
not necessarily finite dimensional, which includes all [P spaces and Hilbert spaces.
An amusing aspect of our proof of this result is that it relies in an essential way on
the validity of the closure theorem in a general metric space. Indeed, our strategy
(close to the Gromov existence theorem of “minimal fillings” in [32]) is the following:
first, using the Ekeland-Bishop-Phelps principle, we are able to find a minimizing



sequence (Tj) with the property that T}, minimizes the perturbed problem

T M(T) + 3 M(T ~ 1))

in the class {T" : 9T = S}. Using isoperimetric inequalities (that we are able to prove
in some classes of Banach spaces, see Appendix B), we obtain that the supports of T},
are equi-bounded and equi-compact. Now we use Gromov compactness theorem (see
[31]) to embed isometrically (a subsequence of) sptT}, in an abstract compact metric
space X; denoting by i; the embeddings, we apply the closure and compactness
theorems for currents in X to obtain S € Zy(X), limit of a subsequence of i, 7},.
Then a solution of (1) is given by jzS, where j : spt S — E is the limit, in a suitable
sense, of a subsequence of (i) ~!. We are able to circumvent this argument, working
directly in the original space E, only if £ has an Hilbert structure.

Our paper is organized as follows. In Section 1 we summarize the main notation
and recall some basic facts on Hausdorff measures and measure theory. Section 2
contains essentially the basic definitions of [20] concerning the class of metric func-
tionals, while in Section 3 we specialize to currents and Section 4 and Section 5
deal with the main objects of our investigation, respectively the rectifiable and the
normal currents. As in the classical theory of Federer—Fleming the basic operations
of localization and slicing can be naturally defined in the class of normal currents.
Using an equi-continuity property typical of normal currents we also obtain a com-
pactness theorem.

In order to tackle the Plateau problem in duals of separable Banach spaces we
study in Section 6 a notion of weak®™ convergence for currents; the main technical
ingredient in the analysis of this convergence is an extension theorem for Lipschitz
and w*-continuous functions f : A — R. If A is w*-compact we prove the exis-
tence of a Lipschitz and w*-continuous extension (a more general result has been
independently proved by E. Matouskova in [43]). The reading of this section can
be skipped by those who are mainly interested in the metric proof of closure and
boundary rectifiability theorems.

Section 7 collects some informations about BV metric space valued maps u :
R* — 5; this class of functions has been introduced by the first author in [4] in
connexion with the study of the I'-limit as € | 0 of the functionals

Fe(u) := /R [6|Vu|2—|— @] dz

with W : R™ — [0, 00) continuous (in this case S is a suitable quotient space of
{W = 0} with the metric induced by 2¢/W). We extend slightly the results of [4],
dropping in particular the requirement that the target metric space is compact, and
we prove a Lusin type approximation theorem by Lipschitz functions for this class
of maps.

Section 8 is devoted to the proof of the closure theorem and of the boundary
rectifiability theorem. The basic ingredient of the proof is the observation, due in
the euclidean context to R.Jerrard, that the slicing operator

R* 52— (T 7 )

provides a BV map with values in the metric space S of 0-dimensional currents
endowed with the flat norm whenever 7' is normal and f € Lip(E,R*). Using
the Lipschitz approximation theorem of the previous section, these remarks lead to
a rectifiability criterion for currents involving only the 0-dimensional slices of the
current. Once this rectifiability criterion is estabilished, the closure theorem easily
follows by a simple induction on the dimension. A similar induction argument proves
the boundary rectifiability theorem. We also prove rectifiability criteria based on



slices or projections: in particular we show that a normal k-dimensional current 7" 1s
integer rectifiable if and only if ¢4 T is integer rectifiable in R*+! for any Lipschitz
function ¢ : I — RF+1; this result, new even in the euclidean case £ = R™, is
remarkable because no a priori assumption on the dimension of the support of 7" 1s
made.

In Section 9 we recover, in duals of separable Banach spaces, the canonical
representation of a rectifiable current by the integration over an oriented set with
multiplicities. As a byproduct, we are able to compare the mass of a rectifiable cur-
rent with the restriction of H* to its measure theoretic support; the representation
formula for the mass we obtain can be easily extended to the general metric case
using an isometric embedding of the support of the current into [,,. The results of
this section basically depend on the area formula and the metric generalizations of
the Rademacher theorem developed in previous papers [38], [7] of ours; we recall
without proof all the results we need from those papers.

Section 10 is devoted to the cone construction and to the above mentioned
existence results for the Plateau problem in Banach spaces.

In Appendix A we compare our currents with the Federer—Fleming ones in the
euclidean case ¥ = R™ and in Appendix B we prove in some Banach spaces the va-
lidity of 1soperimetric inequalities; adapting to our case an argument of M. Gromov
[32]. Finally, in Appendix C we discuss the problem of the lower semicontinuity of
the Hausdorff measure, pointing out the connections with some long standing open
problems in the theory of Minkowski spaces.

Acknowledgements. We thank M.Chlebik, R.Jerrard, J.Jost, B.Kleiner and
V.Magnani for their helpful comments and suggestions. The first author grate-
fully acknowledges the hospitality of the Max Planck Institut in Leipzig, where a
large part of this paper was written in 1998, and completed in the summer of 1999.

1 Notation and preliminary results

In this paper F stands for a complete metric space, whose open balls with center x
and radius r are denoted by B, (z), B(E) is its Borel o-algebra and B*(FE) is the
algebra of bounded Borel functions on E.

We denote by M(E) the collection of finite Borel measures in E| i.e. o-additive
set functions p : B(E) — [0, 00); we say that u € M(FE) is concentrated on a Borel
set B if p(E\ B) = 0. The supremum and the infimum of a family {y; }ser C M(E)
are respectively given by

\/ wi(B) = sup {Z wi(Bi) : By pairwise disjoint, B = U BZ} (1.1)

i€l i€J i€J

/\ wi(B) = inf {Z wi(Bi) : By pairwise disjoint, B = U BZ} (1.2)
iel ieJ ieJ
where J runs among all countable subsets of I and B; € B(E). It is easy to check
that the infimum is a finite Borel measure and that the supremum is o-additive in
B(E).

Let (X,d) be a metric space; the (outer) Hausdorff k-dimensional measure of

B C X, denoted by H*(B), is defined by
k Vi B L AL - T :
H¥(B) := lélf(r)l?—kmf{; [diam(B;)]" : B C L__JOBZ, diam(B;) < (5}

where wy, is the Lebesgue measure of the unit ball of R*. Since H% (B) = H5 (B)
whenever B C X and X isometrically embeds in Y, our notation for the Hausdorff



measure does not emphasize the ambient space. We recall (see for instance [38],
Lemma 6(i)) that if X is a k-dimensional vector space and Bj is its unit ball, then
H*(By) is a dimensional constant independent of the norm of X and equal, in
particular, to wy. The Lebesgue measure in R* will be denoted by £*.

The upper and lower k-dimensional densities of a finite Borel measure p at z
are respectively defined by

. 1 (B, (%)) o p(B,())
O% (1, 2) := hn;isoupw O (pt, ) := hrﬁénfw :

We recall that the implications
Oi(p,x) >t Ve e B = u>tH"LB (1.3)

Oi(m,z)<tVeeB = puLB<2"H"LB (1.4)

hold in any metric space X whenever t € (0,00) and B € B(X) (see [23], 2.10.19).
Let X, Y be metric spaces; we say that f: X — Y is a Lipschitz function if

dy (f(x), f(y)) < Mdx(z,y) Vo, y€ X

for some constant M € [0, 00); the least constant with this property will be denoted
by Lip(f), and the collection of Lipschitz functions will be denoted by Lip(X,Y)
(Y will be omitted if Y = R)). Furthermore, we use the notation Lip, (X,Y) for the
collection of Lipschitz functions f with Lip(f) < 1 and Lip,(X) for the collection
of bounded real valued Lipschitz functions.

We will often use isometric embeddings of a metric space into I or, more
generally, duals of separable Banach spaces. To this aim, the following definitions
will be useful.

Definition 1.1 (Weak separability) Let (E,d) be a metric space. We say that
E is weakly separable if there exists a sequence (py) C Lip; (E) such that

d(z,y) ngglsoh(x)—soh(y)l Vo, y€eE .

A dual Banach space Y = G* 1s said to be w*-separable if G is separable.

Notice that, by a truncation argument, the definition of weak separability can
also be given by requiring ¢ to be also bounded. The class of weakly separable
metric spaces includes the separable ones (it suffices to take ¢p(-) = d(-, zp) with
(zp) C E dense) and all w*-separable dual spaces. Any weakly separable space can
be isometrically embedded in {*° by the map

J(@) = (p1(2) — p1(20), p2(x) — @2(20), - . .) rEE

and since any subset of a weakly separable space 1s still weakly separable also the
converse 1s true.

2 Metric functionals

In this section we define, following essentially the approach of [20], a general class
of metric functionals, in which the basic operations of boundary, push forward,
restriction can be defined. Then, functionals with finite mass are introduced.

Definition 2.1 Let k > 1 be an integer. We denote by D*(E) the set of all (k+1)-
plesw = (f, 71, ..., m) of Lipschitz real valued functions in E with the first function
J in Lipy(E). In the case k = 0 we set D°(E) = Lip,(E).



If X is a vector space and T': X — R, we say that T is subadditive if |T(z+y)| <
|T(x)| + |T(y)| whenever z, y € X and we say that T is positively 1-homogeneous
if |T(tx)| =t|T(x)| whenever x € X and ¢t > 0.

Definition 2.2 (Metric functionals) We call k-dimensional metric functional
any function T : D*(E) — R such that

(fimy, .o oyme) = T(f, w1, ., k)

is subadditive and positively 1-homogeneous with respect to f € Lip,(F) and 7wy, ..., 7 €
Lip(E). We denote by M Fi,(E) the vector space of k-dimensional metric function-
als.

We can now define an “exterior differential”
dw=d(f,my, ... me) = (1, fyme, ..., Tk)
mapping D*(E) into D*+1(E) and, for ¢ € Lip(E, F), a pull back operator

go#w:go#(f,m,...,ﬂk):(fogo,ﬂ'logo,...,ﬂ'kogo)

mapping D*(F) on D*(E). These operations induce in a natural way a boundary
operator and a push forward map for metric functionals.

Definition 2.3 (Boundary) Let k > 1 be an integer and let T € M F(E). The
boundary of T, denoted by OT', is the (k — 1)-dimensional metric functional in E
defined by 0T (w) = T(dw) for any w € DF~1(E).

Definition 2.4 (Push-forward) Let ¢ : E — I be a Lipschitz map and let T' €
MFy(E). Then, we can define a k-dimensional metric functional in F, denoted by
ouT, setting puT(w) = T(¢*w) for any w € DF(F).

We notice that, by construction, ¢ commutes with the boundary operator, i.e.

e (0T) = 0(pxT) . (2.1)

Definition 2.5 (Restriction) Let T € MF,(E) and let w = (9,71,...,Tm) €
DM™(E), withm <k (w=yg ifm=0) We define a (k — m)-dimensional metric
functional in E, denoted by TLw, setting

TLw(f,m, . oy Thoem) = T(fg, Ty o Ty Ty e ey Thimm) -

Definition 2.6 (Mass) Let T € M F,(E); we say that T has finite mass if there
erists p € M(FE) such that

k
10715000700 < T i [E fldp (2.2)

for any (f,m1,...,m) € D¥(E), with the convention [, Lip(m;) =1 if k = 0.
The minimal measure p satisfying (2.2) will be called mass of T and will be
denoted by ||T].

The mass is well defined because one can easily check, using the subadditivity
of T with respect to the first variable, that if {y;}icr C M(E) satisfy (2.3) also
their infimum satisfies the same condition. By the density of Lip,(E) in L*(E, ||T]|),
which contains B (E), any T' € M Fj,(E) with finite mass can be uniquely extended



to a function on B°°(E) x [Lip(F)]*, still subadditive and positively 1-homogeneous
in all variables and satisfying

k
(77wl < [ 1ivte) [E 1T (2.3)

for any f € B®(F), m1,...,m € Lip(F). Since this extension is unique we will not
introduce a distinguished notation for it.

Functionals with finite mass are well behaved under the push-forward map: in
fact, if T' € M Fy(E) the functional ¢xT has finite mass, satisfying

ez T < [Lin(@)] eI T] - (2.4)

If either ¢ is an isometry or k& = 0 it is easy to check, using (2.6) below, that equality
holds in (2.4). Tt is also easy to check that the identity

@#T(faﬂ-la"'aﬂ-k):T(fogpaﬂ-losoa"'aﬂ-kogp)

remain true if f € B (F) and m; € Lip(E).
Functionals with finite mass are also well behaved with respect to the restriction
operator: in fact, the definition of mass easily implies

||TLwl|| < sup |g|HLip(Ti)||T|| with w=1(g,T1,...,Tm) - (2.5)
i=1

For metric functionals with finite mass, the restriction operator 7w can be defined
even thoughw = (¢, 71, ..., 7)) with g € B®(E), and still (2.5) holds; the restriction
will be denoted by T'L_ A in the special case m = 0 and g = xa4.

Proposition 2.7 (Characterization of mass) Let T' € MF,(E). Then T has
finite mass if and only if

(a) there exists a constant M € [0, 00) such that
Z |T(fia7rlia .- ~a772)| < M
i=0

whenever Y, | fi| <1 and Lip(7}) < 1;

(b) f = T(f,m1,...,m) is continuous along equibounded monotone sequences,
i.e. sequences (fy) such that (fr(x)) is monotone for any x € E and

sup {|fa(2z)|: € E, he N} <o .

If these conditions hold, ||T||(E) is the least constant satisfying (a) and ||T|[(B) is
representable for any B € B(FE) by

sup{Z|T(XB,,7Ti,...,7T2)|} , (2.6)

i=0

where the supremum runs among all Borel partitions (B;) of B and all k-ples of
L-Lipschitz maps ;.

10



PRrROOF. The necessity of conditions (a) and (b) follows by the standard properties
of integrals. If conditions (a) and (b) hold, for given 1-Lipschitz maps my, ..., 7 :
E—= R, weset = (m,...,m) and define

/’LW(A) = SUp{|T(f,7T1,...,7Tk)| : |f| S XA}

for any open set A C F (with the convention p(#) = 0). We claim that
Hr(A) < Z/JW(AZ') whenever AC U A; . (2.7)
i=1 i=1

Indeed, set ¥ (z) = min {1, Ndist(z, E\ 4;)} and define

Notice that 0 < gy < 1, gn is nondecreasing with respect to N and gy 1 1 for any
z € U; A;. Hence, for any f € Lip,(F) with |f| < x4 condition (b) gives

N %]
|T(fa7r1a"'a7rk)| = J\;I—I};o |T(ng0£v,ﬂ'1,...’ﬂ'k)| S Z_;/'Lﬂ'(Az) .

i=1

Since f is arbitrary, this proves (2.7).
We can canonically extend p to B(E) setting

pr(B) = inf{iﬂﬂ(fli) cAC D AZ} VB e B(E)

and 1t is easily checked that p, is countably subadditive and additive on distant
sets. Therefore, Carathéodory criterion (see for instance [23], 2.3.2(9)) gives that
Hr € M(FE). We now check that

(110wl < [ 17 Vf € Lipy(E) . (2.8)

Indeed, assuming with no loss of generality that f > 0, we set f; = min{f,¢} and
notice that the subadditivity of T" and the definition of u, give

NT(fsmy, )| = [T (e my, )l S pe({F > W) (s = 8) Vs >0

In particular, ¢ — |T(fs, m1,...,m)| is a Lipschitz function, whose modulus of
derivative can be estimated with ¢(t) = pr({f > t}) at any continuity point of ¢.
By integration with respect to ¢ we get

|T(f 71, .. )] = /0 %|T(ft,7rl,...,7rk)|dt§/0 e ({f > t}) dt

[Efduﬂ |

By the homogeneity condition imposed on metric functionals, (2.8) implies that
the measure p* = \/_ pr satisfies condition (2.2). Since obviously

W (E) = Sup{Zﬂw(fi) Y I <, Lip(e}) < 1}
i=0 i=0
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we obtain that p*(E) < M, and this proves that ||T||(F) < M, i.e. that ||T||(®) is
the least constant satisfying (a).

It is easy to check that the set function 7 defined in (2.6) is less than any other
measure ;¢ satisfying (2.2). On the other hand, a direct verification shows that
is finitely additive, and the inequality 7 < p* implies the o-additivity of 7 as well.
The inequality

[T(xg,71,...,7)| < 7(B) VB € B(E), m; € Lip,(F)

gives pr < 7, whence p* < 7 and also 7 satisfies (2.2). This proves that 7 is the
least measure satisfying (2.2). [

Definition 2.8 (Support) Let yp € M(E); the support of u, denoted by spt p, is
the closed set of all points x € E satisfying

u(By(z)) >0 Yo>0 .
If I € MFy(E) has finite mass we set spt T := spt ||T].

The measure p is clearly supported on spt p if E is separable; more generally,
this is true provided the cardinality of E is an Ulam number, see [23], 2.1.6. If
B is a Borel set, we also say that T is concentrated on B if the measure ||T| is
concentrated on B.

In order to deal at the same time with separable and non separable spaces, we
will assume in the following that the cardinality of any set E i1s an Ulam number;
this 1s consistent with the standard ZFC set theory. Under this assumption, we can
use the following well known result, whose proof is included for completeness.

Lemma 2.9 Any measure p € M(FE) is concentrated on a o-compact set.

PrOOF. We first prove that .S = spt u is separable. If this is not true we can find by
Zorn’s maximal principle € > 0 and an uncountable set A C S such that d(z,y) > ¢
for any z, y € A with z # y; since A is uncountable we can also find 6 > 0 and an
infinite set B C A such that y (Bg/z(x)) > § for any # € B. As the family of open
balls {B2(x)}sep is disjoint, this gives a contradiction.

Let (2z,) C S be a dense sequence and define Ly 5 := UZ:O Biyk(xn), for k> 1
and h > 0 integers. Given € > 0 and k > 1, since p is supported on S we can find
an integer h = h(k,¢) such that u(Lg ) > p(E) —/2%. Tt is easy to check that

[\7 = ﬂ Lk,h(k,a)
k=1

is compact and p(E\ K) < e. ]

We point out, however, that Lemma 2.9 does not play an essential role in the
paper: we could have as well developed the theory making in Definition 2.6 the
apriori assumption that the mass ||T| of any metric functional 7" is concentrated
on a o-compact set (this assumption plays a role in Lemma 5.3, Theorem 5.6 and
Theorem 4.3).

3 Currents

In this section we introduce a particular class of metric functionals with finite mass,
characterized by three independent axioms of linearity, continuity and locality. We
conjecture that in the euclidean case these axioms characterize, for metric func-
tionals with compact support, the flat currents with finite mass in the sense of
Federer—Fleming; this problem, which is not relevant for the development of our
theory, is discussed in Appendix A.

12



Definition 3.1 (Currents) Let k > 0 be an integer. The vector space My (E) of
k-dimensional currents in E 1s the set of all k-dimensional metric functionals with
finite mass satisfying:

(i) T is multilinear in (f,m1,...,7);

(i) limyy oo T(f, 78, ... 7)) = T(f, 71, ..., %) whenever 71'§» — m; poinlwise in B
with Lip(ﬂ';») < C for some constant C;

(iii) T(f,m1,...,m) = 0 if for some i € {1,..., k} the function m; is constant on
a neighbourhood of {f # 0}.

The independence of the three axioms is shown by the following three metric
functionals with finite mass:

Ti(f ™) = ‘ | et dt‘  Blmom)= [ GRS dnay

Ts(f, ) ::Af(t)(w(tﬂ)_ﬂ(t))e—” dt .

In fact, T3 fails to be linear in m, 75 fails to be continuous (continuity fails at
m1(x,y) = ma(x, y) = x4y, see the proof of the alternating property in Theorem 3.5)
and T35 fails to be local.

In the following we will use the expressive notation

w=fdr=fdm N...ANdmg

for the elements of D*(E); since we will mostly deal with currents in the following,
this notation is justified by the fact that any current is alternating in (m,..., 7%)
(see (3.2) below).

An important example of current in euclidean spaces 1s the following.

Example 3.2 Any function g € L'(R¥) induces a top dimensional current [¢] €
My, (R¥) defined by

IIg]](fdﬂ-l A /\dﬂ'k) ::/

gfdﬂ'l/\.../\dﬂ'k:/
RE

gfdet(Vr)da
Rk~

for any f € B®(RX), 71,...,m € Lip(R*). The definition is well posed because
of Rademacher theorem, which gives £*-almost everywhere a meaning to Vr. The
metric functional [¢] is continuous by the well known w*-continuity properties of
determinants in the Sobolev space W1 (see for instance [16]), hence [¢] is a
current. It is not hard to prove that ||[¢]|| = |g|L*.

In the case £ = 2 the previous example is optimal, in the sense that a functional
T(f, m,ms) = / fdet(Vm) dp
R2

defined for f € B> (R?) and mp, m2 € WH°(R?) N C1(R?) satisfies the continuity
property only if u is absolutely continuous with respect to £2. This is a consequence
of the following result, recently proved by D. Preiss in [54]. The validity of the
analogus result in dimension higher than 2 is still an open problem.

Theorem 3.3 (Preiss) Let p € M(R?) and assume that p is not absolutely con-
tinuous with respect to L?. Then there exists a sequence of continuously differen-
tiable functions g, € Lip,(R?,R?) converging pointwise to the identity and such
that

lim det(Vgn) dp < p(R?) .

h— o0 R2
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Notice that the one dimensional version of Preiss theorem is easy to obtain:
assuming with no loss of generality that y is singular with respect to £!, it suffices
to define

grn(t) =t — L' (AN (=00, 1)) Vie R

where (Ap) is a sequence of open sets such that £'(A,) — 0, containing a £!-
negligible set on which p is concentrated.

It is easy to check that My (F), endowed with the norm M(T) := ||T|(E)
is a Banach space. Notice also that the push forward map 7" +— @47 and the
restriction operator T+ TLw (for w € D*(E)), defined on the larger class of
metric functionals, map currents into currents. As regards the boundary operator,
we can give the following definition.

Definition 3.4 (Normal currents) Let k > 1 be an integer. We say that T €
My, (E) is a normal current if also 0T is a current, i.e. 9T € My_1(F). The class
of normal currents in E will be denoted by Ny (E).

Notice that 97T is always a metric functional satisfying conditions (i), (ii) above;
concerning condition (iii) it can be proved using the stronger locality property stated
in Theorem 3.5 below. Hence T is normal if and only if 7" has finite mass. It is
not hard to see that also Ny (F), endowed with the norm

N(T) = |TI(E) +[|9T(E)

is a Banach space.

Now we examine the properties of the canonical extension of a current to B (FE)x
[Lip(E)]*, proving also that the action of a current on D*(E) satisfies the natural
chain and product rules for derivatives. An additional consequence of our axioms
is the alternating property in mq, ..., 7.

Theorem 3.5 The extension of any T € My (E) to B> (E) x [Lip(E)]* satisfies
the following properties:

(i) (product and chain rules) T is multilinear in (f,m1,..., ) and
T(fdm A Adrg)+T(mpdf Ao Admg) =T d(fr) AL A drg) (3.1)
whenever f, m € Lip,(E) and
T(fdpr(m) Ao AdYg(m)) = T(fdetV(m)dmy A ... Admy) (3.2)
whenever ¥ = (Y1, ..., vx) € [CHRF)]* and Vi is bounded;

(ii) (continuity) o '
il_i}r&T(fZ,ﬂll,...,ﬂz) =T(f,m1,...,Tk)
whenever f' — f — 0 in LYE,|[T]|) and 71'§» — 7 pointwise in B, with
Lip(ﬂ';») < C for some constant C;

(iii) (locality) T(f,m1,...,mx) = 0 if {f # 0} = U;B; with B; € B(F) and m;

constant on B;.

ProoF. We prove locality first. Possibly replacing f by fxp, we can assume that m;
is constant on {f # 0} for some fixed integer ¢. Assuming with no loss of generality
that m; = 0 on B; and Lip(n;) < 1, let us assume by contradiction the existence of
C C {f # 0} closed and ¢ > 0 such that |T(x¢ dr)| > €, and let § > 0 such that
|| T|(Cs \ C) < ¢, where Cs is the open d-neighbourhood of C'. We set

ge(x) == max{O, 1- %dist(r, C’)} , cr(x) = sign(z) max{0, |x| — t}
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and using the finiteness of mass and the continuity axiom we find 5 € (0,6) such
that |T'(gs, dw)| > ¢ and ¢4 € (0,ty) such that |T'(gs, d7)| > ¢, with @; = 7; for
Jj#iand T; = ¢y om;. Since 7 is 0 on Cy, and spt gy, C Ct, /2 the locality axiom
(iii) on currents gives T'(g¢, d@) = 0. On the other hand, since Lip(7;) < 1 we get

T (g1, — g0,) dF)] < [E gt0 — g0, | IIT]) < ITN(Coo \ C) <

This proves that |T'(g:, d7)| < £ and gives a contradiction.

The continuity property (ii) easily follows by the definition of mass and the
continuity axiom (ii) in Definition 3.1.

Using locality and multilinearity we can easily obtain that

T(fdmy Admi—y Ad(m) Ao Admg) = T(fY (7)) dmy AL A drg) (3.3)

whenever i € {1,...,k} and ¢ € Lip(R)NCY(R); in fact, the proof can be achieved
first for affine functions ), then for piecewise affine functions ¥ and then for Lips-
chitz and continuously differentiable functions ¢ (see also the proof of (3.2), given
below).

Now we prove that 7' is alternating in 7y, ..., 7mg; to this aim, it suffices to show
that 1" vanishes if two functions ; are equal. Assume, to fix the ideas, that m; = 7;
with i < j and set 7 = m if [ ¢ {i,j} and

1 1 1
ﬂf = Egp(k’ﬂ'i) , 71'? = Egp(k’ﬂ'j + 5)
where ¢ is a smooth function in R such that ¢(t) = ¢ on Z, ¢’ > 0 is 1-periodic and
¢’ = 0in [0,1/2]. The functions 7* uniformly converge to 7, have equi-bounded
Lipschitz constants and since

l)EO

@ (kmi)e' (kmy + 5

3) = ¢ (ki)' (km; +
from (3.3) we obtain that T(fdn*) = 0. Then the continuity property gives
T(fdr) = 0.

We now prove (3.2). By the axiom (i) and the alternating property just proved,
the property 1s true if ¥ 1s a linear function; if all components of 4 are affine on

a common triangulation 7 of R*, representing R* as a disjoint union of (Borel)
k-simplices A and using the locality property (iii) we find

T(fdpr(m) A ANdie(r)) = D TLr™ (A)(fdir(m) A Adiy(r))

AET
= > TLa ' (A)(fdetVi|a(m)dmy A ... Admy)
AET
= T(f > detV|a(m)xe-1(aydm A.. Adm) .
AET

In the general case the proof follows by the continuity property, using piecewise
affine approximations ¢, strongly converging in VVIOC (R*, R¥) to ¥.

Finally, we prove (3.1); possibly replacing T' by TLw with w = dma A ... Admy
we can also assume that k = 1. Setting S = (f, m1)zT € M;(R?), the identity
reduces to

S(g1dg2) + S(g2 dg1) = S (1d(g192)) (3.4)

where g; € Lip,(R?) are smooth and ¢;(z,y) = = and g2(z,y) = y in a square
QD (f,m)(F) DsptS. Let ¢ = g1g2 and let up be obtained by linear interpolation
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of g on a family of regular triangulations 75 of @ (i.e. such that the smallest angle
in the triangulations is uniformly bounded from below). Tt can be proved (see for
instance [15]) that (uj) strongly converges to g in W1 °°(Q) as h — oo, hence we
can represent uy(x,y) on each A € Ty as ahAa: + bhAy + ¢, with

lim sup sup [g2— ClhA| + |91 — bhA| =0.
h—00 AeT;, (z,y)EA

Using the continuity, the locality and the finiteness of mass of .S we conclude

S(ldg) = lim S(1duy) = lim Y SLA(az de) + SLA(b; dy)
h—o00 h—co
AET,
= lim Z SLA(g2dg1) + SLA(g1 dg2) = S(g2dg1) + S(g1 dga) -
- AET,
O
A simple consequence of (3.1) is the identity

orLy =@nkf-1Ldf (3.5)

for any f € Lip,(F). If particular, TL f is normal whenever T' is normal and
J € Lip,(E).

The strengthened locality property stated in Theorem 3.5 has several conse-
quences: first

T(fdr)=T(f'") whenever f=f, n=xn"onsptT (3.6)

and this property can be used to define T € My (F) even if ¢ € Lip(spt T, F); in
fact, we set R
T (f,m,...,m) =T(f,T1,...,7%)

where f € Lip,(E) and 7; € Lip(E) are extensions to F, with the same Lipschitz
constant, of f o ¢ and m; o ¢. The definition is well posed thanks to (3.6), and
still (2.1) and (2.4) hold. The second consequence of the locality property and
of the strengthened continuity property is that the (extended) restriction operator
T — TL fdrA.. .Ad7y maps k-currents into (k—m)-currents whenever f € B (F)
and 7; € Lip(F).

Definition 3.6 (Weak convergence of currents) We say that a sequence (Ty,) C
My, (E) weakly converges to T € My (E) if Ty pointwise converge to T as metric
functionals, i.e.

hlim Ty (fdm)=T(f dm) Vf € Lipy(F), m € Lip(E), i=1,...,k .
—00

The mapping 7' — ||T||(A) is lower semicontinuous with respect to the weak
convergence for any open set A C E, because Proposition 2.7 (applied to the re-
strictions to A) easily gives

1T][(A) :SUP{Z|T(fi dr') - D1l < xa, S}})Lip(ﬂﬁ) < 1} . (3T

1=0 =0

Notice also that the existence of the pointwise limit for a sequence (Tj) C Mg (FE)
is not enough to guarantee the existence of a limit current 7" and hence the weak
convergence to T'. In fact, suitable equi-continuity assumptions are needed to ensure
that condition (ii) in Definition 3.1 and condition (b) in Proposition 2.7 hold in the
limit.

The following theorem provides a simple characterization of normal k-dimensional
currents in R”.
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Theorem 3.7 (Normal currents in R*) For any T € Ng(R*) there erists a
unique g € BV (RX) such that T = [g]. Moreover, ||0T|| = |Dg|, where Dg is the
derivative in the sense of distributions of g and |Dg| denotes its total variation.

ProoF. Let now T € Ng(R*). We recall that any measure p with finite total
variation in R* whose partial derivatives in the sense of distributions are (repre-
sentable by) measures with finite total variation in R* is induced by a function
g € BV(RF). In fact, setting f. = p* p. € C°°(R¥), this family is bounded in
BV (RFX) and Rellich theorem for BV functions (see for instance [30]) provides a
sequence (f.,) converging in Li (R¥) to ¢ € BV (RF), with ¢; — 0. Since f.L*
weakly converge to p as ¢ | 0 we conclude that u = g£F.
Setting
u(f) =T (fdey Ao Adayg) feB>RF

we first prove that all directional derivatives of u are representable by measures.
This is a simple consequence of (3.2) and of the fact that 7" is normal: indeed, for
any orthonormal basis (ey, ..., ex) of R*¥ we have

‘ Jd¢ Jd¢

Rk 862' 86i

dp‘ = |T(ZZdm AL Admg)| = |T(1d A diy)|

or@ar) < [ 1elleT)

for any ¢ € C>°(R¥), where m; are the projections on the lines spanned by e; and
di; =dm A .. . Admi_y Admigq A ... Admg. This implies that | Dy | < ||0T|| for any
unit vector v, whence p = g£* for some g € L*(R*) and |Dy| < ||87|.

By (3.2) we get

T(fdﬂ'l/\.../\dﬂ'k)z/ gfdet(Vr) dw

R
for any f € B*(RX) and any 7 € C'(R*,R*) with V7 bounded. Using the
continuity property, a smoothing argument proves that the equality holds for all

w = fdr € D*(R¥), hence T = [g].
Finally, we prove that

k-1

o7 dm A Adm)| < ] Lintm) [ 17141y (3.9

i=1 R

which implies that ||0T|| < |Dg|. By a simple smoothing and approximation argu-
ment we can assume that f and all functions m; are smooth and that f has bounded
support; denoting by H, the k x k matrix having Dg/|Dg| and V7y,..., Vrg_1 as
rows we have

6T(fdﬂ'1/\.../\dﬂ'k_1):/ gdf Admy N\ .. . Adrp_q
k

R
k k
X or ; D;g or
= —-1) det dD;qg = —-1) det d|D
2 )/kae <8x) 1= 20 g (8x) Dol
i=1 i=1
= —/ fdet(Hyz) d|Dyg|
RF~
whence (3.8) follows using the Hadamard inequality. ]
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The previous representation result can be easily extended to those k-dimensional
currents in R¥ whose mass is absolutely continuous with respect to £*. Except for
k = 1,2, we don’t know whether all currents in My (R") satisfy this absolute
continuity property. As the proof of Theorem 3.8 below shows, the validity of this
statement is related to the extension of Preiss theorem to any number of dimensions.

Theorem 3.8 A current T € My (R¥) is representable as [g] for some g € L' (RF)
if and only if ||T|| << L*. For k =1, 2 the mass of any T € My (RF¥) is absolutely
continuous with respect to L.

ProoF. The first part of the statement can be obtained from (3.2) arguing as in
the final part of the proof of Theorem 3.7. In order to prove the absolute continuity
property, let us assume that & = 2. Let

u(B) :=T(xp dry Adrs) B € B(R?)

and let pL A+ pL(R?\ A) be the Hahn decomposition of p. Since T is continuous,
by applying Theorem 3.3 to the measures ulL A and —pL(R?\ A) and using (3.2)
we obtain that p << £2 hence pu = g£? for some g € L'(R?). In the case k = 1
the proof is analogous, by the remarks following Theorem 3.3. ]

In the following theorem we prove, by a simple projection argument, the absolute
continuity property of normal currents in any metric space F.

Theorem 3.9 (Absolute continuity) Let T € Ny (E) and let N € B(R") be
LF-negligible. Then

1T Ldr| (==*(N)) =0 Vr € Lip(E,R¥) . (3.9)
Moreover, ||T|| vanishes on Borel H* -negligible subsets of E.
PrOOF. Let L = 771(N) and f € Lip,(F); since

(TLdm)(fxr) =TL(fdr)(xr) = m(TLf)(xn dzi A ... Aday)

and 74 (TL f) € Ng(R"), from Theorem 3.7 we conclude that TLdr(fxz) = 0.
Since f is arbitrary we obtain ||T'L||(L) = 0.

If L € B(E) is any H*-negligible set and = € Lip(E, R¥), taking into account
that m(L) (being H*-negligible) is contained in a Lebesgue negligible Borel set N
we obtain ||TLdr|[(L) < ||TLdn| (#=*(N)) = 0. ;From (2.6) we conclude that
ITII(L) = 0. [

4 Rectifiable currents

In this section we define the class of rectifiable currents. We first give an intrinsic
definition and then, as in the classical theory, we compare it with a parametric one
adopted, with minor variants, in [20].

We say that a #*-measurable set S C E is countably H* -rectifiable if there exist
sets A; C R¥ and Lipschitz functions f; : A; — E such that

HF (S\ U fi(Ai)) =0. (4.1)

It is not hard to prove that any countably H*-rectifiable set is separable; by the
completeness assumption on F the sets A; can be required to be closed, or compact.
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Lemma 4.1 Let S C E be countably H*-rectifiable. Then there erist finitely or
countably many compact sets K; C R* and bi-Lipschitz maps f; : K; — S such that
fi(K;) are pairwise disjoint and H* (S\ U;fi(K;)) = 0.

ProOF. By Lemma 4 of [38] we can find compact sets K; C R and bi-Lipschitz
maps f; : K; — E such that S C U; f;(K;), up to H*-negligible sets. Then, setting
Bo = [\70 and

B =K\ [ Snlfi5K;) | € BRY) Vi>1
Jj<i

we represent H*-almost all of S as the disjoint union of f;(B;). For any i € N,
representing £*-almost all of B; by a disjoint union of compact sets the proof is

achieved. O]

Definition 4.2 (Rectifiable currents) Let k > 1 integer and T € My (E); we
say that T is rectifiable if

a 1s concentrated on a countably -rectifiable set;
T e d bly H* fiabl

(b) ||T|| vanishes on H*-negligible Borel sets.

We say that a rectifiable current T is integer rectifiable if for any ¢ € Lip(E, R¥)
and any open set A C E we have pu(TL A) = [0] for some 0 € L' (R*,Z).

The collections of rectifiable and integer rectifiable currents will be respectively de-
noted by Ry (E) and Iy (E). The space of integral currents I, (E) is defined by

Ik(E) = Ik(E) N Nk(E) .

We have proved in the previous section that condition (b) holds if either & =1, 2
or T is normal. We will also prove in Theorem 8.8(i) that condition (a) can be
weakened by requiring that 7" is concentrated on a Borel set o-finite with respect
to H"~! and that, for normal currents 7', the integer rectifiability of all projections
px(TL A) implies the integer rectifiability of T

In the case k = 0 the definition above can be easily extended by requiring the
existence of countably many points xp € F and 6, € R (or 6, € Z, in the integer
case), such that

T(f) = 0nf(wn) V€ B (E) .

It follows directly from the definition that Ry (F) and Zy(F) are Banach subspaces

We will also use the following rectifiability criteria, based on Lipschitz pro-
jections, for O-dimensional currents; the result will be extended to k-dimensional
currents in Theorem 8.8.

Theorem 4.3 Let S € My(FE). Then
(i) S €Ty(E) if and only if S(xa) € Z for any open set A C E;
(ii) S € Iy(E) if and only if xS € Io(R) for any ¢ € Lip(E).

(iii) If E =RN for some N, then S € Ro(E) if and only if o5 € Ro(R) for any
¢ € Lip(E).
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ProoF. (i) If S(xa) is integer for any open set A, we set
S = {ee B |SIBy@) > 1 Yp>0)

and notice that ¥ is finite and that, by a continuity argument, SLY € Iy(E). If
z ¢ ¥ we can find a ball B centered at x such that ||S||(B) < 1; as S(xa) is an
integer for any open set A C B, it follows that S(x4) = 0, hence ||S||(B) = 0. A
covering argument proves that ||S||(K) = 0 for any compact set K C F\ ¥, and
Lemma 2.9 implies that S is supported on X.

(ii) Let A C E be an open set and let ¢ be the distance function from the
complement of A. Since

S(xa) = e#5(X(0,00)) €Z

the statement follows from (i).
(iii) The statement follows by Lemma 4.4 below. ]

Lemma 4.4 Let pu be a signed measure in RY. Set @ = QY x (Q N (0, oo))N and
consider the countable family of lipschitz maps

— g — N
fer(y) = IZ,I%%AZI% vil yERT
where (x,A) runs through Q.
Then p € Ro(RY) if and only if fy gyt € Ro(R) for all (z,)) € Q.

ProoF. We can assume with no loss of generality that g has no atom and denote
by || - ||eo the loo norm in RY. Assume p to be a counterexample to our conclusion
and let K < N be the smallest dimension of a coordinate parallel subspace of RY
charged by |u|, i.e. K is the smallest integer such that there are exist z” € R,
Ic{l,...,N} with cardinality N — K such that |u| (P;(z°)) > 0, where

Pj(xo) = {x € x; =« for any i € I} .

Since p has no atom, K > 0. Replacing p by —p if necessary, we find € > 0 and
! € QY such that

u(M) > 3¢ where M := Pj(xo)ﬂ{y: ||y—a:1||oo<1} :
Next we choose k sufficiently large such that
(M) <e  with M :={yeR" : diste(y, M) € (0,2/k)}

Modifying ' only in the i-th coordinates for ¢ € I we can, without changing M, in
addition assume that |(z° — z1);| < 1/k for all i € I. We define A € (Q N (0, 0))V
by A; = kif i € I and A; = 1 otherwise. Observe that

Mc R (0,1)cMUM .

Let T" be the countable set on which i = fy1 xzp is concentrated. Due to our
minimal choice of K we have |u| (M N f;i(s)) = 0 for any s € R, hence our choice

of M gives
(£ (T 0 [0,1))) < [pl(Fl\ ([0, 1)\ M) <«
and we obtain that |f|([0,1)) < €. On the other hand,

A(00.1]) = o (F25(00,1))) > (M) = |l (8) > 2 .

This contradiction finishes our proof. O
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It is also possible to show that this kind of statement fails in any infinite di-
mensional situation, for instance when E is L2?. In fact, it could be proved that
given any sequence of lipschitz functions on a Hilbert space, we can always find a
continuous probability measure on it whose images under all these maps are purely
atomic.

Now we show that rectifiable currents have a parametric representation, as sums
of images of rectifiable euclidean currents (see also [20]).

Theorem 4.5 (Parametric representation) LetT € My(FE). Then, T € Ri(E)
(resp. T € Ip(F)) if and only if there exist a sequence of compact set K;, func-
tions 0; € LY(R*) (resp. 0; € LY(R*,Z)) with supp §; C K; and bi-Lipschitz maps
fi + K; = E such that

T = Zfz# [[92]] and Z M(fz# [[92]]) = M(T) .

Moreover, if E is a Banach space, T can be approrimated tn mass by a sequence of
normal currents.

ProOOF. One implication is trivial, since f;x[0;] is rectifiable, being concentrated
on fi(K;) (the absolute continuity property (b) is a consequence of the fact that
7t fi(Ki) — K; is a Lipschitz function) and R (F) is a Banach space. For the
integer case, we notice that T; = f;x[6;] is integer rectifiable if §; takes integer
values, because for any ¢ € Lip(E, R*) and any open set A C E, setting h = po f;
K; — RF and A’ = f71(A), we have
pu(TiLA) = hy([BILAY = Y 6i(e)sign (detVh(z))]
z€h~L(y)nA’

as a simple consequence of euclidean the area formula.

Conversely, let us assume that 7 is rectifiable, let S be a countably H*-rectifiable
set on which ||T]| is concentrated and let K;, fi be given by Lemma 4.1. Let
gi = fi_1 € Lip(S;, K;), with S; = fi(K;), and set R; = g;(TLS;); since ||R;l|
vanishes on H*-negligible sets, by Theorem 3.7 there exists an integrable function
0; vanishing out of K; such that R; = [#;], with integer values if T € Z;(E). Since
fi ogi(x) = 2 on S;, the locality property (3.6) of currents implies

TLS; = (fiogi)p(TLS;) = figRi = fixlb:] -

Adding with respect to i the desired representation of T' follows. Finally, if E is a
Banach space we can assume (see [37]) that f; are Lipschitz functions defined on
the whole of R* and, by a rescaling argument, that Lip(f;) < 1; for ¢ > 0 given,
we can choose 0 € BV (RF) such that [, [0; — 0| de < £27% to obtain that the

normal current T' = 3, fix[0/] satisfies M(T — T) < e. U

The following theorem provides a canonical (and minimal) set Sy on which a
rectifiable current 7' is concentrated.

Theorem 4.6 Let T € Ry(FE) and set
Sr={x e E: 04(|T|,x) >0} . (4.2)

Then St is countably H* -rectifiable and ||T|| is concentrated on St; moreover, any
Borel set S on which ||T|| is concentrated contains St, up to H* -negligible sets.
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PrROOF. Let S be a countably H*-rectifiable set on which |[T]| is concentrated; by
the Radon—Nikodym theorem we can find a nonnegative function § € L!(H*L.5S)
such that ||T]| = ¢#*L.S. By Theorem 5.4 of [7] we obtain that O (||T|, z) = 8(=)
for H*-a.e. x € S, while (1.3) gives O (||T]|,2) = 0 for H*-a.e. # € £\ S. This
proves that Sp = SN{f > 0}, up to H*-negligible sets, and since ||T'|| is concentrated
on SN {@ > 0} the proof is achieved. U

Definition 4.7 (Size of a rectifiable current) The size of T € Ry(E) is de-
fined by
S(T) := H"(St)

where St 1s the set described in Theorem 4.6.

5 Normal currents

In this section we study more closely the class of normal currents; together with
rectifiable currents, this is one of the main objects of our investigation, in connexion
with the isoperimetric inequalities and the general Plateau problem. We start with
a useful equi-continuity property which leads, under suitable compactness assump-
tions on the supports, to a compactness theorem in Ny (F).

Proposition 5.1 (Equi-continuity of normal currents) LetT € Ny (FE). Then
the following estimate

k
T(fdrm) = T(fdr' Z’—'»d@T Li Z'—/»dT 5.1
IT(f dn) wwnsz;émw mIHIHIMﬁAMM = d(T] (5.1)

holds whenever f, m;, m € Lip(F) and Lip(m;) < 1, Lip(n}) < 1.

PRrROOF. Assume first that f, m; and 7} are bounded. We set dmg = dma A ... Admy
and, using the definition of 97", we find

T(f dmy Admg) — T(f dmiy A dmg)

T(1d(fm) Admo) — T(1d(fm)) Admg) — T(my df Admo) + T(m) df A dmo)
OT(fmy dmo) — OT(fm) dmo) — T(m1 df Admo) + T(7) df Admo)

hence using the locality property |T(f dmi Admg) — T(f dmy Admg)| can be esti-
mated with

/me—WHWMW+MMﬁ/’|m—wumﬂ«
E spt f

Repeating & — 1 more times this argument the proof is achieved. In the general
case the inequality (5.1) is achieved by a truncation argument, using the continuity
axiom. O

Theorem 5.2 (Compactness) Let (T,) C Ny (F) be a bounded sequence and as-
sume that for any integer p > 1 there exists a compact set K, C E such that

1
| Th|[(E\ Kyp) + ||0T3][(£\ Kp) < » VheN .

Then, there erists a subsequence (Thn)) converging to a current T € Ny (FE) satis-
fying

ITIEN U Kp) + 10T EN [ Ky) =0

p=1 p=1
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PrOOF. Possibly extracting a subsequence, we can assume the existence of measures
i, v € M(F) such that

i [ saitii= [ sau,  gim [ pajeri= [ s
h— o0 E E h— o0 E B

for any bounded continuous function f in E. Tt is also easy to see that (u+ v)(FE\
K,) <1/p, hence pi + v is concentrated on Up K.

STEP 1. We will first prove that (7,) has a pointwise converging subsequence
(Th(n)); to this aim, by a diagonal argument, we need only to show for any integer
q > 1 the existence of a subsequence (h(n)) such that

lim sup |Th(n)(f dﬂ') - Th(m) (f dﬂ')| <

n, m—00

=W

whenever fdr € D*(E) with |f| < ¢, Lip(f) < 1 and Lip(m;) < 1. To this aim, we
choose ¢ € Lip(E) with bounded support such that

sup N(T, — TpLyg) <
heN

(it suffices to take g : ' — [0, 1] with Lip(g) < 1 and g = 1 in K542), and prove
the existence of a subsequence h(n) such that T}, L g(f dm) converges whenever
fdr € D*(F) with Lip(f) < 1 and Lip(m;) < 1.

Endowing Z = Lip; (UpK,) with a separable metric inducing uniform conver-
gence on any compact set K,, we can find a countable dense set D C 7 and a
subsequence (h(n)) such that Ty, Lg(f dm) converge whenever f, my, ..., 7 be-
long to D. Now we claim that T}, (f dm) converge for f,71,...,mx € Lip,(#); in

fact, for any f,#1,...,7x € D we can use (5.1) to obtain
limsup [Ty n) (f d7) = Thnny (f d)| < 211m sup |Th(f dmr) — Th(fd%)|
n,n —>'OO

IA

hmsupz/ 11+ Dl = & AT Ll Tl + [ 17 = AT Ll

< Z/ |f|+1Im—mldu+/(|f|+1)lgllm—m|d1/+/If Fllgl dye -

Since f and 7; are arbitrary, this proves the convergence of Tj,(,) L g(f dr).

STEP 2. Since Tjn)(w) converge to T'(w) for any w € DHE), T satlsﬁes conditions
(1) and (iii) stated in Definition 3.1. Passing to the limit as n — oo in the definition
of mass we obtain that both T" and 9T have finite mass, and that ||T|| < g, ||0T|| <
v. In order to check the continuity property (ii) in Definition 3.1 we can assume, by
the finiteness of mass, that f has bounded support; under this assumption, passing
to the limit as A — oo in (5.1) we get

k
T(f dr) — T(f dn’ i — | du + Li i —ml|dv
(7(f dr) (fﬂ)IS;[EIfIIF ) dy + 1p<f>/ s — | o

spt f

whenever Lip(m;) < 1, Lip(w}) < 1. This estimate trivially implies the continuity
property. O

A simple consequence of the compactness theorem, of (3.5) and of (3.1) is the
following localization lemma; in (5.2) we estimate the extra boundary created by
the localization.
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Lemma 5.3 (Localization) Let ¢ € Lip(F) and let T € N (F). Then, TL{p >
t} € Ni(F) and

10(T e > )l{p =1} < %IITLdsDII({sD <7} (5.2)

7=t

for Ll-a.e. t € R. Moreover, if S is any o-compact set on which T and T are
concentrated, TL{p >t} and its boundary are concentrated on S for L'-a.e. t € R.

ProoF. Let p = ||T|| + ||0T], let (K,) be a sequence of pairwise disjoint compact
sets whose union covers p-almost all of £ and set

gty =pn({p <t} () = p(Kpyn{p <t} .

We denote by L the set of all ¢ € R such that ¢/'(t) = Zp g,(t) is finite and the

derivative in (5.2) exists; these conditions are fulfilled £!-almost everywhere in R,
hence L has full measure in R.

Let t € L, let g5 | 0 and set fr(s) = 0 for s <t, 1for s >t +ep, (s —1t)/cp
for s € [t,t + e3]; by (3.5) and the locality property we obtain that the currents
TL fr o o satisfy

ITLfrhop)=0TL fhop— Ry (5.3)

with Ry = e, 'TL X{t<pcttenyde. By (3.5) and locality again we get
1
3Rh = 3(3T|_fh [} gp) = —;8TLX{t<¢<t+ah}dg0 .

It is easy to see that our choice of ¢t implies that the sequence (Rp) satisfies the
assumptions of Theorem 5.2. Hence, possibly extracting a subsequence we can
assume that (Rp) converges as h — oo to some R € Ni_1(F) such that ||R|| and
||OR|| are concentrated on Up K.
Since 9T L fr () converge to dTL{p > t}, passing to the limit as h — oo in
(5.3) we obtain
T e >t})=0TL{p >t} - R,

hence ||O0(TL{y > t})||({e = t}) < M(R). Finally, the lower semicontinuity of
mass gives

d
M(R) < liminf M(Ry) < = | TLdg|({p < 7})
h—o00 dr

T=t
U

In the proof of the uniqueness part of the slicing theorem we need the following
technical lemma, which allows to represent the mass as a supremum of a countable
family of measures.

Lemma 5.4 Let S C E be a o-compact set. Then, there exists a countable set
D C Lipy (F) N Lipy(E) such that

|70 = \/{ITLdx| : m1,....,m € D} (5.4)
whenever T' is concentrated on S.

ProOF. Let X = Lip,(EF)NLip;(F) and let S = Up K}, with K, C E compact. The
proof of Proposition 2.7 and a truncation argument based on the continuity axiom
give

17l =\/ {ITLdx| : m,...,m € X} (5.5)

24



for any T' € My(FE). Let Dy C X be a countable set with the property that any
¢ € X can be approximated by a sequence ¢ C Dj, with sup|¢’| equi-bounded and
" uniformly converging to ¢ on Kj. Taking into account (5.5), the proof will be
achieved with D = U, Dy, if we show that

ITLdr||Liy <\/{ITLdgll: q1,...,q € Da}  VYm,....m €X . (5.6)

Let f € B (E) vanishing out of K} and let 71'§» € Dy converging as 1 — oo to m; as
above (i.e. uniformly on Kp with sup, |7T;| equi-bounded). Then, the functions

7?;(1‘) ‘= min ﬂé(y) +d(z,y) € Lip,(F)
yeKn
coincide with 71'§» on K and pointwise converge to @;(z) = ming, 7;(y) + d(z,y).
Using the locality property and the continuity axiom we get

T(f dm) = T(f d7) = lim T(f d7) = lim T(f dr') < [E |l dpa

where pyp is the right hand side in (5.6). Since f is arbitrary this proves (5.6). [J

In an analogous way we can prove the existence of a countable dense class of
open sets.

Lemma 5.5 Let S C E be a o-compact set. There exists a countable collection
A of open subsets of I with the following property: for any open set A C E there
erists a sequence (A;) C A such that

lim xa, =xa n L*(p) for any p € M(E) concentrated on S .

11— 00

PrOOF. Let S = Up K}, with Kj compact and increasing, let D be constructed as
in the previous lemma and let us define

A::{{w>%}: WED}

The characteristic function of any open set A C F can be approximated by an
increasing sequence (g;) C Lip(F), with g; > 0. For any ¢ > 1 we can find f; € D
such that |f; — g;| < 1/i on K;. By the dominated convergence theorem, the char-
acteristic functions of {f; > 1/2} converge in L () to the characteristic function
of A whenever pu is concentrated on S. O

The following slicing theorem plays a fundamental role in our paper; it allows
to represent the restriction of a k-dimensional normal current 7" as an integral of
(k — m)-dimensional ones. This is the basic ingredient in many proofs by induction
on the dimension of the current.

We denote by (T, 7, x) the sliced currents, 7 : £ — R™ being the slicing map,
and characterize them by the property

/ m(T, m ) (x)de = TL(¢p o) dm v € C.(RF) . (5.7)

We emphasize that the current valued map @ — (T, 7w, #) will be measurable in the
following weak sense: whenever g dr € D*~™(FE) the real valued map

e (T, m x)(gdr)

is L™-measurable in R™. This weak measurability property is necessary to give
a sense to (5.7) and suffices for our purposes. An analogous remark applies to
= (T, 7, ).
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Theorem 5.6 (Slicing theorem) Let T € N (F), let L be a o-compact set on
which T and 0T are concentrated and let m € Lip(E,R™), with m < k.

(i) There exist currents (T, m &) € Ng_m(F) such that

(T, 7,2) and O(T,m, x) are concentrated on L N7~ ' (x) (5.8)

/Rm |(T, m,2)|| de = ||T Ldr|| (5.9)

and (5.7) holds;

(ii) if L' is a o-compact set, T* € My_p(FE) are concentrated on L', satisfy (5.7)
and x — M(T?) is integrable on R, then T® = (T, w, ) for L™-a.e. * € R™;

(111) if m = 1, there exists a L'-negligible set N C R such that
(T,7,2) =limTL Me<n<vd gr — (T L{r > ¢} — O(T L{r > z})
ylo y—x

for any © € R\ N. Moreover M((T, 7, 2)) < Lip(m)M(TL{r < x})" for
L-a.e. x and

/_00 N{T, 7, 2)) de < Lip(m)N(T) . (5.10)

ProoF. STEP 1. In the case m = 1 we take statement (iii) as a definition. The
proof of the localization lemma shows that

Sy = (0T L {r > 2} —0(TL{r > z}) = lim

TLx{screpndm 5.11
Ve y— X{e<n<y} ( )

for L1-a.e. z, hence spt S, C L N7~ !(x) and

M(S; Lw) < %H(TLCZ?T)LWH({?T >1}) for Ll-ae. z €R

t=x

whenever w € DP(E), 0 < p < k — 1. By integrating with respect to « we obtain
/ M(S,;Lw)de <M ((TLdr)Lw) (5.12)
R

where f* denotes the upper integral (we will use also the lower integral [ later on).
Now we check (5.7): any function ¢ € C.(R) can be written as the difference of

two bounded functions ¢, 2 € C(R) with ¢; > 1. Setting v;(¢) = fot ¢ () dr, for
i=1,2and w € D*~!(E) we compute

/0 " S (w) (o) da

/000 IT LA > x}(w)ey(x) de — /000 T L > x})(w)i(x) do

/ T L {y;om >t}(w)dt—/ TL{yiom>t}(dw)dt
0 0
= IT(vf omw) =Ty} omdw) .

Analogously, using the identity S; = 0(TL{r < z}) — 0T L{r < z} we get

/_ Sp(Ww)i(z)de = =0T (] omw) +T(y; omdw) .

oQ

26



Hence, setting w = f dp, we obtain

/R So(f dp)s(a) de = OT(3 o nf dp) — T o 7 df Adp)

= T(fd(yiom) Adp) =T(fiomdr Adp)
= TL;ondr(fdp) .

Since ¢ = ¢1 — 9 this proves (5.7).
By (5.7) we get

k-1

TlLdr(gdr) = /RSx(g dr)dx < H Lip(Ti)/R 15 1[(lg]) dz

i=1

whenever g dr € D*~1(E). The representation formula for the mass and the super-
additivity of the lower integral give

17 Ldl|(lg)) s/R||Sx<|g|>||dx Vg € L' (E,||TLdxl]) -

*

This, together with (5.12) with w = |g|, gives the weak measurability of  — ||S;||
and (5.9).

To complete the proof of statement (iii) we use the identity
N, m,w) = —(0T,m,x) | (5.13)

and apply (5.9) to the slices of 7" and 9T to recover (5.10).
STEP 2. In this step we complete the existence of currents (T, 7, z) satisfying (i) by
induction with respect to m. Assuming the statement true for some m € [1,k — 1],
let us prove it for m+1. Let 7 = (w1, 7), with # € Lip(E, R™~!), and set = = (y,t)
and

T = (T, m,t) , Te = (T, 7,y) .

By the induction assumption and (5.12) with w = d7 we get

// ] M(Tx)dydt:/*M(Ttl_dfr)dtgM(Tl_dw) . (5.14)

By applying twice (5.7) we get
| Tevntpia(t) dudt = [ Tl (Rdivalt) de = TLon () a(m )
m R

whenever ¢ € C.(R™71) and v5 € C.(R); then, a simple approximation argument
proves that T, satisfy (5.7). Finally, the equality (5.9) can be deduced from (5.7)
and (5.14) arguing as in Step 1.

STEP 3. Now we prove the uniqueness of (T, 7, z); let fdp € D*=™(E) be fixed;
denoting by (p.) a family of mollifiers, by (5.7) we get

T (f dm) = liﬁ)lT(fpa omdm A dp) for L™-a.e. x € R™ .

This shows that, for given w, T%(w) is uniquely determined by (5.7) for £L™-a.e.
z € R™. Let D be given by Lemma 5.4 with S = LU L' and let N C R™ be a
L™-negligible Borel set such that T7(f dn) = (T, m, z)(f dw) whenever m; € D and
z € R™\ N. By applying (5.4) to T® — (T, 7, z) we conclude that T% = (T, 7, z)
for any x € R™ \ N. ]
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Now we consider the case of (integer) rectifiable currents, proving that the slicing
operator is well defined and preserves the (integer) rectifiability. Our proof of these
facts use only the metric structure of the space; in w*-separable dual spaces a more
precise result will be proved in Theorem 9.7 using the coarea formula of [7].

Theorem 5.7 (Slices of rectifiable currents) LetT € Ry (F) (resp. T € I (E))
and let m € Lip(E,R™), with 1 < m < k. Then there exist currents (T, m, x) €
Ri—m(E) (resp. (T, m, ) € Tyy_m(E)) concentrated on Sy N n~Y(x) and satisfying
(5.7), (5.9),

(TLA 7 z)=(T,mz)LA VA € B(E) (5.15)

for LM-a.e. z € R™ and

/ S((Ty ) dir < ek, m) [ Lin(=)s(1) . (5.16)

i=1

Moreover, if T € Mg_,(E) are concentrated on LOw~1(x) for some o-compact set
L, satisfy (5.7) and g, M(T")dx < oo, then T" = (T, 7, x) for L™-a.e. x € R™.

PrOOF. We construct the slices currents first under the additional assumption that
E is a Banach space. Under this assumption, Theorem 4.5 implies that we can
write 7' as a mass converging series of normal currents Tj; by applying (5.9) to T
we get

oQ

/ ) > Ty, 7, x)de < H Lip(m) > M(T}) = H Lip(m;)M(T)

=0

hence >, (T}, m, ) converges in My_,,(E) for L™-a.e. z € R™. Denoting by
(T, 7, x) the sum, obviously (5.7) and (5.9) and condition (b) in Definition 4.2
follow by a limiting argument. Since (T}, 7, z) are concentrated on 7~ '(z), the
same is true for (T, 7, ). In the general case we can assume by Lemma 2.9 that
F = spt T is separable; we choose an isometry j embedding F into [, and define

(T, 7ty = jy ' (T, 7, 1) vt eR

where 7 is a Lipschitz extension to [, of moj=!: j(F) — R. It is easy to check that
(5.7) and (5.9) still hold, and that (T, 7, t) are concentrated on 7=1(x). Moreover,
since (5.9) gives

/Rm (T 7, 2)|(E\ Sr) dee < T Lin(m)|ITII(E\ Sr) = 0

i=1

we obtain that (T, m ) is concentrated on Sp for £L™-a.e. » € R™. Using this
property, the inequality (see Theorem 2.10.25 of [23])

[ (senai @) de < ethom) T Liptm)nt (s1)

and Theorem 4.6 imply (5.16).
The uniqueness of (T, w, z) follows by Theorem 5.6(ii). The uniqueness property
easily implies the validity for £™-a.e. x € R™ of the identity

(TLA 2y =T, m,x)A
for any A € B(E) fixed. Let A be given by Lemma 5.5 and let N C R™ be a £™-
negligible set such that the identity above holds for any A € A and any € R™\ N.
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By Lemma 5.5 we infer that the identity holds for any open set A C E and any
z € R™\ N, whence (5.15) follows.

Finally, we show that (T, 7, z) € Zj,_n(F) for LM-ae. © € R™ if T € I (F).
The proof relies on the well known fact that this property is true in the euclidean
case, as a consequence of the euclidean coarea formula; see also Theorem 9.7, where
this property is proved in a much more general setting. By Theorem 4.5 we can
assume with no loss of generality that 7' = f4[6] for some integer valued § € L'(R¥)
vanishing out of a compact set K, and f : K — E bi-Lipschitz. Then, it is easy to
check that

T = fu([f], 7o f,2)
are concentrated on f(K)Na~1(x), satisfy (5.7) and Jam M(T7) dz < co. Hence
(T,m,2) =T € Tp—m(E) for L™-a.e. x € R™ .
O

We conclude this section with two technical lemmas about slices, which will be
used in Section 8. The first one shows that the slicing operator, when iterated,
produces lower dimensional slices of the original current; the second one shows that
in some sense the slicing operator and the projection operator commute if the slicing
and projection maps are properly chosen.

Lemma 5.8 (Iterated slices) LetT € Ry (F)UNy(F), 1 <m <k, m € Lip(E,R™),
Ty = (T, m,t). Then, for any n € [1,k — m] and any ¢ € Lip(E,R") we have

<T’ (ﬂ-’ 30)’ (t’ y)> = <Tta P y> for Lt -q.e. (t, y) € R

ProOF. The proof easily follows by the characterization of slices based on (5.7). [J

Lemma 5.9 (Slices of projections and projections of slices) Let m € [1, k],
n>m, S ERE(E), p € Lip(E,R"™), m € Lip(E,R™). Then

q#{(, m) xS, p, t) = (S, 7, 1) for LM-a.e. t € R™ |

where p : R” = R™ and ¢ : R® — R”™" are respectively the projections on the
last m coordinates and on the first (n — m) coordinates.

PROOF. Set ¢ = (p, 7) and let fdr € D*~™(R"™™) and let ¢ € C2°(R™) be fixed.
By the same argument used in the proof of Theorem 5.6(ii) we need only to prove
that

| st@laglopspafanda= [ g@epsmfinds . a7
Using (5.7) we obtain that the right side in (5.17) is equal to
/ g(@)(S,m ) (fopd(rop))de =S(fop -gomdr Ad(r o))
On the other hand, a similar argument implies that the left side is equal to
| a@enspa)foqdiron)ds = 645(foq-gopdpad(ron)
S(fop-gomdn Ad(r o))

because o ¢ = ¢ and po ¢ = 7. ]

We conclude this section noticing that in the special case when k = mand 7 = ¢
an analogous formula holds with p equal to the identity map, i.e.

(xS, p,2) = @u(S, ¢, ) for LF-a.e. z € RF . (5.18)
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6 Compactness in Banach spaces

In the compactness theorem for normal currents seen in the previous section, the
existence of a given compact set K containing all the supports of T} is too strong
for some applications. This is the main motivation for the introduction of a weak*
convergence for normal currents in dual Banach spaces, which provides a more
general compactness property, proved in Theorem 6.6.

Definition 6.1 (Weak* convergence) Let Y be a w*-separable dual space. We
say that a sequence (Tp) C Mg(Y) w*-converges to T € My(Y), and we write
T, — T, if Tn(f dn) converge to T(fdr) for any fdr € D*(Y) with f and m;
Lipschitz and w*-continuous.

The uniqueness of the w*-limit follows by a Lipschitz extension theorem: if A is
w*-compact and f is w*-continuous, we can extend f preserving both the Lipschitz
constant and the w*-continuity.

Theorem 6.2 Let Y be a w*-separable dual space, let A CY be w*-compact and
let f: A — R be Lipschitz and w”-continuous. Then, there exists a uniformly
w*-continuous map f 1Y — R such that fla = f, sup |f| = sup |f| and Lip(f) =
Lip(f).

ProoF. Of course, we can assume f(A) C [0, 1]. Using compactness (and metriz-
ability) of the w*-topology on any bounded subset of ¥ we find a sequence {Up, }n>0
of w*-neighbourhoods of zero such that

|f(x) — f(y)| <27 + Lip(f) disty)(z —y, Un) if 2, y€ A, n >0 . (6.1)

Clearly, we can also modify this sequence (gradually replacing the U,’s by smaller
sets if necessary) in a way that additionally

Up=Y and Upy1 + Upyr C Uy, for all n > 0. (6.2)
For x € Y we define
di(x) = inf{?‘" s x € Un} , do(x) = min{2dy (), Lip(f)||z||} -

Due to (6.2) we have dy(z + y) < 2max(dy(z),d1(y)) for any pair of points z, y.
This implies by induction with respect to n that di(>_] ;) < 2d;(z,) provided
di(z1) < di(z2) < ... < di(x,). We prove also by induction in n that di (>} #;) <
257 di(x;) for any z1,..., 2, € E. Indeed, if all values d;(x;) are different, then
this is a consequence of what was just said. But if di(2x,-1) = di(x,) then the
estimate dy(2p—1) + d1(2n) > di(xn-1 + ) shows that the claimed inequality
follows from the induction assumption d (ZT_z it (Tn_14x,)) <2 ZT_Z dy (%) +
2di(#p—1 + 2,). Now we put for any z € Y

d(z) := inf{z do() 1 & = Zl‘z }

We note that
|f(z) — f(y)] < d(x—y) whenever z, y € A . (6.3)

To see this take an arbitrary representation @ —y = >} z;. We define S to be the
set of those indices 7 such that dy(2;) = 2di(z;) andput z =3, g2, 2 =2 —y —
5. Then Lip(f)|12]] < ¥y LDzl = 3ogs do(z). Moreover, 3¢ s da(z) =
25 cs di(z) > (). See |F(x) — F()] < dr(2) + Lin(IIZ]| due 10 (6.1), we just
established (6.3).
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Finally, we define our function f by

flz) = ynelg fy) +d(x—y) .

Since obviously |d(z — y) — d(z — y)| < da2(x — Z) for any =z, &, y, we see that
f(x) = f(%) < do(x — 7) < Lip(f)|lz — &[|. Hence Lip(f) = Lip(f) and due to
the w*-continuity of d; in zero the function f is a uniformly w*-continuous one.
Moreover, the condition (6.3) ensures that f(x) = f(z) for each # € A. The

function min{f(x), 1} satisfies all stated conditions. U

In the following proposition we state some basic properties of the w*-convergence.

Proposition 6.3 (Properties of w*-convergence) LeltY be a w*-separable dual
space and let (Ty) C My (Y) be a bounded sequence. Then

(i) the w*-limit is unique;
(ii) Tp, = T implies M(T) < liminf, M(T});

(iii) w*-convergence is equivalent to weak convergence if all currents Ty, are sup-
ported on a compact set S.

ProOF. (i) The uniqueness of the limit obviously follows from (ii).
To prove (ii) we fix 1-Lipschitz functions 71'§» in £ and functions f; € Lip(F) with
SoIfil <1, fori=1,...,p. By (3.7) we need only to show that

P
> T(fi dn') < liminf M(T}) .

‘ h—o00
i=1

Let ¢ > 0 and let K. C Y a compact set such that |TN(Y \ K:) + |9T)|(Y \
K.) < ¢; since the restrictions of f; and 7 to K. are w*-continuous we can find

by Theorem 6.2 w*-continuous extensions f;., 71'§»€ of fiix., 7T§|K . As the condition

> i |fie] <1 need not be satisfied, we define fie = ¢i(fie, ..., [pe), where ¢ : RP —
R? is the orthogonal projection on the convex set >, |z;| < 1. The convergence of
Ty to T implies

P P
ZT(fai drl) = hlggo ;Th(fai drl) < lggng(Th) .

i=1
Since fgi = f.i = fi on K, by letting ¢ | 0 the inequality follows.
(iii) The equivalence follows by Theorem 6.2 and the locality property (3.6). ]

Another link between w*-convergence and weak convergence is given by the
following lemma.

Lemma 6.4 Let X be a compact metric space, let Cp, C X and jp € Lip;(Ch,Y)
with

sup {||7n(2)|| : € Ch, he N} < o0 .
Let us assume that (C) converge to C' in the sense of Kuratowski and j : C =Y
satisfies

Then, j € Lip; (C,Y) and S, — S implies jouSp — juS for any bounded sequence
(Sh) C Nk(X) with spt S, C C,.
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ProoF. The w*-lower semicontinuity of the norm implies j € Lip;(X,Y) and
clearly spt S C C. Let f : Y — R be any w*-continuous Lipschitz map; we claim
that supc, |fojn — f| — 0 for any Lipschitz extension f of f o j;in fact, assuming
by contradiction that |f o j,(zs) — f(xh)| > ¢ for some ¢ > 0 and x5, € Cj, we
can assume that a subsequence (z(x)) converges to € C' and hence that f(xh(k))
converge to f(x) = foj(x); on the other hand, ju) (%)) w*-converge to j(x),
hence f o jnr)(Thk)) converge to f o j(x) and a contradiction is found.

Let now fdr € D*(Y) with f and 7; Lipschitz and w*-continuous, and let f,
7; be Lipschitz extensions of f o j, m; o j respectively with f bounded; notice that

G Sn(f dm) = jgS(fdm) = [Su(Foud(mojn)) — Su(fd)]
+ {Sh(fdfr)—S(fdfr)}

The equi-continuity of normal currents and the uniform convergence to 0 of fojp —f
and m; o j, — m; on C} imply that the quantity in the first square bracket tends to
0; the second one is also infinitesimal by the weak convergence of S; to S. O

Definition 6.5 (Equi-compactness) A sequence of compact metric spaces (Xp)
15 called equi-compact if for any € > 0 there exists N € N such that any space Xj,
can be covered by at most N balls with radius ¢.

Using the equi-compactness assumption and the Gromov-Hausdorff convergence
of metric spaces (see [31]), Theorem 5.2 can be generalized as follows.

Theorem 6.6 (Weak* compactness) Lel Y be a w*-separable dual space, let
(Th) C Ng(Y) be a bounded sequence, and assume that for any ¢ > 0 there ex-
ists R > 0 such that K, = Br(0) Nspt T, are equi-compact and

sup [[Tull(Y A Kn) +[IOTHlI(Y A\ ) <&
€

Then, there erists a subsequence (Tj(x)) w™-converging to some T' € Ny (Y). More-
over, T has compact support if spt T}, are equi-bounded.

ProoOF. Assume first that spt7} are equi-bounded and put Kp = sptT}; since
K}, are equi-compact, by Gromov’s embedding theorem [31], possibly extracting a
subsequence (not relabelled), we can find a compact metric space X and isometric
immersions iy @ K — X. By our extra assumption on K the maps j, = i;l
are equi-bounded in i, (K}p), and we denote by B a closed ball in ¥ containing all
sets jp(X). Let dy be a metric inducing in B the w*-topology; since Y = (B, dy)
is compact, possibly extracting a subsequence we can assume the existence of a
compact set C' C X and of j : C'— B such that Cy = i, (K}) converge to C in the
sense of Kuratowski and (6.4) holds (for instance this can be proved by taking a
Kuratowski limit of a subsequence of the graphs of j5 in X x B). By Theorem 5.2 we
can also assume that the currents S, = 1,47, weakly converge as h — oo to some
current S. By Lemma 6.4 we conclude that Tj = jp S, w™-converge to T' = jzS.

If the supports are not equi-bounded the proof can be achieved by a standard
diagonal argument if we show the existence, for any ¢ > 0, of a sequence Ty, still
satisfying the assumptions of the theorem, with spt T equi-bounded and M(T}, —
Th)(Y) < . These currents can be easily obtained setting T, =Ty L Bg, (0), where
Ry € (R, R+ 1) are chosen in such a way that M(@Th)(Y) are equi-bounded. This
choice can be done using the localization lemma with ¢(z) = ||2]|. [
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7 Metric space valued BV functions

In this section we introduce a class of BV maps u : R¥ — S, where S is a metric
space. We follow essentially the approach developed by L.Ambrosio in [4] but,
unlike [4], we will not make any compactness assumption on S, assuming only that
S is weakly separable. If S = Mg(F) we use a Lipschitz approximation theorem for
BV metric valued maps to prove in Theorem 7.4 the rectifiability of the collection
of all atoms of u(z), as = varies in (almost all of) R*.

Let (S, d) be a weakly separable metric space and let F C Lip,(S) be a countable
family such that

d(z,y) = 21611]): lo(x) — ¢(y)] Ve, y €S . (7.1)

Definition 7.1 (Functions of metric bounded variation) We say that a func-
tion u : RF = S is a function of metric bounded variation, and we write u €

MBV(R*,S), if o ou € BViee(R¥) for any ¢ € F and

[ Dull = \/ [D(pou)| < oo .
wEF

Notice that in the definition above we implicitly make the assumption that powu
is Lebesgue measurable for any ¢ € Lip; (S); since S is a metric space, this condition
is easily seen to be equivalent to measurability of u between R*, endowed with the
o-algebra of Lebesgue measurable sets, and S, endowed with the Borel o-algebra.
Notice also that, even in the Euclidean case S = R™, the space M BV is strictly
larger than BV, because not even the local integrability of u is required, and is
related to the class of generalized functions with bounded variation studied in [22],
[50].

The class M BV (RX,S) and ||Du|| are independent of the choice of F; this is
a direct consequence of the following lemma. It is also easy to check that u €
MBV(RF R) if u € BVioc(R*, R) and |Du|(R*) < oo, and in this case ||Dul| =
| Du.

Lemma 7.2 Let F C Lip,(S) be as in (7.1) and let w € M BV (R*,S) and ¢ €
Lip; (S) N Lip,(S). Then v ou € BVio.(R*) and
ID(ou)| < \/ [Dpou)] .
QEF

In particular || Dul|| = V/ {|D(¢ o u)| : ¢ € Lip;(S) N Lip,(S)}.

ProoF. Let us first assume ¥ = 1. Let A C R be an open interval and let
v: A — R be a bounded function. We denote by L, the Lebesgue set of v and set
|Dv|(A) = +00 if v & BViee(A). Tt can be easily proved that

p—1
| Dv|(A) :sup{2|v(ti+1) —o(t)] st <. <tp, ;€ A\N}
i=1
whenever L}(N) =0 and N D A\ L,. Choosing

N = (AN Lyou) U | [(A\ Lyou) U{t € A= |D(p 0 u)|({t}) > 0]
pEF

we get

| o ultipr) —oulti)] < sup lp o utivr) = oulti)| <|[Dull ((tiyr,4i))
©
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whenever ¢;, 1,41 € A\ N. Adding with respect to ¢ and taking the supremum we
obtain that |D(¢ o u)|(A) can be estimated with ||Dul|(A). By approximation the
same inequality remains true if A is an open set or a Borel set.

In the case k& > 1 the proof follows by the one dimensional case recalling the

following facts (see [23] 4.5.9(27) and 4.5.9(28) or [4]): first

Do = \/ |Dyvl Yo € BVieo(R¥) (7.2)
l,esk—l

and the directional total variations |D,v| can be represented as integrals of varia-
tions on lines, namely

Dyo| = / Vi (2, v) dH () west!
where m, is the hyperplane orthogonal to v, u(z,v)(t) = u(x + tv) and

Vulz,v)(B) .= |Du(e,v)| ({t : « + tv € B}) VB € B(RF) .

Hence, for v € S¥~1 fixed and v = 1 ou, using (1.8) of [4] to commute the supremum
with the integral we get

|Dv| = /MV( ) dHEH( / \ Vioula, v) dH =} (w)

peF
= V[ Veole) i) =\ DG o w)] < 100l
peF Y pEeF
Since v is arbitrary the inequality |Dv| < ||Du|| follows by (7.2). ]

Given u € MBV(RX,S), we denote by M Du the maximal function of ||Du]|,
namely

M Du(z) :=s Q>0 W .

By Besicovitch covering theorem, £*({M Du > A}) can be easily estimated from
above with a dimensional constant times || Du||(R*)/A, hence M Du(z) is finite for
LF-a.e. x. The following lemma provides a Lipschitz property of M BV functions
(reversing the roles of R* and S, an analogous property can be used to define
Sobolev functions on a metric space, see [33], [34]).

Lemma 7.3 Let (S,d) be a weakly separable metric space. Then, for any u €
M BV (RX,S) there erists a L -negligible set N C R* such that

d (u(2), u(y)) < c[MDu(e) + MDu(@) [z —y|  Va, y €RF\N
with ¢ depending only on k.
PrROOF. Any function w € BVj..(R") satisfies
[w(z) — w(y)] < e(k) [MDu(z) + MDuw(y)] [+ - y] T

where L, is the set of Lebesgue points of w; this is a simple consequence of the

estimate

_ 1

P LT CXCIpee
wed® Jp,y 17— o we(te)

for any ball B,(z) C R centered at some point € L, (see for instance (2.5)
and Theorem 2.3 of [5]). Taking into account (7.1) and the inequality M Du >
M D(p o u), the statement follows with N = R* \ NperLgou. O
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In the following we endow Lip,(Z) with the flat norm F(¢) = sup |¢| + Lip(¢)
and, by duality, we endow the space Mg(FE) with the flat norm

F(T) :=sup{T(¢) : ¢ € Lip,(F), F(¢) <1} .

If E is a weakly separable metric space it is not hard to see that Mg(FE) is still
weakly separable. In fact, assuming £ = [® (up to an isometric embedding of
Mg (E) into My(l*)), by Theorem 6.2 and Lemma 2.9 we see that

F(I) = sup{T(6): 6 € Lip"(E)nB(E), F(¢) < 1}
= sup{T(8): n>1, 6 € La(E), F(9) <1} |

where Lip*(E) is the vector subspace of w*-continuous functions in Lip(E) and
L, (E) is the subspace consisting of all functions depending only on the first n
coordinates of z; since all the sets {¢ € L,(F) : F(¢) < 1} are separable, when
endowed with the topology of uniform convergence on bounded sets, a countable
subfamily is easily achieved.

Theorem 7.4 (Rectifiability criterion) Lel E be a weakly separable metric space,
let S = Mg(E) be endowed with the flat norm and let T € M BV (RX,S). Then,
there exists an LF-negligible set N C R such that

Re= | (zek: ITG)({)) >0}

zERF\N
is contained in a countably H*-rectifiable set for any compact set K C E.

ProOOF. Let N; C R” be given by Lemma 7.3 with S = Mo(E), N = NyU{M DT =
oo}, K C F compact and ¢, § > 0. For simplicity we use the notation T, for T'(z),
while T (¢) will stand for [, ¢ dT.

We define Z. 5 as the collection of points z € R¥\ N such that M DT'(z) < 1/(2¢)
and

ITN{z}) 2z = |T:I(Bss(2) \ {2}) < %

for any z € K. Setting R.s = {x € K : ||T;]|({z}) > ¢ for some 7z € Z. 5}, we
notice that Rx = U: s»0R: s, hence it suffices to prove that R. ;5 is contained in a
countably H*-rectifiable set.

Denoting by B any subset of R. s with diameter less than ¢, we now check that

3c(k)(6 + 1)

e, o) < =8

|z — 2’| (7.3)
whenever z, 2’ € B, ||I%||({z}) > ¢ and ||T%/||({z'}) > ¢ for some z, 2/ € Z. 5. In
fact, setting d = d(z,2") < 4§, we can define a function ¢(y) equal to d(y,z) in
Bg(z), equal to 0 in E'\ Bas(z) with sup |¢| = d, Lip(¢) < 1; since

ed ed
we get
k) (6
%d(x,x’) < |Tu(9) — Ty (8)| < wk — |

By (7.3) it follows that for any z € Z, 5 there exists at most one & = f(z) € B such
that ||7,||({#}) > €; moreover, denoting by D the domainof f, the map f : D — Biis
Lipschitz and onto, hence B is contained in the countably #*-rectifiable set f(ﬁ)
A covering argument proves that R. s is contained in a countably H”-rectifiable

set. O
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Actually, it could be proved that, for a suitable choice of N, the set R is
universally measurable in E, i.e., for any p € M(FE) it belongs to the completion
of B(E) with respect to pu. The proof follows by the projection theorem (see [23],
2.2.12), checking first that the set

Ri = {(z,2) € RF\ N) x K+ ||T2]|({«}) > 0}

belongs to B(R*) @ B(E), and then noticing that R is the projection of R’ on E.
Since the projection theorem is a quite sophisticated measure theoretic result, we
preferred to state Theorem 7.4 in a weaker form, which is actually largely sufficient
for our purposes.

8 Closure and boundary rectifiability theorems

In this section we prove the classical closure and boundary rectifiability theorems
for integral currents, proved in the euclidean case by H.Federer and W.H.Fleming
in [24] (see also [58], [61]). Actually, we prove a more general closure property
for rectifiable currents with equibounded masses and sizes, proved in the euclidean
case by F.J.Almgren in [1] using multivalued function theory. We also provide new
characterizations of integer rectifiable currents based on the Lipschitz projections.

The basic ingredient of our proofs is the following theorem, which allows to de-
duce rectifiability of a k-current from the rectifiability of its 0-dimensional slices
(for euclidean currents in general coefficient groups, a similar result has been ob-
tained by B.White in [62]). The proof is based on Theorem 7.4, the slicing theorem
and the key observation, due to R.Jerrard in the euclidean context (see [36]), that
z (T, 7, x) is a BV map whenever T' € Ny (F) and 7 € Lip(E, R¥).

Theorem 8.1 (Rectifiability and rectifiability of slices) Let T € N (E). Then
T € Ri(E) if and only if

for any © € Lip(E,R*), (T, 7, z) € Ro(E) for L¥-a.e. z € RF . (8.1)
Moreover, T € I;(E) if and only if (8.1) holds with Iy(FE) in place of Ro(E).

Proor. Let m € Lip(E,R¥*) with Lip(m;) < 1; we will first prove that for any
T € Ni(E) the map = — T, = (T, m, ) belongs to MBV(RF,S), where S as
in Theorem 7.4 is Mo(E) endowed with the flat norm. Let ¢ € Ci(RF) and
¢ € Lip, () with F(¢) < 1; using (3.2) we compute

)7 g = (-) T Ldsogt o)
= T(¢d(pon) A dy)
= AT(¢(v o) dris) — T(th o 7 dé A driy)
< Tl om) + Tl o) |

where dm; =dmy A .. Admi—1 Admip1a A ... Admg. Since 1 is arbitrary, this proves
that z + T} (¢) belongs to BV,.(R*) and

|DT:(9)] < kgl Tl + k| [OT1] -

Since ¢ is arbitrary, this proves that 7, € M BV (R*,5).
Now we consider the rectifiable case. By Theorem 5.7, the rectifiability of T
implies the generic rectifiability of 7,,. Conversely, let L be a o-compact set on
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which ||T| is concentrated; by Theorem 7.4 there exists a £*-negligible set N C R*

such that
U {wer:nldy}) >0}
z€RF\N

is contained in a countably #*-rectifiable set R.. Now, if T, € Ro(E) for LFae.
z, by (5.9) we infer

ITLdsl|(2\ Re) = [Tl (1\Ry) = [ T\ Re)d =0

Hence, T'Ldr is concentrated on a countably H*-rectifiable set for any = € Lip(E, R¥).
By Lemma 5.4 this implies the same for 7', hence 7" is rectifiable.

Finally, we consider the integer rectifiable case. The proof is straightforward in
the special case when E = R* and p = 7 : E — RF is the identity map (in this
case, representing T as [0], (T, m, ) is the Dirac delta at « with multiplicity ()
for LF-a.e. z € R¥).

In the general case, one implication follows by Theorem 5.7. Conversely, let us
assume that the slices of T are generically integer rectifiable. For A € B(FE) and
¢ € Lip(E, R¥) given, from (5.18) and (5.15) we infer

(p#(TLA) px) = op(TLA ¢ 2) = oz (T, 0, &) LA) € To(R")

for LF-a.e. x € RF, whence pu(TL A) € T, (R"). ]

Remark 8.2 Analogously, if E is a w*-separable dual space we can say that T €
Ri(E) (resp. T € I (E)) if

(T, 7, 2) € Ro(E) (resp. Zo(E)) for £F-a.e. x € RF

for any w*-continuous map = € Lip(E, R¥). In fact, this condition implies that
T'Ldr is concentrated on a countably H*-rectifiable set for any such 7, and Lemma 5.4
together with Theorem 6.2 imply the existence of a sequence of w*-continuous Lip-
schitz functions 7* : /' — R¥ such that

7)) = \/ ITLd=]| .
€N
We also notice that in the euclidean case E = R" it suffices to consider the canonical

linear projection and correspondingly the slices along the coordinate axes (in fact,
our notion of mass is comparable with the Federer—Fleming one, see Appendix A).

The following technical proposition will be used in the proof, by induction on
the dimension, of the closure theorem.

Proposition 8.3 Let (Ty) C Ny (E) be a bounded sequence weakly converging to
T € N(E) and let m € Lip(E). Then, for L'-a.e. t € R there exists a subsequence
(h(n)) such that ({(Th(n), T, 1)) ts bounded in Ny_1(F) and

lim (Th(n), 7w, 1) = (T, 7, 1) .

n—od

In addition, if Ty, € Ri(E) and S(T}) are equi-bounded, the subsequence (h(n)) can
be chosen in such a way that S({Th(,), T,1)) are equi-bounded.
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Proor. We first prove the existence of a subsequence h(n) such that (T}, 7, 1)
converge to (T, m,t) for L1-a.e. t € R. Recalling Proposition 5.6(iii), we need only
to prove that

hm Ty {r >t} =TL{r >t} , lim 9Ty L{m >t} = 0T L{7 >t}
n—od
(8.2)
for £L'-a.e. t € R. Let pp = mu(||Th]| + [|073]|) and let Kh(n) be a subsequence w*
converging to p in R. If ¢ is not an atom of y, noticing that

sl supl Ty o | + 10750 (7~ (1t = 6.2 +) < lsnp(le = .+ 8]) =0
and approximating x{rs;} by Lipschitz functions we obtain (8.2). As

/limian(<Th(n),7r,t>)dt < hmmf/ N({(Thn), 7, 1)) dt
R

n—ro0 - n—ro0

< Lip(r) sup N(S}) < o0
heN

we can also find for £L'-a.e. ¢t € R a subsequence of ((Sh(n), T, 1)) bounded in
Nj_1(F). TIf the sequence (S(T3)) is bounded we can use (5.16) and a similar
argument to obtain a subsequence with equi-bounded size. O

Remark 8.4 If F is a w*-separable dual space the same property holds, with a
similar proof, if weak convergence is replaced by w*-convergence, provided 7 is
w*-continuous.

Now we can prove the closure theorem for (integer) rectifiable currents, assuming
as in [1], the existence of suitable bounds on mass and size. Actually, we will prove
in Theorem 9.5 that for rectifiable currents 7" whose multiplicity is bounded from
below by @ > 0 (in particular the integer rectifiable currents) the bound on size
follows by the bound on mass, since S(T) < k*/?M(T)/a.

Theorem 8.5 (Closure theorem) Let (T;,) C Ni(E) be a sequence weakly con-
verging to T' € N (E). Then, the conditions

Th € Ri(E) Sull\)IN(Th) +8(Th) < >
€

imply T € Ry (E) and the conditions

Ty € I (E) sup N(7T}) < o0
heN

imply T € Ty, (E).
If F is a w*-separable dual space the same closure properties holds for w* -convergence
of currents.

PrOOF. We argue by induction with respect to k. If & = 0, we prove the closure
theorem first in the case when E is a w*-separable dual space and the currents T},
are w*-converging.

Possibly extracting a subsequence we can assume the existence of an integer p,

points }, ..., «b and real numbers aj, ..., ah such that
= djf(wh) YheN . (8.3)
i=1
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We claim that the cardinality of spt7 is at most p. Indeed, if by contradiction
spt 1" contains ¢ = p + 1 distinct points x1,..., x4, denoting by X the linear span
of z; we can find a w*-continuous linear map p : F — X whose restriction to X
is the identity and consider, for » > 0 sufficiently small, the pairwise disjoint sets
Ci = p~1 (B, (z;)). Since ¢ > p we can find an integer ¢ such that C; Nspt T}, = 0
for infinitely many h, since z; € C; the contradiction will be achieved by showing
the lower semicontinuity of the mass in C;, namely

I71](C:) < lim inf[[T4][(C:) =0 - (8.4)

Let f: E — [—1,1] be any Lipschitz function with support contained in C; and let
Jx 1 E — [=1,1] be w*-continuous Lipschitz functions converging to f in L(]|T|)
(see Theorem 6.2). Choosing a sequence (¢,) C Co(X) such that ¢, > 0 and

én T XB,(x) We get
T(fetn op) = im Typ(fudn op) < liminf]||TH|[(Cy) .
h— o0 h— o0

Letting first &£ 1 oo and then n 1 oo we obtain |7'(f)| < liminfy ||Tx]|(C;) and since
f is arbitrary we obtain (8.4). In the case when T}, are integer rectifiable, since
the cardinality of spt T} 1s p, for any x € spt T we can easily find a w*-continuous
Lipschitz function f : E — [0, 1] such that f(x) =1, f(y) = 0 for any y € spt T\ {z}
and {0 < f < 1} does not intersect spt T}, for infinitely many A (it suffices to consider
p+ 1 functions f; of the form g; o p such that {0 < f; < 1} are pairwise disjoint).

Hence
P

J— J— 3 — 3 2 2
az = T(f) = lim Ty(f) = lim ;ahf(l‘h)
is an integer.

In the metric case the proof could be easily recovered using the isometric em-
bedding of the closure of the union of spt 7}, into l.; however, we prefer to give a
simpler independent proof, not relying on Theorem 6.2. If z!,... " are distinct
points in spt 7', we can find £ > 0 such that the balls B.(z') are pairwise disjoint
and obtain from the lower semicontinuity of mass that

B.(x") Nspt Ty, # 0 Yi=1,...,n

for h large enough. This implies that 7' is representable by a sum Y a,d, with at
most p terms, hence T'€ Ro(FE). In the integer case we argue as in the proof of the
closure property for w*-convergence.

Let now k > 1 and let us prove that T fulfils (8.1): let 7 € Lip(E, R¥), let L be a
o-compact set on which 7' is concentrated and set 7 = (7, 7') with 7/ : E — R*~L,

S=TLdm, S, =T, Ldnr; and
Sy = {T,m,1) , She = (T, m,1) .

By Proposition 8.3 we obtain that, for £'-a.e. t € R the current S; is the limit of
a bounded subsequence of (Sp:), with S(Sh:) equi-bounded. Hence, the induction
assumption and Theorem 5.7 give that S; € Ri_1(FE) for Ll-ae. t € R. For any
such t, (S, 7', y) € Ro(E) for LF~1-ae. y € R*~L. By Lemma 5.8 we conclude

(T,m,z) = (Se, 7, y) for LF-ae. z = (y,1) € RF |

hence
(T, 7, 2) € Ro(F) for LF-ae. z = (y,t) €ERF .

Since 7 18 arbitrary this proves that 7" is rectifiable. If 7T}, are integer rectifiable the
proof follows the same lines, using the second part of the statement of Theorem 8.1.
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Finally, if £ is a w*-separable dual space, the same induction argument based
on Remark 8.4 gives

(T, 7, 2) € Ro(F) for LF-a.e. x € RF

for any w*-continuous map 7 € Lip(E, R¥). Using Remark 8.2 we conclude. ]

Theorem 8.6 (Boundary rectifiability theorem) Letk > 1 andletT € I (E).
Then 0T € Iy_1(E).

ProOF. We argue by induction on k. If £ = 1, by Theorem 4.3(i) we have only to
show that 9T (xa) € Z for any open set A C E. Setting p(z) = dist(z, £\ A) and
Ay = {p > 1}, we notice that

0T (va,) = OTL A1) =a(TLA)1)+ (T, 0)1)
= (T,p,)(1) € Z

for £L'-a.e. t > 0. By the continuity properties of measures, letting ¢ | 0 we obtain
that 97'(xa) = 0T (x{,>0}) 1s an integer.

Assume now the statement true for & > 1 and let us prove it for £ 4+ 1. Let
7 = (m,7) € Lip(E, R¥) with 7, € Lip(E), 7 € Lip(E,R*71) and S; = (T, m,t);
the currents S; are normal and integer rectifiable for £L1-a.e. ¢ € R, hence

<6T, 7T1,t> = —6<T, 7T1,t> = —6St € Ik_l(E)

for £'-a.e. t € R by the induction assumption. The same argument used in the
proof of Theorem 8.5, based on Lemma 5.8, shows that (9T, w, ) € Io(E) for £L*-a.e.
z € R¥. By Theorem 8.1 we conclude that 7 € I (E). ]

As a corollary of Theorem 8.1, we can prove rectifiability criteria for k-dimensional
currents based either on the dimension of the measure theoretic support or on Lips-
chitz projections on R* or R¥*!: we emphasize that the current structure is essential
for the validity of these properties, which are false for sets (see the counterexample

in [7]).

Theorem 8.7 Let T € Ny (E). Then T € Ry (F) if and only T is concentrated on
a Borel set S o-finite with respect to H*.

ProoF. Let m € Lip(E, R¥) and S’ C S with #*(S") < co; by Theorem 2.10.25 of
[23] we have

/m HO (S A7 ) da < e(k) [Lip(m)]" HE(S') < o

hence S’ N7~ !(z) is a finite set for LF-ae. z € R®. Since S is o-finite with respect
to H* we obtain that SN 7~ !(z) is at most countable for £*-a.e. z € R*. Hence,
the currents (T, 7, z), being supported in S N7~ !(z), belong to Ro(F) for L*-a.e.
z € R¥ whence T € Ry (E). ]

Theorem 8.8 (Rectifiability and rectifiability of projections) Let T € N;(FE).
Then
(i) T € Ix(E) if and only if T € Ti,(RF*Y) for any ¢ € Lip(E, R*+1);
(ii)) T € Zx(E) if and only if 74 (TL A) € I (R¥) for any m € Lip(E,RF) and
any A € B(E);
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(iii) if E is a finite dimensional vectorspace then T € Ry (E) if and only if ¢ 4T €
Ri(RFTY) for any ¢ € Lip(E, R*+1).

ProoF. (i) Let 7 € Lip(F,R*) be fixed. By Theorem 8.1 we need only to prove
that T, = (T, w, z) are integer rectifiable for £*-a.e. € R*. Let S be a o-compact
set on which T' is concentrated, let A be the countable collection of open sets given
by Lemma 5.5 and let us denote by ¢4, for A € A, the distance function from the
complement of A.

By applying Lemma 5.9 with n = k 4+ 1 and ¢ = ¢4 we obtain a £*-negligible
set N C R* such that

apTe = qu{(pa, ™)1, p,z) € Ty(R)
for any A € A and any x € R* \ N. In particular, for any x € R* \ N we have
Te(xa) = papTe(X(0,00) €Z VAe A

and, by our choice of A, the same is true for any A € B(FE). Then, the integer
rectifiability of T}, follows by Theorem 4.3(i).

(ii) By Theorem 8.1 we need only to show that, for 7 € Lip(E, R¥) given, £*-almost
all currents T, = (T, 7, z) are integer rectifiable. Let A be given by Lemma 5.5; by
(5.15) and (5.18) we can find a £*-negligible set N C R* such that

(T LA) = pu(TLA, g, x) = (pa(TLA),p,z) € To(RF)
for any # € R¥ \ N and any A € A. By Lemma 5.5 we infer
To(A) = T, LA(l) = o (T, LAY 1) €Z  VAEB(E), € R*\ N .

The integer rectifiability of T, now follows by Theorem 4.3(i).
(iii) Assuming £ = R, the proof is analogous to the one of statement (i), using
the countably many maps f;  of Lemma 4.4. ]

9 Rectifiable currents in Banach spaces

In this section we improve Theorem 4.6, recovering in w*-separable dual spaces Y
the classical representation of euclidean currents by the integration on an oriented
rectifiable set, possibly with multiplicities. Moreover, for T' € Ry(Y'), we compare
||T]| with #* LSy and see to what extent these results still hold in the metric case.

The results of this section depend on some extensions of the Rademacher theo-
rem given in [38] and [7]. Assume that Y is a w*-separable dual space; we proved
that any Lipschitz map f: A C R* = Y is metrically and w*-differentiable £L*-a.e.,
i.e. for LF-a.e. 2 € A there exists a linear map L : R¥ — Y such that

fly) = f(2) = L{y — =)

w* — lim =0
y—e |y — |
and, at the same time,
O 0 ) [ A N
y—a |y — |

Notice that the second formula is not an abvious consequence of the first, since the
difference quotients are only w*-converging to 0. The map L is called w*-differential
and denoted by wdy f, while ||L|| is called metric differential, and denoted by md, f.
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The metric differential actually exists £*-a.e. for any Lipschitz map f from a subset
of R* into any metric space (F,d) and is in this case defined by

Vv e RF .

This result, proved independently in [38] and [40], has been proved in [7] using an
isometric embedding into /5, and the w*-differentiability theorem.

(1) Approximate tangent space. Using the generalized Rademacher theorem one
can define an approximate tangent space to a countably H*-rectifiable set S C Y
by setting
Tan(k)(S, f(x)) = wd, f(RF) for LF-ae. x € A;

whenever f; satisfy (4.1). Tt is proved in [7] that this is a good definition, in the
sense that H*-a.e. the dimension of the space is k and that different choices of f;
produce approximate tangent spaces which coincide H*-a.e. on S: this is achieved
by comparing this definition with more intrinsic ones, related for instance to w*-
limits of the secant vectors to the set. Moreover, the approximate tangent space is
local, in the sense that

Tan(k)(Sl, z) = Tan(k)(Sz, z) for HF-ae. x € 5, NS,

for any pair of countably H*-rectifiable sets S;, So.

(2) Jacobians and area formula. Let V, W be Banach spaces, with dim(V') = &,
and L :V — W linear. The k-jacobian of L is defined by

Wi _ HE({L(z) : z € By})
HE ({w - | L(2)]] < 1}) W '

It can be proved that Jj satisfies the natural product rule for jacobians, namely

Jk(L) =

Jp(LoM)=Ju(L)Ix(M) (9.1)

for any linear map M : U — V. If s is a seminorm in R* we define also

Wi
HE({o: s(e) <1})
These notions of jacobian are important in connexion with the area formulas

/Rk 0(x)Iy(md, f) dx_/ Z x) dH* (y) (9.2)

rEf—

Ji(s) :=

for any Borel function 6 : R* — [0, oc] and
/ 0(f(x))Ii (mdfs) de = / O(H (AN F(y)) dH" (y) (9.3)
A E

for A € B(R*) and any Borel function 6 : E — [0, oc].

(3) k-vectors and orientations. Let 7 = 7 A ... A7 be a simple k-vector in Y
we denote by L, : R¥ — Y the induced linear map, given by

Li(z1,...,25) ::inn Ve e R .

We say that 7 1s a unit k-vector if L, has jacobian 1; notice that L, depends on the
single 7; rather than the k-vector 7, so our compact notation is a little misleading.
It is justified, however, by the following property:
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= implies Ju (L) = | AT (Lyr) (9.4)

This property follows at once from the chain rule for Jacobians, noticing that we
can represent L, as L, o M for some linear map M : R* — R* with J, (M) = |A|.
The same argument proves that any simple k-vector 7 with J;(L;) > 0 can be
normalized dividing 7 by constants A; > 0 such that II; A, = Jx(L;). We also
notice that (9.1) gives

|det(LZ'(Tj))| :Jk(LOLT) :Jk(L) (95)

for any unit k-vector 7 and any linear function L : span T — RF.

An orientation of a countably H*-rectifiable set S C Y is a unit simple k-vector
T =1 A... AT, such that 7;(2) are Borel functions spanning the approximate
tangent space to S for H*-almost every z € S.

(4) k-covectors and tangential differentiability. Let Z be another w*-separable
dual space, let S C Y be a countably H*-rectifiable set and let 7 € Lip(S, Z). Then,
for HF-a.e. x € S the function 7 is tangentially differentiable on S and we denote
by

Ao Tan(k)(S, ) > 7

the tangential differential. This differential can be computed using suitable approx-
imate limits of the difference quotients of 7, but for our purposes it is sufficient to
recall that 1t 1s also characterized by the property

wdy(mo f) = d?(y)ﬂ' o wdy f for LF-ae. y€ D (9.6)

whenever f : D C RF — S is a Lipschitz map. Clearly in the case Z = R? the
map d2 7 induces a simple p-covector in Tan(k)(S, z), whose components are the
tangential differentials of the components of m; this p-covector will be denoted by
Apd3 . Notice that, in the particular case p =k, (9.6) gives

det (V(mo f)(y)) = (Ardf,ym,m)  for LF-ae yeD (9.7)
where (-, -} is the standard duality between k-covectors and k-vectors and
Ty = wdfy(er) A Awdfy(er) .
Taking into account the chain rule for jacobians, from (9.7) we infer

s _y_ [det(V{mo )] _ s Ty k
Jp(dym) = o) = [(Ardym, Jk(Lry)>| for L%-ae. y€ D

with & = f(y). Since f: D — S is arbitrary we conclude that
Jk(dfﬂ') = |</\kdfﬂ', o(x))] for HF-ae. z €S (9.8)

where ¢ is any orientation of S.

The following result shows that, as in the euclidean case, any rectifiable k-current
in a w*-separable dual space is uniquely determined by three intrinsic objects: a
countably H*-rectifiable set .S, a multiplicity function # > 0 and an orientation 7
of the approximate tangent space (notice that, however, in the extreme cases k = 0
and k = m, E = R™ we allow for a negative multiplicity because in these cases the
orientation is canonically given).
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Theorem 9.1 (Intrinsic representation of rectifiable currents) Let Y be a
w*-separable dual space and let T € Ry (Y) (resp. T € T (Y)). Then, there exist a
countably H*-rectifiable set S, a Borel function 0 : S — (0,00) (resp. 6 : S — Ny )
with fS 0 dH* < oo and an orientation T of S such that the following holds

T(fdmi A ... ANdmy) = /Sf(x)é(x)</\kdf7r,r> dH" (x) (9.9)

for any f dm € D*(Y). Conversely, any triplet (S, 0, T) induces via (9.9) a rectifiable
current T'.

PROOF. Let us first assume that T' = px[g] for some g € L'(R¥) vanishing out of
a compact set C' and some one-to one function ¢ € Lip(C,Y). Let L = p(R¥) and
let 7 be a given orientation of L; by (9.7) we get

det (V(m 0 ) () = (Andgyym, 1) I (wdepy)

for m = (m1,...,m) € Lip(Y, R*), where

_wdpy(er) A ANwdpy(er)
My = T (wdpy) € {7y ~Tow}
and ey, ..., e is the canonical basis of R*. Defining o(y) = 1 if 1y and 7,(,) induce
the same orientation of Tan(k)(L,go(y)), o(y) = —1 if they induce the opposite

orientation, the identity can be rewritten as

det (V(7 0 ) (1) = o (u)(Ardg )T, 7o) Tk (wdipy) -

By applying the area formula and using the identity above we obtain

T(fdmiA...ANdm) = /ng(fogo)det(V(ﬂ'ogo))dy

/L o [ swel) | (edin, ) dut ()

yep~(z)

for any fdr € D*(Y). Setting

0x) = >, 9oy . (9.10)

yep~(z)

possibly changing the sign of 7 (which induces a change of sign of ¢) we can assume
that # > 0. Setting S = LN {f > 0} the representation (9.9) follows. The case of a
general current 7' € Ry (Y) easily follows by Theorem 4.5, taking into account the
locality properties of the approximate tangent space.

Conversely, if T is defined by (9.9) then T has finite mass and the linearity
and the locality axioms are trivially satisfied; the continuity axiom can be checked
first in the case £ = R* (see Example 3.2), then in the case when S is bilipschitz
equivalent to a compact subset of R* and then, using Lemma 4.1, in the general
case. [

We will denote by [S, 6, 7] the current defined by (9.9). In order to show that
the triplet is uniquely determined, modulo #*-negligible sets, we want to relate the
mass with H* LS and with the multiplicity 8. As a byproduct, we will prove that
S = Sr, modulo H*-negligible sets. The main difference with the euclidean case is
the appearence in the mass of an additional factor Ay (V' being the approximate
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tangent space to S), due to the fact that the local norm need not be induced by an
inner product.

Let V be a k-dimensional Banach space; we call ellipsoid any set R = L(B),
where B is any euclidean ball and L : R¥ — V is linear. Analogously, we call
parallelepiped any set R = L(C), where C is any euclidean cube and L : R¥ — V is
linear. We will call area factor of V and denote by Ay the quantity

2k
/\V =

k
P {7;.[/@(5%1)) : VORDB parallelepiped} , (9.11)

Wk

where B is the unit ball of V. The computation of Ay is clearly related to the
problem of finding optimal rectangles enclosing a given convex body in R* (in our
case the body is any linear image of By in R* through an onto map). The first
reference we are aware of on the area factor is [11]. The maximization problem
appearing in the definition of the area factor has also recently been considered in
[9] in connexion with Riemannian geometry and in [55] in connexion with geometric
number theory. In the following lemma we show a different representation of Ay and
show that it can be estimated from below and from above with constants depending
only on k; the upper bound is optimal, and we refer to [51] for better lower bounds.

Lemma 9.2 Let V be as above. Then
Ay = sup {ch =Gy )V = R” linear, Lip(¢) < 1} .

Moreover, \y = 1 if By is an ellipsoid, \v = 2% Jwy, if By is a parallelepiped and in
general k51?2 < Ay < 28 Jwy.

ProOF. We can consider with no loss of generality only onto linear maps (;
notice that the parallelepiped {v : max; |(;(v)] < 1} contains Bj if and only if
max; Lip(¢;) < 1. Taking into account the area formula we obtain

2k

IiC = HF({v: max; [G(v)] < 1}) 7

and this proves the first part of the statement, since #*(B;) = wy.

Any parallelepiped R C V can be represented by (=1 (W) for some parallelepiped
W C RF. Since, by translation invariance, £* is a constant multiple of C#"Hk, we
obtain that Ay is also given by

2k

Wk

k
sup { [jﬁk ((VCV)) S RFOWDOC parallelepiped}
where C' = ¢(By). If By is an ellipsoid so is C' and an affine change of variables
reducing C' to a ball together with a simple induction in k& shows that the supremum
above is equal to 1. If By is a parallelepiped, choosing W = C' we see that the
supremum is 2% /wy.

Due to a result of John (see [52], Chapter 3) C' is contained in an ellipsoid
such that £F(F) < k*/2Lk(C); this gives the lower bound for Ay. U

Remark 9.3 The area factor can be equal to 1 even though the norm is not induced
by an inner product; as an example one can consider the family of Banach spaces V},
whose unit balls are the hexagons in R? obtained by intersecting [—1,1]% with the
strip —t <y — x <, with ¢ € [1,2]. It is not hard to see that wAy, = 4 — (2 — ),
hence there exists tg € (1,2) such that Av,, = 1. Moreover, for ¢ =1 the area factor
equals 3/7 and in [51] it has been proved that Ay > 3/m for any 2-dimensional
Banach space V.
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Corollary 9.4 Let Y be a w*-separable dual space and let I (Y') be the collection
of all w*-continuous linear maps

r=(m,...,m) Y > RF
with m; € Lip(Y) and dim(w(Y)) = k. There exists a sequence (n?) C I (Y) such
that Lip(w]) =1 for any i € {1,...,k}, j € N and

sup Jg (F{V) = sup {Jk (7T|V) : e g(Y), Lip(m) < 1}
JEN

for any k-dimensional subspace V C Y.

ProOF. In Lemma 6.1 of [7] we proved that ITj (Y), endowed with the pseudometric

y(m ') = e [l ()] = |=' ()]

is separable. Since y(my, 7) = 0 implies

H({v eV n(w] < 1) = lim H* (v €V m(v)] < 1)

we obtain that
Wi

TH (veV: [x(v)]< 1))

is y-continuous and the statement follows choosing a dense subset of

™= Ji(my)

{r e (V) : Lip(m) =1} .
O

Using Corollary 9.4, and still assuming that Y is a w*-separable dual space, we
can easily get a representation formula for the mass of a rectifiable current.

Theorem 9.5 (Representation of mass) Let T = [S,0,7] € Ri(Y). Then
[T]| = OAXHELS, where A(z) = ATan(k)(Syx). In particular S s equivalent, mod-
ulo H* -negligible sets, to the set St in (4.2).

ProOOF. The inequality < follows by (9.9) and Lemma 9.2, recalling that by (9.8)

(Akd®m, )| = T (d°m) < A=) H Lip(m) .

In order to show the opposite inequality we first notice that for any choice of 1-
Lipschitz functions 71, ..., 7 : Y — R we have

T > £ 0(ALd° =, TYHF LS |

whence ||T|| > 03 (d°7)H* LS. Now we choose 7/ according to Corollary 9.4; since
any real valued linear map from a subspace of Y can be extended to Y preserving
the Lipschitz constant (i.e. the norm) we have
Av = sup Jk(ﬂ']jv)
JEN

for any k-dimensional subspace V C Y, hence

TN > \/03k(d¥n/ LS = 6 sup Tp(dn/ )1 LS

j J

O\ ponir (5,0 H LS
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Now we consider the case of a current 7' € Ry (E) when FE is any metric space;
let S = Sp as in (4.2) and let us assume, without any loss of generality, that F is
separable. In this case, as explained in [7], an approximate tangent space to S can
still be defined using an isometric embedding j of I into a w*-separable dual space
Y (Y =, for instance), and setting

Tan™) (S, z) := Tan™ (j(S), j(z)) for Hr-ae. z €S .

This definition is independent of 7 and Y, in the sense that Tan(k)(S, z) is uniquely
determined H*-a.e. up to linear isometries; hence Tan(k)(S, z) can be thought HE-
a.e. as an equivalence class of k-dimensional Banach spaces. Since the mass is
invariant under isometries and the area factor Ay is invariant under linear isome-
tries, by applying Theorem 9.5 to jx1' we obtain that

||T|| = HATan(k)(S,~)%k LS
and T is integer rectifiable if and only if # > 0 is an integer H*-a.e. on S.

In order to formulate the proper extension of Theorem 9.1 to the general metric
case we need the following definition: we say that two oriented rectifiable sets with
multiplicities (S, 61, 71) and (S2, 02, 72) contained in w*-separable dual spaces are
equivalent if there exist S| C Sy, S% C Sa with H*(S1\ S)) = H*(S2\ S4) = 0 and
an isometric bijection f : 57 — S} such that #; = 3 0 f and

dSlfx(Tl(l‘))/\.../\dSlfx(Tk(l‘))ZT{(l‘)/\.../\Té(l‘) Ve e s . (9.12)

We can now state a result saying that any 7' € Ry (F) induces an equivalence
class of oriented rectifiable sets with multiplicities in w*-separable dual spaces; con-
versely, any equivalence class can canonically be associated to a rectifiable current

T.

Theorem 9.6 Let T € Ry (E) and let S, 0 be as above. Fori=1,2,letj,: E =Y,
be 1sometric embeddings of E into w*-separable dual spaces Y; and let T; be unit k-
vectors in Y; such that

JiT = [(9), 0057 7] -
Then (j1(S),0 0 j7*, 1) and (j2(S),0 0 j5 1, ™) are equivalent.
Conversely, if (S,0,7) and (S',0',7") are equivalent and f: S — S’ is an isometry
satisfying 6 = 0’ o f and (9.12), then

felS.6,7] = [S",600f7 1 7] .

Since our proofs use only the metric structure of the space, we prefer to avoid
the rather abstract representation of rectifiable currents provided by Theorem 9.6;
for this reason we will not give the proof, based on a standard blow-up argument,
of Theorem 9.6.

We now consider the properties of the slicing operator, proving that it preserves
the multiplicities. We first recall some basic facts about the coarea formula for real
valued Lipschitz functions defined on rectifiable sets.

Let X be a k-dimensional Banach space and let L : X — R be linear. The
coarea factor of L is defined by the property

+oo
Cy(L)H"(A) :/ HL(ANL N (2) de VA EB(X) .
— 00
In [7] we proved that if L is not identically 0 the coarea factor can be represented
as a quotient of jacobians, namely

Cy (L) = 7J‘:’i(1q(;)
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with ¢(x) = (p(z), L(z)) for any one to one linear map p : Ker(L) — R¥~!. Using
(9.5) we obtain also an equivalent representation as

[(Ak—1p, THC1(L) = [(Axg, T)| (9.13)

where 7 is any unit k-vector in X and 7' is any unit (k — 1)-vector whose span
is contained in Ker(L), with no restrictions on the rank of p and the rank of L;
moreover, representing 7 as 7/ A € for some € € X, since we can always choose a one
to one map p we obtain

Ci(L) = |L(e)] . (9.14)

Let now Y be a w*-separable dual space, let S C Y be a countably H*-rectifiable
set and let = : S — R be a Lipschitz function. Then, we proved in [7] that the sets
Sy = SN a1 (y) are countably H*~L-rectifiable and

Tan(k_l)(sy, r)= Ker(dfﬂ') for HF—1ae. x € Sy

for L1-a.e. y € R™; moreover

/Sﬁ(x)Cl(dfﬂ') dH" () :/R (/Sn i )9(1‘) d?-lk_l(x)) dy (9.15)

for any Borel function 6 : S — [0, oc].

Theorem 9.7 (Slices in w*-separable dual spaces) LetT = [M,0,7] € R (Y)
and let 7 € Lip(Y,R™), with m < k. Then, for L™-a.e. & € R™ there exists an
orientation 1, of M N7~ (x) such that

(T, 7,2y = [[Mﬂﬂ'_l(l‘),g,ﬁ;]] .

ProoF. By an induction argument based on Lemma 5.8 we can assume that m = 1.
Let fdp € D*=1(Y) and set M, = M N7~1(z); by the homogeneity of 7 — Jj(L,)
we can assume that 7(y) is representable by £(y) A 7.(y), with 7.(y) unit (k — 1)-
vector in Tan(k_l)(Mx,y) for HF~'-a.e. y € M,, and for L'a.e. z. Taking into
account (9.13) and possibly changing the signs of 7, and & we obtain

</\k_1d£4”p, . (y))C1 (déwﬂ) = </\kdéwq, T(y)) for H=lae. y € M,

for L1-a.e. x. Using the coarea formula we find

TL (¢ o 7) dr(f dp) /M 0 o mf(Ad™q, 1) dH*

/ U(2) (/M 0f(A_1d™=p, r;>d%k—1) dz

z

R
u U (2)[M,, 0, 7](f dp) d=

for any ¢ € C.(R). From statement (ii) of Theorem 5.6 we can conclude that
(T, x) coincides with [M,, 0, 7.] for Ll-ae. z € R. ]

10 Generalized Plateau problem

The compactness and closure theorems of Section 8 easily lead to an existence result
for the generalized Plateau problem

min {M(T) : T € I11(E), 8T = S} (10.1)
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in any compact metric space E for any S € I (F) with 05 = 0, provided the
class of admissible currents is not empty. However, it may happen that the class of
rectifiable currents is very poor, or that there is no 7' € Iy 41 (F) with 0T = S.

In this section we investigate the Plateau problem in the case when £ =Y 1s a
Banach space, not necessarily finite dimensional. Under this assumption the class
of rectifiable currents is far from being poor and the cone construction, studied in
the first part of the section, guarantees that the class of admissible 7' is not empty,
at least if S has bounded support.

Fort > 0and f:Y — R we define f;(2) = f(tz), and notice that Lip(f:) =
t Lip(f) and |0f;/0t|(x) < ||z||Lip(f) for Ll-a.e. t > 0 if f € Lip(Y).

Definition 10.1 (Cone construction) Let S € My (Y) with bounded support;
the cone C' over S is the (k + 1)-metric functional defined by

k+1

C(f dr) :: Z‘H/ S(f 671-” dir) dt

where, by definition, dg; = dg1 A ... ANdgi—1 ANdgig1 A ... ANdqry1. We denole the
cone C' by Sx[0,1].

The definition is well posed because for £!-a.e. ¢ > 0 the derivatives dm;;/Jt(x)
exist for ||S||-a.e. # € Y. This follows by applying Fubini theorem with the product
measure ||S]| x £1, because for  fixed the derivatives dm;;/0t(z) exist for Ll-a.e.
t > 0. In general we can’t say that Sx[0,1] is a current, because the continuity
axiom seems hard to prove in this generality. We can prove this, however, for normal
currents.

Proposition 10.2 [fS € Ny (Y) has bounded support then Sx [0, 1] has finite mass
and M(Sx[0,1]) < RM(S), where R is the radius of the smallest ball Br(0) con-
taining spt S. Moreover, Sx[0,1] € Ny41(Y) and

a(Sx[0,1]) = —0Sx[0,1]+ S .

ProOF. Let fdr € D*TY(Y) with 7; € Lip;(Y); using the definition of mass we
find

1
1Sx[0, 1](f dr)| < R<k+1>/0 tk/y o1 dS]] dt

This proves that f — Sx [0, 1](fdn) is representable by integration with respect to
a measure. We also get

15%[0, 1][|(4) < R(k + 1) /Olt’“IISII(A/t) dt vAeB(Y)

and M(Sx[0, 1]) < RM(S).
In order to prove the continuity axiom we argue by induction on k. In the case
k = 0 we simply notice that

s~ [ ([ %) = ([ s%30)

and use the fact that, for bounded sequences (u;) C W1°°(0, 1), uniform conver-
gence implies w*-convergence in L (0, 1) of the derivatives. Assuming the property
true for (k — 1)-dimensional currents, we will prove it for k-dimensional ones by
showing the identity

A(Sx [0, 1])(f dr) = —8Sx [0, 1](f dr) + S(f dr) (10.2)
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for any fdr € D*(Y).
We first show that ¢ — S(f: dm¢) is a Lipschitz function in [0, 1], and that its
derivative is given by

Of a i Ot . Omir .
S(Edm)—i—Z(—l) [5( o dfe N die) = 08 (fi =5~ de) (10.3)

i=1

for Ll-a.e. t > 0. Assume first that, for ¢ > 0, 9f,/0t and dm; /Ot are Lipschitz
functions in Y, with Lipschitz constants uniformly bounded for ¢ € (4, 1) with & > 0;
in this case we can use the definition of boundary to reduce the above expression to

o, SO
S(deH—Z(—l) S(fed
i=1

671'”

ot

N (10.4)

Under this assumption a direct computation and the continuity axiom on currents
shows that the classical derivative of ¢ — S(f; dm;) is given by (10.4). In the general
case we approximate both f and m; by

P = [ seon@ds . wie) = [ ntn s

where p. are convolution kernels with support in (1/2,2) w*-converging as measures
to 41. By Fubini theorem we get

_aff L Of _onh,, . Om
lim S0 (e) = Se)  lim S ) = ) for |S]|+|0S]ae. @

for Ll-a.e. t > 0. Hence, we can use the continuity properties of currents to
obtain L£'-a.e. convergence of the derivatives of ¢ — S(ff dnf) to (10.3). As
I(Sx[0,1])(fdr) + 0Sx[0,1](f dn) is equal to the integral of the expression in
(10.3) over [0, 1] and S(fo dmg) = 0, the proof of (10.2) is achieved.

Now we can complete the proof, showing that Sx [0, 1] satisfies the continuity
axiom. Let f!, 7! be as in Definition 3.1(ii) and let us prove that

lim Sx[0,1](f dry A ... Adrl ) = Sx[0,1](fdm A ... Admgy) .

11— 00

Denoting by p the cardinality of the integers j such that 71'§» = 7; for every ¢, we
argue by reverse induction on p, noticing that the case p = k 4 1 is obvious, by the
definition of mass. To prove the induction step, assume that 71'§» = 7; for every ¢
and for any j = 2,...,p and notice that

Sx[0,1](f dri Adry) = Sx[0,1]((f' — f)dri Adri)
+  O(Sx[0,1))(fx dr}) — Sx[0,1)(x% df A d7}) .

The first term converges to 0 by the definition of mass, the second one converges
to 9(Sx[0, 1])(fm1 dmy) by (10.2) and the continuity property of 85x]0,1] and the
third one converges to —Sx [0, 1](mdf A d#1), by the induction assumption. Since
the sum of these terms is Sx [0, 1](fdnr) the proof is finished. O

In general the stronger euclidean cone inequality
M(Sx[0,1]) < iM(S) (10.5)
TV T k41 '

does not hold, as the following example shows.
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Example 10.3 Let X, be R? endowed with the /¥ norm and define A,, B, as the
area factor of X, and the 1-dimensional Hausdorff measure of the unit sphere of
X,, respectively. We claim that wA, is strictly greater than B,/2 for p > 2 and
p — 2 sufficiently small. As equality holds for p = 2, we need only to check that
27, > By, for p = 2, where ’ denotes differentiation with respect to p. Denoting
by A, the euclidean volume of the unit ball of X,, (which is contained in [—1,1]?),
we can estimate ,
Ay > 4 lim Ap =2 = Ay

mp=>24(p—2) T

bl

hence it suffices to prove that 24, > B).
Since A, = 4 fol(l — xp)l/p dz, a simple computation shows that

[V -] o

A

1

w/2
= —2/ (coszﬁlncosﬁ+sin291nsin9) dé |
0

with the change of variables & = cos§.
Now we compute B,; using the parametrization ¢ — (cosz/p 6, sin?/P 9) of the
unit sphere of X, we find
8

w/2
B, = —/ (cosz_p 0 sin® 6 + sin>~? 0 cos? 9)1/p df
PJo

and differentiation with respect to p gives
w/2
By = -7+ 2/ (sin?@ — cos? 8)(Insin @ — Incos ) d6 . (10.7)
0
Comparing (10.6) and (10.7) we find that 244 > B} is equivalent to
w/2
/ [ln sin 0(6sin” @ — 2 cos? 8) + In cos (6 cos” § — 2 sin® 9)] do <= |
0

which reduces to fol Inz(42% — 1)//1 — 2 dr < 7/4 by simple manipulations. The
value of the above integral, estimated with a numerical integration, is less than 0.5,
hence the inequality is true.

The cone inequality (10.5) is in general false even if mass is replaced by size:
a simple example is the two dimensional Banach space with the norm induced by
a regular hexagon H C R? with side length 1. If we take S equal to the oriented
boundary of H, we find that S(Sx[0,1]) = m, while S(S)/2 = 3 < 7 because on the
boundary of H the distance induced by the norm is the euclidean distance.

Now we prove that the cone construction preserves (integer) rectifiability.

Theorem 10.4 If S = [M,0,n] € Ri(Y) then Sx[0,1] € Rp41(Y), and belongs
to Iy (V) if S € i (Y). In particular, if M C 0B1(0) and we extend both 6 and
71 to the cone

C:={te: t€l0,1], x € M}

by 0-homogeneity we get
Sx[0,1]=[C,0,7]

with 7(x) = (@ A())/Tnt1 (Long(e)-
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ProoF. Let X = R X Y be equipped with the product metric, let € = (1,0) € X
and define N = [0,1] x M. Since the approximate tangent space to N at (¢, )
is generated by € and by the vectors (0,v) with v € Tan(k)(M, z), setting o =

(0,m1) A ... A (0, ) the (k+ 1)-vector
_ eNo(x)
N Jk+1(Lé/\a(x))

T

defines an orientation of N and we can set R = [N,0,7] € Ry41(X). We will
prove that Sx[0,1] = jx R, where j(t,z) = tx. In fact, denoting by p(¢, ) =t the
projection on the first variable, by (9.14) we get

3 1
CN l‘,t = dN ( ¢ )‘ = .
1 plx,t) ‘ e\ T o) T

Hence, using the coarea formula we find

juR(fdr) = /N 0(x)f(te)(Apprd™ (7 0 §), 7) dHF+?

_ /9(x)f(tx)</\k+1dN(7roj),é/\0>C11Vpd7-lk+1
N

= 2(4)“1/01 (/M 0(x) f(tx))(Aed™ (; 0 ), o) d?-lk(x)) dt
k41 1

; Omir .
= Z(_1)Z+1/ S(fe gtt die) dt .
i=1 0

The proof of the second part of the statement is analogous, taking into account that
Jj: N = B1(0) is one to one on X \ (Y x {0}). ]

Coming back to the Plateau problem, the following terminology will be useful.

Definition 10.5 (Isoperimetric space) We say thatY is an isoperimetric space
if for any integer k > 1 there exists a constant v(k,Y') such that for any S € I(Y)
with 0S = 0 and bounded support there exists T € 1,41 (Y) with 0T = S such that

M(T) < y(k, V) [M(S)]*FD/F

We will provide in Appendix B several examples of isoperimetric spaces, includ-
ing Hilbert spaces and all dual spaces with a Schauder basis. Actually, we don’t
know whether Banach spaces without the isoperimetric property exist or not. For
finite dimensional spaces, following an argument due to M.Gromov, we prove that
an 1soperimetric constant depending only on k&, and not on Y, can be chosen. This
is the place where we make a crucial use of the cone construction.

We can now state one of the main results of this paper, concerning existence of
solutions of the Plateau problem in dual Banach spaces.

Theorem 10.6 Let Y be a w*-separable dual space, and assume that Y s an
isoperimetric space. Then, for any S € I (Y') with compact support and zero bound-
ary, the generalized Plateau problem

min {M(T) : T € Ij11(Y), 9T = S} (10.8)

has at least one solution, and any solution has compact support.
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PrOOF. Let R > 0 such that spt S C Br(0) and consider the cone C' = Sx[0,1]. As
JC = S, this implies that the infimum m in (10.8) is finite, and can be estimated
from above with RM(S). Let us denote by M the complete metric space of all
T € I11(Y) such that T = S, endowed with the distance d(7,T") = M(T —T").
By the Ekeland-Bishop-Phelps variational principle we can find for any ¢ > 0 a
current 7, € M such that M(7;) < m 4+ ¢ and

T M(T) + ed(T, T¢) TeM

is minimal at 7" = T.. The plan of the proof is to show that the supports of 7.
are equi-bounded and equi-compact as ¢ € (0, 1/2); if this is the case we can apply
Theorem 6.6 to obtain a sequence (T;,) w*-converging to T' € Iy41(Y), with &; | 0.
Since d1;, = S w*-converge to d1" we conclude that 97 = S, hence T' € M. The
lower semicontinuity of mass with respect to w*-convergence gives M(7T) < m,
hence T is a solution of (10.8).

The minimality of T, gives

M(T%) <

< T M(0) <3RM(S) . (10.9)

As K = spt S is compact, the equi-compactness of the supports of 7T, follows by the

estimate (3 i
3y~
TN (B, () > ngJrl Ve € sptT; (10.10)

for any ball B,(z) C Y \ K, with v = v(k,Y). In fact, let I, be the open g-
neighbourhood of K and let us cover K by finitely many balls B,(y;) of radius g;
then, we choose inductively points z; € sptT: \ I, in such a way that the balls
B,jo(x;) are pairwise disjoint. By (10.10) and (10.9) we conclude that only finitely
many points #; can be chosen in this way; the balls Bs,(y;) and the balls B,(z;)
cover the whole of spt 7,. We can of course decompose this union of closed balls
into connected components. It is easy to see that a component not intersecting K
contains a boundary free part of 7. and hence contradicts the minimality assumption
for 7T.. On the other hand, all components intersecting K are equibounded, and
therefore the whole spt 7. 1s as well.

In order to prove (10.10) we use a standard comparison argument based on the
isoperimetric inequalities: let £ > 0 and € spt T; \ K be fixed, set ©(y) = ||y — #||
and

§ :=dist(z, K) g(o) = ||T.)|(Bo(z)) Vo€ (0,6) .

For £L'-a.e. ¢ > 0 the slice (1%, ¢, o) belongs to I(Y) and has no boundary; hence,
we can find R € Iy41(Y) such that R = (T, ¢, ¢) and

M(R) <7 [M((T2, ¢, o)) < 5 [/ (o)
Comparing T, with 7. L (Y \ B,(x)) + R we find
IT2]|(Be (%)) < M(R) +eM(T: L Bo(x) — R) |

hence g(g) < 3y [g’(g)](k+1)/k. As g(¢) > 0 for any ¢ > 0, this proves that

g(o) M+ — (34)=k/B+D o/ (k + 1) is increasing, and hence positive, in (0, d).
Finally, proving for any solution 7" of (10.8) a density estimate analogous to the

one already proved for T, we obtain that spt 7" is compact. ]

We conclude this section pointing out some extensions of this result, and different
proofs. The first remark is that the Gromov—Hausdorff convergence is not actually
needed 1f Y 1s an Hilbert space: in fact, denoting by F the closed convex hull
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of spt S, it can be proved that F is compact, hence (10.1) has a solution Tg. If
7Y — F is the metric projection on F, since mxS = S we get

M(T) > M(ryxT) > M(Tx) VT € Ty (V), 0T = S

hence Tg, viewed as a current in Y, is a solution of the isoperimetric problem in Y.
A similar argument can be proved to get existence in some nondual spaces as

LY(R™) and C(K):

Example 10.7 (a) L'(R™) can be embedded isometrically in Y = Mg(R™), i.e.
the space of measures with finite total variation in R™; since Y is an isoperimetric
space (see Appendix B) and the Radon-Nikodym theorem provides a 1-Lipschitz
projection from Y to L'(R™), the Plateau problem has a solution for any S &
I, (L' (R™)) with compact support.

(b) In the same vein, an existence result for the Plateau problem can be obtained
in £ = C(K), where (K,J) is any compact metric space; it suffices to notice that
any compact family F C F is equibounded and has a common modulus of continuity

w(t), defined by

w(t) :==sup{|f(x) = fly)|: FE€F, é(x,y) <t} YVt >0 .
Let @ be the smallest concave function greater than w; since for any ¢ > 0 the
function ¢ + Mt is greater than w for M large enough, it follows that &(0) = 0,
hence @ 1s subadditive. Using the subadditivity of & it can be easily checked that
flz) » min[f(y) + & (0(z,¥))]

yeK

provides a 1-Lipschitz projection from £ into the compact set

{£em il ssuplale, 176) - 7)) 6 (Ao Vo, e &}
g

Since any function in F has w < & as modulus of continuity, the map is the identity

on F.

11 Appendix A: euclidean currents

The results of Section 9 indicate that in the euclidean case £ = R™ our class of
(integer) rectifiable currents coincides with the Federer—Fleming one. In this section
we compare our currents to flat currents with finite mass of the Federer—Fleming
theory. In the following, when talking of Federer-Fleming currents (shortened to
FF-currents), k-vectors and k-covectors we adopt systematically the notation of [48]
(see also [23], [67]) and give the basic facts of that theory for granted. Since flat FF-
currents are compactly supported by definition, we restrict our analysis to currents
T € My (R™) with compact support. We also assume k > 1, since Mg(R™) is
simply the space of measures with finite total variation in R™.
We recall that the (possibly infinite) flat seminorm of a FF-current T is defined
by
F(T) :=sup {T'(w) : F(w) <1} (11.1)

where the flat norm of a smooth k-covectorfield w with compact support is given by

F(w):= sup max{lw(@)l" lldw (@)}

and || - ||* is the co-mass norm. It can be proved (see [23], page 367) that
F(T)=inf (M(X)+M(Y): X4+9Y =T} . (11.2)
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We denote by Fi(R™) the vector space of all FF k-dimensional currents with finite
mass which can be approximated, in the flat norm, by normal currents. Using (11.2)
it can be easily proved (see [23], page 374) that Fi(R™) can also be characterized
as the closure, with respect to the mass norm, of normal currents.

In the following theorem we prove that any current 7" in our sense induces a
current T in the FF-sense and that any 7' € Fy (R™) induces a current in our sense.
Our conjecture 1s that actually T e Fi(R™), and hence that our class of currents
with compact support not only includes but coincides with Fj, (R™); up to now we
have not been able to prove this conjecture because we don’t know any criterion for
flatness which could apply to this situation. Since the mass of any k-dimensional
flat FF-current vanishes on H#*-negligible sets (see [23], 4.2.14), this question is also
related to the problem, discussed in Section 3, of the absolute continuity property
of mass with respect to H*. On the other hand, for normal currents we can prove
that there really is a one to one correspondence between the FF-ones and our ones.

Theorem 11.1 Any T € My (R™) with compact support induces a FF-current T
defined by
f(w) = Z T(wadeg, A...ANdey,)
a€A(m,k)

for any smooth k-covectorfield w : R™ — AFR™ with compact support. Moreover,
M(T) < e(m, k)M(T).

Conversely, any T € Fi(R™) induces a current T e My (R™) with compact
support such that M(T) < M(T). Finally, T — T and T — T, when restricted to
normal currents, are each the inverse of the other.

PROOF. By the continuity axiom (ii) on currents, T is continuous in the sense of
distributions, and hence defines a FF-current. Since

|</ Y lwa(@)dIT]|(x) < / [l ()| lIT[ ()

ocEAmk

we obtain that 7 has finite mass (in the FF-sense) and M(T) < ¢M(T'), where ¢ is
the cardinality of A(m, k).

Conversely, let us define T for normal FF-current 7' first. Let us first notice
that any fdr € D*(R™), with f € C=°(R™) and m; € C*(R™), induces a smooth
k-covectorfield with compact support w : R™ — AFR™, given by

(T1,. .., k)

w=fdm A Ndme = Y fdet<8( ))dxal/\.../\dxak.

a€A(m,k) (o3 M ag

Hence, T'(f dr) is well defined in this case. Moreover, since the covectors w(x) are
simple, the definition of comass easily implies that

lw(@)l[* < |f(x IHLlp mi) Ve eR” . (11.3)

Arguing as in Proposition 5.1, and using (11.3) instead of the definition of mass, if
Lip(m;) < 1 and Lip(x}) < 1 it can be proved that

[P dm) = T( a) < [ 1= 7T er (11.4)

k
4 30 [l = wildloTee + Lip(r) [ = wi e
i=1 Y R™ R™
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where ||T||rr and ||0T||pF are now understood in the Federer-Fleming sense.

If fdr € D*(R™) we define

T(f dr) := liirolT(f*pa d(m * pc))

By (11.4) the limit exists and defines a metric functional multilinear in f dr: more-
over, since for ¢ > 0 fixed the map fdm — T (f * p. d(7 * p.)) satisfies the continuity
axiom (ii) in Definition 3.1, the same estimate (11.4) can be used to show that T
retains the same property. Setting w. = f * p. d(7 * p.), by (11.3) we obtain

T(7dn)] = lml7)] <tmif [ o (@) dl7llee
0 el0 rR™
k k
< HLip(m)liIgli}JHf/R |/ pe| d||T|rr = HLip(m)/R 71T rr
i=1 m i=1 m

hence T has finite mass and ||T|| < ||IT)lrr. The locality property T(f dr) = 0
follows at once from the definition of 7' if f has compact support and one of the
functions m; is constant in an open set containing spt f; the general case follows now
since T is supposed to have compact support. This proves that 7 is a k-current.
The operator T +— T can be extended by continuity to the mass closure of normal
currents, i.e. to F (R™).

Finally, since T(f dm) = T(f dr) if m; are smooth, for any normal FF-current T
we get

%(w) = Z T(wadl‘al Ao Adey,) = Z T(wadxg, A.. . Ndxg,) =T(w) .
a€A(m,k) a€A(m,k)

O

12 Appendix B: isoperimetric inequalities

In this appendix we extend the euclidean isoperimetric inequality to a more general
setting: first, in Theorem 12.2, we consider a finite dimensional Banach space,
proving the existence of an isoperimetric constant depending only on the dimension
(neither on the codimension nor on the norm of the space). Then, using projections
on finite dimensional subspaces, we extend in Theorem 12.3 this result to a class
of duals of separable Banach spaces. The validity of isoperimetric inequalities in a
general Banach space is still an open problem.
We start with the following elementary lemma.

Lemma 12.1 Let 3 : [0,00) = (0,00) be an increasing function and let k > 2
integer and ¢ > 0. Then, there exist A = Ak, 5(0)) < 1 and T = T(e, k) > 0 such
that

(k1) /k

(3 + el @/ =) T 4 (1= o + gpe-0) T S 3 )
Ll-a.e. in (0,T) implies 3(T) > 1/2.

PRrROOF. Let § = $(0) > 0 and define A as sup,¢(s1/9) ¥(7), where

1 (k+1)/k 1 (k+1)/k
P(r) = (T + ﬂT) + (1 — 74 ﬂT)
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Since 9 is strictly convex and ¢(0) = 1, ¥(1/2) < 1, it follows that A < 1. Let
T > [(2ke)*=1/2]*% and assume that (12.1) holds £'-a.e. in (0,T); the definition
of X implies that [#']*/*=1) > 8/(2k) L'-a.e. in (0,7), hence

O

Now, we recall the isoperimetric inequality in euclidean spaces: for any current
S € I, (R™) with compact support and zero boundary there exists T € I 41 (R™)
satisfying 07" = S and

M(T) < y(k, m) [M(S)]FF17%

This result, first proved by H.Federer and W.H.Fleming in [24] by means of the
deformation theorem, has been improved by F.J.Almgren in [2], who proved that the
optimal value of the isoperimetric constant does not depend on m and corresponds
to the isoperimetric ratio of a (k 4 1)-disk.

The proof of the isoperimetric inequality in finite dimensional Banach spaces
follows closely an argument due to M.Gromov (see [32], §3.3): the strategy is to
choose a maximizing sequence for the isoperimetric ratio (which is finite, by the
Federer-Fleming result) and to prove, using Lemma 12.1, that almost all the mass
concentrates in a bounded region. Using this fact, the cone construction gives an
upper bound for the isoperimetric constant which depends only on the dimension
of the current.

Theorem 12.2 Let k > 1 be integer. There exists a constant v, such that for any
finite dimensional Banach space V and any S € I;(V) with 0S = 0 there exists
T X1 (V) with 9T = S and

M(T) < 7 [M(5)]# 7%

ProOF. The proof is achieved by induction with respect to k; let o = (k+ 1)/k
and, for S € I (V) with 5 = 0, define

¥(S) = inf{ M@ oy = S}

[M(:5)]

and y(0) = 0. Since V is bilipschitz equivalent to some euclidean space which is
known to be an isoperimetric space we conclude that L = supgy(S5) is finite. In
the following we consider a maximizing sequence (S,) and normalize the volumes to
obtain M(S,) = 1. A simple compactness argument proves the existence of linear
1-Lipschitz maps 71, ..., 7y in V' with the property that

diam (ﬁ Fi_l(Li)) <2

whenever diam(L;) < 1. Wedefine §;(t) = ||Sy|| (ﬂi_l(—oo,t)) foranyie {1,...,N}
and n fixed.

STEP 1. Let & = 1; we claim that for any ¢ € (0,1) there exist closed balls B,
with radius less than 4 such that |[S,||(Y \ B,) < € for n large enough. In fact, for
Ll-ae. t € R such that (S, m;,t) # 0 we have

Bi(t) > M((Sn, mi, 1)) > 1
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by the boundary rectifiability theorem. On the other hand, if 6 € (0,1), 3;(¢) €
[0/2,1—4/2] and (Sp, m;,t) = 0 we can decompose S, as the sum of two cycles

Sy =S+ 8% =5, L{m <t} + S, L{m >t}
to obtain
Y(Sh) (Bi(1)” +4(S7) (1= B;(1)”
L [1+6(g— 1)] <L

v(Sn)

IA

IA

and this is impossible for n large enough, depending on §. Hence, setting 6 = /N,
Bl >1 Llae. in I; = {3 €[§/2,1—6/2]}, which implies £(I;) < 1. Our choice
of m; implies that the intersection of 71'2»_1([2') has diameter at most 2.

STEP 2. Now we consider the k-dimensional case with & > 2 and set ¢ = vy,_1.
We claim that for any ¢ € (0, 1) there exist closed balls B,, with radius less than
ri, = 8T (c, k) (with T given by Lemma 12.1) such that |[S,|[(V \ B,) < € for n large
enough. For this purpose we set § = ¢/(2N) and observe that

(@(t) + c[ﬁg(t)]kﬂk—l))a + (1 - Bit) + c[ﬁl’»(t)]k/(’“_l))a > Ak, 8)  (12.2)

for £L'-a.e. ¢ and n large enough. In fact, for any ¢ such that L; = (S, m,t) €
I;—1(V) we can find by the induction assumption R; € I(V) with R, = L; and

M(Re) < e [M(L)] 70 < o]/ )
Writing
Sp=SE 4852 = (S, L{r <t} — L)+ (L + Sp L{r > 1})
if (12.2) does not hold we can estimate v(5,) by

T0SE) (B1(0) + el 60) " 4 5(82) (1= Bife) + elgi o) /D)

which is less than LA, and this is impossible if v(S,)/L > A. Now we fix n large
enough, set

t;:=inf{t: gi(t) >4} , si=sup{t: G;(t) <1—4}

and obtain from Lemma 12.1 that 8;(¢; + T) > 1/2 and Si(s; — T) < 1/2, hence
s; —t; < 2T and

N N
15| (V\ M ”Zl([ti,sz'])) < ZIISnll (VA#7 ([t si]) <2No=e .

i=1

By our choice of N, the intersection of 77 ([t;, s;]) has diameter less than 47, and
this concludes the proof of this step.

STEP 3. Assuming with no loss of generality that the balls B, of Step 2 (or Step
1, if k = 1) are centered at the origin, we can apply the localization lemma with
p(x) = ||#|| to choose ¢, € (rk, i + 1) such that the currents

L, = <Sn,S0,tn> = 8(Sn |—Btn) = _8(571 |—(V \ Btn))

have mass less than ¢ for n large (L, = 0if k = 1); by the induction assumption we
can find currents R, € I;(V) with R, = L, and M(R,) < cef/(k=1). e project
R, on the ball By (0) with the 2-Lipschitz map

x if ||z]| < tn:
m(x) :=

b if 2] > 1,
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to obtain R, € I;(V) with OR!, = L,, spt R, C B, and M(R,) < 2Fcek/(h=1),
Writing
Sp = (SnLB:, — Ry) + (R, + Sp L(V\ Bt,))

and applying the cone construction to S, L B;, — R}, for n large enough we obtain
Y(Sn) < (g + 1)(1 4 28 eek/ =1y 4 [(2k ekl k=1 4 gy

Letting first n — oo and then € — 0 we conclude that L < Ry 4 1, and 7, depends
only on k. ]

Theorem 12.3 Let Y be a w*-separable dual space and assume the existence of
finite dimensional subspaces Y, C'Y and continuous linear maps P, : Y — Y, such
that Pp(x) w*-converge to x as n — oo for any x €Y. Then

inf {M(T) : T € L1 (Y), 0T = 5} < 5 CH+ [M($)]FFI/-

for any S € I, (Y) with bounded support, where C' = sup, ||Py|| and v is the
constant of Theorem 12.2. If S has compact support the infimum is achieved by
some current T with compact support.

PRrROOF. The constant C'is finite by the Banach—Steinhaus theorem. Let S € I (Y)
with bounded support, let S, = P45 and notice that by Theorem 12.2 we can
find solutions 7, of the Plateau problem

min{M(T) : T € I41(Yn), 0T = Sp}
and these solutions satisfy
M(T) < e M) 7% < 08 () D7

Since Y, embeds isometrically in Y we can view 7, as currents in Y and prove,
by the same argument of Theorem 10.6 (but using Theorem 12.2 in place of the
assumption that Y is an isoperimetric space), that spt7,, are equi-bounded and
equi-compact. By Theorem 6.6 we can find a subsequence T}, () w*-converging to
some limit T Since 97T, () w*-converge to JT and S, () w*-converge to S we
conclude that 7' = S and the lower semicontinuity of mass gives

M(T) < lim inf M(Th) < 7 C*H [M(s)] 47

—00

Finally, since we have just proved that Y is an isoperimetric space, if .S has compact
support the infimum is a minimum by Theorem 10.6. ]

Any dual Banach space Y satisfying the assumptions of Theorem 12.3 is an
isoperimetric space. These assumptions are satisfied by Hilbert spaces (in this
case the optimal isoperimetric constant is the same one of euclidean spaces), dual
separable spaces with a Schauder basis, and also by some non separable spaces, as
(.

Also the space Y = My(R™) of measures with finite total variation in R™ has
the isoperimetric property: indeed, let us consider regular grids 7, in R™ with
mesh size 1/n and let us define

Po(p) =Y n"p(@QH"LQ Vpey .
QETn

It is easy to check that ||P,|| = 1 and that P,(p) weakly* converge to y as n = o
for any pu € Y. More generally, any dual space ¥ = X* is an isoperimetric space
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if X has a Schauder basis: in fact, denoting by X, the n-dimensional subspaces
generated by the first n vectors of the basis; and denoting by m, : X — X, the
corresponding projections such that || — 7, ()| = 0 for any # € X, we can define

P,:Y =Y, ={yeY: yom, =y}

setting P,(y) = yo my, i.e P, = .

13 Appendix C: Mass, Hausdorff measure, lower
semicontinuity

In this section we assume that Y is a w*-separable dual space and k& > 1 is an
integer. We discuss here the possibility to define lower semicontinuous functionals,
with respect to the weak convergence of currents, in I5(Y). Denoting by ArY the
exterior k-product of Y, and by ALY the subset of simple k-vectors, any function
A ALY — [0,00) induces a functional Fy on Zx(Y) D I (Y): indeed, recall that
any T € Zy(Y) is representable; essentially in an unique way, as [S, 0, 7] through
(9.9), with .S = Sp given by (4.2), @ integer valued and ||7|[,, = 1 on S, i.e.

k k
HE ({Z zimi(x) sz < 1}) = wy YeecsS .

i=1

If T'=[5S,6, 7] we define
FAT) = / ON(T) dH" .
s

Notice that, in order to define Fy, A needs to be defined only on unit simple vec-
tors; for this reason all the functions A that we consider later on are positively
1-homogeneous.

In the following, for 7 € ALY # 0, V; C Y is the k-dimensional Banach space
spanned by 7 with the induced metric and B; 1s its unit ball. Several choices of A
are possible, and have been considered in the literature. In particular, we mention
the following three (normalized so that they agree if Y is an Hilbert space):

(8) Ma(7) = lirllo = ({000 2o+ iy 22 < 1}) Joons

(b) Az(7) = Av_||7|lm, where Ay is defined in (9.11) (see also Lemma 9.2 for a
definition in terms of Jacobians);

(¢) As(r) = VP(r)||7|lm/wi, where V P(7) is the so-called volume product of V;
(see [59], 2.3.2).

The functional F; induced by Ay is [ |6 dH", i.e. the Hausdorff measure with
multiplicities while, according to Theorem 9.5, the functional 5 induced by A5 is
the mass. The functional F5 induced by Ag arises in the theory of finite dimensional
Banach spaces (also called Minkowski spaces) and is the so-called Holmes-Thompson
area; we refer to the book by A.C. Thompson [59] and to the book by R. Schneider
[56] for a presentation of the whole subject; in this context, the function A; has
been studied by H. Busemann and Az has been studied by R.V. Benson [11].

Coming to the problem of lower semicontinuity, the following definition (adapted
from [23], 5.1.2) will be useful. We recall that the vector space of polyhedral chains
is the subspace of I;(Y") generated by the normal currents [F, 1, 7] associated to
subsets F' of k-dimensional planes with multiplicity 1.
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Definition 13.1 (Semi-ellipticity) We say that A : ALY — [0, 00) is semi-elliptic
o

Zq:@/\(n)%’“(Fi) > O (10) 1" (Fo) (13.1)

4
whenever T = > [F;,0;, 1] — [Fo, 0o, 70] is a k-dimensional polyhedral chain with

or = 0.

i=1

Since (13.1) is equivalent to

> Fa(lFi, 6:, 1) > FallFo, o, 7o)

i=1

the geometric significance of the semi-ellipticity condition is that “flat” currents
To = [Fo, 0o, 0] minimize Fy among all polyhedral chains T with 0T = 97Ty.

By asimple rescaling argument, it is not difficult to prove that the semi-ellipticity
of X is a necessary condition for lower semicontinuity of Fy. At least in finite
dimensional spaces Y, using polyhedral approximation results it could be proved,
following 5.1.5 of [23], that the condition is also sufficient; we believe that, following
the arguments of Appendix B, this fact could be proved in greater generality, but
we will not tackle this problem here.

Since we know that the mass 1s lower semicontinuous, these remarks imply that
the Benson function Ay is elliptic. We will give, however, a more direct proof of
this fact in Theorem 13.2 below (this result has been independently proved by A.C.
Thompson in [60]). Concerning the Busemann and Holmes-Thompson definitions,
their semi-ellipticity is a long standing open problem in the theory of Minkowski
spaces (see [59], Problems 6.1.1, 7.1.1), and it has been estabilished only in the
extreme cases k = 1, k = dim(Y) — 1; in these cases, as in the theory of quasicon-
vex functionals, semi-ellipticity can be reduced to convexity. We also mention, in
this connexion, the work [10] by G. Bellettini, M. Paolini and S. Venturini, where
the relevance of these results for anisotropic problems in Calculus of Variations is

emphasized.
We define
1
A7) = Esup {Ek (B |IT|lm : n € A} Vr e ALY \ {0} (13.2)
where A is the collection of all linear maps n : ¥ — R* with Lip(n;) < 1, i =
1,..., k. By the area formula, the function A can also written as
A(r) = sup{Jx()l|7llm : n € A} (13.3)

hence Lemma 9.2 gives that A = As.
Theorem 13.2 The function A : ALY — [0, 00) defined in (13.2) is semi-elliptic.
ProoF. Let T as in Definition 13.1 and let n € A be fixed; since

T(ldn) =0T (mdna A...Adng_1) =0

taking into account (9.9) we obtain

q

SZ@'

i=1

0o

/ </\de”7], ) dHF
Fy

/ (AwdFin, 7)) dHF
F

T
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Since the definition of the jacobian together with (9.8) imply that [(Axd%in, )| =
I (Lyjspan(ry)) = L5 (1(Br,)) Jwk, we obtain

9 q
=L (n(Bs,)) H* (Fo) < Z

Wk

) HE(F)

E|Q>

This proves that 0o L% (7( B, )) H* (Fo) /wi < ST 0; \(7;)H" (F;). Since 7 is arbitrary,
the semi-ellipticity of A follows. ]
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