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IntroductionThe development of intrinsic theories for area minimization problems was moti-vated in the 50's by the di�culty to prove, by parametric methods, existence forthe Plateau problem for surfaces in euclidean spaces of dimension higher than 2.After the pioneering work of R. Caccioppoli [12] and E. De Giorgi [18, 19] on setswith �nite perimeter, W.H. Fleming and H. Federer developed in [24] the theoryof currents, which leads to existence results for the Plateau problem for orientedsurfaces of any dimension and codimension. It is now clear that the interest of thistheory, which includes in some sense the theory of Sobolev and BV functions, goesmuch beyond the area minimization problems that were its initial motivation: asan example one can consider the recent papers [3, 8, 27, 28, 29, 35, 41, 42], to quotejust a few examples.The aim of this paper is to develop an extension of the Federer{Fleming theoryto spaces without a di�erentiable structure, and virtually to any complete metricspace; as a byproduct we also show that actually the classical theory of currentsdepends very little on the di�erentiable structure of the ambient space, at least ifone takes into account only normal or recti�able currents, the classes of currentswhich are typically of interest in variational problems. The starting point of ourresearch has been a very short paper of De Giorgi [20]: amazingly, he was able toformulate a generalized Plateau problem in any metric space E using (necessarily)only the metric structure; having done so, he raised some natural questions aboutthe existence of solutions of the generalized Plateau problem in metric or in Banachand Hilbert spaces.The basic idea of De Giorgi has been to replace the duality with di�erentialforms with the duality with (k + 1)-ples (f0; f1; : : : ; fk), where k is the dimension,fi are Lipschitz functions in E and f0 is also bounded; he called metric functionalsall functions T de�ned on the space of these (k+1)-ples which are linear with respectto f0. We point out that the formal approach of De Giorgi has a strong analogywith the recent work on J.Cheeger [13] on di�erentiability of Lipschitz functions onmetric measure spaces: indeed, also in this paper locally �nitely many Lipschitzfunctions fi play the role of the coordinate functions x1; : : : ; xn in the euclideanspace Rn. The basic operations of boundary T 7! @T , push forward T 7! '#Tand restriction T 7! T ! can be de�ned in a natural way in the class of metricfunctionals; moreover, the mass, denoted by kTk, is simply de�ned as the leastmeasure � satisfying jT (f0; f1; : : : ; fk)j � kYi=1Lip(fi) ZE jf0j d�for all (k + 1)-ples (f0; f1; : : : ; fk), where Lip(f) denotes the Lipschitz constant off . We also denote by M(T ) = kTk(E) the total mass of T . Notice that in thissetting it is natural to assume that the ambient metric space is complete, becauseLip(E) � Lip(Ê) whenever E is a metric space and Ê is the completion of E.In order to single out in the general class of metric functionals the currents, wehave considered all metric functionals with �nite mass satisfying three independentaxioms:(1) linearity in all the arguments;(2) continuity with respect to pointwise convergence in the last k arguments withuniform Lipschitz bounds;(3) locality.The latter axiom, saying that T (f0; f1; : : : ; fk) = 0 if fi is constant on a neigh-bourhood of ff0 6= 0g for some i � 1, is necessary to impose, in a weak sense,a dependence on the derivatives of the fi's, rather than a dependence on the fi3



itself. Although df has no pointwise meaning for a Lipschitz function in a generalmetric space E (but see [7], [13]), when dealing with currents we can denote the(k+ 1)-ples by the formal expression f0 df1 ^ : : :^ dfk, to keep in mind the analogywith di�erential forms; this notation is justi�ed by the fact that, quite surprisingly,our axioms imply the usual product and chain rules of calculusT (f0 df1 ^ : : :^ dfk) + T (f1 df0 ^ : : :^ dfk) = T (1 d(f0f1) ^ : : :^ dfk)T (f0 d 1(f) ^ : : :^ d k(f)) = T (f0 det(r (f)) df1 ^ : : :^ dfk) :In particular, any current is alternating in f = (f1; : : : ; fk).A basic example of k-dimensional current in Rk is[[g]](f0 df1 ^ : : :^ dfk) := ZRk g f0det(rf) dxfor any g 2 L1(Rk); in this case, by the Hadamard inequality, the mass is jgjLk.By the properties mentioned above, any k-dimensional current in Rk whose mass isabsolutely continuous with respect to Lk is representable in this way. The generalvalidity of this absolutely continuity property is still an open problem: we are ableto prove it either for normal currents or in the cases k = 1; k = 2, using a deep resultof D. Preiss [54], whose extension to more than 2 variables seems to be problematic.In the euclidean theory an important class of currents, in connexion with thePlateau problem, is the class of recti�able currents. This class can be de�ned alsoin our setting asRk(E) := �T : kTk << Hk and is concentrated on a countably Hk-recti�able set	or, equivalently, as the Banach subspace generated by Lipschitz images of euclideank-dimensional currents [[g]] in Rk. In the same vein, the class Ik(E) of integerrecti�able currents is de�ned by the property that '#(T A) has integer multiplicityin Rk (i.e. is representable as [[g]] for some integer valued g) for any Borel set A � Eand any ' 2 Lip(E;Rk); this class is also generated by Lipschitz images of euclideank-dimensional currents [[g]] in Rk with integer multiplicity.One of the main results of our paper is that the closure theorem and the bound-ary recti�ability theorem for integer recti�able currents hold in any complete metricspace E; this result was quite surprising for us, since all the existing proofs in thecase E = Rm heavily use the homogeneous structure of the euclidean space and theBesicovitch derivation theorem; none of these tools is available in a general metricspace (see for instance the counterexample in [17]). Our result proves that closureand boundary recti�ability are general phenomena; additional assumptions on Eare required only when one looks for the analogues of the isoperimetric inequalityand of the deformation theorem in this context.If E is the dual of a separable Banach space (this assumption is not reallyrestrictive, up to an isometric embedding) we also prove that any recti�able currentT can be represented, as in the euclidean case, by a triplet [[M; �; � ]] where M isa countably Hk-recti�able set, � > 0 is the multiplicity function and � , a unit k-vector �eld, is an orientation of the approximate tangent space to M (de�ned in[7]); indeed, we haveT (f0 df1 ^ : : :^ dfk) = ZM �f0h^kdMf; � i dHkwhere ^kdMf is the k-covector �eld induced by the tangential di�erential on M off = (f1; : : : ; fk), which does exist in a pointwise sense. The only relevant di�erencewith the euclidean case appears in the formula for the mass. Indeed, in [38] the4



second author proved that for any countably Hk-recti�able set in a metric spacethe distance locally behaves as a k-dimensional norm (depending on the point, ingeneral); we prove that kTk = ��Hk M , where �, called area factor, takes intoaccount the local norm of M and is equal to 1 if the norm is induced by an innerproduct. We also prove that � can always be estimated from below with k�k=2 andfrom above with 2k=!k, hence the mass is always comparable with the Hausdor�measure with multiplicities.If the ambient metric space E is compact, our closure theorem leads, togetherwith the lower semicontinuity property of the map T 7! M(T ), to an existencetheorem for the (generalized) Plateau problemminfM(T ) : T 2 Ik(E); @T = Sg (1)proposed by De Giorgi in [20]. However, the generality of this result is, at least inpart, compensated by the fact that even though S satis�es the necessary conditions@S = 0 and S 2 Ik�1(E), the class of admissible currents T in (1) could in principlebe empty. A remarkable example of metric space for which this phenomenon occursis the three dimensional Heisenberg group H3: we proved in [7] that this group,whose Hausdor� dimension is 4, is purely k-unrecti�able for k = 2; 3; 4, i.e.Hk ('(A)) = 0 for all A � Rk Borel, ' 2 Lip(A;H3) :This, together with the absolute continuity property, implies the spaces Rk(H3)reduce to f0g for k = 2; 3; 4 hence there is no admissible T in (1) if S 6= 0. Since a lotof analysis can be carried on in the Heisenberg group (Sobolev spaces, Rademachertheorem, elliptic regularity theory, Poincar�e inequalities, quasi conformal maps, see[34] as a reference book), it would be very interesting to adapt some parts of ourtheory to the Heisenberg and to other geometries. In this connection, we recall theimportant recent work by B.Franchi, R.Serapioni and F.Serra Cassano [25, 26] onsets with �nite perimeter and recti�ability (in an intrinsic sense) in the Heisenberggroup. Related results, in doubling (or Ahlfors regular) metric measure spaces aregiven in [6] and [47].Other interesting directions of research that we don't pursue here are the exten-sion of the theory to currents with coe�cients in a general group, a class of currentsrecently studied by B. White in [62] in the euclidean case, and the connexion be-tween bounds on the curvature of the space, in the sense of Alexandro�, and thevalidity of a deformation theorem. In this connection, we would like to mention theparametric approach to the Plateau problem for 2-dimensional surfaces pursued in[49] and the fact that our theory applies well to CBA metric spaces (i.e. the oneswhose curvature in the Alexandrov sense is bounded from above) which are Ahlforsregular of dimension k since, according to a recent work of B.Kleiner (see [39], The-orem B), these spaces are locally bi-Lipschitz parameterizable with euclidean opensets.With the aim to give an answer to the existence problems raised in [20], wehave also studied some situations in which certainly there are plenty of recti�ablecurrents; for instance if E is a Banach space the cone construction shows that theclass of admissible currents T in (1) is not empty, at least if S has bounded support.Assuming also that spt S is compact, we have proved that problem (1) has a solution(and that any solution has compact support) in a general class of Banach spaces,not necessarily �nite dimensional, which includes all lp spaces and Hilbert spaces.An amusing aspect of our proof of this result is that it relies in an essential way onthe validity of the closure theorem in a general metric space. Indeed, our strategy(close to the Gromov existence theorem of \minimal �llings" in [32]) is the following:�rst, using the Ekeland-Bishop-Phelps principle, we are able to �nd a minimizing5



sequence (Th) with the property that Th minimizes the perturbed problemT 7!M(T ) + 1hM(T � Th)in the class fT : @T = Sg. Using isoperimetric inequalities (that we are able to provein some classes of Banach spaces, see Appendix B), we obtain that the supports of Thare equi-bounded and equi-compact. Now we use Gromov compactness theorem (see[31]) to embed isometrically (a subsequence of) sptTh in an abstract compact metricspace X; denoting by ih the embeddings, we apply the closure and compactnesstheorems for currents in X to obtain S 2 Ik(X), limit of a subsequence of ih#Th.Then a solution of (1) is given by j#S, where j : spt S ! E is the limit, in a suitablesense, of a subsequence of (ih)�1. We are able to circumvent this argument, workingdirectly in the original space E, only if E has an Hilbert structure.Our paper is organized as follows. In Section 1 we summarize the main notationand recall some basic facts on Hausdor� measures and measure theory. Section 2contains essentially the basic de�nitions of [20] concerning the class of metric func-tionals, while in Section 3 we specialize to currents and Section 4 and Section 5deal with the main objects of our investigation, respectively the recti�able and thenormal currents. As in the classical theory of Federer{Fleming the basic operationsof localization and slicing can be naturally de�ned in the class of normal currents.Using an equi-continuity property typical of normal currents we also obtain a com-pactness theorem.In order to tackle the Plateau problem in duals of separable Banach spaces westudy in Section 6 a notion of weak� convergence for currents; the main technicalingredient in the analysis of this convergence is an extension theorem for Lipschitzand w�-continuous functions f : A ! R. If A is w�-compact we prove the exis-tence of a Lipschitz and w�-continuous extension (a more general result has beenindependently proved by E. Matou�sko�va in [43]). The reading of this section canbe skipped by those who are mainly interested in the metric proof of closure andboundary recti�ability theorems.Section 7 collects some informations about BV metric space valued maps u :Rk ! S; this class of functions has been introduced by the �rst author in [4] inconnexion with the study of the �-limit as " # 0 of the functionalsF�(u) := ZRk �"jruj2+ W (u)" � dxwith W : Rm ! [0;1) continuous (in this case S is a suitable quotient space offW = 0g with the metric induced by 2pW ). We extend slightly the results of [4],dropping in particular the requirement that the target metric space is compact, andwe prove a Lusin type approximation theorem by Lipschitz functions for this classof maps.Section 8 is devoted to the proof of the closure theorem and of the boundaryrecti�ability theorem. The basic ingredient of the proof is the observation, due inthe euclidean context to R.Jerrard, that the slicing operatorRk 3 x 7! hT; �; xiprovides a BV map with values in the metric space S of 0-dimensional currentsendowed with the 
at norm whenever T is normal and f 2 Lip(E;Rk). Usingthe Lipschitz approximation theorem of the previous section, these remarks lead toa recti�ability criterion for currents involving only the 0-dimensional slices of thecurrent. Once this recti�ability criterion is estabilished, the closure theorem easilyfollows by a simple induction on the dimension. A similar induction argument provesthe boundary recti�ability theorem. We also prove recti�ability criteria based on6



slices or projections: in particular we show that a normal k-dimensional current T isinteger recti�able if and only if '#T is integer recti�able in Rk+1 for any Lipschitzfunction ' : E ! Rk+1; this result, new even in the euclidean case E = Rm, isremarkable because no a priori assumption on the dimension of the support of T ismade.In Section 9 we recover, in duals of separable Banach spaces, the canonicalrepresentation of a recti�able current by the integration over an oriented set withmultiplicities. As a byproduct, we are able to compare the mass of a recti�able cur-rent with the restriction of Hk to its measure theoretic support; the representationformula for the mass we obtain can be easily extended to the general metric caseusing an isometric embedding of the support of the current into l1. The results ofthis section basically depend on the area formula and the metric generalizations ofthe Rademacher theorem developed in previous papers [38], [7] of ours; we recallwithout proof all the results we need from those papers.Section 10 is devoted to the cone construction and to the above mentionedexistence results for the Plateau problem in Banach spaces.In Appendix A we compare our currents with the Federer{Fleming ones in theeuclidean case E = Rm and in Appendix B we prove in some Banach spaces the va-lidity of isoperimetric inequalities, adapting to our case an argument of M. Gromov[32]. Finally, in Appendix C we discuss the problem of the lower semicontinuity ofthe Hausdor� measure, pointing out the connections with some long standing openproblems in the theory of Minkowski spaces.Acknowledgements. We thank M.Chleb��k, R.Jerrard, J.Jost, B.Kleiner andV.Magnani for their helpful comments and suggestions. The �rst author grate-fully acknowledges the hospitality of the Max Planck Institut in Leipzig, where alarge part of this paper was written in 1998, and completed in the summer of 1999.1 Notation and preliminary resultsIn this paper E stands for a complete metric space, whose open balls with center xand radius r are denoted by Br(x), B(E) is its Borel �-algebra and B1(E) is thealgebra of bounded Borel functions on E.We denote byM(E) the collection of �nite Borel measures in E, i.e. �-additiveset functions � : B(E) ! [0;1); we say that � 2 M(E) is concentrated on a Borelset B if �(E nB) = 0. The supremum and the in�mum of a family f�igi2I �M(E)are respectively given by_i2I �i(B) := sup(Xi2J �i(Bi) : Bi pairwise disjoint; B = [i2J Bi) (1.1)î2I �i(B) := inf (Xi2J �i(Bi) : Bi pairwise disjoint; B = [i2J Bi) (1.2)where J runs among all countable subsets of I and Bi 2 B(E). It is easy to checkthat the in�mum is a �nite Borel measure and that the supremum is �-additive inB(E).Let (X; d) be a metric space; the (outer) Hausdor� k-dimensional measure ofB � X, denoted by Hk(B), is de�ned byHk(B) := lim�#0 !k2k inf ( 1Xi=0 [diam(Bi)]k : B � 1[i=0Bi; diam(Bi) < �)where !k is the Lebesgue measure of the unit ball of Rk. Since HkX (B) = HkY (B)whenever B � X and X isometrically embeds in Y , our notation for the Hausdor�7



measure does not emphasize the ambient space. We recall (see for instance [38],Lemma 6(i)) that if X is a k-dimensional vector space and B1 is its unit ball, thenHk(B1) is a dimensional constant independent of the norm of X and equal, inparticular, to !k. The Lebesgue measure in Rk will be denoted by Lk.The upper and lower k-dimensional densities of a �nite Borel measure � at xare respectively de�ned by��k(�; x) := lim sup%#0 �(B%(x))!k%k ��k(�; x) := lim inf%#0 �(B%(x))!k%k :We recall that the implications��k(�; x) � t 8x 2 B =) � � tHk B (1.3)��k(�; x) � t 8x 2 B =) � B � 2ktHk B (1.4)hold in any metric space X whenever t 2 (0;1) and B 2 B(X) (see [23], 2.10.19).Let X; Y be metric spaces; we say that f : X ! Y is a Lipschitz function ifdY (f(x); f(y)) �MdX(x; y) 8x; y 2 Xfor some constant M 2 [0;1); the least constant with this property will be denotedby Lip(f), and the collection of Lipschitz functions will be denoted by Lip(X;Y )(Y will be omitted if Y = R). Furthermore, we use the notation Lip1(X;Y ) for thecollection of Lipschitz functions f with Lip(f) � 1 and Lipb(X) for the collectionof bounded real valued Lipschitz functions.We will often use isometric embeddings of a metric space into l1 or, moregenerally, duals of separable Banach spaces. To this aim, the following de�nitionswill be useful.De�nition 1.1 (Weak separability) Let (E; d) be a metric space. We say thatE is weakly separable if there exists a sequence ('h) � Lip1(E) such thatd(x; y) = suph2N j'h(x)� 'h(y)j 8x; y 2 E :A dual Banach space Y = G� is said to be w�-separable if G is separable.Notice that, by a truncation argument, the de�nition of weak separability canalso be given by requiring 'h to be also bounded. The class of weakly separablemetric spaces includes the separable ones (it su�ces to take 'h(�) = d(�; xh) with(xh) � E dense) and all w�-separable dual spaces. Any weakly separable space canbe isometrically embedded in l1 by the mapj(x) := ('1(x)� '1(x0); '2(x) � '2(x0); : : :) x 2 Eand since any subset of a weakly separable space is still weakly separable also theconverse is true.2 Metric functionalsIn this section we de�ne, following essentially the approach of [20], a general classof metric functionals, in which the basic operations of boundary, push forward,restriction can be de�ned. Then, functionals with �nite mass are introduced.De�nition 2.1 Let k � 1 be an integer. We denote by Dk(E) the set of all (k+1)-ples ! = (f; �1; : : : ; �k) of Lipschitz real valued functions in E with the �rst functionf in Lipb(E). In the case k = 0 we set D0(E) = Lipb(E).8



IfX is a vector space and T : X ! R, we say that T is subadditive if jT (x+y)j �jT (x)j+ jT (y)j whenever x; y 2 X and we say that T is positively 1-homogeneousif jT (tx)j = tjT (x)j whenever x 2 X and t � 0.De�nition 2.2 (Metric functionals) We call k-dimensional metric functionalany function T : Dk(E)! R such that(f; �1; : : : ; �k) 7! T (f; �1; : : : ; �k)is subadditive and positively 1-homogeneous with respect to f 2 Lipb(E) and �1; : : : ; �k 2Lip(E). We denote by MFk(E) the vector space of k-dimensional metric function-als.We can now de�ne an \exterior di�erential"d! = d(f; �1; : : : ; �k) := (1; f; �1; : : : ; �k)mapping Dk(E) into Dk+1(E) and, for ' 2 Lip(E;F ), a pull back operator'#! = '#(f; �1; : : : ; �k) = (f � '; �1 � '; : : : ; �k � ')mapping Dk(F ) on Dk(E). These operations induce in a natural way a boundaryoperator and a push forward map for metric functionals.De�nition 2.3 (Boundary) Let k � 1 be an integer and let T 2 MFk(E). Theboundary of T , denoted by @T , is the (k � 1)-dimensional metric functional in Ede�ned by @T (!) = T (d!) for any ! 2 Dk�1(E).De�nition 2.4 (Push-forward) Let ' : E ! F be a Lipschitz map and let T 2MFk(E). Then, we can de�ne a k-dimensional metric functional in F , denoted by'#T , setting '#T (!) = T ('#!) for any ! 2 Dk(F ).We notice that, by construction, '# commutes with the boundary operator, i.e.'#(@T ) = @('#T ) : (2.1)De�nition 2.5 (Restriction) Let T 2 MFk(E) and let ! = (g; �1; : : : ; �m) 2Dm(E), with m � k (! = g if m = 0). We de�ne a (k � m)-dimensional metricfunctional in E, denoted by T !, settingT !(f; �1; : : : ; �k�m) := T (fg; �1; : : : ; �m; �1; : : : ; �k�m) :De�nition 2.6 (Mass) Let T 2 MFk(E); we say that T has �nite mass if thereexists � 2M(E) such thatjT (f; �1; : : : ; �k)j � kYi=1Lip(�i) ZE jf j d� (2.2)for any (f; �1; : : : ; �k) 2 Dk(E), with the convention Qi Lip(�i) = 1 if k = 0.The minimal measure � satisfying (2.2) will be called mass of T and will bedenoted by kTk.The mass is well de�ned because one can easily check, using the subadditivityof T with respect to the �rst variable, that if f�igi2I � M(E) satisfy (2.3) alsotheir in�mum satis�es the same condition. By the density of Lipb(E) in L1(E; kTk),which contains B1(E), any T 2MFk(E) with �nite mass can be uniquely extended9



to a function on B1(E)� [Lip(E)]k, still subadditive and positively 1-homogeneousin all variables and satisfyingjT (f; �1; : : : ; �k)j � kYi=1Lip(�i) ZE jf j dkTk (2.3)for any f 2 B1(E), �1; : : : ; �k 2 Lip(E). Since this extension is unique we will notintroduce a distinguished notation for it.Functionals with �nite mass are well behaved under the push-forward map: infact, if T 2MFk(E) the functional '#T has �nite mass, satisfyingk'#Tk � [Lip(')]k'#kTk : (2.4)If either ' is an isometry or k = 0 it is easy to check, using (2.6) below, that equalityholds in (2.4). It is also easy to check that the identity'#T (f; �1; : : : ; �k) = T (f � '; �1 � '; : : : ; �k � ')remain true if f 2 B1(E) and �i 2 Lip(E).Functionals with �nite mass are also well behaved with respect to the restrictionoperator: in fact, the de�nition of mass easily implieskT !k � sup jgj mYi=1Lip(�i)kTk with ! = (g; �1; : : : ; �m) : (2.5)For metric functionals with �nite mass, the restriction operator T ! can be de�nedeven though ! = (g; �1; : : : ; �m) with g 2 B1(E), and still (2.5) holds; the restrictionwill be denoted by T A in the special case m = 0 and g = �A.Proposition 2.7 (Characterization of mass) Let T 2 MFk(E). Then T has�nite mass if and only if(a) there exists a constant M 2 [0;1) such that1Xi=0 jT (fi; �i1; : : : ; �ik)j �Mwhenever Pi jfij � 1 and Lip(�ij) � 1;(b) f 7! T (f; �1; : : : ; �k) is continuous along equibounded monotone sequences,i.e. sequences (fh) such that (fh(x)) is monotone for any x 2 E andsup fjfh(x)j : x 2 E; h 2Ng <1 :If these conditions hold, kTk(E) is the least constant satisfying (a) and kTk(B) isrepresentable for any B 2 B(E) bysup( 1Xi=0 jT (�Bi ; �i1; : : : ; �ik)j) ; (2.6)where the supremum runs among all Borel partitions (Bi) of B and all k-ples of1-Lipschitz maps �ij. 10



Proof. The necessity of conditions (a) and (b) follows by the standard propertiesof integrals. If conditions (a) and (b) hold, for given 1-Lipschitz maps �1; : : : ; �k :E ! R, we set � = (�1; : : : ; �k) and de�ne��(A) := sup fjT (f; �1; : : : ; �k)j : jf j � �Agfor any open set A � E (with the convention ��(;) = 0). We claim that��(A) � 1Xi=1 ��(Ai) whenever A � 1[i=1Ai : (2.7)Indeed, set  Ni (x) = minf1; Ndist(x;E nAi)g and de�ne'Ni :=  NiPN1  Nj + 1=N ; gN := NXi=1 'Ni =  1 + (N NXi=1  Ni )�1!�1 :Notice that 0 � gN � 1, gN is nondecreasing with respect to N and gN " 1 for anyx 2 [iAi. Hence, for any f 2 Lipb(E) with jf j � �A condition (b) givesjT (f; �1; : : : ; �k)j = limN!1 jT ( NXi=1 f'Ni ; �1; : : : ; �k)j � 1Xi=1 ��(Ai) :Since f is arbitrary, this proves (2.7).We can canonically extend �� to B(E) setting��(B) := inf( 1Xi=1 ��(Ai) : A � 1[i=1Ai) 8B 2 B(E)and it is easily checked that �� is countably subadditive and additive on distantsets. Therefore, Carath�eodory criterion (see for instance [23], 2.3.2(9)) gives that�� 2M(E). We now check thatjT (f; �1; : : : ; �k)j � ZE jf j d�� 8f 2 Lipb(E) : (2.8)Indeed, assuming with no loss of generality that f � 0, we set ft = minff; tg andnotice that the subadditivity of T and the de�nition of �� givejjT (fs; �1; : : : ; �k)j � jT (ft; �1; : : : ; �k)jj � ��(ff > tg)(s � t) 8s > t :In particular, t 7! jT (ft; �1; : : : ; �k)j is a Lipschitz function, whose modulus ofderivative can be estimated with �(t) = ��(ff > tg) at any continuity point of �.By integration with respect to t we getjT (f; �1; : : : ; �k)j = Z 10 ddt jT (ft; �1; : : : ; �k)j dt � Z 10 ��(ff > tg) dt= ZE f d�� :By the homogeneity condition imposed on metric functionals, (2.8) implies thatthe measure �� = W� �� satis�es condition (2.2). Since obviously��(E) = sup( 1Xi=0 ��i (fi) : 1Xi=0 jfij � 1; Lip(�ij) � 1)11



we obtain that ��(E) �M , and this proves that kTk(E) �M , i.e. that kTk(E) isthe least constant satisfying (a).It is easy to check that the set function � de�ned in (2.6) is less than any othermeasure � satisfying (2.2). On the other hand, a direct veri�cation shows that �is �nitely additive, and the inequality � � �� implies the �-additivity of � as well.The inequalityjT (�B; �1; : : : ; �k)j � � (B) 8B 2 B(E); �i 2 Lip1(E)gives �� � � , whence �� � � and also � satis�es (2.2). This proves that � is theleast measure satisfying (2.2).De�nition 2.8 (Support) Let � 2 M(E); the support of �, denoted by spt�, isthe closed set of all points x 2 E satisfying�(B%(x)) > 0 8% > 0 :If F 2MFk(E) has �nite mass we set spt T := spt kTk.The measure � is clearly supported on spt� if E is separable; more generally,this is true provided the cardinality of E is an Ulam number, see [23], 2.1.6. IfB is a Borel set, we also say that T is concentrated on B if the measure kTk isconcentrated on B.In order to deal at the same time with separable and non separable spaces, wewill assume in the following that the cardinality of any set E is an Ulam number;this is consistent with the standard ZFC set theory. Under this assumption, we canuse the following well known result, whose proof is included for completeness.Lemma 2.9 Any measure � 2 M(E) is concentrated on a �-compact set.Proof. We �rst prove that S = spt � is separable. If this is not true we can �nd byZorn's maximal principle " > 0 and an uncountable set A � S such that d(x; y) � "for any x; y 2 A with x 6= y; since A is uncountable we can also �nd � > 0 and anin�nite set B � A such that � �B"=2(x)� � � for any x 2 B. As the family of openballs fB"=2(x)gx2B is disjoint, this gives a contradiction.Let (xn) � S be a dense sequence and de�ne Lk;h := Shn=0B1=k(xn), for k � 1and h � 0 integers. Given " > 0 and k � 1, since � is supported on S we can �ndan integer h = h(k; ") such that �(Lk;h) � �(E) � "=2k. It is easy to check thatK := 1\k=1Lk;h(k;")is compact and �(E nK) � ".We point out, however, that Lemma 2.9 does not play an essential role in thepaper: we could have as well developed the theory making in De�nition 2.6 theapriori assumption that the mass kTk of any metric functional T is concentratedon a �-compact set (this assumption plays a role in Lemma 5.3, Theorem 5.6 andTheorem 4.3).3 CurrentsIn this section we introduce a particular class of metric functionals with �nite mass,characterized by three independent axioms of linearity, continuity and locality. Weconjecture that in the euclidean case these axioms characterize, for metric func-tionals with compact support, the 
at currents with �nite mass in the sense ofFederer{Fleming; this problem, which is not relevant for the development of ourtheory, is discussed in Appendix A. 12



De�nition 3.1 (Currents) Let k � 0 be an integer. The vector space Mk(E) ofk-dimensional currents in E is the set of all k-dimensional metric functionals with�nite mass satisfying:(i) T is multilinear in (f; �1; : : : ; �k);(ii) limi!1 T (f; �i1; : : : ; �ik) = T (f; �1; : : : ; �k) whenever �ij ! �j pointwise in Ewith Lip(�ij) � C for some constant C;(iii) T (f; �1; : : : ; �k) = 0 if for some i 2 f1; : : : ; kg the function �i is constant ona neighbourhood of ff 6= 0g.The independence of the three axioms is shown by the following three metricfunctionals with �nite mass:T1(f; �) := ����ZR f�0e�t2 dt���� ; T2(f; �1; �2) := ZR2 f @�1@x @�2@y e�x2�y2 dxdy ;T3(f; �) := ZR f(t)(�(t + 1)� �(t))e�t2 dt :In fact, T1 fails to be linear in �, T2 fails to be continuous (continuity fails at�1(x; y) = �2(x; y) = x+y, see the proof of the alternating property in Theorem 3.5)and T3 fails to be local.In the following we will use the expressive notation! = f d� = f d�1 ^ : : :^ d�kfor the elements of Dk(E); since we will mostly deal with currents in the following,this notation is justi�ed by the fact that any current is alternating in (�1; : : : ; �k)(see (3.2) below).An important example of current in euclidean spaces is the following.Example 3.2 Any function g 2 L1(Rk) induces a top dimensional current [[g]] 2Mk(Rk) de�ned by[[g]](f d�1 ^ : : :^ d�k) := ZRk gf d�1 ^ : : :^ d�k = ZRk gfdet(r�) dxfor any f 2 B1(Rk), �1; : : : ; �k 2 Lip(Rk). The de�nition is well posed becauseof Rademacher theorem, which gives Lk-almost everywhere a meaning to r�. Themetric functional [[g]] is continuous by the well known w�-continuity properties ofdeterminants in the Sobolev space W 1;1 (see for instance [16]), hence [[g]] is acurrent. It is not hard to prove that k[[g]]k= jgjLk.In the case k = 2 the previous example is optimal, in the sense that a functionalT (f; �1; �2) = ZR2 fdet(r�) d�de�ned for f 2 B1(R2) and �1; �2 2 W 1;1(R2) \ C1(R2) satis�es the continuityproperty only if � is absolutely continuous with respect to L2. This is a consequenceof the following result, recently proved by D. Preiss in [54]. The validity of theanalogus result in dimension higher than 2 is still an open problem.Theorem 3.3 (Preiss) Let � 2M(R2) and assume that � is not absolutely con-tinuous with respect to L2. Then there exists a sequence of continuously di�eren-tiable functions gh 2 Lip1(R2;R2) converging pointwise to the identity and suchthat limh!1 ZR2 det(rgh) d� < �(R2) :13



Notice that the one dimensional version of Preiss theorem is easy to obtain:assuming with no loss of generality that � is singular with respect to L1, it su�cesto de�ne gh(t) := t�L1 (Ah \ (�1; t)) 8t 2 Rwhere (Ah) is a sequence of open sets such that L1(Ah) ! 0, containing a L1-negligible set on which � is concentrated.It is easy to check that Mk(E), endowed with the norm M(T ) := kTk(E)is a Banach space. Notice also that the push forward map T 7! '#T and therestriction operator T 7! T ! (for ! 2 Dk(E)), de�ned on the larger class ofmetric functionals, map currents into currents. As regards the boundary operator,we can give the following de�nition.De�nition 3.4 (Normal currents) Let k � 1 be an integer. We say that T 2Mk(E) is a normal current if also @T is a current, i.e. @T 2Mk�1(E). The classof normal currents in E will be denoted by Nk(E).Notice that @T is always a metric functional satisfying conditions (i), (ii) above;concerning condition (iii) it can be proved using the stronger locality property statedin Theorem 3.5 below. Hence T is normal if and only if @T has �nite mass. It isnot hard to see that also Nk(E), endowed with the normN(T ) := kTk(E) + k@Tk(E)is a Banach space.Now we examine the properties of the canonical extension of a current to B1(E)�[Lip(E)]k, proving also that the action of a current on Dk(E) satis�es the naturalchain and product rules for derivatives. An additional consequence of our axiomsis the alternating property in �1; : : : ; �k.Theorem 3.5 The extension of any T 2 Mk(E) to B1(E) � [Lip(E)]k satis�esthe following properties:(i) (product and chain rules) T is multilinear in (f; �1; : : : ; �k) andT (f d�1 ^ : : :^ d�k) + T (�1 df ^ : : :^ d�k) = T (1 d(f�1)^ : : :^ d�k) (3.1)whenever f; �1 2 Lipb(E) andT (f d 1(�) ^ : : :^ d k(�)) = T (fdetr (�) d�1 ^ : : :^ d�k) (3.2)whenever  = ( 1; : : : ;  k) 2 [C1(Rk)]k and r is bounded;(ii) (continuity) limi!1T (f i; �i1; : : : ; �ik) = T (f; �1; : : : ; �k)whenever f i � f ! 0 in L1(E; kTk) and �ij ! �j pointwise in E, withLip(�ij) � C for some constant C;(iii) (locality) T (f; �1; : : : ; �k) = 0 if ff 6= 0g = [iBi with Bi 2 B(E) and �iconstant on Bi.Proof. We prove locality �rst. Possibly replacing f by f�Bi we can assume that �iis constant on ff 6= 0g for some �xed integer i. Assuming with no loss of generalitythat �i = 0 on Bi and Lip(�j) � 1, let us assume by contradiction the existence ofC � ff 6= 0g closed and " > 0 such that jT (�C d�)j > ", and let � > 0 such thatkTk(C� nC) < ", where C� is the open �-neighbourhood of C. We setgt(x) := max�0; 1� 3t dist(x;C)� ; ct(x) := sign(x)maxf0; jxj � tg14



and using the �niteness of mass and the continuity axiom we �nd t0 2 (0; �) suchthat jT (gt0 d�)j > " and t1 2 (0; t0) such that jT (gt0 d~�)j > ", with ~�j = �j forj 6= i and ~�i = ct1 � �i. Since ~�i is 0 on Ct1 and spt gt1 � Ct1=2 the locality axiom(iii) on currents gives T (gt1 d~�) = 0. On the other hand, since Lip(~�j) � 1 we getjT ((gt0 � gt1) d~�)j � ZE jgt0 � gt1 j dkTk � kTk(Ct0 nC) < " :This proves that jT (gt0 d~�)j < " and gives a contradiction.The continuity property (ii) easily follows by the de�nition of mass and thecontinuity axiom (ii) in De�nition 3.1.Using locality and multilinearity we can easily obtain thatT (f d�1 ^ d�i�1 ^ d (�i) ^ : : :^ d�k) = T (f 0(�i) d�1 ^ : : :^ d�k) (3.3)whenever i 2 f1; : : : ; kg and  2 Lip(R)\C1(R); in fact, the proof can be achieved�rst for a�ne functions  , then for piecewise a�ne functions  and then for Lips-chitz and continuously di�erentiable functions  (see also the proof of (3.2), givenbelow).Now we prove that T is alternating in �1; : : : ; �k; to this aim, it su�ces to showthat T vanishes if two functions �i are equal. Assume, to �x the ideas, that �i = �jwith i < j and set �kl = �l if l =2 fi; jg and�ki := 1k'(k�i) ; �kj := 1k'(k�j + 12)where ' is a smooth function in R such that '(t) = t on Z, '0 � 0 is 1-periodic and'0 � 0 in [0; 1=2]. The functions �k uniformly converge to �, have equi-boundedLipschitz constants and since'0(k�i)'0(k�j + 12) = '0(k�i)'0(k�i + 12) � 0from (3.3) we obtain that T (f d�k) = 0. Then the continuity property givesT (f d�) = 0.We now prove (3.2). By the axiom (i) and the alternating property just proved,the property is true if  is a linear function; if all components of  are a�ne ona common triangulation T of Rk, representing Rk as a disjoint union of (Borel)k-simplices � and using the locality property (iii) we �ndT (f d 1(�) ^ : : :^ d k(�)) = X�2T T ��1(�)(f d 1(�) ^ : : :^ d k(�))= X�2T T ��1(�)(fdetr j�(�) d�1 ^ : : :^ d�k)= T (f X�2T detr j�(�)���1 (�) d�1 ^ : : :^ d�k) :In the general case the proof follows by the continuity property, using piecewisea�ne approximations  h strongly converging in W 1;1loc (Rk;Rk) to  .Finally, we prove (3.1); possibly replacing T by T ! with ! = d�2 ^ : : :^ d�kwe can also assume that k = 1. Setting S = (f; �1)#T 2 M1(R2), the identityreduces to S(g1 dg2) + S(g2 dg1) = S (1 d(g1g2)) (3.4)where gi 2 Lipb(R2) are smooth and g1(x; y) = x and g2(x; y) = y in a squareQ � (f; �)(E) � spt S. Let g = g1g2 and let uh be obtained by linear interpolation15



of g on a family of regular triangulations Th of Q (i.e. such that the smallest anglein the triangulations is uniformly bounded from below). It can be proved (see forinstance [15]) that (uh) strongly converges to g in W 1;1(Q) as h ! 1, hence wecan represent uh(x; y) on each � 2 Th as a�h x+ b�h y + c�, withlimh!1 sup�2Th sup(x;y)2� jg2 � a�h j+ jg1 � b�h j = 0 :Using the continuity, the locality and the �niteness of mass of S we concludeS (1 dg) = limh!1S(1 duh) = limh!1 X�2Th S �(a�h dx) + S �(b�h dy)= limh!1 X�2Th S �(g2 dg1) + S �(g1 dg2) = S(g2 dg1) + S(g1 dg2) :A simple consequence of (3.1) is the identity@(T f) = (@T ) f � T df (3.5)for any f 2 Lipb(E). If particular, T f is normal whenever T is normal andf 2 Lipb(E).The strengthened locality property stated in Theorem 3.5 has several conse-quences: �rstT (f d�) = T (f 0�0) whenever f = f 0; � = �0 on sptT (3.6)and this property can be used to de�ne '#T 2Mk(F ) even if ' 2 Lip(spt T; F ); infact, we set '#T (f; �1; : : : ; �k) := T ( ~f ; ~�1; : : : ; ~�k)where ~f 2 Lipb(E) and ~�i 2 Lip(E) are extensions to E, with the same Lipschitzconstant, of f � ' and �i � '. The de�nition is well posed thanks to (3.6), andstill (2.1) and (2.4) hold. The second consequence of the locality property andof the strengthened continuity property is that the (extended) restriction operatorT 7! T f d�1^: : :^d�m maps k-currents into (k�m)-currents whenever f 2 B1(E)and �i 2 Lip(E).De�nition 3.6 (Weak convergence of currents) We say that a sequence (Th) �Mk(E) weakly converges to T 2 Mk(E) if Th pointwise converge to T as metricfunctionals, i.e.limh!1 Th(f d�) = T (f d�) 8f 2 Lipb(E); �i 2 Lip(E); i = 1; : : : ; k :The mapping T 7! kTk(A) is lower semicontinuous with respect to the weakconvergence for any open set A � E, because Proposition 2.7 (applied to the re-strictions to A) easily giveskTk(A) = sup( 1Xi=0 jT (fi d�i)j : 1Xi=0 jfij � �A; supi;j Lip(�ij) � 1) : (3.7)Notice also that the existence of the pointwise limit for a sequence (Th) �Mk(E)is not enough to guarantee the existence of a limit current T and hence the weakconvergence to T . In fact, suitable equi-continuity assumptions are needed to ensurethat condition (ii) in De�nition 3.1 and condition (b) in Proposition 2.7 hold in thelimit.The following theorem provides a simple characterization of normal k-dimensionalcurrents in Rk. 16



Theorem 3.7 (Normal currents in Rk) For any T 2 Nk(Rk) there exists aunique g 2 BV (Rk) such that T = [[g]]. Moreover, k@Tk = jDgj, where Dg is thederivative in the sense of distributions of g and jDgj denotes its total variation.Proof. Let now T 2 Nk(Rk). We recall that any measure � with �nite totalvariation in Rk whose partial derivatives in the sense of distributions are (repre-sentable by) measures with �nite total variation in Rk is induced by a functiong 2 BV (Rk). In fact, setting f" = � � �" 2 C1(Rk), this family is bounded inBV (Rk) and Rellich theorem for BV functions (see for instance [30]) provides asequence (f"i) converging in L1loc(Rk) to g 2 BV (Rk), with "i ! 0. Since f"Lkweakly converge to � as " # 0 we conclude that � = gLk.Setting �(f) := T (f dx1 ^ : : :^ dxk) f 2 B1(Rk) ;we �rst prove that all directional derivatives of � are representable by measures.This is a simple consequence of (3.2) and of the fact that T is normal: indeed, forany orthonormal basis (e1; : : : ; ek) of Rk we have����ZRk @�@ei d����� = jT ( @�@ei d�1 ^ : : :^ d�k)j = jT (1d�^ d�̂i)j= j@T (�d�̂i)j � ZRk j�j k@Tkfor any � 2 C1c (Rk), where �i are the projections on the lines spanned by ei andd�̂i = d�1^ : : :^ d�i�1^ d�i+1^ : : :^ d�k. This implies that jDv�j � k@Tk for anyunit vector v, whence � = gLk for some g 2 L1(Rk) and jD�j � k@Tk.By (3.2) we get T (f d�1 ^ : : :^ d�k) = ZRk gfdet(r�) dxfor any f 2 B1(Rk) and any � 2 C1(Rk;Rk) with r� bounded. Using thecontinuity property, a smoothing argument proves that the equality holds for all! = f d� 2 Dk(Rk), hence T = [[g]].Finally, we prove thatj@T (f d�1 ^ : : :^ d�k�1)j � k�1Yi=1 Lip(�i) ZRk jf j djDgj (3.8)which implies that k@Tk � jDgj. By a simple smoothing and approximation argu-ment we can assume that f and all functions �i are smooth and that f has boundedsupport; denoting by H� the k� k matrix having Dg=jDgj and r�1; : : : ;r�k�1 asrows we have@T (f d�1 ^ : : :^ d�k�1) = ZRk g df ^ d�1 ^ : : :^ d�k�1= kXi=1(�1)i ZRk fdet� @�@x̂i� dDig = kXi=1(�1)i ZRk f DigjDgjdet� @�@x̂i� djDgj= � ZRk fdet(H�) djDgjwhence (3.8) follows using the Hadamard inequality.17



The previous representation result can be easily extended to those k-dimensionalcurrents in Rk whose mass is absolutely continuous with respect to Lk. Except fork = 1; 2, we don't know whether all currents in Mk(Rk) satisfy this absolutecontinuity property. As the proof of Theorem 3.8 below shows, the validity of thisstatement is related to the extension of Preiss theorem to any number of dimensions.Theorem 3.8 A current T 2Mk(Rk) is representable as [[g]] for some g 2 L1(Rk)if and only if kTk << Lk. For k = 1; 2 the mass of any T 2Mk(Rk) is absolutelycontinuous with respect to Lk.Proof. The �rst part of the statement can be obtained from (3.2) arguing as inthe �nal part of the proof of Theorem 3.7. In order to prove the absolute continuityproperty, let us assume that k = 2. Let�(B) := T (�B dx1 ^ dx2) B 2 B(R2)and let � A+� (R2 nA) be the Hahn decomposition of �. Since T is continuous,by applying Theorem 3.3 to the measures � A and �� (R2 nA) and using (3.2)we obtain that � << L2, hence � = gL2 for some g 2 L1(R2). In the case k = 1the proof is analogous, by the remarks following Theorem 3.3.In the following theorem we prove, by a simple projection argument, the absolutecontinuity property of normal currents in any metric space E.Theorem 3.9 (Absolute continuity) Let T 2 Nk(E) and let N 2 B(Rk) beLk-negligible. ThenkT d�k ���1(N )� = 0 8� 2 Lip(E;Rk) : (3.9)Moreover, kTk vanishes on Borel Hk-negligible subsets of E.Proof. Let L = ��1(N ) and f 2 Lipb(E); since(T d�)(f�L) = T (f d�)(�L) = �#(T f)(�N dx1 ^ : : :^ dxk)and �#(T f) 2 Nk(Rk), from Theorem 3.7 we conclude that T d�(f�L) = 0.Since f is arbitrary we obtain kT �k(L) = 0.If L 2 B(E) is any Hk-negligible set and � 2 Lip(E;Rk), taking into accountthat �(L) (being Hk-negligible) is contained in a Lebesgue negligible Borel set Nwe obtain kT d�k(L) � kT d�k ���1(N )� = 0. >From (2.6) we conclude thatkTk(L) = 0.4 Recti�able currentsIn this section we de�ne the class of recti�able currents. We �rst give an intrinsicde�nition and then, as in the classical theory, we compare it with a parametric oneadopted, with minor variants, in [20].We say that a Hk-measurable set S � E is countably Hk-recti�able if there existsets Ai � Rk and Lipschitz functions fi : Ai ! E such thatHk  S n 1[i=0 fi(Ai)! = 0 : (4.1)It is not hard to prove that any countably Hk-recti�able set is separable; by thecompleteness assumption on E the sets Ai can be required to be closed, or compact.18



Lemma 4.1 Let S � E be countably Hk-recti�able. Then there exist �nitely orcountably many compact sets Ki � Rk and bi-Lipschitz maps fi : Ki ! S such thatfi(Ki) are pairwise disjoint and Hk (S n [ifi(Ki)) = 0.Proof. By Lemma 4 of [38] we can �nd compact sets Ki � Rk and bi-Lipschitzmaps fi : Ki ! E such that S � [ifi(Ki), up to Hk-negligible sets. Then, settingB0 = K0 andBi := Ki n f�10@S \[j<i fj(Kj)1A 2 B(Rk) 8i � 1we represent Hk-almost all of S as the disjoint union of fi(Bi). For any i 2 N,representing Lk-almost all of Bi by a disjoint union of compact sets the proof isachieved.De�nition 4.2 (Recti�able currents) Let k � 1 integer and T 2 Mk(E); wesay that T is recti�able if(a) kTk is concentrated on a countably Hk-recti�able set;(b) kTk vanishes on Hk-negligible Borel sets.We say that a recti�able current T is integer recti�able if for any ' 2 Lip(E;Rk)and any open set A � E we have '#(T A) = [[�]] for some � 2 L1(Rk;Z).The collections of recti�able and integer recti�able currents will be respectively de-noted by Rk(E) and Ik(E). The space of integral currents Ik(E) is de�ned byIk(E) := Ik(E) \Nk(E) :We have proved in the previous section that condition (b) holds if either k = 1; 2or T is normal. We will also prove in Theorem 8.8(i) that condition (a) can beweakened by requiring that T is concentrated on a Borel set �-�nite with respectto Hn�1 and that, for normal currents T , the integer recti�ability of all projections'#(T A) implies the integer recti�ability of T .In the case k = 0 the de�nition above can be easily extended by requiring theexistence of countably many points xh 2 E and �h 2 R (or �h 2 Z, in the integercase), such that T (f) =Xh �hf(xh) 8f 2 B1(E) :It follows directly from the de�nition that Rk(E) and Ik(E) are Banach subspacesof Mk(E).We will also use the following recti�ability criteria, based on Lipschitz pro-jections, for 0-dimensional currents; the result will be extended to k-dimensionalcurrents in Theorem 8.8.Theorem 4.3 Let S 2M0(E). Then(i) S 2 I0(E) if and only if S(�A) 2 Z for any open set A � E;(ii) S 2 I0(E) if and only if '#S 2 I0(R) for any ' 2 Lip(E).(iii) If E = RN for some N , then S 2 R0(E) if and only if '#S 2 R0(R) for any' 2 Lip(E). 19



Proof. (i) If S(�A) is integer for any open set A, we set� := fx 2 E : kSk(B�(x)) � 1 8� > 0gand notice that � is �nite and that, by a continuity argument, S � 2 I0(E). Ifx =2 � we can �nd a ball B centered at x such that kSk(B) < 1; as S(�A) is aninteger for any open set A � B, it follows that S(�A) = 0, hence kSk(B) = 0. Acovering argument proves that kSk(K) = 0 for any compact set K � E n �, andLemma 2.9 implies that S is supported on �.(ii) Let A � E be an open set and let ' be the distance function from thecomplement of A. Since S(�A) = '#S(�(0;1)) 2 Zthe statement follows from (i).(iii) The statement follows by Lemma 4.4 below.Lemma 4.4 Let � be a signed measure in RN . Set Q = QN � (Q \ (0;1))N andconsider the countable family of lipschitz mapsfx;�(y) = maxi�N �ijxi � yij y 2 RN ;where (x; �) runs through Q.Then � 2 R0(RN ) if and only if fx;�#� 2 R0(R) for all (x; �) 2 Q.Proof. We can assume with no loss of generality that � has no atom and denoteby k � k1 the l1 norm in RN . Assume � to be a counterexample to our conclusionand let K � N be the smallest dimension of a coordinate parallel subspace of RNcharged by j�j, i.e. K is the smallest integer such that there are exist x0 2 RN ,I � f1; : : : ; Ng with cardinality N �K such that j�j �PI(x0)� > 0, wherePI(x0) := �x 2: xi = x0i for any i 2 I	 :Since � has no atom, K > 0. Replacing � by �� if necessary, we �nd " > 0 andx1 2 QN such that�(M ) > 3" where M := PI(x0) \ �y : ky � x1k1 < 1	 :Next we choose k su�ciently large such thatj�j( ~M) < " with ~M := �y 2 RN : dist1(y;M ) 2 (0; 2=k)	 :Modifying x1 only in the i-th coordinates for i 2 I we can, without changingM , inaddition assume that j(x0 � x1)ij < 1=k for all i 2 I. We de�ne � 2 (Q \ (0;1))Nby �i = k if i 2 I and �i = 1 otherwise. Observe thatM � f�1x1;�([0; 1)) �M [ ~M :Let T be the countable set on which ~� = fx1;�#� is concentrated. Due to ourminimal choice of K we have j�j�M \ f�1x;�(s)� = 0 for any s 2 R, hence our choiceof ~M gives j�j(f�1x1;�(T \ [0; 1))) � j�j(f�1x1;�([0; 1)) nM ) < "and we obtain that j~�j([0; 1)) < ". On the other hand,~� ((0; 1]) = ��f�1x1 ;�([0; 1))� � �(M ) � j�j( ~M) � 2" :This contradiction �nishes our proof. 20



It is also possible to show that this kind of statement fails in any in�nite di-mensional situation, for instance when E is L2. In fact, it could be proved thatgiven any sequence of lipschitz functions on a Hilbert space, we can always �nd acontinuous probability measure on it whose images under all these maps are purelyatomic.Now we show that recti�able currents have a parametric representation, as sumsof images of recti�able euclidean currents (see also [20]).Theorem 4.5 (Parametric representation) Let T 2Mk(E). Then, T 2 Rk(E)(resp. T 2 Ik(E)) if and only if there exist a sequence of compact set Ki, func-tions �i 2 L1(Rk) (resp. �i 2 L1(Rk;Z)) with supp �i � Ki and bi-Lipschitz mapsfi : Ki ! E such thatT = 1Xi=0 fi#[[�i]] and 1Xi=0M(fi#[[�i]]) =M(T ) :Moreover, if E is a Banach space, T can be approximated in mass by a sequence ofnormal currents.Proof. One implication is trivial, since fi#[[�i]] is recti�able, being concentratedon fi(Ki) (the absolute continuity property (b) is a consequence of the fact thatf�1i : fi(Ki) ! Ki is a Lipschitz function) and Rk(E) is a Banach space. For theinteger case, we notice that Ti = fi#[[�i]] is integer recti�able if �i takes integervalues, because for any ' 2 Lip(E;Rk) and any open set A � E, setting h = '�fi :Ki ! Rk and A0 = f�1i (A), we have'#(Ti A) = h#([[�i]] A0) = [[ Xx2h�1(y)\A0 �i(x)sign (detrh(x))]]as a simple consequence of euclidean the area formula.Conversely, let us assume that T is recti�able, let S be a countablyHk-recti�ableset on which kTk is concentrated and let Ki; fi be given by Lemma 4.1. Letgi = f�1i 2 Lip(Si;Ki), with Si = fi(Ki), and set Ri = gi#(T Si); since kRikvanishes on Hk-negligible sets, by Theorem 3.7 there exists an integrable function�i vanishing out of Ki such that Ri = [[�i]], with integer values if T 2 Ik(E). Sincefi � gi(x) = x on Si, the locality property (3.6) of currents impliesT Si = (fi � gi)#(T Si) = fi#Ri = fi#[[�i]] :Adding with respect to i the desired representation of T follows. Finally, if E is aBanach space we can assume (see [37]) that fi are Lipschitz functions de�ned onthe whole of Rk and, by a rescaling argument, that Lip(fi) � 1; for " > 0 given,we can choose �0i 2 BV (Rk) such that RRk j�i � �0ij dx < "2�i to obtain that thenormal current ~T =Pi fi#[[�0i]] satis�es M(T � ~T ) < ".The following theorem provides a canonical (and minimal) set ST on which arecti�able current T is concentrated.Theorem 4.6 Let T 2 Rk(E) and setST := fx 2 E : ��k(kTk; x) > 0g : (4.2)Then ST is countably Hk-recti�able and kTk is concentrated on ST ; moreover, anyBorel set S on which kTk is concentrated contains ST , up to Hk-negligible sets.21



Proof. Let S be a countably Hk-recti�able set on which kTk is concentrated; bythe Radon{Nikodym theorem we can �nd a nonnegative function � 2 L1(Hk S)such that kTk = �Hk S. By Theorem 5.4 of [7] we obtain that �k(kTk; x) = �(x)for Hk-a.e. x 2 S, while (1.3) gives �k(kTk; x) = 0 for Hk-a.e. x 2 E n S. Thisproves that ST = S\f� > 0g, up toHk-negligible sets, and since kTk is concentratedon S \ f� > 0g the proof is achieved.De�nition 4.7 (Size of a recti�able current) The size of T 2 Rk(E) is de-�ned by S(T ) := Hk(ST )where ST is the set described in Theorem 4.6.5 Normal currentsIn this section we study more closely the class of normal currents; together withrecti�able currents, this is one of the main objects of our investigation, in connexionwith the isoperimetric inequalities and the general Plateau problem. We start witha useful equi-continuity property which leads, under suitable compactness assump-tions on the supports, to a compactness theorem in Nk(E).Proposition 5.1 (Equi-continuity of normal currents) Let T 2Nk(E). Thenthe following estimatejT (f d�)� T (f d�0)j � kXi=1 ZE jf jj�i��0ij dk@Tk+Lip(f) Zspt f j�i��0ij dkTk (5.1)holds whenever f; �i; �0i 2 Lip(E) and Lip(�i) � 1, Lip(�0i) � 1.Proof. Assume �rst that f , �i and �0i are bounded. We set d�0 = d�2 ^ : : :^ d�kand, using the de�nition of @T , we �ndT (f d�1 ^ d�0) � T (f d�01 ^ d�0)= T (1 d(f�1) ^ d�0) � T (1 d(f�01) ^ d�0)� T (�1 df ^ d�0) + T (�01 df ^ d�0)= @T (f�1 d�0)� @T (f�01 d�0) � T (�1 df ^ d�0) + T (�01 df ^ d�0) ;hence using the locality property jT (f d�1 ^ d�0)� T (f d�01 ^ d�0)j can be esti-mated with ZE jf jj�1 � �01j dk@Tk+ Lip(f) Zspt f j�1 � �01j dkTk :Repeating k � 1 more times this argument the proof is achieved. In the generalcase the inequality (5.1) is achieved by a truncation argument, using the continuityaxiom.Theorem 5.2 (Compactness) Let (Th) � Nk(E) be a bounded sequence and as-sume that for any integer p � 1 there exists a compact set Kp � E such thatkThk(E nKp) + k@Thk(E nKp) < 1p 8h 2N :Then, there exists a subsequence (Th(n)) converging to a current T 2 Nk(E) satis-fying kTk(E n 1[p=1Kp) + k@Tk(E n 1[p=1Kp) = 0 :22



Proof. Possibly extracting a subsequence, we can assume the existence of measures�; � 2M(E) such thatlimh!1 ZE f dkThk = ZE f d� ; limh!1 ZE f dk@Thk = ZE f d�for any bounded continuous function f in E. It is also easy to see that (�+ �)(E nKp) � 1=p, hence �+ � is concentrated on [pKp.Step 1. We will �rst prove that (Th) has a pointwise converging subsequence(Th(n)); to this aim, by a diagonal argument, we need only to show for any integerq � 1 the existence of a subsequence (h(n)) such thatlim supn;m!1 jTh(n)(f d�) � Th(m)(f d�)j � 3qwhenever f d� 2 Dk(E) with jf j � q, Lip(f) � 1 and Lip(�i) � 1. To this aim, wechoose g 2 Lip(E) with bounded support such thatsuph2NN(Th � Th g) < 1q2(it su�ces to take g : E ! [0; 1] with Lip(g) � 1 and g = 1 in K2q2), and provethe existence of a subsequence h(n) such that Th(n) g(f d�) converges wheneverf d� 2 Dk(E) with Lip(f) � 1 and Lip(�i) � 1.Endowing Z = Lip1([pKp) with a separable metric inducing uniform conver-gence on any compact set Kp, we can �nd a countable dense set D � Z and asubsequence (h(n)) such that Th(n) g(f d�) converge whenever f; �1; : : : ; �k be-long to D. Now we claim that Th(n)(f d�) converge for f; �1; : : : ; �k 2 Lip1(E); infact, for any ~f ; ~�1; : : : ; ~�k 2 D we can use (5.1) to obtainlim supn;n0!1 jTh(n)(f d�)� Th(n0)(f d�)j � 2 lim suph!1 jTh(f d�)� Th( ~f d~�)j� lim suph!1 kXi=1 ZE(jf j+ 1)j�i � ~�ij d[k@(Th g)k + kT gk] + ZE jf � ~f j dkTh gk� kXi=1 Zspt g(jf j+ 1)j�i � ~�ij d�+ ZE(jf j + 1)jgjj�i � ~�ij d� + ZE jf � ~f jjgj d� :Since ~f and ~�i are arbitrary, this proves the convergence of Th(n) g(f d�).Step 2. Since Th(n)(!) converge to T (!) for any ! 2 Dk(E), T satis�es conditions(i) and (iii) stated in De�nition 3.1. Passing to the limit as n!1 in the de�nitionof mass we obtain that both T and @T have �nite mass, and that kTk � �, k@Tk ��. In order to check the continuity property (ii) in De�nition 3.1 we can assume, bythe �niteness of mass, that f has bounded support; under this assumption, passingto the limit as h!1 in (5.1) we getjT (f d�)� T (f d�0)j � kXi=1 ZE jf jj�i � �0ij d�+ Lip(f) Zspt f j�i � �0ij d� :whenever Lip(�i) � 1, Lip(�0i) � 1. This estimate trivially implies the continuityproperty.A simple consequence of the compactness theorem, of (3.5) and of (3.1) is thefollowing localization lemma; in (5.2) we estimate the extra boundary created bythe localization. 23



Lemma 5.3 (Localization) Let ' 2 Lip(E) and let T 2Nk(E). Then, T f' >tg 2Nk(E) andk@(T f' > tg)k(f' = tg) � dd� kT d'k(f' � �g)�����=t (5.2)for L1-a.e. t 2 R. Moreover, if S is any �-compact set on which T and @T areconcentrated, T f' > tg and its boundary are concentrated on S for L1-a.e. t 2 R.Proof. Let � = kTk+ k@Tk, let (Kp) be a sequence of pairwise disjoint compactsets whose union covers �-almost all of E and setg(t) := � (f' � tg) ; gp(t) := � (Kp \ f' � tg) :We denote by L the set of all t 2 R such that g0(t) = Pp g0p(t) is �nite and thederivative in (5.2) exists; these conditions are ful�lled L1-almost everywhere in R,hence L has full measure in R.Let t 2 L, let "h # 0 and set fh(s) = 0 for s � t, 1 for s � t + "h, (s � t)="hfor s 2 [t; t + "h]; by (3.5) and the locality property we obtain that the currentsT fh � ' satisfy @(T fh � ') = @T fh � '� Rh (5.3)with Rh = "�1h T �ft<'<t+"hgd'. By (3.5) and locality again we get@Rh = @(@T fh � ') = � 1"h @T �ft<'<t+"hgd' :It is easy to see that our choice of t implies that the sequence (Rh) satis�es theassumptions of Theorem 5.2. Hence, possibly extracting a subsequence we canassume that (Rh) converges as h ! 1 to some R 2 Nk�1(E) such that kRk andk@Rk are concentrated on [pKp.Since @T fh(') converge to @T f' > tg, passing to the limit as h ! 1 in(5.3) we obtain @(T f' > tg) = @T f' > tg �R ;hence k@(T f' > tg)k(f' = tg) � M(R). Finally, the lower semicontinuity ofmass gives M(R) � lim infh!1 M(Rh) � dd� kT d'k(f' � �g)�����=t :In the proof of the uniqueness part of the slicing theorem we need the followingtechnical lemma, which allows to represent the mass as a supremum of a countablefamily of measures.Lemma 5.4 Let S � E be a �-compact set. Then, there exists a countable setD � Lip1(E) \ Lipb(E) such thatkTk =_ fkT d�k : �1; : : : ; �k 2 Dg (5.4)whenever T is concentrated on S.Proof. Let X = Lipb(E)\Lip1(E) and let S = [hKh with Kh � E compact. Theproof of Proposition 2.7 and a truncation argument based on the continuity axiomgive kTk =_ fkT d�k : �1; : : : ; �k 2 Xg (5.5)24



for any T 2 Mk(E). Let Dh � X be a countable set with the property that anyq 2 X can be approximated by a sequence qi � Dh with sup jqij equi-bounded andqi uniformly converging to q on Kh. Taking into account (5.5), the proof will beachieved with D = [hDh if we show thatkT d�k Kh �_ fkT dqk : q1; : : : ; qk 2 Dhg 8�1; : : : ; �k 2 X : (5.6)Let f 2 B1(E) vanishing out of Kh and let �ij 2 Dh converging as i!1 to �j asabove (i.e. uniformly on Kh with suph j�ijj equi-bounded). Then, the functions~�ij(x) := miny2Kh �ij(y) + d(x; y) 2 Lip1(E)coincide with �ij on Kh and pointwise converge to ~�j(x) = minKh �j(y) + d(x; y).Using the locality property and the continuity axiom we getT (f d�) = T (f d~�) = limi!1T (f d~�i) = limi!1T (f d�i) � ZE jf j d�hwhere �h is the right hand side in (5.6). Since f is arbitrary this proves (5.6).In an analogous way we can prove the existence of a countable dense class ofopen sets.Lemma 5.5 Let S � E be a �-compact set. There exists a countable collectionA of open subsets of E with the following property: for any open set A � E thereexists a sequence (Ai) � A such thatlimi!1�Ai = �A in L1(�) for any � 2M(E) concentrated on S :Proof. Let S = [hKh, with Kh compact and increasing, let D be constructed asin the previous lemma and let us de�neA := �f� > 12g : � 2 D� :The characteristic function of any open set A � E can be approximated by anincreasing sequence (gi) � Lip(E), with gi � 0. For any i � 1 we can �nd fi 2 Dsuch that jfi � gij < 1=i on Ki. By the dominated convergence theorem, the char-acteristic functions of ffi > 1=2g converge in L1(�) to the characteristic functionof A whenever � is concentrated on S.The following slicing theorem plays a fundamental role in our paper; it allowsto represent the restriction of a k-dimensional normal current T as an integral of(k�m)-dimensional ones. This is the basic ingredient in many proofs by inductionon the dimension of the current.We denote by hT; �; xi the sliced currents, � : E ! Rm being the slicing map,and characterize them by the propertyZRm hT; �; xi (x) dx = T ( � �) d� 8 2 Cc(Rk) : (5.7)We emphasize that the current valued map x 7! hT; �; xi will be measurable in thefollowing weak sense: whenever g d� 2 Dk�m(E) the real valued mapx 7! hT; �; xi(g d� )is Lm-measurable in Rm. This weak measurability property is necessary to givea sense to (5.7) and su�ces for our purposes. An analogous remark applies tox 7! khT; �; xik. 25



Theorem 5.6 (Slicing theorem) Let T 2 Nk(E), let L be a �-compact set onwhich T and @T are concentrated and let � 2 Lip(E;Rm), with m � k.(i) There exist currents hT; �; xi 2 Nk�m(E) such thathT; �; xi and @hT; �; xi are concentrated on L \ ��1(x) (5.8)ZRm khT; �; xik dx = kT d�k (5.9)and (5.7) holds;(ii) if L0 is a �-compact set, T x 2Mk�m(E) are concentrated on L0, satisfy (5.7)and x 7!M(T x) is integrable on Rk, then T x = hT; �; xi for Lm-a.e. x 2 Rm;(iii) if m = 1, there exists a L1-negligible set N � R such thathT; �; xi = limy#x T �fx<�<ygy � x d� = (@T ) f� > xg � @(T f� > xg)for any x 2 R n N . Moreover M(hT; �; xi) � Lip(�)M(T f� � xg)0 forL1-a.e. x and Z 1�1N(hT; �; xi) dx � Lip(�)N(T ) : (5.10)Proof. Step 1. In the case m = 1 we take statement (iii) as a de�nition. Theproof of the localization lemma shows thatSx := (@T ) f� > xg � @(T f� > xg) = limy#x 1y � xT �fx<�<ygd� (5.11)for L1-a.e. x, hence sptSx � L \ ��1(x) andM(Sx !) � ddtk(T d�) !k(f� > tg)����t=x for L1-a.e. x 2 Rwhenever ! 2 Dp(E), 0 � p � k � 1. By integrating with respect to x we obtainZ �R M(Sx !) dx �M ((T d�) !) (5.12)where R � denotes the upper integral (we will use also the lower integral R� later on).Now we check (5.7): any function  2 Cc(R) can be written as the di�erence oftwo bounded functions  1;  2 2 C(R) with  i � 1. Setting 
i(t) = R t0  i(� ) d� , fori = 1; 2 and ! 2 Dk�1(E) we computeZ 10 Sx(!) i(x) dx= Z 10 @T f� > xg(!) i(x) dx� Z 10 @(T f� > xg)(!) i(x) dx= Z 10 @T f
i � � > tg(!) dt� Z 10 T f
i � � > tg(d!) dt= @T (
+i � � !) � T (
+i � � d!) :Analogously, using the identity Sx = @(T f� � xg)� @T f� � xg we getZ 0�1 Sx(!) i(x) dx = �@T (
�i � �!) + T (
�i � � d!) :26



Hence, setting ! = f dp, we obtainZR Sx(f dp) i(x) dx = @T (
i � �f dp)� T (
i � � df ^ dp)= T (f d(
i � �) ^ dp) = T (f
0i � � d� ^ dp)= T  i � �d�(f dp) :Since  =  1 �  2 this proves (5.7).By (5.7) we getT d�(g d� ) = ZR Sx(g d� ) dx � k�1Yi=1 Lip(�i) Z�R kSxk(jgj) dxwhenever g d� 2 Dk�1(E). The representation formula for the mass and the super-additivity of the lower integral givekT d�k(jgj) � Z�R kSx(jgj)k dx 8g 2 L1(E; kT d�k) :This, together with (5.12) with ! = jgj, gives the weak measurability of x 7! kSxkand (5.9).To complete the proof of statement (iii) we use the identity@hT; �; xi = �h@T; �; xi ; (5.13)and apply (5.9) to the slices of T and @T to recover (5.10).Step 2. In this step we complete the existence of currents hT; �; xi satisfying (i) byinduction with respect to m. Assuming the statement true for some m 2 [1; k� 1],let us prove it for m+1. Let � = (�1; ~�), with ~� 2 Lip(E;Rm�1), and set x = (y; t)and Tt := hT; �1; ti ; Tx := hTt; ~�; yi :By the induction assumption and (5.12) with ! = d~� we getZ �R ZRm�1 M(Tx) dydt = Z �R M(Tt d~�) dt �M(T d�) : (5.14)By applying twice (5.7) we getZRm Tx 1(y) 2(t) dydt = ZR Tt  1(~�)d~� 2(t) dt = T  1(~�) 2(�1)d�whenever  1 2 Cc(Rm�1) and  2 2 Cc(R); then, a simple approximation argumentproves that Tx satisfy (5.7). Finally, the equality (5.9) can be deduced from (5.7)and (5.14) arguing as in Step 1.Step 3. Now we prove the uniqueness of hT; �; xi; let f dp 2 Dk�m(E) be �xed;denoting by (�") a family of molli�ers, by (5.7) we getT x(f d�) = lim"#0 T (f�" � � d� ^ dp) for Lm-a.e. x 2 Rm .This shows that, for given !, T x(!) is uniquely determined by (5.7) for Lm-a.e.x 2 Rm. Let D be given by Lemma 5.4 with S = L [ L0 and let N � Rm be aLm-negligible Borel set such that T x(f d�) = hT; �; xi(f d�) whenever �i 2 D andx 2 Rm n N . By applying (5.4) to T x � hT; �; xi we conclude that T x = hT; �; xifor any x 2 Rm nN . 27



Now we consider the case of (integer) recti�able currents, proving that the slicingoperator is well de�ned and preserves the (integer) recti�ability. Our proof of thesefacts use only the metric structure of the space; in w�-separable dual spaces a moreprecise result will be proved in Theorem 9.7 using the coarea formula of [7].Theorem 5.7 (Slices of recti�able currents) Let T 2 Rk(E) (resp. T 2 Ik(E))and let � 2 Lip(E;Rm), with 1 � m � k. Then there exist currents hT; �; xi 2Rk�m(E) (resp. hT; �; xi 2 Ik�m(E)) concentrated on ST \ ��1(x) and satisfying(5.7), (5.9), hT A; �; xi = hT; �; xi A 8A 2 B(E) (5.15)for Lm-a.e. x 2 Rm andZRm S(hT; �; xi) dx � c(k;m) mYi=1Lip(�i)S(T ) : (5.16)Moreover, if T x 2Mk�m(E) are concentrated on L\��1(x) for some �-compact setL, satisfy (5.7) and RRk M(T x) dx <1, then T x = hT; �; xi for Lm-a.e. x 2 Rm.Proof. We construct the slices currents �rst under the additional assumption thatE is a Banach space. Under this assumption, Theorem 4.5 implies that we canwrite T as a mass converging series of normal currents Th; by applying (5.9) to Thwe get ZRm 1Xh=0hTh; �; xi dx� mYi=1Lip(�i) 1Xh=0M(Th) = mYi=1Lip(�i)M(T )hence PhhTh; �; xi converges in Mk�m(E) for Lm-a.e. x 2 Rm. Denoting byhT; �; xi the sum, obviously (5.7) and (5.9) and condition (b) in De�nition 4.2follow by a limiting argument. Since hTh; �; xi are concentrated on ��1(x), thesame is true for hT; �; xi. In the general case we can assume by Lemma 2.9 thatF = sptT is separable; we choose an isometry j embedding F into l1 and de�nehT; �; ti := j�1# hj#T; ~�; ti 8t 2 Rwhere ~� is a Lipschitz extension to l1 of ��j�1 : j(F )! R. It is easy to check that(5.7) and (5.9) still hold, and that hT; �; ti are concentrated on ��1(x). Moreover,since (5.9) givesZRm khT; �; xik(E n ST ) dx � mYi=1Lip(�i)kTk(E n ST ) = 0we obtain that hT; �; xi is concentrated on ST for Lm-a.e. x 2 Rm. Using thisproperty, the inequality (see Theorem 2.10.25 of [23])ZRm Hk�m �ST \ ��1(x)� dx � c(k;m) mYi=1Lip(�i)Hk(ST )and Theorem 4.6 imply (5.16).The uniqueness of hT; �; xi follows by Theorem 5.6(ii). The uniqueness propertyeasily implies the validity for Lm-a.e. x 2 Rm of the identityhT A; �; xi = hT; �; xi Afor any A 2 B(E) �xed. Let A be given by Lemma 5.5 and let N � Rm be a Lm-negligible set such that the identity above holds for any A 2 A and any x 2 Rm nN .28



By Lemma 5.5 we infer that the identity holds for any open set A � E and anyx 2 Rm nN , whence (5.15) follows.Finally, we show that hT; �; xi 2 Ik�m(E) for Lm-a.e. x 2 Rm if T 2 Ik(E).The proof relies on the well known fact that this property is true in the euclideancase, as a consequence of the euclidean coarea formula; see also Theorem 9.7, wherethis property is proved in a much more general setting. By Theorem 4.5 we canassume with no loss of generality that T = f#[[�]] for some integer valued � 2 L1(Rk)vanishing out of a compact set K, and f : K ! E bi-Lipschitz. Then, it is easy tocheck that T x := f#h[[�]]; � � f; xiare concentrated on f(K) \ ��1(x), satisfy (5.7) and RRm M(T x) dx <1. HencehT; �; xi = T x 2 Ik�m(E) for Lm-a.e. x 2 Rm :We conclude this section with two technical lemmas about slices, which will beused in Section 8. The �rst one shows that the slicing operator, when iterated,produces lower dimensional slices of the original current; the second one shows thatin some sense the slicing operator and the projection operator commute if the slicingand projection maps are properly chosen.Lemma 5.8 (Iterated slices) Let T 2 Rk(E)[Nk(E), 1 � m < k, � 2 Lip(E;Rm),Tt = hT; �; ti. Then, for any n 2 [1; k�m] and any ' 2 Lip(E;Rn) we havehT; (�; '); (t; y)i = hTt; '; yi for Lm+n-a.e. (t; y) 2 Rm+n :Proof. The proof easily follows by the characterization of slices based on (5.7).Lemma 5.9 (Slices of projections and projections of slices) Let m 2 [1; k],n > m, S 2 Rk(E), ' 2 Lip(E;Rn�m), � 2 Lip(E;Rm). Thenq#h('; �)#S; p; ti = '#hS; �; ti for Lm-a.e. t 2 Rm ;where p : Rn ! Rm and q : Rn ! Rn�m are respectively the projections on thelast m coordinates and on the �rst (n�m) coordinates.Proof. Set � = ('; �) and let f d� 2 Dk�m(Rn�m) and let g 2 C1c (Rm) be �xed.By the same argument used in the proof of Theorem 5.6(ii) we need only to provethat ZRm g(x)q#h�#S; p; ti(f d� ) dx = ZRm g(x)'#hS; �; ti(f d� ) dx : (5.17)Using (5.7) we obtain that the right side in (5.17) is equal toZRm g(x)hS; �; xi(f � 'd(� � ')) dx = S (f � ' � g � � d� ^ d(� � ')) :On the other hand, a similar argument implies that the left side is equal toZRm g(x)h�#S; p; xi(f � q d(� � q)) dx = �#S (f � q � g � p dp ^ d(� � q))= S (f � ' � g � � d� ^ d(� � '))because q � � = ' and p � � = �.We conclude this section noticing that in the special case when k = m and � = 'an analogous formula holds with p equal to the identity map, i.e.h'#S; p; xi = '#hS; '; xi for Lk-a.e. x 2 Rk : (5.18)29



6 Compactness in Banach spacesIn the compactness theorem for normal currents seen in the previous section, theexistence of a given compact set K containing all the supports of Th is too strongfor some applications. This is the main motivation for the introduction of a weak�convergence for normal currents in dual Banach spaces, which provides a moregeneral compactness property, proved in Theorem 6.6.De�nition 6.1 (Weak� convergence) Let Y be a w�-separable dual space. Wesay that a sequence (Th) � Mk(Y ) w�-converges to T 2 Mk(Y ), and we writeTh * T , if Th(f d�) converge to T (f d�) for any f d� 2 Dk(Y ) with f and �iLipschitz and w�-continuous.The uniqueness of the w�-limit follows by a Lipschitz extension theorem: if A isw�-compact and f is w�-continuous, we can extend f preserving both the Lipschitzconstant and the w�-continuity.Theorem 6.2 Let Y be a w�-separable dual space, let A � Y be w�-compact andlet f : A ! R be Lipschitz and w�-continuous. Then, there exists a uniformlyw�-continuous map ~f : Y ! R such that ~fjA = f , sup j ~f j = sup jf j and Lip( ~f ) =Lip(f).Proof. Of course, we can assume f(A) � [0; 1]. Using compactness (and metriz-ability) of the w�-topology on any bounded subset of Y we �nd a sequence fUngn�0of w�-neighbourhoods of zero such thatjf(x) � f(y)j�2�n + Lip(f) distk�k(x� y; Un) if x; y 2 A; n � 0 : (6.1)Clearly, we can also modify this sequence (gradually replacing the Un's by smallersets if necessary) in a way that additionallyU0 = Y and Un+1 + Un+1 � Un for all n � 0: (6.2)For x 2 Y we de�ned1(x) := inf �2�n : x 2 Un	 ; d2(x) := minf2 d1(x);Lip(f)kxkg :Due to (6.2) we have d1(x + y) � 2max(d1(x); d1(y)) for any pair of points x; y.This implies by induction with respect to n that d1(Pn1 xi) � 2 d1(xn) providedd1(x1) < d1(x2) < : : : < d1(xn). We prove also by induction in n that d1(Pn1 xi) �2Pn1 d1(xi) for any x1; : : : ; xn 2 Ê. Indeed, if all values d1(xi) are di�erent, thenthis is a consequence of what was just said. But if d1(xn�1) = d1(xn) then theestimate d1(xn�1) + d1(xn) � d1(xn�1 + xn) shows that the claimed inequalityfollows from the induction assumption d1(Pn�21 xi+(xn�1+xn)) � 2Pn�21 d1(xi)+2 d1(xn�1 + xn). Now we put for any x 2 Yd(x) := inf ( nXi=1 d2(x) : x = nXi=1 xi) :We note that jf(x)� f(y)j � d(x� y) whenever x; y 2 A : (6.3)To see this take an arbitrary representation x� y =Pn1 zi. We de�ne S to be theset of those indices i such that d2(zi) = 2 d1(zi) and put z =Pi2S zi, �z = x � y �z. Then Lip(f)k�zk � Pi=2S Lip(f)kzik = Pi=2S d2(zi). Moreover, Pi2S d2(zi) =2Pi2S d1(zi) � d1(z). Since jf(x)�f(y)j � d1(z)+Lip(f)k�zk due to (6.1), we justestablished (6.3). 30



Finally, we de�ne our function ~f by~f (x) := infy2A f(y) + d(x� y) :Since obviously jd(x � y) � d(�x � y)j � d2(x � �x) for any x; �x; y, we see that~f (x) � ~f (�x) � d2(x � �x) � Lip(f)kx � �xk. Hence Lip( ~f ) = Lip(f) and due tothe w�-continuity of d1 in zero the function ~f is a uniformly w�-continuous one.Moreover, the condition (6.3) ensures that ~f (x) = f(x) for each x 2 A. Thefunction minff(x); 1g satis�es all stated conditions.In the following proposition we state some basic properties of the w�-convergence.Proposition 6.3 (Properties of w�-convergence) Let Y be a w�-separable dualspace and let (Th) �Mk(Y ) be a bounded sequence. Then(i) the w�-limit is unique;(ii) Th * T implies M(T ) � lim infhM(Th);(iii) w�-convergence is equivalent to weak convergence if all currents Th are sup-ported on a compact set S.Proof. (i) The uniqueness of the limit obviously follows from (ii).To prove (ii) we �x 1-Lipschitz functions �ij in E and functions fi 2 Lip(E) withP jfij � 1, for i = 1; : : : ; p. By (3.7) we need only to show thatpXi=1 T (fi d�i) � lim infh!1 M(Th) :Let " > 0 and let K" � Y a compact set such that kTk(Y n K") + k@Tk(Y nK") < "; since the restrictions of fi and �i to K" are w�-continuous we can �ndby Theorem 6.2 w�-continuous extensions fi"; �ij" of fijK" ; �ijjK". As the conditionPi jfi"j � 1 need not be satis�ed, we de�ne f̂i" = qi(f1"; : : : ; fp"), where q : Rp !Rp is the orthogonal projection on the convex set Pi jzij � 1. The convergence ofTh to T impliespXi=1 T (f̂"i d�i") = limh!1 pXi=1 Th(f̂"i d�i") � lim infh!1 M(Th) :Since f̂"i = f"i = fi on K", by letting " # 0 the inequality follows.(iii) The equivalence follows by Theorem 6.2 and the locality property (3.6).Another link between w�-convergence and weak convergence is given by thefollowing lemma.Lemma 6.4 Let X be a compact metric space, let Ch � X and jh 2 Lip1(Ch; Y )with sup fkjh(x)k : x 2 Ch; h 2Ng <1 :Let us assume that (Ch) converge to C in the sense of Kuratowski and j : C ! Ysatis�es xh(k) 2 Ch(k) ! x =) w� � limk!1 jh(k)(xh(k)) = j(x) : (6.4)Then, j 2 Lip1(C; Y ) and Sh ! S implies jh#Sh * j#S for any bounded sequence(Sh) �Nk(X) with spt Sh � Ch. 31



Proof. The w�-lower semicontinuity of the norm implies j 2 Lip1(X;Y ) andclearly sptS � C. Let f : Y ! R be any w�-continuous Lipschitz map; we claimthat supCh jf � jh � ~f j ! 0 for any Lipschitz extension ~f of f � j; in fact, assumingby contradiction that jf � jh(xh) � ~f(xh)j � " for some " > 0 and xh 2 Ch, wecan assume that a subsequence (xh(k)) converges to x 2 C and hence that ~f (xh(k))converge to ~f (x) = f � j(x); on the other hand, jh(k)(xh(k)) w�-converge to j(x),hence f � jh(k)(xh(k)) converge to f � j(x) and a contradiction is found.Let now f d� 2 Dk(Y ) with f and �i Lipschitz and w�-continuous, and let ~f ,~�i be Lipschitz extensions of f � j, �i � j respectively with ~f bounded; notice thatjh#Sh(f d�)� j#S(f d�) = hSh (f � jh d(� � jh))� Sh( ~f d~�)i+ hSh( ~f d~�)� S( ~f d~�)i :The equi-continuity of normal currents and the uniform convergence to 0 of f �jh� ~fand �i � jh � ~�i on Ch imply that the quantity in the �rst square bracket tends to0; the second one is also in�nitesimal by the weak convergence of Sh to S.De�nition 6.5 (Equi-compactness) A sequence of compact metric spaces (Xh)is called equi-compact if for any " > 0 there exists N 2 N such that any space Xhcan be covered by at most N balls with radius ".Using the equi-compactness assumption and the Gromov{Hausdor� convergenceof metric spaces (see [31]), Theorem 5.2 can be generalized as follows.Theorem 6.6 (Weak� compactness) Let Y be a w�-separable dual space, let(Th) � Nk(Y ) be a bounded sequence, and assume that for any " > 0 there ex-ists R > 0 such that Kh = BR(0) \ spt Th are equi-compact andsuph2N kThk(Y nKh) + k@Thk(Y nKh) < " :Then, there exists a subsequence (Th(k)) w�-converging to some T 2Nk(Y ). More-over, T has compact support if sptTh are equi-bounded.Proof. Assume �rst that sptTh are equi-bounded and put Kh = sptTh; sinceKh are equi-compact, by Gromov's embedding theorem [31], possibly extracting asubsequence (not relabelled), we can �nd a compact metric space X and isometricimmersions ih : Kh ! X. By our extra assumption on Kh the maps jh = i�1hare equi-bounded in ih(Kh), and we denote by B a closed ball in Y containing allsets jh(X). Let dw be a metric inducing in B the w�-topology; since Y = (B; dw)is compact, possibly extracting a subsequence we can assume the existence of acompact set C � X and of j : C ! B such that Ch = ih(Kh) converge to C in thesense of Kuratowski and (6.4) holds (for instance this can be proved by taking aKuratowski limit of a subsequence of the graphs of jh in X�B). By Theorem 5.2 wecan also assume that the currents Sh = ih#Th weakly converge as h!1 to somecurrent S. By Lemma 6.4 we conclude that Th = jh#Sh w�-converge to T = j#S.If the supports are not equi-bounded the proof can be achieved by a standarddiagonal argument if we show the existence, for any " > 0, of a sequence ~Th stillsatisfying the assumptions of the theorem, with spt ~Th equi-bounded and M(Th �~Th)(Y ) < ". These currents can be easily obtained setting ~Th = Th BRh (0), whereRh 2 (R;R+ 1) are chosen in such a way that M(@ ~Th)(Y ) are equi-bounded. Thischoice can be done using the localization lemma with '(x) = kxk.32



7 Metric space valued BV functionsIn this section we introduce a class of BV maps u : Rk ! S, where S is a metricspace. We follow essentially the approach developed by L.Ambrosio in [4] but,unlike [4], we will not make any compactness assumption on S, assuming only thatS is weakly separable. If S =M0(E) we use a Lipschitz approximation theorem forBV metric valued maps to prove in Theorem 7.4 the recti�ability of the collectionof all atoms of u(x), as x varies in (almost all of) Rk.Let (S; d) be a weakly separable metric space and let F � Lipb(S) be a countablefamily such that d(x; y) = sup'2F j'(x)� '(y)j 8x; y 2 S : (7.1)De�nition 7.1 (Functions of metric bounded variation) We say that a func-tion u : Rk ! S is a function of metric bounded variation, and we write u 2MBV (Rk; S), if ' � u 2 BVloc(Rk) for any ' 2 F andkDuk := _'2F jD(' � u)j <1 :Notice that in the de�nition above we implicitly make the assumption that '�uis Lebesgue measurable for any ' 2 Lip1(S); since S is a metric space, this conditionis easily seen to be equivalent to measurability of u between Rk, endowed with the�-algebra of Lebesgue measurable sets, and S, endowed with the Borel �-algebra.Notice also that, even in the Euclidean case S = Rm, the space MBV is strictlylarger than BV , because not even the local integrability of u is required, and isrelated to the class of generalized functions with bounded variation studied in [22],[50].The class MBV (Rk; S) and kDuk are independent of the choice of F ; this isa direct consequence of the following lemma. It is also easy to check that u 2MBV (Rk;R) if u 2 BVloc(Rk;R) and jDuj(Rk) < 1, and in this case kDuk =jDuj.Lemma 7.2 Let F � Lipb(S) be as in (7.1) and let u 2 MBV (Rk; S) and  2Lip1(S) \ Lipb(S). Then  � u 2 BVloc(Rk) andjD( � u)j � _'2F jD(' � u)j :In particular kDuk = W fjD(' � u)j : ' 2 Lip1(S) \ Lipb(S)g.Proof. Let us �rst assume k = 1. Let A � R be an open interval and letv : A! R be a bounded function. We denote by Lv the Lebesgue set of v and setjDvj(A) = +1 if v =2 BVloc(A). It can be easily proved thatjDvj(A) = sup(p�1Xi=1 jv(ti+1) � v(ti)j : t1 < : : : < tp; ti 2 A nN)whenever L1(N ) = 0 and N � A n Lv. ChoosingN := (A n L �u) [ ['2F [(A n L'�u) [ ft 2 A : jD(' � u)j(ftg) > 0g]we getj � u(ti+1)�  � u(ti)j � sup'2F j' � u(ti+1)� ' � u(ti)j � kDuk ((ti+1; ti))33



whenever ti; ti+1 2 A nN . Adding with respect to i and taking the supremum weobtain that jD( � u)j(A) can be estimated with kDuk(A). By approximation thesame inequality remains true if A is an open set or a Borel set.In the case k > 1 the proof follows by the one dimensional case recalling thefollowing facts (see [23] 4.5.9(27) and 4.5.9(28) or [4]): �rstjDvj = _�2Sk�1 jD�vj 8v 2 BVloc(Rk) (7.2)and the directional total variations jD�vj can be represented as integrals of varia-tions on lines, namelyjD�vj = Z�� Vu(x; �) dHk�1(x) 8� 2 Sk�1 ;where �� is the hyperplane orthogonal to �, u(x; �)(t) = u(x+ t�) andVu(x; �)(B) := jDu(x; �)j (ft : x+ t� 2 Bg) 8B 2 B(Rk) :Hence, for � 2 Sk�1 �xed and v =  �u, using (1.8) of [4] to commute the supremumwith the integral we getjD�vj = Z�� Vv(x; �) dHk�1(x) � Z�� _'2F V'�u(x; �) dHk�1(x)= _'2F Z�� V'�u(x; �) dHk�1(x) = _'2F jD(' � u)j � kDuk :Since � is arbitrary the inequality jDvj � kDuk follows by (7.2).Given u 2 MBV (Rk; S), we denote by MDu the maximal function of kDuk,namely MDu(x) := sup%>0 kDuk(B%(x))!k%k :By Besicovitch covering theorem, Lk(fMDu > �g) can be easily estimated fromabove with a dimensional constant times kDuk(Rk)=�, hence MDu(x) is �nite forLk-a.e. x. The following lemma provides a Lipschitz property of MBV functions(reversing the roles of Rk and S, an analogous property can be used to de�neSobolev functions on a metric space, see [33], [34]).Lemma 7.3 Let (S; d) be a weakly separable metric space. Then, for any u 2MBV (Rk; S) there exists a Lk-negligible set N � Rk such thatd (u(x); u(y)) � c [MDu(x) +MDu(y)] jx� yj 8x; y 2 Rk nNwith c depending only on k.Proof. Any function w 2 BVloc(Rk) satis�esjw(x)�w(y)j � c(k) [MDw(x) +MDw(y)] jx� yj 8x; y 2 Lw ;where Lw is the set of Lebesgue points of w; this is a simple consequence of theestimate 1!k%k ZB%(x) jw(z)�w(x)jjz � xj dz � Z 10 jDwj(Bt%(x))!k(t%)k dt �MDw(x)for any ball B%(x) � Rk centered at some point x 2 Lw (see for instance (2.5)and Theorem 2.3 of [5]). Taking into account (7.1) and the inequality MDu �MD(' � u), the statement follows with N = Rk n \'2FL'�u.34



In the following we endow Lipb(E) with the 
at norm F(�) = sup j�j+ Lip(�)and, by duality, we endow the space M0(E) with the 
at normF(T ) := sup fT (�) : � 2 Lipb(E); F(�) � 1g :If E is a weakly separable metric space it is not hard to see that M0(E) is stillweakly separable. In fact, assuming E = l1 (up to an isometric embedding ofM0(E) into M0(l1)), by Theorem 6.2 and Lemma 2.9 we see thatF(T ) = sup fT (�) : � 2 Lip�(E) \ B1(E); F(�) � 1g= sup fT (�) : n � 1; � 2 Ln(E); F(�) � 1g ;where Lip�(E) is the vector subspace of w�-continuous functions in Lip(E) andLn(E) is the subspace consisting of all functions depending only on the �rst ncoordinates of x; since all the sets f� 2 Ln(E) : F(�) � 1g are separable, whenendowed with the topology of uniform convergence on bounded sets, a countablesubfamily is easily achieved.Theorem 7.4 (Recti�ability criterion) Let E be a weakly separable metric space,let S = M0(E) be endowed with the 
at norm and let T 2 MBV (Rk; S). Then,there exists an Lk-negligible set N � Rk such thatRK := [z2RknN fx 2 K : kT (z)k(fxg) > 0gis contained in a countably Hk-recti�able set for any compact set K � E.Proof. Let N1 � Rk be given by Lemma7.3 with S =M0(E), N = N1[fMDT =1g, K � E compact and "; � > 0. For simplicity we use the notation Tz for T (z),while Tz(�) will stand for RE �dTz.We de�ne Z";� as the collection of points z 2 RknN such thatMDT (z) < 1=(2")and kTzk(fxg) � " =) kTzk(B3�(x) n fxg) � "3for any x 2 K. Setting R";� = fx 2 K : kTzk(fxg) � " for some z 2 Z";�g, wenotice that RK = ["; �>0R";�, hence it su�ces to prove that R";� is contained in acountably Hk-recti�able set.Denoting by B any subset of R";� with diameter less than �, we now check thatd(x; x0) � 3c(k)(� + 1)"2 jz � z0j (7.3)whenever x; x0 2 B, kTzk(fxg) � " and kTz0k(fx0g) � " for some z; z0 2 Z";�. Infact, setting d = d(x; x0) � �, we can de�ne a function �(y) equal to d(y; x) inBd(x), equal to 0 in E nB2�(x) with sup j�j = d, Lip(�) � 1; sincejTz(�)j � "d3 ; jTz0(�)j � "d� "d3we get "3d(x; x0) � jTz0(�)� Tz(�)j � c(k)(� + 1)" jz � z0j :By (7.3) it follows that for any z 2 Z";� there exists at most one x = f(z) 2 B suchthat kTzk(fxg) � "; moreover, denoting byD the domain of f , the map f : D ! B isLipschitz and onto, hence B is contained in the countably Hk-recti�able set f(D).A covering argument proves that R";� is contained in a countably Hk-recti�ableset. 35



Actually, it could be proved that, for a suitable choice of N , the set RK isuniversally measurable in E, i.e., for any � 2 M(E) it belongs to the completionof B(E) with respect to �. The proof follows by the projection theorem (see [23],2.2.12), checking �rst that the setR0K := �(z; x) 2 (Rk nN )�K : kTzk(fxg) > 0	belongs to B(Rk)
B(E), and then noticing that RK is the projection of R0K on E.Since the projection theorem is a quite sophisticated measure theoretic result, wepreferred to state Theorem 7.4 in a weaker form, which is actually largely su�cientfor our purposes.8 Closure and boundary recti�ability theoremsIn this section we prove the classical closure and boundary recti�ability theoremsfor integral currents, proved in the euclidean case by H.Federer and W.H.Flemingin [24] (see also [58], [61]). Actually, we prove a more general closure propertyfor recti�able currents with equibounded masses and sizes, proved in the euclideancase by F.J.Almgren in [1] using multivalued function theory. We also provide newcharacterizations of integer recti�able currents based on the Lipschitz projections.The basic ingredient of our proofs is the following theorem, which allows to de-duce recti�ability of a k-current from the recti�ability of its 0-dimensional slices(for euclidean currents in general coe�cient groups, a similar result has been ob-tained by B.White in [62]). The proof is based on Theorem 7.4, the slicing theoremand the key observation, due to R.Jerrard in the euclidean context (see [36]), thatx 7! hT; �; xi is a BV map whenever T 2Nk(E) and � 2 Lip(E;Rk).Theorem 8.1 (Recti�ability and recti�ability of slices) Let T 2Nk(E). ThenT 2 Rk(E) if and only iffor any � 2 Lip(E;Rk), hT; �; xi 2 R0(E) for Lk-a.e. x 2 Rk . (8.1)Moreover, T 2 Ik(E) if and only if (8.1) holds with I0(E) in place of R0(E).Proof. Let � 2 Lip(E;Rk) with Lip(�i) � 1; we will �rst prove that for anyT 2 Nk(E) the map x 7! Tx = hT; �; xi belongs to MBV (Rk; S), where S asin Theorem 7.4 is M0(E) endowed with the 
at norm. Let  2 C10(Rk) and� 2 Lipb(E) with F(�) � 1; using (3.2) we compute(�1)i�1 ZRk Tx(�) @ @xi (x) dx = (�1)i�1T d�(� @ @xi � �)= T (�d( � �) ^ d�̂i)= @T (�( � �) d�̂i)� T ( � � d�^ d�̂i)� k@Tk( � �) + kTk( � �) ;where d�̂i = d�1 ^ : : :^ d�i�1 ^ d�i+1 ^ : : :^ d�k. Since  is arbitrary, this provesthat x 7! Tx(�) belongs to BVloc(Rk) andjDTx(�)j � k�#kTk+ k�#k@Tk :Since � is arbitrary, this proves that Tx 2MBV (Rk; S).Now we consider the recti�able case. By Theorem 5.7, the recti�ability of Timplies the generic recti�ability of Tx. Conversely, let L be a �-compact set on36



which kTk is concentrated; by Theorem 7.4 there exists a Lk-negligible set N � Rksuch that [x2RknN fy 2 L : kTxk(fyg) > 0gis contained in a countably Hk-recti�able set R� . Now, if Tx 2 R0(E) for Lk-a.e.x, by (5.9) we inferkT d�k(E n R�) = kT d�k(L n R�) = ZRk kTxk(L n R�) dx = 0 :Hence, T d� is concentrated on a countablyHk-recti�able set for any � 2 Lip(E;Rk).By Lemma 5.4 this implies the same for T , hence T is recti�able.Finally, we consider the integer recti�able case. The proof is straightforward inthe special case when E = Rk and p = � : E ! Rk is the identity map (in thiscase, representing T as [[�]], hT; �; xi is the Dirac delta at x with multiplicity �(x)for Lk-a.e. x 2 Rk).In the general case, one implication follows by Theorem 5.7. Conversely, let usassume that the slices of T are generically integer recti�able. For A 2 B(E) and' 2 Lip(E;Rk) given, from (5.18) and (5.15) we inferh'#(T A); p; xi = '#hT A;'; xi = '# (hT; '; xi A) 2 I0(Rk)for Lk-a.e. x 2 Rk, whence '#(T A) 2 Ik(Rk).Remark 8.2 Analogously, if E is a w�-separable dual space we can say that T 2Rk(E) (resp. T 2 Ik(E)) ifhT; �; xi 2 R0(E) (resp. I0(E)) for Lk-a.e. x 2 Rkfor any w�-continuous map � 2 Lip(E;Rk). In fact, this condition implies thatT d� is concentrated on a countablyHk-recti�able set for any such �, and Lemma5.4together with Theorem 6.2 imply the existence of a sequence of w�-continuous Lip-schitz functions �i : E ! Rk such thatkTk = _i2N kT d�ik :We also notice that in the euclidean case E = Rn it su�ces to consider the canonicallinear projection and correspondingly the slices along the coordinate axes (in fact,our notion of mass is comparable with the Federer{Fleming one, see Appendix A).The following technical proposition will be used in the proof, by induction onthe dimension, of the closure theorem.Proposition 8.3 Let (Th) � Nk(E) be a bounded sequence weakly converging toT 2 Nk(E) and let � 2 Lip(E). Then, for L1-a.e. t 2 R there exists a subsequence(h(n)) such that (hTh(n); �; ti) is bounded in Nk�1(E) andlimn!1hTh(n); �; ti = hT; �; ti :In addition, if Th 2 Rk(E) and S(Th) are equi-bounded, the subsequence (h(n)) canbe chosen in such a way that S(hTh(n); �; ti) are equi-bounded.37



Proof. We �rst prove the existence of a subsequence h(n) such that hTh(n); �; ticonverge to hT; �; ti for L1-a.e. t 2 R. Recalling Proposition 5.6(iii), we need onlyto prove thatlimn!1Th(n) f� > tg = T f� > tg ; limn!1@Th(n) f� > tg = @T f� > tg(8.2)for L1-a.e. t 2 R. Let �h = �#(kThk+ k@Thk) and let �h(n) be a subsequence w�converging to � in R. If t is not an atom of �, noticing thatlim�#0 lim supn!1 [kTh(n)k+ k@Th(n)k](��1([t� �; t + �]) � lim�#0 �([t� �; t + �]) = 0 ;and approximating �f�>tg by Lipschitz functions we obtain (8.2). AsZR lim infn!1 N(hTh(n); �; ti) dt � lim infn!1 ZRN(hTh(n); �; ti) dt� Lip(�) suph2NN(Sh) <1we can also �nd for L1-a.e. t 2 R a subsequence of (hSh(n); �; ti) bounded inNk�1(E). If the sequence (S(Th)) is bounded we can use (5.16) and a similarargument to obtain a subsequence with equi-bounded size.Remark 8.4 If E is a w�-separable dual space the same property holds, with asimilar proof, if weak convergence is replaced by w�-convergence, provided � isw�-continuous.Now we can prove the closure theorem for (integer) recti�able currents, assumingas in [1], the existence of suitable bounds on mass and size. Actually, we will provein Theorem 9.5 that for recti�able currents T whose multiplicity is bounded frombelow by a > 0 (in particular the integer recti�able currents) the bound on sizefollows by the bound on mass, since S(T ) � kk=2M(T )=a.Theorem 8.5 (Closure theorem) Let (Th) � Nk(E) be a sequence weakly con-verging to T 2Nk(E). Then, the conditionsTh 2 Rk(E) ; suph2NN(Th) + S(Th) <1imply T 2 Rk(E) and the conditionsTh 2 Ik(E) ; suph2NN(Th) <1imply T 2 Ik(E).If E is a w�-separable dual space the same closure properties holds for w�-convergenceof currents.Proof. We argue by induction with respect to k. If k = 0, we prove the closuretheorem �rst in the case when E is a w�-separable dual space and the currents Thare w�-converging.Possibly extracting a subsequence we can assume the existence of an integer p,points x1h; : : : ; xph and real numbers a1h; : : : ; aph such thatTh(f) = pXi=1 aihf(xih) 8h 2N : (8.3)38



We claim that the cardinality of sptT is at most p. Indeed, if by contradictionsptT contains q = p + 1 distinct points x1; : : : ; xq, denoting by X the linear spanof xi we can �nd a w�-continuous linear map p : E ! X whose restriction to Xis the identity and consider, for r > 0 su�ciently small, the pairwise disjoint setsCi = p�1 (Br(xi)). Since q > p we can �nd an integer i such that Ci \ sptTh = ;for in�nitely many h, since xi 2 Ci the contradiction will be achieved by showingthe lower semicontinuity of the mass in Ci, namelykTk(Ci) � lim infh!1 kThk(Ci) = 0 : (8.4)Let f : E ! [�1; 1] be any Lipschitz function with support contained in Ci and letfk : E ! [�1; 1] be w�-continuous Lipschitz functions converging to f in L1(kTk)(see Theorem 6.2). Choosing a sequence (�n) � C0(X) such that �n � 0 and�n " �Br(x) we getT (fk�n � p) = limh!1 Th(fk�n � p) � lim infh!1 kThk(Ci) :Letting �rst k " 1 and then n " 1 we obtain jT (f)j � lim infh kThk(Ci) and sincef is arbitrary we obtain (8.4). In the case when Th are integer recti�able, sincethe cardinality of sptTh is p, for any x 2 sptT we can easily �nd a w�-continuousLipschitz function f : E ! [0; 1] such that f(x) = 1, f(y) = 0 for any y 2 spt T nfxgand f0 < f < 1g does not intersect spt Th for in�nitely many h (it su�ces to considerp+ 1 functions fj of the form gj � p such that f0 < fj < 1g are pairwise disjoint).Hence ax = T (f) = limh!1 Th(f) = limh!1 pXi=1 aihf(xih)is an integer.In the metric case the proof could be easily recovered using the isometric em-bedding of the closure of the union of spt Th into l1; however, we prefer to give asimpler independent proof, not relying on Theorem 6.2. If x1; : : : ; xn are distinctpoints in spt T , we can �nd " > 0 such that the balls B"(xi) are pairwise disjointand obtain from the lower semicontinuity of mass thatB"(xi) \ spt Th 6= ; 8i = 1; : : : ; nfor h large enough. This implies that T is representable by a sum P ax�x with atmost p terms, hence T 2 R0(E). In the integer case we argue as in the proof of theclosure property for w�-convergence.Let now k � 1 and let us prove that T ful�ls (8.1): let � 2 Lip(E;Rk), let L be a�-compact set on which T is concentrated and set � = (�1; �0) with �0 : E ! Rk�1,S = T d�1, Sh = Th d�1 andSt := hT; �1; ti ; Sht := hTh; �1; ti :By Proposition 8.3 we obtain that, for L1-a.e. t 2 R the current St is the limit ofa bounded subsequence of (Sht), with S(Sht) equi-bounded. Hence, the inductionassumption and Theorem 5.7 give that St 2 Rk�1(E) for L1-a.e. t 2 R. For anysuch t, hSt; �0; yi 2 R0(E) for Lk�1-a.e. y 2 Rk�1. By Lemma 5.8 we concludehT; �; xi = hSt; �0; yi for Lk-a.e. x = (y; t) 2 Rk ;hence hT; �; xi 2 R0(E) for Lk-a.e. x = (y; t) 2 Rk :Since � is arbitrary this proves that T is recti�able. If Th are integer recti�able theproof follows the same lines, using the second part of the statement of Theorem 8.1.39



Finally, if E is a w�-separable dual space, the same induction argument basedon Remark 8.4 giveshT; �; xi 2 R0(E) for Lk-a.e. x 2 Rkfor any w�-continuous map � 2 Lip(E;Rk). Using Remark 8.2 we conclude.Theorem 8.6 (Boundary recti�ability theorem) Let k � 1 and let T 2 Ik(E).Then @T 2 Ik�1(E).Proof. We argue by induction on k. If k = 1, by Theorem 4.3(i) we have only toshow that @T (�A) 2 Z for any open set A � E. Setting '(x) = dist(x;E nA) andAt = f' > tg, we notice that@T (�At ) = @T At(1) = @(T At)(1) + hT; '; ti(1)= hT; '; ti(1) 2 Zfor L1-a.e. t > 0. By the continuity properties of measures, letting t # 0 we obtainthat @T (�A) = @T (�f'>0g) is an integer.Assume now the statement true for k � 1 and let us prove it for k + 1. Let� = (�1; ~�) 2 Lip(E;Rk) with �1 2 Lip(E), ~� 2 Lip(E;Rk�1) and St = hT; �1; ti;the currents St are normal and integer recti�able for L1-a.e. t 2 R, henceh@T; �1; ti = �@hT; �1; ti = �@St 2 Ik�1(E)for L1-a.e. t 2 R by the induction assumption. The same argument used in theproof of Theorem 8.5, based on Lemma5.8, shows that h@T; �; xi 2 I0(E) for Lk-a.e.x 2 Rk. By Theorem 8.1 we conclude that @T 2 Ik(E).As a corollary of Theorem 8.1, we can prove recti�ability criteria for k-dimensionalcurrents based either on the dimension of the measure theoretic support or on Lips-chitz projections onRk orRk+1; we emphasize that the current structure is essentialfor the validity of these properties, which are false for sets (see the counterexamplein [7]).Theorem 8.7 Let T 2Nk(E). Then T 2 Rk(E) if and only T is concentrated ona Borel set S �-�nite with respect to Hk.Proof. Let � 2 Lip(E;Rk) and S0 � S with Hk(S0) <1; by Theorem 2.10.25 of[23] we have ZRk H0 �S0 \ ��1(x)� dx � c(k) [Lip(�)]kHk(S0) <1hence S0 \��1(x) is a �nite set for Lk-a.e. x 2 Rk. Since S is �-�nite with respectto Hk we obtain that S \ ��1(x) is at most countable for Lk-a.e. x 2 Rk. Hence,the currents hT; �; xi, being supported in S \ ��1(x), belong to R0(E) for Lk-a.e.x 2 Rk, whence T 2 Rk(E).Theorem 8.8 (Recti�ability and recti�ability of projections) Let T 2 Nk(E).Then(i) T 2 Ik(E) if and only if �#T 2 Ik(Rk+1) for any � 2 Lip(E;Rk+1);(ii) T 2 Ik(E) if and only if �#(T A) 2 Ik(Rk) for any � 2 Lip(E;Rk) andany A 2 B(E); 40



(iii) if E is a �nite dimensional vectorspace then T 2 Rk(E) if and only if �#T 2Rk(Rk+1) for any � 2 Lip(E;Rk+1).Proof. (i) Let � 2 Lip(E;Rk) be �xed. By Theorem 8.1 we need only to provethat Tx = hT; �; xi are integer recti�able for Lk-a.e. x 2 Rk. Let S be a �-compactset on which T is concentrated, let A be the countable collection of open sets givenby Lemma 5.5 and let us denote by 'A, for A 2 A, the distance function from thecomplement of A.By applying Lemma 5.9 with n = k + 1 and ' = 'A we obtain a Lk-negligibleset N � Rk such that'A#Tx = q#h('A; �)#T; p; xi 2 I0(R)for any A 2 A and any x 2 Rk nN . In particular, for any x 2 Rk nN we haveTx(�A) = 'A#Tx(�(0;1)) 2 Z 8A 2 Aand, by our choice of A, the same is true for any A 2 B(E). Then, the integerrecti�ability of Tx follows by Theorem 4.3(i).(ii) By Theorem 8.1 we need only to show that, for � 2 Lip(E;Rk) given, Lk-almostall currents Tx = hT; �; xi are integer recti�able. Let A be given by Lemma 5.5; by(5.15) and (5.18) we can �nd a Lk-negligible set N � Rk such that'#(Tx A) = '#hT A;'; xi = h'#(T A); p; xi 2 I0(Rk)for any x 2 Rk nN and any A 2 A. By Lemma 5.5 we inferTx(A) = Tx A(1) = '#(Tx A)(1) 2 Z 8A 2 B(E); x 2 Rk nN :The integer recti�ability of Tx now follows by Theorem 4.3(i).(iii) Assuming E = RN , the proof is analogous to the one of statement (i), usingthe countably many maps fx;� of Lemma 4.4.9 Recti�able currents in Banach spacesIn this section we improve Theorem 4.6, recovering in w�-separable dual spaces Ythe classical representation of euclidean currents by the integration on an orientedrecti�able set, possibly with multiplicities. Moreover, for T 2 Rk(Y ), we comparekTk with Hk ST and see to what extent these results still hold in the metric case.The results of this section depend on some extensions of the Rademacher theo-rem given in [38] and [7]. Assume that Y is a w�-separable dual space; we provedthat any Lipschitz map f : A � Rk ! Y is metrically and w�-di�erentiable Lk-a.e.,i.e. for Lk-a.e. x 2 A there exists a linear map L : Rk ! Y such thatw� � limy!x f(y) � f(x) � L(y � x)jy � xj = 0and, at the same time,limy!x kf(y) � f(x)k � kL(y � x)kjy � xj = 0 :Notice that the second formula is not an abvious consequence of the �rst, since thedi�erence quotients are only w�-converging to 0. The map L is called w�-di�erentialand denoted by wdxf , while kLk is called metric di�erential, and denoted by mdxf .41



The metric di�erential actually exists Lk-a.e. for any Lipschitz map f from a subsetof Rk into any metric space (E; d) and is in this case de�ned bymdxf(v) := limt!0 d (f(x + tv); f(x))jtj 8v 2 Rk :This result, proved independently in [38] and [40], has been proved in [7] using anisometric embedding into l1 and the w�-di�erentiability theorem.(1)Approximate tangent space. Using the generalized Rademacher theorem onecan de�ne an approximate tangent space to a countably Hk-recti�able set S � Yby setting Tan(k)(S; f(x)) := wdxf(Rk) for Lk-a.e. x 2 Aiwhenever fi satisfy (4.1). It is proved in [7] that this is a good de�nition, in thesense that Hk-a.e. the dimension of the space is k and that di�erent choices of fiproduce approximate tangent spaces which coincide Hk-a.e. on S: this is achievedby comparing this de�nition with more intrinsic ones, related for instance to w�-limits of the secant vectors to the set. Moreover, the approximate tangent space islocal, in the sense thatTan(k)(S1; x) = Tan(k)(S2; x) for Hk-a.e. x 2 S1 \ S2for any pair of countably Hk-recti�able sets S1; S2.(2) Jacobians and area formula. Let V; W be Banach spaces, with dim(V ) = k,and L : V !W linear. The k-jacobian of L is de�ned byJk(L) := !kHk (fx : kL(x)k � 1g) = Hk (fL(x) : x 2 B1g)!k :It can be proved that Jk satis�es the natural product rule for jacobians, namelyJk (L �M ) = Jk(L)Jk(M ) (9.1)for any linear map M : U ! V . If s is a seminorm in Rk we de�ne alsoJk(s) := !kHk (fx : s(x) � 1g) :These notions of jacobian are important in connexion with the area formulasZRk �(x)Jk(mdxf) dx = ZE Xx2f�1(y) �(x) dHk(y) (9.2)for any Borel function � : Rk ! [0;1] andZA �(f(x))Jk(mdfx) dx = ZE �(y)H0 �A \ f�1(y)� dHk(y) (9.3)for A 2 B(Rk) and any Borel function � : E ! [0;1].(3) k-vectors and orientations. Let � = �1 ^ : : :^ �k be a simple k-vector in Y ;we denote by L� : Rk ! Y the induced linear map, given byL� (x1; : : : ; xk) := kXi=1 xi�i 8x 2 Rk :We say that � is a unit k-vector if L� has jacobian 1; notice that L� depends on thesingle �i rather than the k-vector � , so our compact notation is a little misleading.It is justi�ed, however, by the following property:42



� = �� 0 implies Jk(L� ) = j�jJk(L� 0 ) : (9.4)This property follows at once from the chain rule for Jacobians, noticing that wecan represent L� as L� 0 �M for some linear mapM : Rk ! Rk with Jk(M ) = j�j.The same argument proves that any simple k-vector � with Jk(L� ) > 0 can benormalized dividing �i by constants �i > 0 such that �i �i = Jk(L� ). We alsonotice that (9.1) gives jdet(Li(�j))j = Jk(L � L� ) = Jk(L) (9.5)for any unit k-vector � and any linear function L : span � ! Rk.An orientation of a countably Hk-recti�able set S � Y is a unit simple k-vector� = �1 ^ : : : ^ �k such that �i(x) are Borel functions spanning the approximatetangent space to S for Hk-almost every x 2 S.(4) k-covectors and tangential di�erentiability. Let Z be another w�-separabledual space, let S � Y be a countablyHk-recti�able set and let � 2 Lip(S; Z). Then,for Hk-a.e. x 2 S the function � is tangentially di�erentiable on S and we denoteby dSx� : Tan(k)(S; x)! Zthe tangential di�erential. This di�erential can be computed using suitable approx-imate limits of the di�erence quotients of �, but for our purposes it is su�cient torecall that it is also characterized by the propertywdy(� � f) = dSf(y)� �wdyf for Lk-a.e. y 2 D (9.6)whenever f : D � Rk ! S is a Lipschitz map. Clearly in the case Z = Rp themap dSx� induces a simple p-covector in Tan(k)(S; x), whose components are thetangential di�erentials of the components of �; this p-covector will be denoted by^pdSx�. Notice that, in the particular case p = k, (9.6) givesdet (r(� � f)(y)) = h^kdSf(y)�; �yi for Lk-a.e. y 2 D (9.7)where h�; �i is the standard duality between k-covectors and k-vectors and�y = wdfy(e1) ^ : : :^wdfy(ek) :Taking into account the chain rule for jacobians, from (9.7) we inferJk(dSx�) = jdet(r(� � f))jJk(L�y ) = jh^kdSx�; �yJk(L�y ) ij for Lk-a.e. y 2 Dwith x = f(y). Since f : D ! S is arbitrary we conclude thatJk(dSx�) = jh^kdSx�; �(x)ij for Hk-a.e. x 2 S (9.8)where � is any orientation of S.The following result shows that, as in the euclidean case, any recti�able k-currentin a w�-separable dual space is uniquely determined by three intrinsic objects: acountably Hk-recti�able set S, a multiplicity function � > 0 and an orientation �of the approximate tangent space (notice that, however, in the extreme cases k = 0and k = m, E = Rm we allow for a negative multiplicity because in these cases theorientation is canonically given). 43



Theorem 9.1 (Intrinsic representation of recti�able currents) Let Y be aw�-separable dual space and let T 2 Rk(Y ) (resp. T 2 Ik(Y )). Then, there exist acountably Hk-recti�able set S, a Borel function � : S ! (0;1) (resp. � : S !N+)with RS � dHk <1 and an orientation � of S such that the following holdsT (f d�1 ^ : : :^ d�k) = ZS f(x)�(x)h^kdSx�; � i dHk(x) (9.9)for any f d� 2 Dk(Y ). Conversely, any triplet (S; �; � ) induces via (9.9) a recti�ablecurrent T .Proof. Let us �rst assume that T = '#[[g]] for some g 2 L1(Rk) vanishing out ofa compact set C and some one-to one function ' 2 Lip(C; Y ). Let L = '(Rk) andlet � be a given orientation of L; by (9.7) we getdet (r(� � ')(y)) = h^kdL'(y)�; �yiJk(wd'y)for � = (�1; : : : ; �k) 2 Lip(Y;Rk), where�y = wd'y(e1) ^ : : :^wd'y(ek)Jk(wd'y) 2 ��'(y);��'(y)	and e1; : : : ; ek is the canonical basis of Rk. De�ning �(y) = 1 if �y and �'(y) inducethe same orientation of Tan(k)(L;'(y)), �(y) = �1 if they induce the oppositeorientation, the identity can be rewritten asdet (r(� � ')(y)) = �(y)h^kdL'(y)�; �'(y)iJk(wd'y) :By applying the area formula and using the identity above we obtainT (f d�1 ^ : : :^ d�k) = ZRk g(f � ')det (r(� � ')) dy= ZL f(x)0@ Xy2'�1(x) g(y)�(y)1A h^kdLx�; �xi dHk(x)for any f d� 2 Dk(Y ). Setting�(x) := Xy2'�1(x) g(y)�(y) ; (9.10)possibly changing the sign of � (which induces a change of sign of �) we can assumethat � � 0. Setting S = L \ f� > 0g the representation (9.9) follows. The case of ageneral current T 2 Rk(Y ) easily follows by Theorem 4.5, taking into account thelocality properties of the approximate tangent space.Conversely, if T is de�ned by (9.9) then T has �nite mass and the linearityand the locality axioms are trivially satis�ed; the continuity axiom can be checked�rst in the case E = Rk (see Example 3.2), then in the case when S is bilipschitzequivalent to a compact subset of Rk and then, using Lemma 4.1, in the generalcase.We will denote by [[S; �; � ]] the current de�ned by (9.9). In order to show thatthe triplet is uniquely determined, moduloHk-negligible sets, we want to relate themass with Hk S and with the multiplicity �. As a byproduct, we will prove thatS = ST , modulo Hk-negligible sets. The main di�erence with the euclidean case isthe appearence in the mass of an additional factor �V (V being the approximate44



tangent space to S), due to the fact that the local norm need not be induced by aninner product.Let V be a k-dimensional Banach space; we call ellipsoid any set R = L(B),where B is any euclidean ball and L : Rk ! V is linear. Analogously, we callparallelepiped any set R = L(C), where C is any euclidean cube and L : Rk ! V islinear. We will call area factor of V and denote by �V the quantity�V := 2k!k sup�Hk(B1)Hk(R) : V � R � B1 parallelepiped� ; (9.11)where B1 is the unit ball of V . The computation of �V is clearly related to theproblem of �nding optimal rectangles enclosing a given convex body in Rk (in ourcase the body is any linear image of B1 in Rk through an onto map). The �rstreference we are aware of on the area factor is [11]. The maximization problemappearing in the de�nition of the area factor has also recently been considered in[9] in connexion with Riemannian geometry and in [55] in connexion with geometricnumber theory. In the following lemmawe show a di�erent representation of �V andshow that it can be estimated from below and from above with constants dependingonly on k; the upper bound is optimal, and we refer to [51] for better lower bounds.Lemma 9.2 Let V be as above. Then�V = sup �Jk� : � = (�1; : : : ; �k) : V ! Rk linear, Lip(�i) � 1	 :Moreover, �V = 1 if B1 is an ellipsoid, �V = 2k=!k if B1 is a parallelepiped and ingeneral k�k=2 � �V � 2k=!k.Proof. We can consider with no loss of generality only onto linear maps �;notice that the parallelepiped fv : maxi j�i(v)j � 1g contains B1 if and only ifmaxi Lip(�i) � 1. Taking into account the area formula we obtainJk� = 2kHk(fv : maxi j�i(v)j � 1g) ;and this proves the �rst part of the statement, since Hk(B1) = !k.Any parallelepipedR � V can be represented by ��1(W ) for some parallelepipedW � Rk. Since, by translation invariance, Lk is a constant multiple of �#Hk, weobtain that �V is also given by2k!k sup� Lk(C)Lk(W ) : Rk � W � C parallelepiped�where C = �(B1). If B1 is an ellipsoid so is C and an a�ne change of variablesreducing C to a ball together with a simple induction in k shows that the supremumabove is equal to 1. If B1 is a parallelepiped, choosing W = C we see that thesupremum is 2k=!k.Due to a result of John (see [52], Chapter 3) C is contained in an ellipsoid Esuch that Lk(E) � kk=2Lk(C); this gives the lower bound for �V .Remark 9.3 The area factor can be equal to 1 even though the norm is not inducedby an inner product; as an example one can consider the family of Banach spaces Vywhose unit balls are the hexagons in R2 obtained by intersecting [�1; 1]2 with thestrip �t < y � x < t, with t 2 [1; 2]. It is not hard to see that ��Vt = 4� (2� t)2,hence there exists t0 2 (1; 2) such that �Vt0 = 1. Moreover, for t = 1 the area factorequals 3=� and in [51] it has been proved that �V � 3=� for any 2-dimensionalBanach space V . 45



Corollary 9.4 Let Y be a w�-separable dual space and let �k(Y ) be the collectionof all w�-continuous linear maps� = (�1; : : : ; �k) : Y ! Rkwith �i 2 Lip(Y ) and dim(�(Y )) = k. There exists a sequence (�j) � �k(Y ) suchthat Lip(�ji ) = 1 for any i 2 f1; : : : ; kg, j 2N andsupj2NJk ��jjV � = sup�Jk ��jV � : � 2 �k(Y ); Lip(�i) � 1	for any k-dimensional subspace V � Y .Proof. In Lemma 6.1 of [7] we proved that �k(Y ), endowed with the pseudometric
(�; �0) := supkxk�1 jj�(x)j � j�0(x)jjis separable. Since 
(�h; �)! 0 impliesHk (fv 2 V : j�(v)j � 1g) = limh!1Hk (fv 2 V : j�h(v)j � 1g)we obtain that � 7! Jk(�jV ) = !kHk (fv 2 V : j�(v)j � 1g)is 
-continuous and the statement follows choosing a dense subset off� 2 �k(Y ) : Lip(�i) = 1g :Using Corollary 9.4, and still assuming that Y is a w�-separable dual space, wecan easily get a representation formula for the mass of a recti�able current.Theorem 9.5 (Representation of mass) Let T = [[S; �; � ]] 2 Rk(Y ). ThenkTk = ��Hk S, where �(x) = �Tan(k)(S;x). In particular S is equivalent, mod-ulo Hk-negligible sets, to the set ST in (4.2).Proof. The inequality � follows by (9.9) and Lemma 9.2, recalling that by (9.8)jh^kdS�; � ij = Jk(dS�) � �(x) kYi=1Lip(�i) :In order to show the opposite inequality we �rst notice that for any choice of 1-Lipschitz functions �1; : : : ; �k : Y ! R we havekTk � � �h^kdS�; � iHk S ;whence kTk � �Jk(dS�)Hk S. Now we choose �j according to Corollary 9.4; sinceany real valued linear map from a subspace of Y can be extended to Y preservingthe Lipschitz constant (i.e. the norm) we have�V = supj2NJk(�jjV )for any k-dimensional subspace V � Y , hencekTk � _j �Jk(dS�j)Hk S = � supj Jk(dS�j)Hk S= ��Tan(k)(S;x)Hk S :46



Now we consider the case of a current T 2 Rk(E) when E is any metric space;let S = ST as in (4.2) and let us assume, without any loss of generality, that E isseparable. In this case, as explained in [7], an approximate tangent space to S canstill be de�ned using an isometric embedding j of E into a w�-separable dual spaceY (Y = l1, for instance), and settingTan(k)(S; x) := Tan(k) (j(S); j(x)) for Hk-a.e. x 2 S :This de�nition is independent of j and Y , in the sense that Tan(k)(S; x) is uniquelydetermined Hk-a.e. up to linear isometries; hence Tan(k)(S; x) can be thought Hk-a.e. as an equivalence class of k-dimensional Banach spaces. Since the mass isinvariant under isometries and the area factor �V is invariant under linear isome-tries, by applying Theorem 9.5 to j#T we obtain thatkTk = ��Tan(k)(S;�)Hk Sand T is integer recti�able if and only if � > 0 is an integer Hk-a.e. on S.In order to formulate the proper extension of Theorem 9.1 to the general metriccase we need the following de�nition: we say that two oriented recti�able sets withmultiplicities (S1; �1; �1) and (S2; �2; �2) contained in w�-separable dual spaces areequivalent if there exist S01 � S1, S02 � S2 with Hk(S1 n S01) = Hk(S2 n S02) = 0 andan isometric bijection f : S01 ! S02 such that �1 = �2 � f anddS1fx(�1(x)) ^ : : :^ dS1fx(�k(x)) = � 01(x) ^ : : :^ � 0k(x) 8x 2 S01 : (9.12)We can now state a result saying that any T 2 Rk(E) induces an equivalenceclass of oriented recti�able sets with multiplicities in w�-separable dual spaces; con-versely, any equivalence class can canonically be associated to a recti�able currentT .Theorem 9.6 Let T 2 Rk(E) and let S, � be as above. For i = 1; 2, let ji : E ! Yibe isometric embeddings of E into w�-separable dual spaces Yi and let �i be unit k-vectors in Yi such that ji#T = [[j1(S); � � j�1i ; �i]] :Then (j1(S); � � j�11 ; �1) and (j2(S); � � j�12 ; �2) are equivalent.Conversely, if (S; �; � ) and (S0; �0; � 0) are equivalent and f : S ! S0 is an isometrysatisfying � = �0 � f and (9.12), thenf#[[S; �; � ]] = [[S0; � � f�1; � 0]] :Since our proofs use only the metric structure of the space, we prefer to avoidthe rather abstract representation of recti�able currents provided by Theorem 9.6;for this reason we will not give the proof, based on a standard blow-up argument,of Theorem 9.6.We now consider the properties of the slicing operator, proving that it preservesthe multiplicities. We �rst recall some basic facts about the coarea formula for realvalued Lipschitz functions de�ned on recti�able sets.Let X be a k-dimensional Banach space and let L : X ! R be linear. Thecoarea factor of L is de�ned by the propertyC1(L)Hk(A) = Z +1�1 Hk�1 �A \L�1(x)� dx 8A 2 B(X) :In [7] we proved that if L is not identically 0 the coarea factor can be representedas a quotient of jacobians, namelyC1(L) := Jk(q)Jk�1(p)47



with q(x) = (p(x); L(x)) for any one to one linear map p : Ker(L) ! Rk�1. Using(9.5) we obtain also an equivalent representation asjh^k�1p; � 0ijC1(L) = jh^kq; � ij (9.13)where � is any unit k-vector in X and � 0 is any unit (k � 1)-vector whose spanis contained in Ker(L), with no restrictions on the rank of p and the rank of L;moreover, representing � as � 0^ � for some � 2 X, since we can always choose a oneto one map p we obtain C1(L) = jL(�)j : (9.14)Let now Y be a w�-separable dual space, let S � Y be a countablyHk-recti�ableset and let � : S ! R be a Lipschitz function. Then, we proved in [7] that the setsSy = S \ ��1(y) are countably Hk�1-recti�able andTan(k�1)(Sy; x) = Ker(dSx�) for Hk�1-a.e. x 2 Syfor L1-a.e. y 2 Rn; moreoverZS �(x)C1(dSx�) dHk(x) = ZR  ZS\��1 (y) �(x) dHk�1(x)! dy (9.15)for any Borel function � : S ! [0;1].Theorem 9.7 (Slices in w�-separable dual spaces) Let T = [[M; �; � ]] 2 Rk(Y )and let � 2 Lip(Y;Rm), with m � k. Then, for Lm-a.e. x 2 Rm there exists anorientation �x of M \ ��1(x) such thathT; �; xi = [[M \ ��1(x); �; �x]] :Proof. By an induction argument based on Lemma 5.8 we can assume that m = 1.Let f dp 2 Dk�1(Y ) and set Mx =M \ ��1(x); by the homogeneity of � 7! Jk(L� )we can assume that � (y) is representable by �(y) ^ � 0x(y), with � 0x(y) unit (k � 1)-vector in Tan(k�1)(Mx; y) for Hk�1-a.e. y 2 Mx, and for L1-a.e. x. Taking intoaccount (9.13) and possibly changing the signs of � 0x and � we obtainh^k�1dMxy p; � 0x(y)iC1(dMy �) = h^kdMy q; � (y)i for Hk�1-a.e. y 2Mxfor L1-a.e. x. Using the coarea formula we �ndT ( � �) d�(f dp) = ZM � � �fh^kdMq; � i dHk= ZR  (z)�ZMz �fh^k�1dMzp; � 0zi dHk�1� dz= ZR  (z)[[Mz; �; � 0z]](f dp) dzfor any  2 Cc(R). From statement (ii) of Theorem 5.6 we can conclude thathT; �; xi coincides with [[Mx; �; � 0x]] for L1-a.e. x 2 R.10 Generalized Plateau problemThe compactness and closure theorems of Section 8 easily lead to an existence resultfor the generalized Plateau problemminfM(T ) : T 2 Ik+1(E); @T = Sg (10.1)48



in any compact metric space E for any S 2 Ik(E) with @S = 0, provided theclass of admissible currents is not empty. However, it may happen that the class ofrecti�able currents is very poor, or that there is no T 2 Ik+1(E) with @T = S.In this section we investigate the Plateau problem in the case when E = Y is aBanach space, not necessarily �nite dimensional. Under this assumption the classof recti�able currents is far from being poor and the cone construction, studied inthe �rst part of the section, guarantees that the class of admissible T is not empty,at least if S has bounded support.For t � 0 and f : Y ! R we de�ne ft(x) = f(tx), and notice that Lip(ft) =tLip(f) and j@ft=@tj(x) � kxkLip(f) for L1-a.e. t > 0 if f 2 Lip(Y ).De�nition 10.1 (Cone construction) Let S 2 Mk(Y ) with bounded support;the cone C over S is the (k + 1)-metric functional de�ned byC(f d�) := k+1Xi=1(�1)i+1 Z 10 S(ft @�it@t d�̂it) dtwhere, by de�nition, dq̂i = dq1 ^ : : : ^ dqi�1 ^ dqi+1 ^ : : : ^ dqk+1. We denote thecone C by S��[0; 1].The de�nition is well posed because for L1-a.e. t � 0 the derivatives @�it=@t(x)exist for kSk-a.e. x 2 Y . This follows by applying Fubini theorem with the productmeasure kSk � L1, because for x �xed the derivatives @�it=@t(x) exist for L1-a.e.t � 0. In general we can't say that S��[0; 1] is a current, because the continuityaxiom seems hard to prove in this generality. We can prove this, however, for normalcurrents.Proposition 10.2 If S 2Nk(Y ) has bounded support then S��[0; 1] has �nite massand M(S��[0; 1]) � RM(S), where R is the radius of the smallest ball BR(0) con-taining sptS. Moreover, S��[0; 1] 2 Nk+1(Y ) and@(S��[0; 1]) = �@S��[0; 1]+ S :Proof. Let f d� 2 Dk+1(Y ) with �i 2 Lip1(Y ); using the de�nition of mass we�nd jS��[0; 1](f d�)j � R(k + 1) Z 10 tk ZY jftj dkSk dt :This proves that f 7! S��[0; 1](f d�) is representable by integration with respect toa measure. We also getkS��[0; 1]k(A) � R(k + 1) Z 10 tkkSk(A=t) dt 8A 2 B(Y )and M(S��[0; 1]) � RM(S).In order to prove the continuity axiom we argue by induction on k. In the casek = 0 we simply notice thatS��[0; 1](f d�) = Z 10 �ZY ft@�t@t dS� dt = ZY �Z 10 ft @�t@t dt� dSand use the fact that, for bounded sequences (uj) � W 1;1(0; 1), uniform conver-gence impliesw�-convergence in L1(0; 1) of the derivatives. Assuming the propertytrue for (k � 1)-dimensional currents, we will prove it for k-dimensional ones byshowing the identity@(S��[0; 1])(f d�) = �@S��[0; 1](f d�) + S(f d�) (10.2)49



for any f d� 2 Dk(Y ).We �rst show that t 7! S(ft d�t) is a Lipschitz function in [0; 1], and that itsderivative is given byS(@ft@t d�t) + kXi=1(�1)i �S(@�it@t dft ^ d�̂it)� @S(ft @�it@t d�̂it)� (10.3)for L1-a.e. t > 0. Assume �rst that, for t > 0, @ft=@t and @�it=@t are Lipschitzfunctions in Y , with Lipschitz constants uniformly bounded for t 2 (�; 1) with � > 0;in this case we can use the de�nition of boundary to reduce the above expression toS(@ft@t d�t) + kXi=1(�1)i+1S(ft d@�it@t ^ d�̂it) : (10.4)Under this assumption a direct computation and the continuity axiom on currentsshows that the classical derivative of t 7! S(ft d�t) is given by (10.4). In the generalcase we approximate both f and �i byf"(x) := Z 10 f(sx)�"(s) ds ; �"i (x) := Z 10 �i(sx)�"(s) ds ;where �" are convolution kernels with support in (1=2; 2)w�-converging as measuresto �1. By Fubini theorem we getlim"!0 @f"t@t (x) = @ft@t (x) ; lim"!0 @�"it@t (x) = @�it@t (x) for kSk+k@Sk-a.e. xfor L1-a.e. t � 0. Hence, we can use the continuity properties of currents toobtain L1-a.e. convergence of the derivatives of t 7! S(f"t d�"t ) to (10.3). As@(S��[0; 1])(f d�) + @S��[0; 1](f d�) is equal to the integral of the expression in(10.3) over [0; 1] and S(f0 d�0) = 0, the proof of (10.2) is achieved.Now we can complete the proof, showing that S��[0; 1] satis�es the continuityaxiom. Let f i, �i be as in De�nition 3.1(ii) and let us prove thatlimi!1S��[0; 1](f i d�i1 ^ : : :^ d�ik+1) = S��[0; 1](f d�1 ^ : : :^ d�k+1) :Denoting by p the cardinality of the integers j such that �ij = �j for every i, weargue by reverse induction on p, noticing that the case p = k+ 1 is obvious, by thede�nition of mass. To prove the induction step, assume that �ij = �j for every iand for any j = 2; : : : ; p and notice thatS��[0; 1](f i d�i1 ^ d�̂i1) = S��[0; 1]((f i � f) d�i1 ^ d�̂i1)+ @(S��[0; 1])(f�i1 d�̂i1)� S��[0; 1](�i1df ^ d�̂i1) :The �rst term converges to 0 by the de�nition of mass, the second one convergesto @(S��[0; 1])(f�1 d�̂1) by (10.2) and the continuity property of @S��[0; 1] and thethird one converges to �S��[0; 1](�df ^ d�̂1), by the induction assumption. Sincethe sum of these terms is S��[0; 1](f d�) the proof is �nished.In general the stronger euclidean cone inequalityM(S��[0; 1]) � Rk + 1M(S) (10.5)does not hold, as the following example shows.50



Example 10.3 Let Xp be R2 endowed with the lp norm and de�ne �p, Bp as thearea factor of Xp and the 1-dimensional Hausdor� measure of the unit sphere ofXp, respectively. We claim that ��p is strictly greater than Bp=2 for p > 2 andp � 2 su�ciently small. As equality holds for p = 2, we need only to check that2��0p > B0p for p = 2, where 0 denotes di�erentiation with respect to p. Denotingby Ap the euclidean volume of the unit ball of Xp (which is contained in [�1; 1]2),we can estimate �02 � 4� limp!2 Ap � 24(p� 2) = A02� ;hence it su�ces to prove that 2A02 > B02.Since Ap = 4 R 10 (1� xp)1=p dx, a simple computation shows thatA02 = Z 10 p1� x2 �2x2 ln(1=x)1� x2 � ln(1� x2)� dx (10.6)= �2 Z �=20 �cos2 � ln cos � + sin2 � ln sin �� d� ;with the change of variables x = cos �.Now we compute Bp; using the parametrization � 7! �cos2=p �; sin2=p �� of theunit sphere of Xp we �ndBp = 8p Z �=20 �cos2�p � sinp � + sin2�p � cosp ��1=p d�and di�erentiation with respect to p givesB02 = �� + 2 Z �=20 (sin2 � � cos2 �)(ln sin � � ln cos �) d� : (10.7)Comparing (10.6) and (10.7) we �nd that 2A02 > B02 is equivalent toZ �=20 �ln sin �(6 sin2 � � 2 cos2 �) + ln cos �(6 cos2 � � 2 sin2 �)� d� < � ;which reduces to R 10 lnx(4x2� 1)=p1� x2 dx < �=4 by simple manipulations. Thevalue of the above integral, estimated with a numerical integration, is less than 0:5,hence the inequality is true.The cone inequality (10.5) is in general false even if mass is replaced by size:a simple example is the two dimensional Banach space with the norm induced bya regular hexagon H � R2 with side length 1. If we take S equal to the orientedboundary of H, we �nd that S(S��[0; 1]) = �, while S(S)=2 = 3 < � because on theboundary of H the distance induced by the norm is the euclidean distance.Now we prove that the cone construction preserves (integer) recti�ability.Theorem 10.4 If S = [[M; �; �]] 2 Rk(Y ) then S��[0; 1] 2 Rk+1(Y ), and belongsto Ik+1(Y ) if S 2 Ik(Y ). In particular, if M � @B1(0) and we extend both � and� to the cone C := ftx : t 2 [0; 1]; x 2Mgby 0-homogeneity we get S��[0; 1] = [[C; �; � ]]with � (x) = (x ^ �(x))=Jk+1(Lx^�(x)). 51



Proof. Let X = R � Y be equipped with the product metric, let �e = (1; 0) 2 Xand de�ne N = [0; 1] �M . Since the approximate tangent space to N at (t; x)is generated by �e and by the vectors (0; v) with v 2 Tan(k)(M;x), setting � =(0; �1) ^ : : :^ (0; �k) the (k + 1)-vector~� := �e ^ �(x)Jk+1(L�e^�(x))de�nes an orientation of N and we can set R = [[N; �; ~� ]] 2 Rk+1(X). We willprove that S��[0; 1] = j#R, where j(t; x) = tx. In fact, denoting by �(t; x) = t theprojection on the �rst variable, by (9.14) we getCN1 �(x; t) = ����dN(x;t)�� �eJk+1(L�(x)^�e)����� = 1Jk+1(L�(x)^�e) :Hence, using the coarea formula we �ndj#R(f d�) = ZN �(x)f(tx)h�k+1dN (� � j); ~� i dHk+1= ZN �(x)f(tx)h^k+1dN (� � j); �e ^ �iCN1 � dHk+1= k+1Xi=1(�1)i+1 Z 10 �ZM �(x)f(tx))h^kdM (�̂i � j); �i dHk(x)� dt= k+1Xi=1(�1)i+1 Z 10 S(ft @�it@t d�̂it) dt :The proof of the second part of the statement is analogous, taking into account thatj : N ! B1(0) is one to one on X n (Y � f0g).Coming back to the Plateau problem, the following terminology will be useful.De�nition 10.5 (Isoperimetric space) We say that Y is an isoperimetric spaceif for any integer k � 1 there exists a constant 
(k; Y ) such that for any S 2 Ik(Y )with @S = 0 and bounded support there exists T 2 Ik+1(Y ) with @T = S such thatM(T ) � 
(k; Y ) [M(S)](k+1)=k :We will provide in Appendix B several examples of isoperimetric spaces, includ-ing Hilbert spaces and all dual spaces with a Schauder basis. Actually, we don'tknow whether Banach spaces without the isoperimetric property exist or not. For�nite dimensional spaces, following an argument due to M.Gromov, we prove thatan isoperimetric constant depending only on k, and not on Y , can be chosen. Thisis the place where we make a crucial use of the cone construction.We can now state one of the main results of this paper, concerning existence ofsolutions of the Plateau problem in dual Banach spaces.Theorem 10.6 Let Y be a w�-separable dual space, and assume that Y is anisoperimetric space. Then, for any S 2 Ik(Y ) with compact support and zero bound-ary, the generalized Plateau problemminfM(T ) : T 2 Ik+1(Y ); @T = Sg (10.8)has at least one solution, and any solution has compact support.52



Proof. Let R > 0 such that spt S � BR(0) and consider the cone C = S��[0; 1]. As@C = S, this implies that the in�mum m in (10.8) is �nite, and can be estimatedfrom above with RM(S). Let us denote by M the complete metric space of allT 2 Ik+1(Y ) such that @T = S, endowed with the distance d(T; T 0) = M(T � T 0).By the Ekeland-Bishop-Phelps variational principle we can �nd for any " > 0 acurrent T" 2M such that M(T") < m + " andT 7!M(T ) + "d(T; T") T 2 Mis minimal at T = T". The plan of the proof is to show that the supports of T"are equi-bounded and equi-compact as " 2 (0; 1=2); if this is the case we can applyTheorem 6.6 to obtain a sequence (T"i) w�-converging to T 2 Ik+1(Y ), with "i # 0.Since @T"i = S w�-converge to @T we conclude that @T = S, hence T 2 M. Thelower semicontinuity of mass with respect to w�-convergence gives M(T ) � m,hence T is a solution of (10.8).The minimality of T" givesM(T") � 1 + "1� "M(C) � 3RM(S) : (10.9)As K = spt S is compact, the equi-compactness of the supports of T" follows by theestimate kT"k(B%(x)) � (3
)�k(k + 1)k+1%k+1 8x 2 sptT" (10.10)for any ball B%(x) � Y n K, with 
 = 
(k; Y ). In fact, let I% be the open %-neighbourhood of K and let us cover K by �nitely many balls B%(yj) of radius %;then, we choose inductively points xi 2 sptT" n I% in such a way that the ballsB%=2(xi) are pairwise disjoint. By (10.10) and (10.9) we conclude that only �nitelymany points xi can be chosen in this way; the balls B2%(yj) and the balls B%(xi)cover the whole of spt T". We can of course decompose this union of closed ballsinto connected components. It is easy to see that a component not intersecting Kcontains a boundary free part of T" and hence contradicts the minimality assumptionfor T". On the other hand, all components intersecting K are equibounded, andtherefore the whole spt T" is as well.In order to prove (10.10) we use a standard comparison argument based on theisoperimetric inequalities: let " > 0 and x 2 spt T" nK be �xed, set '(y) = ky� xkand � := dist(x;K) ; g(%) := kT"k(B%(x)) 8% 2 (0; �) :For L1-a.e. % > 0 the slice hT"; '; %i belongs to Ik(Y ) and has no boundary; hence,we can �nd R 2 Ik+1(Y ) such that @R = hT"; '; %i andM(R) � 
 [M(hT"; '; %i)](k+1)=k � 
 [g0(%)](k+1)=k :Comparing T" with T" (Y nB%(x)) +R we �ndkT"k(B%(x)) �M(R) + "M(T" B%(x)�R) ;hence g(%) � 3
 [g0(%)](k+1)=k. As g(%) > 0 for any % > 0, this proves thatg(%)1=(k+1) � (3
)�k=(k+1)%=(k + 1) is increasing, and hence positive, in (0; �).Finally, proving for any solution T of (10.8) a density estimate analogous to theone already proved for T", we obtain that sptT is compact.We conclude this section pointing out some extensions of this result, and di�erentproofs. The �rst remark is that the Gromov{Hausdor� convergence is not actuallyneeded if Y is an Hilbert space: in fact, denoting by E the closed convex hull53



of spt S, it can be proved that E is compact, hence (10.1) has a solution TE . If� : Y ! E is the metric projection on E, since �#S = S we getM(T ) �M(�#T ) �M(TE ) 8T 2 Ik+1(Y ); @T = Shence TE , viewed as a current in Y , is a solution of the isoperimetric problem in Y .A similar argument can be proved to get existence in some nondual spaces asL1(Rm) and C(K):Example 10.7 (a) L1(Rm) can be embedded isometrically in Y = M0(Rm), i.e.the space of measures with �nite total variation in Rm; since Y is an isoperimetricspace (see Appendix B) and the Radon{Nikodym theorem provides a 1-Lipschitzprojection from Y to L1(Rm), the Plateau problem has a solution for any S 2Ik(L1(Rm)) with compact support.(b) In the same vein, an existence result for the Plateau problem can be obtainedin E = C(K), where (K; �) is any compact metric space; it su�ces to notice thatany compact familyF � E is equibounded and has a commonmodulus of continuity!(t), de�ned by!(t) := sup fjf(x) � f(y)j : f 2 F ; �(x; y) � tg 8t � 0 :Let ~! be the smallest concave function greater than !; since for any " > 0 thefunction " +Mt is greater than ! for M large enough, it follows that ~!(0) = 0,hence ~! is subadditive. Using the subadditivity of ~! it can be easily checked thatf(x) 7! miny2K [f(y) + ~! (�(x; y))]provides a 1-Lipschitz projection from E into the compact set�f 2 E : kfk1 � supg2F kgk1; jf(x)� f(y)j � ~! (d(x; y)) 8x; y 2 K� :Since any function in F has ! � ~! as modulus of continuity, the map is the identityon F .11 Appendix A: euclidean currentsThe results of Section 9 indicate that in the euclidean case E = Rm our class of(integer) recti�able currents coincides with the Federer{Fleming one. In this sectionwe compare our currents to 
at currents with �nite mass of the Federer{Flemingtheory. In the following, when talking of Federer{Fleming currents (shortened toFF-currents), k-vectors and k-covectors we adopt systematically the notation of [48](see also [23], [57]) and give the basic facts of that theory for granted. Since 
at FF-currents are compactly supported by de�nition, we restrict our analysis to currentsT 2 Mk(Rm) with compact support. We also assume k � 1, since M0(Rm) issimply the space of measures with �nite total variation in Rm.We recall that the (possibly in�nite) 
at seminorm of a FF-current T is de�nedby F(T ) := sup fT (!) : F(!) � 1g (11.1)where the 
at norm of a smooth k-covector�eld ! with compact support is given byF(!) := supx2Rmmaxfk!(x)k�; kd!(x)k�gand k � k� is the co-mass norm. It can be proved (see [23], page 367) thatF(T ) = inf fM(X) +M(Y ) : X + @Y = Tg : (11.2)54



We denote by Fk(Rm) the vector space of all FF k-dimensional currents with �nitemass which can be approximated, in the 
at norm, by normal currents. Using (11.2)it can be easily proved (see [23], page 374) that Fk(Rm) can also be characterizedas the closure, with respect to the mass norm, of normal currents.In the following theorem we prove that any current T in our sense induces acurrent ~T in the FF-sense and that any T 2 Fk(Rm) induces a current in our sense.Our conjecture is that actually ~T 2 Fk(Rm), and hence that our class of currentswith compact support not only includes but coincides with Fk(Rm); up to now wehave not been able to prove this conjecture because we don't know any criterion for
atness which could apply to this situation. Since the mass of any k-dimensional
at FF-current vanishes on Hk-negligible sets (see [23], 4.2.14), this question is alsorelated to the problem, discussed in Section 3, of the absolute continuity propertyof mass with respect to Hk. On the other hand, for normal currents we can provethat there really is a one to one correspondence between the FF-ones and our ones.Theorem 11.1 Any T 2 Mk(Rm) with compact support induces a FF-current ~Tde�ned by ~T (!) := X�2�(m;k)T (!� dx�1 ^ : : :^ dx�k)for any smooth k-covector�eld ! : Rm ! �kRm with compact support. Moreover,M( ~T ) � c(m; k)M(T ).Conversely, any T 2 Fk(Rm) induces a current T̂ 2 Mk(Rm) with compactsupport such that M(T̂ ) �M(T ). Finally, T 7! ~T and T 7! T̂ , when restricted tonormal currents, are each the inverse of the other.Proof. By the continuity axiom (ii) on currents, ~T is continuous in the sense ofdistributions, and hence de�nes a FF-current. Sincej ~T (!)j � ZRm X�2�(m;k) j!�(x)j dkTk(x) � c ZRm k!(x)k dkTk(x)we obtain that ~T has �nite mass (in the FF-sense) and M( ~T ) � cM(T ), where c isthe cardinality of �(m; k).Conversely, let us de�ne T̂ for normal FF-current T �rst. Let us �rst noticethat any f d� 2 Dk(Rm), with f 2 C1c (Rm) and �i 2 C1(Rm), induces a smoothk-covector�eld with compact support ! : Rm ! �kRm, given by! = f d�1 ^ : : :^ d�k = X�2�(m;k) fdet� @(�1; : : : ; �k)@(x�1 ; : : : ; x�k)� dx�1 ^ : : :^ dx�k :Hence, T (f d�) is well de�ned in this case. Moreover, since the covectors !(x) aresimple, the de�nition of comass easily implies thatk!(x)k� � jf(x)j kYi=1Lip(�i) 8x 2 Rm : (11.3)Arguing as in Proposition 5.1, and using (11.3) instead of the de�nition of mass, ifLip(�i) � 1 and Lip(�0i) � 1 it can be proved thatjT (f d�)� T (f 0 d�0)j � ZRm jf � f 0j dkTkFF (11.4)+ kXi=1 ZRm jf jj�i � �0ij dk@TkFF + Lip(f) ZRm j�i � �0ij dkTkFF ;55



where kTkFF and k@TkFF are now understood in the Federer{Fleming sense.If f d� 2 Dk(Rm) we de�neT̂ (f d�) := lim"#0 T (f � �" d(� � �")) :By (11.4) the limit exists and de�nes a metric functional multilinear in f d�: more-over, since for " > 0 �xed the map f d� 7! T (f � �" d(� � �")) satis�es the continuityaxiom (ii) in De�nition 3.1, the same estimate (11.4) can be used to show that T̂retains the same property. Setting !" = f � �" d(� � �"), by (11.3) we obtainjT̂ (f d�)j = lim"#0 jT (!")j � lim inf"#0 ZRm k!"(x)k� dkTkFF� kYi=1Lip(�i) lim inf"#0 ZRm jf � �"j dkTkFF = kYi=1Lip(�i) ZRm jf j dkTkFFhence T̂ has �nite mass and kT̂k � kTkFF . The locality property T̂ (f d�) = 0follows at once from the de�nition of T̂ if f has compact support and one of thefunctions �i is constant in an open set containing spt f ; the general case follows nowsince T is supposed to have compact support. This proves that T̂ is a k-current.The operator T 7! T̂ can be extended by continuity to the mass closure of normalcurrents, i.e. to Fk(Rm).Finally, since T̂ (f d�) = T (f d�) if �i are smooth, for any normal FF-current Twe get~̂T (!) = X�2�(m;k)̂T (!�dx�1 ^ : : :^ dx�k) = X�2�(m;k)T (!�dx�1 ^ : : :^ dx�k) = T (!) :12 Appendix B: isoperimetric inequalitiesIn this appendix we extend the euclidean isoperimetric inequality to a more generalsetting: �rst, in Theorem 12.2, we consider a �nite dimensional Banach space,proving the existence of an isoperimetric constant depending only on the dimension(neither on the codimension nor on the norm of the space). Then, using projectionson �nite dimensional subspaces, we extend in Theorem 12.3 this result to a classof duals of separable Banach spaces. The validity of isoperimetric inequalities in ageneral Banach space is still an open problem.We start with the following elementary lemma.Lemma 12.1 Let � : [0;1) ! (0;1) be an increasing function and let k � 2integer and c > 0. Then, there exist � = �(k; �(0)) < 1 and T = T (c; k) > 0 suchthat��(t) + c[�0(t)]k=(k�1)�(k+1)=k + �1� �(t) + c[�0(t)]k=(k�1)�(k+1)=k > � (12.1)L1-a.e. in (0; T ) implies �(T ) > 1=2.Proof. Let � = �(0) > 0 and de�ne � as sup�2[�;1=2]  (� ), where (� ) := �� + 12k��(k+1)=k +�1� � + 12k��(k+1)=k :56



Since  is strictly convex and  (0) = 1,  (1=2) < 1, it follows that � < 1. LetT > [(2kc)k�1=2]1=k and assume that (12.1) holds L1-a.e. in (0; T ); the de�nitionof � implies that c[�0]k=(k�1) � �=(2k) L1-a.e. in (0; T ), hence�(T�) � � 12kc�k�1 T k > 12 :Now, we recall the isoperimetric inequality in euclidean spaces: for any currentS 2 Ik(Rm) with compact support and zero boundary there exists T 2 Ik+1(Rm)satisfying @T = S and M(T ) � 
(k;m) [M(S)](k+1)=k :This result, �rst proved by H.Federer and W.H.Fleming in [24] by means of thedeformation theorem, has been improved by F.J.Almgren in [2], who proved that theoptimal value of the isoperimetric constant does not depend on m and correspondsto the isoperimetric ratio of a (k + 1)-disk.The proof of the isoperimetric inequality in �nite dimensional Banach spacesfollows closely an argument due to M.Gromov (see [32], x3.3): the strategy is tochoose a maximizing sequence for the isoperimetric ratio (which is �nite, by theFederer{Fleming result) and to prove, using Lemma 12.1, that almost all the massconcentrates in a bounded region. Using this fact, the cone construction gives anupper bound for the isoperimetric constant which depends only on the dimensionof the current.Theorem 12.2 Let k � 1 be integer. There exists a constant 
k such that for any�nite dimensional Banach space V and any S 2 Ik(V ) with @S = 0 there existsT 2 Ik+1(V ) with @T = S andM(T ) � 
k [M(S)](k+1)=k :Proof. The proof is achieved by induction with respect to k; let � = (k + 1)=kand, for S 2 Ik(V ) with @S = 0, de�ne
(S) := inf � M(T )[M(S)]� : @T = S�and 
(0) = 0. Since V is bilipschitz equivalent to some euclidean space which isknown to be an isoperimetric space we conclude that L = supS 
(S) is �nite. Inthe following we consider a maximizing sequence (Sn) and normalize the volumes toobtain M(Sn) = 1. A simple compactness argument proves the existence of linear1-Lipschitz maps �1; : : : ; �N in V with the property thatdiam N\i=1��1i (Li)! � 2whenever diam(Li) � 1. We de�ne �i(t) = kSnk ���1i (�1; t)� for any i 2 f1; : : : ; Ngand n �xed.Step 1. Let k = 1; we claim that for any " 2 (0; 1) there exist closed balls Bnwith radius less than 4 such that kSnk(Y nBn) � " for n large enough. In fact, forL1-a.e. t 2 R such that hSn; �i; ti 6= 0 we have�0i(t) �M(hSn; �i; ti) � 157



by the boundary recti�ability theorem. On the other hand, if � 2 (0; 1), �i(t) 2[�=2; 1� �=2] and hSn; �i; ti = 0 we can decompose Sn as the sum of two cyclesSn = S1n + S2n = Sn f�i < tg+ Sn f�i � tgto obtain 
(Sn) � 
(S1n) (�i(t))2 + 
(S2n) (1� �i(t))2� L �1 + �(�2 � 1)� < Land this is impossible for n large enough, depending on �. Hence, setting � = "=N ,�0i � 1 L1-a.e. in Ii = f�i 2 [�=2; 1� �=2]g, which implies L1(Ii) � 1. Our choiceof �i implies that the intersection of ��1i (Ii) has diameter at most 2.Step 2. Now we consider the k-dimensional case with k � 2 and set c = 
k�1.We claim that for any " 2 (0; 1) there exist closed balls Bn with radius less thanrk = 8T (c; k) (with T given by Lemma 12.1) such that kSnk(V nBn) � " for n largeenough. For this purpose we set � = "=(2N ) and observe that��i(t) + c[�0i(t)]k=(k�1)�� + �1� �i(t) + c[�0i(t)]k=(k�1)�� > �(k; �) (12.2)for L1-a.e. t and n large enough. In fact, for any t such that Lt = hSn; �i; ti 2Ik�1(V ) we can �nd by the induction assumption Rt 2 Ik(V ) with @Rt = Lt andM(Rt) � c [M(Lt)]k=(k�1) � c[�0i(t)]k=(k�1) :Writing Sn = S1n + S2n := (Sn f� < tg � Lt) + (Lt + Sn f� � tg)if (12.2) does not hold we can estimate 
(Sn) by
(S1n)��i(t) + c[�0i(t)]k=(k�1)�� + 
(S2n)�1� �i(t) + c[�0i(t)]k=(k�1)��which is less than L�, and this is impossible if 
(Sn)=L > �. Now we �x n largeenough, set ti := inf ft : �i(t) � �g ; si := sup ft : �i(t) � 1� �gand obtain from Lemma 12.1 that �i(ti + T ) > 1=2 and �i(si � T ) < 1=2, hencesi � ti � 2T andkSnk V n N\i=1��1i ([ti; si])! � NXi=1 kSnk �V n ��1i ([ti; si])� � 2N� = " :By our choice of N , the intersection of ��1i ([ti; si]) has diameter less than 4T , andthis concludes the proof of this step.Step 3. Assuming with no loss of generality that the balls Bn of Step 2 (or Step1, if k = 1) are centered at the origin, we can apply the localization lemma with'(x) = kxk to choose tn 2 (rk; rk + 1) such that the currentsLn := hSn; '; tni = @(Sn Btn) = �@(Sn (V nBtn ))have mass less than " for n large (Ln = 0 if k = 1); by the induction assumption wecan �nd currents Rn 2 Ik(V ) with @Rn = Ln and M(Rn) � c"k=(k�1); we projectRn on the ball Btn(0) with the 2-Lipschitz map�(x) :=8<:x if kxk � tn:tnxkxk if kxk � tn58



to obtain R0n 2 Ik(V ) with @R0n = Ln, sptR0n � Btn and M(Rn) � 2kc"k=(k�1).Writing Sn = (Sn Btn � R0n) + (R0n + Sn (V nBtn))and applying the cone construction to Sn Btn �R0n, for n large enough we obtain
(Sn) � (rk + 1)(1 + 2kc"k=(k�1)) + L(2kc"k=(k�1)+ ")� :Letting �rst n!1 and then "! 0 we conclude that L � Rk + 1, and rk dependsonly on k.Theorem 12.3 Let Y be a w�-separable dual space and assume the existence of�nite dimensional subspaces Yn � Y and continuous linear maps Pn : Y ! Yn suchthat Pn(x) w�-converge to x as n!1 for any x 2 Y . Theninf fM(T ) : T 2 Ik+1(Y ); @T = Sg � 
kCk+1 [M(S)](k+1)=kfor any S 2 Ik(Y ) with bounded support, where C = supn kPnk and 
k is theconstant of Theorem 12.2. If S has compact support the in�mum is achieved bysome current T with compact support.Proof. The constant C is �nite by the Banach{Steinhaus theorem. Let S 2 Ik(Y )with bounded support, let Sn = Pn#S and notice that by Theorem 12.2 we can�nd solutions Tn of the Plateau problemminfM(T ) : T 2 Ik+1(Yn); @T = Sngand these solutions satisfyM(Tn) � 
k [M(Sn)](k+1)=k � 
kCk+1 [M(S)](k+1)=k :Since Yn embeds isometrically in Y we can view Tn as currents in Y and prove,by the same argument of Theorem 10.6 (but using Theorem 12.2 in place of theassumption that Y is an isoperimetric space), that spt Tn are equi-bounded andequi-compact. By Theorem 6.6 we can �nd a subsequence Tn(h) w�-converging tosome limit T . Since @Tn(h) w�-converge to @T and Sn(h) w�-converge to S weconclude that @T = S and the lower semicontinuity of mass givesM(T ) � lim infh!1 M(Th) � 
kCk+1 [M(S)](k+1)=k :Finally, since we have just proved that Y is an isoperimetric space, if S has compactsupport the in�mum is a minimum by Theorem 10.6.Any dual Banach space Y satisfying the assumptions of Theorem 12.3 is anisoperimetric space. These assumptions are satis�ed by Hilbert spaces (in thiscase the optimal isoperimetric constant is the same one of euclidean spaces), dualseparable spaces with a Schauder basis, and also by some non separable spaces, asl1.Also the space Y = M0(Rm) of measures with �nite total variation in Rm hasthe isoperimetric property: indeed, let us consider regular grids Tn in Rm withmesh size 1=n and let us de�nePn(�) := XQ2Tn nm�(Q)Hm Q 8� 2 Y :It is easy to check that kPnk = 1 and that Pn(�) weakly� converge to � as n!1for any � 2 Y . More generally, any dual space Y = X� is an isoperimetric space59



if X has a Schauder basis: in fact, denoting by Xn the n-dimensional subspacesgenerated by the �rst n vectors of the basis, and denoting by �n : X ! Xn thecorresponding projections such that kx� �n(x)k ! 0 for any x 2 X, we can de�nePn : Y ! Yn := fy 2 Y : y � �n = ygsetting Pn(y) = y � �n, i.e Pn = ��N .13 Appendix C: Mass, Hausdor� measure, lowersemicontinuityIn this section we assume that Y is a w�-separable dual space and k � 1 is aninteger. We discuss here the possibility to de�ne lower semicontinuous functionals,with respect to the weak convergence of currents, in Ik(Y ). Denoting by ^kY theexterior k-product of Y , and by ^skY the subset of simple k-vectors, any function� : ^skY ! [0;1) induces a functional F� on Ik(Y ) � Ik(Y ): indeed, recall thatany T 2 Ik(Y ) is representable, essentially in an unique way, as [[S; �; � ]] through(9.9), with S = ST given by (4.2), � integer valued and k�km = 1 on S, i.e.Hk f kXi=1 zi�i(x) : kXi=1 z2i � 1g! = !k 8x 2 S :If T = [[S; �; � ]] we de�ne F�(T ) := ZS ��(� ) dHk :Notice that, in order to de�ne F�, � needs to be de�ned only on unit simple vec-tors; for this reason all the functions � that we consider later on are positively1-homogeneous.In the following, for � 2 ^skY 6= 0, V� � Y is the k-dimensional Banach spacespanned by � with the induced metric and B� is its unit ball. Several choices of �are possible, and have been considered in the literature. In particular, we mentionthe following three (normalized so that they agree if Y is an Hilbert space):(a) �1(� ) = k�km = Hk �fPki=1 zi�i : Pki=1 z2i � 1g� =!k;(b) �2(� ) = �V�k�km, where �V is de�ned in (9.11) (see also Lemma 9.2 for ade�nition in terms of Jacobians);(c) �3(� ) = V P (� )k�km=!2k, where V P (� ) is the so-called volume product of V�(see [59], 2.3.2).The functional F1 induced by �1 is RS j�j dHk, i.e. the Hausdor� measure withmultiplicities while, according to Theorem 9.5, the functional F2 induced by �2 isthe mass. The functional F3 induced by �3 arises in the theory of �nite dimensionalBanach spaces (also called Minkowski spaces) and is the so-called Holmes-Thompsonarea; we refer to the book by A.C. Thompson [59] and to the book by R. Schneider[56] for a presentation of the whole subject; in this context, the function �1 hasbeen studied by H. Busemann and �2 has been studied by R.V. Benson [11].Coming to the problem of lower semicontinuity, the following de�nition (adaptedfrom [23], 5.1.2) will be useful. We recall that the vector space of polyhedral chainsis the subspace of Ik(Y ) generated by the normal currents [[F; 1; � ]] associated tosubsets F of k-dimensional planes with multiplicity 1.60



De�nition 13.1 (Semi-ellipticity) We say that � : ^skY ! [0;1) is semi-ellipticif qXi=1 �i�(�i)Hk(Fi) � �0�(�0)Hk(F0) (13.1)whenever T = qPi=1[[Fi; �i; �i]] � [[F0; �0; �0]] is a k-dimensional polyhedral chain with@T = 0.Since (13.1) is equivalent toqXi=1 F�([[Fi; �i; �i]]) � F�([[F0; �0; �0]])the geometric signi�cance of the semi-ellipticity condition is that \
at" currentsT0 = [[F0; �0; �0]] minimize F� among all polyhedral chains T with @T = @T0.By a simple rescaling argument, it is not di�cult to prove that the semi-ellipticityof � is a necessary condition for lower semicontinuity of F�. At least in �nitedimensional spaces Y , using polyhedral approximation results it could be proved,following 5.1.5 of [23], that the condition is also su�cient; we believe that, followingthe arguments of Appendix B, this fact could be proved in greater generality, butwe will not tackle this problem here.Since we know that the mass is lower semicontinuous, these remarks imply thatthe Benson function �2 is elliptic. We will give, however, a more direct proof ofthis fact in Theorem 13.2 below (this result has been independently proved by A.C.Thompson in [60]). Concerning the Busemann and Holmes{Thompson de�nitions,their semi-ellipticity is a long standing open problem in the theory of Minkowskispaces (see [59], Problems 6.1.1, 7.1.1), and it has been estabilished only in theextreme cases k = 1, k = dim(Y ) � 1; in these cases, as in the theory of quasicon-vex functionals, semi-ellipticity can be reduced to convexity. We also mention, inthis connexion, the work [10] by G. Bellettini, M. Paolini and S. Venturini, wherethe relevance of these results for anisotropic problems in Calculus of Variations isemphasized.We de�ne�(� ) := 1!k sup�Lk (�(B� )) k�km : � 2 �	 8� 2 ^skY n f0g (13.2)where � is the collection of all linear maps � : Y ! Rk with Lip(�i) � 1, i =1; : : : ; k. By the area formula, the function � can also written as�(� ) = sup fJk(�)k�km : � 2 �g (13.3)hence Lemma 9.2 gives that � = �2.Theorem 13.2 The function � : ^skY ! [0;1) de�ned in (13.2) is semi-elliptic.Proof. Let T as in De�nition 13.1 and let � 2 � be �xed; sinceT (1 d�) = @T (�1 d�2 ^ : : :^ d�k�1) = 0taking into account (9.9) we obtain�0 ����ZF0h^kdF0�; �0i dHk���� � qXi=1 �i ����ZFi h^kdFi�; �ii dHk���� :61
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