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Some Special Geometry in Dimension SixAndreas �Cap and Michael Eastwood]Abstract: We generalise the notion of contact manifold by allowing the contactdistribution to have codimension two. There are special features in dimension six. Inparticular, we show that the complex structure on a three-dimensional complex contactmanifold is determined solely by the underlying contact distribution.De�nitionsSuppose M is a 6-dimensional connected oriented smooth manifold and H is arank 4 smooth subbundle of its tangent bundle TM . Let Q denote the quotientbundle TM=H. There is a homomorphism of vector bundles L : H ^ H ! Qinduced by Lie bracket:{L(�; �) = [�; �]modH for �; � 2 �(H):Regard L as a tensor L 2 �(�2H�
Q). Then L^L 2 �(�4H�
J2Q) may beregarded as a quadratic form on Q� de�ned up to scale. We shall say that (M;H)is non-degenerate if and only if L^L is non-degenerate as such a quadratic form.Since Q has rank two, there are only two cases:{� (M;H) is elliptic () L^ L is de�nite;� (M;H) is hyperbolic () L^ L is inde�nite.An elliptic example may be obtained by taking a 3-dimensional complex contactmanifold and forgetting its complex structure. A hyperbolic example may beobtained by taking the product of two 3-dimensional real contact manifolds.These two examples will be referred to as the `at' models. The motivations forour investigation are discussed in the end of this article.AcknowledgementsWe are pleased to acknowledge several useful conversations with Gerd Schmalz,Jan Slov�ak, and Peter Vassiliou.]Senior Research Fellow of the Australian Research Council.This research was undertaken whilst the second author was visiting the Erwin Schr�odingerInternational Institute for Mathematical Physics. Its support is gratefully acknowledged.1



The Elliptic CaseTheorem Suppose (M;H) is elliptic. Then M admits a unique almost complexstructure J : TM ! TM characterised by the following properties:{� J preserves H;� the orientation on M induced by J is the given one;� L : H �H ! Q is complex bilinear for the induced structures, or equiva-lently [�; �] + J [J�; �] 2 �(H) for �; � 2 �(H);� [�; �] + J [J�; �]� J [�; J�] + [J�; J�] 2 �(H) for � 2 �(TM); � 2 �(H):Furthermore, the tensor S : Q
H ! Q induced byS(�; �) = [�; �] + J [J�; �]modH for � 2 �(TM); � 2 �(H)is the obstruction to J being integrable.Proof Fix x 2 M . Since Lx ^ Lx is de�nite, there is no  2 Q�x for which( �Lx)^ ( �Lx) vanishes|as a quadratic polynomial Lx^Lx has no real roots.Instead it has two complex roots, related by complex conjugation. Each of theseroots gives  2 Q�x 
 C de�ned up to complex scale, so that ( � Lx) ^ ( � Lx)vanishes as an element of �4H� 
 C . In this case, according to the Pl�uckercriterion,  �Lx is simple as an element of �2H�
C . The corresponding complex2-plane in H� 
 C de�nes a complex structure J : Hx ! Hx. At the same time 2 Q�x 
 C identi�es Qx with C and, in particular, de�nes a complex structureJ : Qx ! Qx. These complex structures on Hx and Qx are unchanged if  is multiplied by any complex number. In other words, they are determinedby choosing one of the two roots of Lx ^ Lx as a quadratic polynomial. Theother root replaces J by �J but only one of these choices induces the givenorientation on M . To summarise, we now have uniquely determined almostcomplex structures on H and Q so thatL(�; �) + JL(J�; �) = 0 for �; � 2 �(H) (1)and inducing the given orientation on M . Choose any extension of these almostcomplex structures to an almost complex structure ~J : TM ! TM . This ~Jsatis�es the �rst three properties claimed in the statement of the theorem. De�ne~S : TM 
H ! Q by~S(�; �) = [�; �] + J [ ~J�; �]modH for � 2 �(TM); � 2 �(H) (2)2



This homomorphism depends on the choice of the etension ~J. For �xed � 2TM consider the map H ! Q de�ned by � 7! 12(� ~S(�; �) + J ~S(�; J�)). Byconstruction this map is complex linear, so non{degeneracy of L implies thatthere is a unique element K� 2 H such thatL(K�; �) = � ~S(�; �) + J ~S(�; J�)2 for � 2 �(TM); � 2 �(H) (3)and this de�nes a homomorphism K : TM ! H.We claim that J = ~J + K is the almost complex structure whose existenceis asserted in the statement of the theorem. If � 2 �(H), then (1) implies that~S(�; �) = 0 so K� = 0, and in particular K2 = 0. Therefore, J preserves H.Also ( ~J +K)2 = ~J2 + ~JK +K ~J +K2 = �Id + ~JK +K ~Jso we must check that ~JK +K ~J = 0. By the non-degeneracy of L it su�ces tocheck that L( ~JK�; �) + L(K ~J�; �) = 0 for � 2 �(TM); � 2 �(H):This is easily veri�ed using (1), (2), and (3). Thus, J is an almost complexstructure. Moreover, it satis�es the �rst three requirements listed in the theoremas a consequence of ~J doing so. Moreover, the tensor S corresponding to J =~J + K is visibly given by S(�; �) = ~S(�; �) + L(K�; �). By construction, thisis just the component of ~S which is conjugate linear in the second variable.But the �nal requirement is immediately seen to be equivalent to the fact thatthe corresponding tensor S (which is conjugate linear in the �rst variable byconstruction), is conjugate linear in the second variable, too. In fact, this forces(3) as the correct modi�cation so J is uniquely characterised by having all fourproperties.It remains to show that the tensor S is the obstruction to integrability of J .The Nijenhuis tensor of J isN(�; �) = [�; �] + J [J�; �] + J [�; J�]� [J�; J�] for �; � 2 �(TM):Notice that N is skew and N(�; J�) = �JN(�; �). In particular,N(�; J�) = �JN(�; �) = 0 for � 2 �(TM): (4)Firstly, consider the case when � 2 �(TM); � 2 �(H). The vanishing of S meansthat [�; �] + J [J�; �] 2 �(H) for � 2 �(TM); � 2 �(H): (5)3



In particular, this implies N(�; �) 2 �(H), so we may consider the tensor R :TM 
H 
H ! Q de�ned byR(�; �; �) = L(N(�; �); �) for � 2 �(TM); �; � 2 �(H):We claim that R vanishes. Once this is proved, non-degeneracy of L implies thatN(�; �) = 0 for � 2 �(TM); � 2 �(H) and so N descends to N : �2Q ! TM .Then, as Q has complex rank one, (4) forces N to vanish.To complete the proof, therefore, it su�ces to show that R vanishes. In thefollowing calculation � denotes equality modulo H and in passing from one lineto the next we are using either the Jacobi identity, or (5), or the fact that S isconjugate linear in both variables.R(�; �; �) � [[�; �]; �] + [J [J�; �]; �] + [J [�; J�]; �]� [[J�; J�]; �]� [[�; �]; �] + J [[J�; �]; �] + J [[�; J�]; �]� [[J�; J�]; �]= [[�; �]; �] + J [[J�; �]; �] + J [[�; �]; J�]� [[J�; �]; J�]+[[�; �]; �] + J [[�; �]; J�] + J [[�; J�]; �]� [[�; J�]; J�]� [[�; �]; �] + [J [J�; �]; �] + [J [�; �]; J�]� [[J�; �]; J�]+[[�; �]; �] + J [[�; �]; J�] + J [[�; J�]; �]� [[�; J�]; J�]= [[�; �] + J [J�; �]; �] + [J [�; �]� [J�; �]; J�]+[[�; �]; �] + J [[�; �]; J�] + J [[�; J�]; �]� [[�; J�]; J�]� [[�; �]; �] + J [[�; �]; J�] + J [[�; J�]; �]� [[�; J�]; J�]:Therefore,R(�; �; �) +R(�; �; �) � J [[�; J�] + [�; J�]; �]� [[�; J�] + [�; J�]; J�]and since [�; J�] + [�; J�] 2 �(H), this expression vanishes by (5). We concludethat R : TM 
H 
H ! Q is skew in its last two entries. But by de�nition Ris conjugate linear in the middle variable and complex linear in the last variable,which together with skew symmetry in these two variables forces R to vanish asrequired.Corollary The only local invariant of an elliptic (M;H) is the tensor S.Proof If S vanishes, then (M;H) is a complex contact manifold. The Darbouxtheorem in the holomorphic setting says that all 3-dimensional complex contactmanifolds are locally isomorphic. 4



The Hyperbolic CaseThere is an entirely parallel story for the hyperbolic case with almost complexstructure replaced by almost product structure. The corresponding theoremmaybe stated as follows.Theorem Suppose (M;H) is hyperbolic. Then H admits a canonical splittingH = H+ �H� characterised by the following properties:{� [�; �] 2 �(H) for � 2 �(H+); � 2 �(H�);� the orientation on M induced by �1 ^ �2 ^ [�1; �2] ^ �1 ^ �2 ^ [�1; �2] for�1; �2 2 �(H+); �1; �2 2 �(H�) is the given one.Let Q� be the range of Lj�2H�. Non-degeneracy of L implies that Q = Q+�Q�.By setting T�M = [H�;H�], we obtain a canonical splitting TM = T+M �T�Msuch that Q� = T�M=H�. Furthermore, the tensors S+ : Q+ 
H+ ! Q� andS� : Q� 
H� ! Q+ induced byS�(�; �) � [�; �]mod(T� �H�) for � 2 �(T�M) ; � 2 �(H�)are the respective obstructions to T+M and T�M being Frobenius integrable.If S� both vanish, then locally we obtain the at local model, namely a productof two 3-dimensional real contact manifolds. The Darboux theorem, appliedto each such contact manifold separately, implies that the at model is locallyunique. Again, the tensors S� provide the only local structure.MotivationsOur motivation for this article comes from the theory of CR submanifolds ofcodimension 2 in C 4 . This theory was pioneered by Loboda [4] and Ezhov-Schmalz [3] who found normal forms for such submanifolds paralleling the Mosernormal form for CR hypersurfaces. In this context, the distribution H is formedby the maximal complex subspaces of the tangent spaces. More generally, tomake an elliptic or hyperbolic (M;H) into a partially integrable almost CRmanifold, one has to specify an almost complex structure ~J on H such thatL( ~J�; ~J�) = L(�; �) for all �; � 2 H. In the hyperbolic case, this implies inparticular that H = H+ �H� is a decomposition of H as a sum of two complexline bundles. On the other hand, in the elliptic case the second almost complex5



structure ~J can also be rephrased as a decomposition H = H+�H� as a sum ofcomplex line bundles characterized by ~J = �J on H�.Clearly, these additional structures lead to additional obstructions againstbeing CR{isomorphic to the at models (which are just appropriate quadrics).For example, one has the Nijenhuis tensor corresponding to ~J , or the obviousobstructions against integrability of the subbundles H� in the elliptic case. Butin fact, in the CR setting, one gets muchmore structure: In [5] and [2] it is shownthat one gets a parabolic geometry parallel to the Chern-Moser-Tanaka theoryfor CR hypersurfaces and thus in particular canonical Cartan connections. Thisarticle may be viewed as some remnant of the parabolic theory.As pointed out to us by Peter Vassiliou, there is another context in which(M;H) with these special dimensions arise. The general pair of smooth �rstorder partial di�erential equations in two independent variables (x; y) and twodependent variables (u; v) may be regarded as a codimension 2 submanifold Min the 8-dimensional jet space with co�ordinates (x; y; u; v; ux; uy; vx; vy). This jetspace has a natural distribution of rank 6 de�ned as common kernel of the two1-forms du� ux dx� uy dy and dv � vx dx � vy dy:Generically, M will meet this distribution transversally and so will itself inherita rank 4 distribution H. The elliptic at model is obtained from the Cauchy-Riemann equations ux = vy and uy = �vx:The hyperbolic at model arises from the equationsuy = 0 and vx = 0:Further discussion may be found in [1, Chapter VII, x1], [6], and [7].Higher DimensionsIf we start with a (2n+1)-dimensional complex contact manifoldM with contactdistribution H, then L 2 �(�2H� 
 Q) may be de�ned as before but now weshould consider L^2n 2 �(�4nH�
J2nQ) as a polynomial of degree 2n de�nedup to scale. Only when n = 1 is this polynomial generic. In general it has onlytwo roots, each complex and of multiplicity n.6
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