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TRACTOR BUNDLES FOR IRREDUCIBLE PARABOLICGEOMETRIESbyAndreas �Cap & A. Rod GoverAbstrat. | We use the general results on trator aluli for paraboli geometriesobtained in [3℄ to give a simple and e�etive haraterisation of arbitrary normaltrator bundles on manifolds equipped with an irreduible paraboli geometry (alsoalled almost Hermitian symmetri{ or AHS{struture in the literature). Moreover,we also onstrut the orresponding normal adjoint trator bundle and give expliitformulae for the normal trator onnetions as well as the fundamental D{operatorson suh bundles. For suh strutures, part of this information is equivalent to givingthe anonial Cartan onnetion. However it also provides all the information ne-essary for building up the invariant trator alulus. As an appliation, we give anew simple onstrution of the standard trator bundle in onformal geometry, whihimmediately leads to several elements of trator alulus.1. Trator bundles and normal trator onnetionsRiemannian and pseudo-Riemannian geometries are equipped with a anonialmetri and the metri (or Levi-Civita) onnetion that it determines. For this reason,in the setting of these geometries, it is natural to alulate diretly with the tangentbundle, its dual and the tensor bundles. On the other hand for many other interestingstrutures suh as onformal geometries, CR geometries, projetive geometries andquaternioni strutures the situation is not so fortunate. These strutures are amongthe broad lass of so-alled paraboli geometries and for the geometries within thislass there is no anonial onnetion or metri on the tangent bundle or the tensorbundles. Nevertheless for these strutures there is a lass of natural vetor bundleswhih do have a anonial onnetion. These are the trator bundles and the alulusbased around these bundles is a natural analog of the tensor bundle and Levi-Civitaonnetion alulus of Riemannian geometry.1991 Mathematis Subjet Classi�ation. | primary: 53B15, 53C05, 53C07, 53C15 seondary:53A20, 53A30, 53A40, 53A55.Key words and phrases. | Paraboli geometry, Cartan onnetion, trator bundle, trator alu-lus, invariant di�erential operator, invariant alulus.



2 ANDREAS �CAP & A. ROD GOVERTrator alulus has its origins in the work of T.Y. Thomas [11℄ who developed keyelements of the theory for onformal and projetive geometries. Far more reently thiswas redisovered and extended in [1℄. Sine this last work trator alulus has beenfurther extended and developed and the strutures treated expliitly inlude CR andthe almost Grassmannian/quaternioni geometries (see for example [6, 7, 8, 9℄ andreferenes therein). Inluded in these works are many appliations to the onstrutionof invariant operators and polynomial invariants of the strutures.In our reent paper [3℄ we have introdued the onepts of trator bundles andnormal trator onnetions for all paraboli geometries. Besides showing that fromthese bundles one an reover the Cartan bundle and the normal Cartan onnetionof suh a geometry, we have also developed an invariant alulus based on adjointtrator bundles and the so{alled fundamental D{operators for all these geometries.Moreover, in that paper a general onstrution of the normal adjoint trator bundlein the ase of irreduible paraboli geometries is presented. While this approah,based on the adjoint representation of the underlying Lie{algebra, has the advantageof working for all irreduible paraboli geometries simultaneously, there are atuallysimpler trator bundles available for eah onrete hoie of the struture. In fat,all previously known examples of trator aluli as mentioned above are of the lattertype. It is thus important to be able to reognise general normal trator bundles fora paraboli geomtry and to �nd the orresponding normal trator onnetions.The main result of this paper is theorem 1.3 whih o�ers a omplete solution for thease of irreduible paraboli geometries. For a given struture and representation ofthe underlying Lie algebra, this gives a haraterisation of the normal trator bundle,as well as a univsersal formula for the normal trator onnetion. On the one handthis may be used to identify a bundle as the normal trator bundle and then omputethe normal trator onnetion. On the other hand the theorem spei�es the neessaryingredients for the onstrution of suh a bundle. It should be pointed out, that theresults obtained here are independent of the onstrution of the normal adjoint tratorbundles for irreduible paraboli geometries given in [3℄. From that soure we onlyuse the tehnial bakground on these strutures.We will show the power of this approah in setion 2 and 3 by giving an alternativeonstrution of the most well known example of a normal trator bundle, namely thestandard trators in onformal geometry. Besides providing a short and simple routeto all the basi elements of onformal trator alulus, this new onstrution alsoimmediately enodes some more advaned elements of trator alulus.1.1. Bakground on irreduible paraboli geometries. | Paraboli geome-tries may be viewed as urved analogs of homogeneous spaes of the form G=P , whereG is a real or omplex simple Lie group and P � G is a paraboli subgroup. In general,a paraboli geometry of type (G;P ) on a smooth manifoldM is de�ned as a prini-pal P{bundle over M , whih is endowed with a Cartan onnetion, whose urvaturesatis�es a ertain normalization ondition. This kind of de�nition is however veryunsatisfatory for our purposes. The point about this is that these normal Cartanonnetions usually are obtained from underlying strutures via fairly ompliated



TRACTOR BUNDLES FOR IRREDUCIBLE PARABOLIC GEOMETRIES 3prolongation proedures, see e.g. [4℄. Trator bundles and onnetions are an alter-native approah to these strutures, whih do not require knowledge of the Cartanonnetion but may be onstruted diretly from underlying strutures in many ases.Hene, in this paper we will rather fous on the underlying strutures and avoid thegeneral point of view via Cartan onnetions.Fortunately, these underlying strutures are partiularly easy to understand for thesublass of irreduible paraboli geometries, whih orrespond to ertain maximalparabolis. The point is that for these strutures, one always has a (lassial �rstorder) G0{struture (for a ertain subgroup G0 � G) on M , as well as a lass ofpreferred onnetions on the tangent bundle TM . While both these are there forany irreduible paraboli geometry, their role in desribing the struture may varya lot, as an be seen from two important examples, namely onformal and lassialprojetive strutures.In the onformal ase, the G0{struture just is the onformal struture, i.e. theredution of the frame bundle to the onformal group, so this ontains all the in-formation. The preferred onnetions are then simply all torsion free onnetionsrespeting the onformal struture, i.e. all Weyl onnetions. On the other hand, inthe projetive ase, the group G0 turns out to be a full general linear group, so the�rst order G0{struture ontains no information at all, while the projetive strutureis given by the hoie of a lass of preferred torsion free onnetions.The basi input to speify an irreduible paraboli geometry is a simple real Liegroup G together with a so{alled j1j{grading on its Lie algebra g, i.e. a grading ofthe form g�1�g0�g1. It is then known in general (see e.g. [12, setion 3℄) that g0 is aredutive Lie algebra with one dimensional entre and the representation of g0 on g�1is irreduible (whih is the reason for the name \irreduible paraboli geometries").Moreover, any g{invariant bilinear form (for example the Killing form) indues aduality of g0{modules between g�1 and g1. Next, there is a anonial generator E,alled the grading element , of the entre of g0, whih is haraterised by the fat thatits adjoint ation on gj is given by multipliation by j for j = �1; 0; 1.Having given these data, we de�ne subgroups G0 � P � G byG0 = fg 2 G : Ad(g)(gi) � gi for all igP = fg 2 G : Ad(g)(gi) � gi � gi+1 for i = 0; 1g;where Ad denotes the adjoint ation and we agree that gi = f0g for jij > 1. It is easyto see that G0 has Lie algebra g0, while P has Lie algebra p = g0� g1. An importantresult is that P is atually the semidiret produt of G0 and a vetor group. Morepreisely, one proves (see e.g. [4, proposition 2.10℄) that for any element g 2 P thereare unique elements g0 2 G0 and Z 2 g1 suh that g = g0 exp(Z). Hene if we de�neP+ � P as the image of g1 under the exponential map, then exp : g1 ! P+ is adi�eomorphism and P is the semidiret produt of G0 and P+.If neither g nor its omplexi�ation is isomorphi to sl(n; C ) with the j1j{gradinggiven in blok form by � g0 g1g�1 g0�, where the bloks are of size 1 and n� 1, then aparaboli geometry of type (G;P ) on a smooth manifoldM (of the same dimension



4 ANDREAS �CAP & A. ROD GOVERas g�1) is de�ned to be a �rst order G0{struture on the manifold M , where G0 isviewed as a subgroup of GL(g�1) via the adjoint ation. We will heneforth refer tothese strutures as the strutures whih are not of projetive type.On the other hand, if either g or its omplexi�ation is isomorphi to sl(n; C ) withthe above grading, then this is some type of a projetive struture, whih is givenby a hoie of a lass of aÆne onnetions on M (details below). See [5, 3.3℄ for adisussion of various examples of irreduible paraboli geometries.Given a j1j{graded Lie algebra g, the simplest hoie of group is G = Aut(g),the group of all automorphisms of the Lie algebra g. Note that, for this hoie ofthe group G, P is exatly the group Autf (g) of all automorphism of the �ltered Liealgebra g � p � g1, while G0 is exatly the group Autgr(g) of all automorphisms ofthe graded Lie algebra g = g�1�g0�g1. For a general hoie of G, the adjoint ationshows that P (respetively G0) is a overing of a subgroup of Autf (g) (respetivelyAutgr(g)) whih ontains the onneted omponent of the identity. Note however,that in any ase the group P+ is exatly the group of those automorphisms ' of gsuh that for eah i = �1; 0; 1 and eah A 2 gi the image '(A) is ongruent to Amodulo gi+1 � gi+2.In any ase, as shown in [3, 4.2, 4.4℄, on any manifoldM equipped with a paraboligeometry of type (G;P ) one has the following basi data:(1) A prinipal G0{bundle p : G0 ! M whih de�nes a �rst order G0{struture onM . (In the non{projetive ases, this de�nes the struture, while in the projetiveases it is a full �rst order frame bundle.) The tangent bundle TM and the otangentbundle T �M are the assoiated bundles to G0 orresponding to the adjoint ationof G0 on g�1 and g1, respetively. There is an indued bundle End0 TM whih isassoiated to G0 via the adjoint ation of G0 on g0. This is anonially a subbundleof T �M 
 TM and so we an view setions of this bundle either as endomorphismsof TM or of T �M .(2) An algebrai braket f ; g : TM 
 T �M ! End0 TM , whih together with thetrivial brakets on TM 
 TM and on T �M 
 T �M , the brakets End0 TM 
 TM !TM given by f�; �g = �(�) and End0 TM 
T �M ! T �M given by f�; !g = ��(!),and the braket on End0 TM 
 End0 TM ! End0 TM given by the ommutator ofendomorphisms of TM , makes TxM �End0 TxM � T �xM , for eah point x 2M , intoa graded Lie algebra isomorphi to g = g�1 � g0 � g1. (This algebrai braket isindued from the Lie algebra braket of g.)(3) A preferred lass of aÆne onnetions on M indued from prinipal onnetionson G0, suh that for two preferred onnetions r and r̂ there is a unique smooth one{form � 2 
1(M ) suh that r̂�� = r��+ff�; �g; �g for all vetor �elds �; � onM . (Inthe projetive ases, the struture is de�ned by the hoie of this lass of onnetions,while in the non{projetive ases their existene is a nontrivial but elementary result.)Moreover, there is a restrition on the torsion of preferred onnetions, see below.There is a nie reinterpretation of (1) and (2): De�ne the bundle �!A = A�1 �A0 � A1 ! M by A�1 = TM , A0 = End0 TM and A1 = T �M . Then the algebraibraket from (2) makes �!A into a bundle of graded Lie algebras. Moreover, sineAi is the assoiated bundle G0 �G0 gi the de�nition of the algebrai braket implies



TRACTOR BUNDLES FOR IRREDUCIBLE PARABOLIC GEOMETRIES 5that eah point u0 2 G0 lying over x 2 M leads to an isomorphism u0 : g ! Ax ofgraded Lie algebras. In this piture, the prinipal right ation of G0 on G0 leads tou0�g = u0 ÆAd(g).There are a few important fats on preferred onnetions that have to be noted.First, sine they are indued from prinipal onnetions on G0, the algebrai braketsfrom (2) are ovariantly onstant with respet to any of the preferred onnetions.Seond, the Jaobi identity immediately implies that ff�; �g; �g is symmetri in � and�, so all preferred onnetions have the same torsion T 2 �(�2T �M 
 TM ). Hene,this torsion is an invariant of the paraboli geometry. The normalisation onditionon the torsion mentioned above is that the trae over the last two entries of the map�2TM 
 T �M ! End0 TM de�ned by (�; �; !) 7! fT (�; �); !g vanishes. That is, inthe language of [3℄, the torsion is is ��{losed.There are also a few fats on the urvature of preferred onnetions that we willneed in the sequel: Namely, if r is a preferred onnetion, and R 2 �(�2T �M 
End0 TM ) is its urvature, then by [3, 4.6℄ one may split R anonially as R(�; �) =W (�; �) � fP(�); �g + fP(�); �g, where P 2 �(T �M 
 T �M ) is the rho{tensor andW 2 �(�2T �M
End0 TM ) is alled the Weyl{urvature of the preferred onnetion.What makes this splitting anonial is the requirement that the trae over the lasttwo entries of the map �2T �M 
 T �M ! T �M de�ned by (�; �; !) 7! W (�; �)(!) =�fW (�; �); !g vanishes. Referring, one again, to the language of [3℄, this is theondition that W is ��{losed. The hange of both P and W under a hange ofpreferred onnetion is relatively simple. Namely, from [3, 4.6℄ we get for r̂�� =r�� + ff�; �g; �g the expressionsP̂(�) = P(�)�r�� + 12f�; f�; �ggŴ (�; �) = W (�; �) + f�; T (�; �)gIn partiular, if the torsion ofM vanishes, then the Weyl{urvature is independent ofthe hoie of the preferred onnetion and thus an invariant of the paraboli geometryon M .The Cotton{York tensor CY 2 �(�2T �M 
 T �M ) of a preferred onnetion r isde�ned as the ovariant exterior derivative of the rho{tensor, i.e.CY (�; �) = (rP)(�; �)� (rP)(�; �) + P(T (�; �)):It turns out that if both the torsion and the Weyl{urvature vanish, then CY isindependent of the hoie of the preferred onnetion and thus an invariant of theparaboli geometry. Finally, it an be shown that if for one (equivalently any) pre-ferred onnetion the torsion, the Weyl{urvature and the Cotton{York tensor vanish,then the manifold is loally isomorphi (as a paraboli geometry) to the at modelG=P .1.2. (g; P ){modules. | The basi ingredient for a trator bundle on a manifoldMequipped with a paraboli geometry of type (G;P ) is a (�nite{dimensional) nontrivial(g; P ){moduleV. This means that onVone has given ations � of P and �0 of g suhthat the restrition of �0 to the subalgebra p oinides with the derivative of � andsuh that �0(Ad(g)�A) = �(g) Æ �0(A) Æ �(g�1) for all g 2 P and A 2 g. The basi



6 ANDREAS �CAP & A. ROD GOVERexamples of (g; P ){modules are provided by representations of the group G, by simplyrestriting the representation to P but keeping its derivative de�ned on g. Sine G issimple, any �nite dimensional g{module splits as a diret sum of irreduible modules,so we will heneforth assume that Vis irreduible as a g{module.Clearly we an restrit the ation of P on V to G0 and hene view V as a G0{module (and thus also as a g0{module). The grading element E is ontained in theentre of g0, and thus Shur's lemma implies that it ats by a salar on any irreduibleg0{module. In partiular, we may split Vas �jVj aording to eigenvalues of E. ForA 2 gi and v 2 Vj note the omputation E�A�v = [E;A℄�v + A�E�v = (i + j)A�v.So the ation of gi maps eah Vj to Vj+i (where we de�ne Vk = 0 if an integer k isnot an eigenvalue of E ating on V). Sine any nontrivial representation of a simpleLie algebra is faithful, it follows that there are at least two nonzero omponents inthe sum �jVj, and in partiular, V is never an irreduible g0{module. Finally, notethat sine V is an irreduible g{module, it is generated by a single element. Thisimplies that if j0 is the lowest eigenvalue of E ourring in V all other eigenvaluesare obtained by adding positive integers to j0, so the splitting atually has the formV= �Nj=0Vj0+j . The upshot of this is that we an enode the g{module struture asthe sequene (Vj) of g0{modules, together with the ations g�1 �Vj !Vj�1.1.3. Let us heneforth �x a simple Lie group G with j1j{graded Lie algebra g, anirreduible (g; P ){moduleVwith deompositionV= �Vj aording to eigenvalues ofthe grading element E, and a smooth manifoldM endowed with a paraboli geometryof type (G;P ). Then sine eahVj is aG0{submodule ofV, we an form the assoiatedbundle Vj = G0 �G0 Vj ! M and put �!V = �jVj . Moreover, the ation g !L(V;V) indues a bundle map � : �!A ! L(�!V ;�!V ), whih has the property that�(Ai)(Vj) � Vi+j for all i = �1; 0; 1 and all j. By onstrution, we have �(fs; tg) =�(s) Æ �(t)� �(t) Æ �(s) for all setions s; t of �!A . Note that in partiular, we an takeV= A := g, in whih ase we reover the bundle �!A . Sine in this ase the ationis given by the algebrai braket, we denote it by ad (instead of �). If we want todeal with both ations simultaneously, or if there is no risk of onfusion, we will alsosimply write � for the ation, i.e. s � t equals �(s)(t) or ad(s)(t) = fs; tg.Now we are ready to formulate the main result of this paper:Theorem. | Suppose that V ! M is a vetor bundle, and suppose that for eahpreferred onnetion r on M we an onstrut an isomorphism V ! �!V = �jVj ,whih we write as t 7! �!t = (: : : ; tj; tj+1; : : : ) both on the level of elements and ofsetions. Suppose, further, that hanging from r to r̂ with orresponding one{form�, this isomorphism hanges to t 7! �!t = (: : : ; t̂j; t̂j+1; : : :), wheret̂k =Xi�0 1i!�(�)i(tk�i):Then for a point x 2 M the set Ax of all linear maps ' : Vx ! Vx for whih thereexists an element �!' 2 �!A x suh that ��!'(t) = �(�!' )(�!t ) for all t 2 Vx is independentof the hoie of the preferred onnetion r. The spaes Ax form a smooth subbundle



TRACTOR BUNDLES FOR IRREDUCIBLE PARABOLIC GEOMETRIES 7A of L(V;V) = V� 
 V, whih is an adjoint trator bundle on M in the sense of [3,2.2℄. Moreover the isomorphism A ! �!A de�ned by ' 7! �!' (given above) has thesame transformation property as the isomorphism above, i.e.'̂k =Xi�0 1i! ad(�)i('k�i):Then V is the V{trator bundle for an appropriate adapted frame bundle for A.The expression (in the isomorphism orresponding to r)��!rV� t = r��!t + ��(�) + �(P(�))�(�!t )for � 2 X(M ) and t 2 �(V) de�nes a normal trator onnetion on V, and the sameformula with V replaed by A and � replaed by ad de�nes a normal trator onnetionon A. Thus, V and A are the (up to isomorphism unique) normal trator bundles onM orresponding to Vand g, respetively.Finally, the urvature R of both these onnetions is (in the isomorphism orre-sponding to r) given by������!R(�; �)(s) = (T (�; �) +W (�; �) +CY (�; �)) � �!s ;where T , W and CY are the torsion, the Weyl{urvature and the Cotton{York tensorof r.The remainder of this setion is dediated to the proof of this theorem.1.4. The adjoint trator bundle determined by V. | To follow the approahto trator bundles developed in [3℄, we need �rst an adjoint trator bundle A ! Mbefore we an deal with (or even de�ne) general trator bundles. So we �rst disussthe bundle A from theorem 1.3.First note, that we an niely rewrite the hange of isomorphisms from theorem1.3 as �̂!t = e�(�)(�!t ), where the exponential is de�ned as a power series as usual.Sine �(�) is by onstrution nilpotent, this sum is atually �nite. Moreover, sine� orresponds to the in�nitesimal ation of the Lie algebra g, e�(�) in that pitureorresponds to the (group) ation of exp(Z), where Z 2 g1 orresponds to �. Fromthe de�nition of a (g; P ){module in 1.2 it follows that for eah A 2 g and v 2 Vwehave exp(�Z)�A� exp(Z)�v = (Ad(exp(�Z))(A))�v = (e� ad(Z)(A))�v;and thus A� exp(Z)�v = exp(Z)�(e� ad(Z)(A))�v. Transferring this to the manifold, weobtain �(s) Æ e�(�) = e�(�) Æ �(e� ad(�)(s));(1)for eah � 2 
1(M ) and eah s 2 �(�!A ). Note further, that e� ad(�) is just the identityon A1 = T �M , while for � 2 A0 = End0 TM we have e� ad(�)(�) = � � f�;�g 2A0 � A1 and for � 2 A�1 = TM , we have e� ad(�)(�) = � � f�; �g+ 12f�; f�; �; gg.The de�ning equation for ' 2 L(Vx;Vx) to lie in Ax from theorem 1.3 is just��!'(t) = �(�!' )(�!t ) for some element �!' of �!A x (and all t 2 Vx). If r̂ is another



8 ANDREAS �CAP & A. ROD GOVERpreferred onnetion and � 2 
1(M ) is the orresponding one{form, then usingformula (1) from above, we omputed��!'(t) = e�(�) Æ �(�!' )(�!t ) = �(ead(�)(�!' )) Æ e�(�)(�!t ) = �(ead(�)(�!' ))(�!t );whih shows both that Ax is independent of the hoie of preferred onnetion, andthat �!' = ead(�)(�!' ), so the hange of isomorphisms A ! �!A indued by preferredonnetions is proved. A preferred onnetion thus indues a global isomorphismA ! �!A , so A � V� 
 V is a smooth subbundle. Next, the (pointwise) ommutatorof endomorphisms de�nes an algebrai braket f ; g on A, making it into a bundle ofLie algebras. From the fat that � omes from a representation of g we onlude that�����!f'1; '2g = f�!'1;�!'2g, so for eah preferred onnetion the isomorphism A ! �!A is anisomorphism of bundles of Lie algebras.From the formula�!' = ead(�)(�!' ) it follows that if �!' lies in A0�A1 then the sameis true for �!' , and moreover their omponents in A0 are equal. Similarly, if �!' 2 A1then �!' = �!' . Thus, we get an invariantly de�ned �ltration A = A�1 � A0 � A1 ofA. Furthermore, writing gr(A) to denote the assoiated graded vetor bundle of A(i.e. gr(A) = (A�1=A0) � (A0=A1) � A1) then we also get a anonial isomorphismfrom gr(A) ! �!A . In partiular, sine �!A is a loally trivial bundle of graded Liealgebras modelled on g and the isomorphism A ! �!A provided by any preferredonnetion is �ltration preserving, we see that A is a loally trivial bundle of �lteredLie algebras over M modelled on g, and thus an adjoint trator bundle in the senseof [3, 2.2℄.Next, we an an use A to onstrut a orresponding adapted frame bundle (see[3, 2.2℄), that is a prinipal P{bundle G !M suh that A = G �P g, the assoiatedbundle with respet to the adjoint ation. First note that ifA is given as an assoiatedbundle in this way then, by de�nition, any point u 2 G lying over x 2 M induesan isomorphism u : g ! Ax of �ltered Lie algebras. Now if  : g ! Ax is anysuh isomorphism, then we an pass to the assoiated graded Lie algebras on bothsides and, in view of the anonial isomorphism from gr(A) to �!A onstruted above,the result is an isomorphism g ! �!A x. With this observations at hand, we nowde�ne Gx to be the set of all pairs (u0;  ), where u0 2 (G0)x and  : g ! Ax is anisomorphism of �ltered Lie algebras suh that the indued isomorphism g ! �!A x ofgraded Lie algebras equals u0, see 1.1. Putting G = [x2MGx we automatially get asmooth struture on G, sine we an view G as a submanifold the �bred produt ofG0 with the linear frame bundle of A. The �rst projetion is a surjetive submersionfrom this �bred produt onto G0 and we an ompose with this the usual projetionfrom G0 to M . Moreover, for eah u0 2 G0, omposing with u0 the inverse of theisomorphism Ax ! �!A x provided by any preferred onnetion, gives by onstrutionan isomorphism  suh that (u0;  ) 2 G. Hene, the restrition of this surjetivesubmersion to G is still surjetive.Next, we de�ne a right ation of P on G by (u0;  )�g := (u0�g0;  ÆAd(g)), whereg = g0 exp(Z) and in the �rst omponent we use the prinipal right ation on G0.



TRACTOR BUNDLES FOR IRREDUCIBLE PARABOLIC GEOMETRIES 9Clearly, this is well de�ned (i.e. (u0;  )�g lies again in G) and a right ation. Welaim that this ation is free and transitive on eah �bre of the projetion G !M . If(u0;  )�g = (u0;  ) for one point, then we must have g0 = e sine the prinipal ationof G0 is free, so we must have g = exp(Z). But for Z 2 g1 the adjoint ation of exp(Z)equals the identity if and only if Z = 0, see [12, lemma 3.2℄, so freeness follows. Onthe other hand, the prinipal ation on G0 is transitive on eah �bre, so it suÆes todeal with the ase of two points of the form (u0;  1) and (u0;  2). But in this ase, byonstrution  �11 Æ 2 : g! g is an automorphism of the �ltered Lie algebra g whihindues the identity on the assoiated graded Lie algebra, and we have observed in 1.1that any suh isomorphism is of the form Ad(exp(Z)) for some Z 2 g1. Thus, fromG we have on the one hand a prinipal P+ bundle (with a G0{equivariant projetion)G ! G0 and on the other hand a prinipal P bundle G !M .Next, onsider the map G � g ! A de�ned by ((u0;  ); X) 7!  (X). This learlymaps both ((u0;  )�g;X) and ((u0;  );Ad(g)(X)) to  (Ad(g)(X)), so it indues ahomomorphism G �P g ! A of vetor bundles. The restrition of this to eah �breby onstrution is a linear isomorphism and, in fat, an isomorphism of �ltered Liealgebras, so the whole map is an isomorphism of bundles of �ltered Lie algebras.Finally, we have to show that V = G�PV. To do this, hoose a preferred onnetionr. This de�nes a smooth map � : G ! G0 � P+ as follows: For (u0;  ) 2 G onsiderthe omposition onsisting of  : g ! Ax followed by the isomorphism Ax ! �!A xprovided by r and then the isomorphism u0�1 : �!A x ! g. By onstrution, this isan isomorphism of �ltered Lie algebras whih indues the identity on the assoiatedgraded Lie algebra, so it is given as Ad(� (u0;  )) for a unique element � (u0;  ) 2P+. Clearly AdÆ� is smooth and so � is smooth. From the de�ning equation oneimmediatelyveri�es that for g0 2 G0 and g0 2 P+ we get � ((u0;  )�g0) = g�10 � (u0;  )g0and � ((u0;  )�g0) = � (u0;  )g0, respetively.Now we de�ne a map f : G�V! V by requiring that ��������!f((u0;  ); v) = u0(� (u0;  )�v),where the ation on the right hand side is in the g{module V, and the isomorphismu0 : V! �!V x omes from the fat that �!V is an assoiated bundle to G0. Usingthe fat that u0�g0(v) = u0(g0�v) and the equivariany properties of � we see that���������!f((u0;  )�g; v) = ���������!f((u0;  ); g�v) for all g whih are either in G0 or in P+ and thusfor all g 2 P . onsequently, f fators to a homomorphism G �P V! V of vetorbundles, whih by onstrution indues a linear isomorphism in eah �bre and thusis an isomorphism of vetor bundles. Hene, V is the V{trator bundle orrespondingto the adapted frame bundle G for the adjoint trator bundle A.It should be noted, at this point, that the isomorphism G �P V! V onstrutedabove is atually independent of the hoie of the preferred onnetion r. Indeed, if r̂is another preferred onnetion orresponding to � 2 
1(M ), then the de�nition of �easily implies that �̂ (u0;  ) = exp(u0�1(�))� (u0;  ). Using this, and the formula for\��������!f((u0;  ); v), one easily veri�es diretly, that even the map f itself is independent ofthe hoie of r. Finally a point of notation. Sine V may be viewed as an assoiatedbundle as established here it is lear that any point u 2 G lying over x 2 M induesa (g; P ){isomorphism u :V! Vx.



10 ANDREAS �CAP & A. ROD GOVER1.5. The trator onnetions. | The next step is to prove that the de�nitionof the onnetion rV in theorem 1.3 is independent of the hoie of the preferredonnetion r and that rV is a trator onnetion on V. Sine this uses only theformula for the transformation of isomorphisms indued by a hange of preferredonnetion, we reover at the same time the result for A, sine this is just the speialase V= g.The de�nition of rV in theorem 1.3 reads as��!rV� t = r��!t + (�(�) + �(P(�)))(�!t ):Sine any preferred onnetion r is indued by a prinipal onnetion on G0, and� : �!A ! L(�!V ;�!V ) is indued by a G0{homomorphism g ! L(V;V) we onlude thatr�(�(�)(�!t )) = �(r��)(�!t ) + �(�)(r��!t );for any vetor �eld � 2 X(M ), any one{form � and setion �!t of �!V . Taking intoaount that the braket f ; g is trivial on 
1(M ) and hene the ations of one{formsvia � always ommute, we get this implies thatr�(�(�)i(�!t )) = i�(r��)�(�)i�1(�!t ) + �(�)i(r��!t );whih in turn leads tor�(e�(�)(�!t )) = �(r��)(e�(�)(�!t )) + e�(�)(r��!t ):(2)If r̂ is another preferred onnetion and � is the orresponding one{form, thenr̂��!t = r��!t + �(f�; �g)(�!t ). Replaing in this formula �!t by �!t = e�(�)(�!t ) andusing formula (2) to ompute r��!t , we getr̂��!t = \(r��!t ) + �(r��)(�!t ) + �(f�; �g)(�!t ):From formula (1) of 1.4 we have �(�̂!s )�!t = \�(�!s )�!t for any setions �!s 2 �(�!A )and �!t 2 �(�!V ). For example in the ase that V = A we have on one hand that for! 2 
1(M ), we have �(!)(�!t ) = \�(!)(�!t ). On the other hand for � 2 X(M ), we get�(�)(�!t ) = \�(�)(�!t )� �(f�; �g)(�!t )� 12�(f�; f�; �gg)(�!t ):From 1.1 we know that P̂(�) = P(�) �r�� + 12f�; f�; �gg. Thus, together withthe above we arrive at(�(�) + �(P̂(�)))(�!t ) = \�(�)(�!t ) + \�(P(�))(�!t ) � �(r��)(�!t ) � �(f�; �g)(�!t );whih exatly anels with the ontribution r̂��!t � \(r��!t ) alulated above, so rVis independent of the hoie of the preferred onnetion r.To verify that rV is a trator onnetion, we �rst verify the non{degeneray on-dition from [3, de�nition 2.5(2)℄, whih is very simple. In fat, the anonial �ltration� � � � Vj � Vj+1 � : : : on V is simply given by t 2 Vj if and only if�!t 2 Vj�Vj+1�: : : ,whih is learly independent of the hoie of the preferred onnetion. In partiular,as we observed for A in 1.4, we get a anonial isomorphism between gr(�!V ), the



TRACTOR BUNDLES FOR IRREDUCIBLE PARABOLIC GEOMETRIES 11graded vetor bundle assoiated to V, and �!V . But by onstrution, for eah vetor�eld �, r� preserves the deomposition �!V = �Vj . Hene for a smooth setion t ofVj , we see that rV� t is a setion of Vj�1 and its lass in Vj�1=Vj is mapped underthe above isomorphism to �(�)(tj). Thus, the fat that any nontrivial representationof g is faithful implies the non{degeneray ondition, sine it implies that for nonzero� 2 TxM we �nd a j and tj 2 (Vj)x suh that �(�)(tj) is nonzero.The seond ondition is to verify that rV is a g{onnetion in the sense of [3,de�nition 2.5(1)℄. So what we have to do is the following: For a smooth setiont 2 �(V) onsider the orresponding P{equivariant map ~t : G ! V. Then take apoint u 2 G lying over x 2M , a tangent vetor �� 2 TuG and its image � 2 TxM , andonsider the di�erene ���~t� u�1(rV� t(x)) 2V. The ondition to verify is that this isgiven by the ation of an element of g on ~t(u). Note �rst, that if �� is vertial, theseond term vanishes so the ondition is automatially satis�ed by (the in�nitesimalversion of) equivariany of ~t.E�etively, we have already observed in 1.4 above that any preferred onnetionr indues a global setion � of G ! G0 by mapping u0 2 (G0)x to (u0;  ) 2 Gx,where  is the omposition of the inverse of the isomorphism Ax ! �!A x de�ned byr with u0 : g!�!A x. Moreover, by onstrution this setion is G0{equivariant. Nowif (u0;  ) 2 Gx is any point, then there is an element g0 2 P+ suh that (u0;  ) =�(u0)�g0. This means that  is the omposition of  0 with Ad(g0), where �(u0) =(u0;  0) and g0 = exp(Z) for a unique Z 2 g1. Extend u0(Z) 2 TxM to a one{form � 2 
1(M ) and onsider the onnetion r̂ orresponding to �. Then usingu0 Æ Ad(exp(Z)) = ead(�(x)) Æ u0, we see that the setion �̂ orresponding to r̂ hasthe property that �̂(u0) = (u0;  ).Returning to our original problem, we may thus assume without loss of generalitythat (u0;  ) = �(u0) for the setion � orresponding to a preferred onnetion r.Moreover, adding an appropriate vertial vetor, we may assume that �� = Tu0���0for some �0 2 Tu0G0, whih still projets to � 2 TxM . But then ���~t(u) = �0�(~t Æ�)(u0). Now we just have to make a �nal observation. The orrespondene betweensetions and equivariant funtions is given by ~t(u0;  ) =  �1(t(x)). Moreover, sine(u0;  ) = �(u0), we see from 1.4 that  �1(t(x)) = u0�1(�!t (x)). Consequently, (~t Æ�) : G0 ! V is exatly the G0{equivariant funtion orresponding to �!t . Sine thepreferred onnetion r is indued from a prinipal onnetion on G0, the di�erene�0�(~t Æ �)� u0(r��!t ) is given by the ation of an element of g0 (namely the value ofthe onnetion form on �0) on ~t(�(u0)). Thus, also �0�(~t Æ �) � u0(��!rV� t) is given bythe ation of an element of g on this, namely the one just desribed plus the onesorresponding to � and P(�). But sine  = (u0;  ) and thus  = �(u0), we see fromabove that u0�1(��!rV� t) = �(u0)�1(rV� t), so rV is indeed a g{onnetion and thus atrator onnetion.



12 ANDREAS �CAP & A. ROD GOVER1.6. Curvature. | The �nal thing is to ompute the urvature and, as above, itsuÆes to do this for rV sine A is the speial ase V= g. By de�nition��!rV� t = r��!t + (�(�) + �(P(�)))(�!t ):Sine � is ovariantly onstant for any preferred onnetion, we getr���!rV� t = r�r��!t + �(r��)(�!t ) + �(�)(r��!t ) ++ �(r�(P(�)))(�!t ) + �(P(�))(r��!t ):(3)Thus, ����!rV�rV� t is given by adding to the above sum the terms�(�)(r��!t ) + �(�) Æ �(�)(�!t ) + �(�) Æ �(P(�))(�!t )) +�(P(�))(r��!t ) + �(P(�)) Æ �(�)(�!t ) + �(P(�)) Æ �(P(�))(�!t ):(4)Finally, diretly from the de�nition of rV , we get���!rV[�;�℄t = r[�;�℄�!t + (�([�; �℄) + �(P([�; �℄)))(�!t ):(5)To obtain the formula for �������!RV (�; �)(t), by de�nition of the urvature, we have to takeall terms from (3) and (4), then subtrat the same terms with � and � exhanged and�nally subtrat the terms from (5). Sine f�; �g = fP(�);P(�)g = 0, the seond andlast term in (4) are symmetri in � and � (see 1.3), so we may forget those. Moreoverthe �rst term in (4) together with the third term in the right hand side of (3), as wellas the fourth term in (4) together with the last term in the right hand side of (3) areagain symmetri, so we may forget all those. Now the �rst term in the right hand sideof (3) together with its alternation and the negative of the �rst term in the right handside of (5) add up to �(R(�; �))(�!t ), where R 2 �(�2T �M
End0 TM ) is the urvatureof r (viewed as a onnetion on TM ). On the other hand, the two remaining terms in(4) together with their alternations add up to �(fP(�); �g � fP(�); �g)(�!t ). Togetherwith the urvature term from above, this exatly leads to �(W (�; �))(�!t ). Then theseond term in the right hand side of (3) together with its alternation and minus theseond term in the right hand side of (5) give �(T (�; �))(�!t ) by the de�nition of thetorsion. The remaining part is simply�(r�(P(�)) �r�(P(�)) � P([�; �℄))(�!t ):Inserting [�; �℄ = r���r��� T (�; �) we see that this simply equals �(CY (�; �))(�!t )by de�nition of the Cotton{York tensor.Note that this immediately implies that rV is a normal trator onnetion onV, sine by onstrution T and W are ��{losed, while for CY this is trivially truebeause of homogeneity (��(CY ) : �!A ! �!A would be homogeneous of degree three).1.7. The fundamental D{operators and a summary. | Starting from a bun-dle V !M with an appropriate lass of isomorphisms V ! �!V provided by preferredonnetions, we have onstruted the normal adjoint trator bundle A ! M and



TRACTOR BUNDLES FOR IRREDUCIBLE PARABOLIC GEOMETRIES 13proved that V is the V{trator bundle orresponding to A. Moreover, for any pre-ferred onnetion r we get an isomorphism A ! �!A whih is ompatible with theisomorphisms for V in the sense that denoting the anonial ation A 
 V ! V by(s 
 t) 7! s � t, then ��!s � t = �(�!s )(�!t ). So we are able to work onsistently bothwith A and V by working with the bundles �!A and �!V whih are simply diret sumsof familiar, easily understood bundles. Moreover, we have onstruted expliitly thenormal trator onnetions on V and A.The fundamental D-operators are �rst order invariant di�erential operators whihfor paraboli geometries generalise the notion of ovariant derivatives in a rathernatural way. For weighted tensor bundles, trator bundles and tensor produts ofthese the fundamental D-operators are desribed expliitly in [3℄ in terms of thetrator onnetion. In partiular via proposition 3.2 of that work and the results abovefor the trator onnetion we an ompute, in our urrent setting, the fundamentalD{operators both on V and on A. Expliitly, on V, the fundamental D{operator isgiven by �!Dst = r��!t � �(�)(�!t ) � �(! � P(�))(�!t );where t 2 �(V) and s 2 �(A) is suh that �!s = (�;�; !). In a similar notation, weget on A the formula���!Ds1s2 = r��!s2 � f�;�!s2g � f! � P(�);�!s2g;whih expanded into omponents exatly gives the formula in [3, 4.14℄. By naturalityof the fundamental D{operators (see [3, proposition 3.1℄) this implies that on anyof the bundles Vj (or of any of the subbundles of any suh bundle orresponding toa G0-invariant omponent of Vj), the fundamental D{operator is given by Ds� =r�� � � � �, where again �!s = (�;�; !). Sine the fundamental D{operator is A�-valued and we know the fundamental D{operator on A �= A�, we may iterate thisoperator. For example, the formula for the square of D from [3, 4.14℄ ontinues tohold in this ase. 2. Conformal Standard tratorsIn this setion we show that our results are very easy to apply in onrete situations.Moreover, we show how to relate the braket notation we have used here to a standardabstrat index notation. Among partiular results we onstrut a normal tratorbundle with onnetion, whih we term the standard trator bundle, and observethat this is isomorphi to the trator bundle in [1℄. This establishes that the latter isonsistent with the anonial Cartan onnetion.2.1. Conformal manifolds. | We shall work on a real onformal n-manifoldMwhere n � 3. That is, we have a pair (M; [g℄) where M is a smooth n-manifold and[g℄ is a onformal equivalene lass of metris. Two metris g and bg are said to beonformally equivalent , or just onformal , if bg is a positive salar funtion multiple ofg. In this ase it is onvenient to write bg = 
2g for some positive smooth funtion 
.(The transformation g 7! bg, whih hanges the hoie of metri from the onformal



14 ANDREAS �CAP & A. ROD GOVERlass, is termed a onformal resaling .) We shall allow the metris in the equivalenelass to have any �xed signature. For a given onformal manifold (M; [g℄) we willdenote by L the bundle of metris. That is L is a subbundle of S2T �M with �bre R+whose points orrespond to the values of the metris in the onformal lass.Following the usual onventions in abstrat index notation, we will write E for thetrivial bundle over M , E i for TM and Ei for T �M . Tensor produts of these bundleswill be indiated by adorning the symbol E with appropriate indies. For example, inthis notation 
2T �M is written Eij and we write E(ij) to indiate the symmetri partof this bundle, so in this notation L � E(ij). Unless otherwise indiated, our indieswill be abstrat indies in the sense of Penrose [10℄. An index whih appears twie,one raised and one lowered, indiates a ontration. In ase a frame is hosen andthe indies are onrete, use of the Einstein summation onvention (to implementthe ontration) is understood. Given a hoie of metri, indies will be raised andlowered using the metri without expliit mention. Finally we point out that theseonventions will be extended in an obvious way to the trator bundles desribed below.We may view L as a prinipal bundle with group R+, so there are natural linebundles on (M; [g℄) indued from the irreduible representations of R+. We writeE [w℄ for the line bundle indued from the representation of weight �w=2 on R (thatis R+ 3 x 7! x�w=2 2 End(R)). Thus a setion of E [w℄ is a real valued funtion f on Lwith the homogeneity property f(
2g; x) = 
wf(g; x) where 
 is a positive funtionon M , x 2M and g is a metri form the onformal lass [g℄. We will use the notationEi[w℄ for Ei
E [w℄ and so on. Note that, as we shall see below, this onvention di�ersin sign from the one of [3, 4.15℄. We have kept with this onvention in order to beonsistent with [1℄.Let E+[w℄ be the �bre subbundle of E [w℄ orresponding to R+ � R. Choosing ametri g from the onformal lass de�nes a funtion f : L ! R by f(ĝ; x) = 
�2,where ĝ = 
2g, and this learly de�nes a smooth setion of E [�2℄+. Conversely, if f issuh a setion, then f(g; x)g is onstant up the �bres of L and so de�nes a metri in theonformal lass. So E+[�2℄ is anonially isomorphi to L, and the onformal metrigij is the tautologial setion of Eij [2℄ that represents the map E+[�2℄ �= L ! E(ij).On the other hand, for a setion gij of L onsider the map 'ij 7! gk`'k`gij, whih isvisibly independent of the hoie of g. Thus, we get a anonial setion gij of E ij[�2℄suh that gijgjk = Æki .2.2. To identify onformal strutures as a paraboli geometry we �rst need a j1j{graded Lie algebra g. To do this, for signature (p; q) (p + q = n) onsider Rn+2with oordinates x0; : : : ; xn+1 and the inner produt assoiated to the quadrati form2x0xn+1+Ppi=1 x2i �Pni=p+1 x2i , and let g be the orthogonal Lie algebra with respetto this inner produt, so g = so(p+1; q+1). Let Ibe the n�n diagonal matrix withp 1's and q (�1)'s in the diagonal and putJ= 0�0 0 10 I 01 0 01A :



TRACTOR BUNDLES FOR IRREDUCIBLE PARABOLIC GEOMETRIES 15Then g is the set of all (n + 2) � (n + 2) matries ~A suh that ~AtJ = �J~A, so in(1; n; 1)� (1; n; 1) blok form, these are exatly the matries of the form0� a Z 0X A �IZt0 �XtI �a 1Awith X 2 Rn, Z 2 Rn�, a 2 R and A 2 so(p; q) (that is AtI= �IA). The grading isgiven by assigning degree �1 to the entry orresponding to X, degree zero to the onesorresponding to a and A and degree one to the one orresponding to Z. Will use thenotation X 2 g�1, (a;A) 2 g0 and Z 2 g1. Then the ations of g0 on g�1 induedby the braket are given by [(a;A); X℄ = AX � aX and [(a;A); Z℄ = aZ �ZA, whihimmediately implies that the grading element E is given by E = (1; 0) 2 g0. As anappropriate g{invariant bilinear form on g we hoose 12 times the trae form on g anddenote this by B. The advantage of this hoie is that then the indued g0{invariantpairing between g�1 and g1 is exatly given by the standard dual pairing betweenRn and Rn�. For later use, we also note that the braket g�1 � g1 ! g0 is given by[X;Z℄ = (�ZX;XZ � IZtXtI).2.3. The group level. | Consider the group SO(p+1; q+1) whih has Lie algebrag. By de�nition, this onsists of all matries M suh that M tJM = J and suh thatM has determinant one. Sine the grading element E lies in the entre of g0, anyelement g of the orresponding subgroup G0 must satisfy Ad(g)(E) = E. Using thesetwo fats, a straightforward omputation shows that any suh element must be blokdiagonal and of the form 0� 0 00 C 00 0 �11Awith  2 R and C 2 SO(p; q) with respet to the standard inner produt (that is theinner produt given by I). Moreover, the adjoint ation of suh an element on g�1 isgiven by (; C)�X = �1CX. Hene we see that hoosing G = SO(p+ 1; q+ 1) in thease n = p+q odd (where � id is orientation reversing) and G = SO(p+1; q+1)=�id inthe ase n even, we get a group G suh that the adjoint ation of G0 on g�1 induesan isomorphism of G0 with the group of all onformal isometries of g�1 (with thestandard inner produt of signature (p; q)), so this will be our hoie of groups.Now we an immediately interpret expliitly all the objets desribed in 1.1 on aonformal manifold M . The �bre of the prinipal G0{bundle G0 ! M over x 2 Mis exatly the set of all onformal isometries u : g�1 ! TxM , and the prinipalright ation of g 2 G0 is given by u�g = u Æ Ad(g). This is by onstrution freeand transitive on eah �bre, so we really get a prinipal bundle. By onstrutionTM = G0 �G0 g�1. The bilinear form B from 2.2 identi�es g1 with the dual G0{module of g�1, so T �M = G0 �G0 g1. In the piture of equivariant funtions, thepairing between vetor �elds and one{forms indued by this identi�ation is induedby the pointwise pairing between g�1 = Rn and g1 = Rn� by our hoie of B.Next, we want to identify the assoiated bundle End0 TM = G0�G0 g0. As statedin 1.1 we identify g0 with a set of linear maps g�1 ! g�1 by mapping (a;A) 2



16 ANDREAS �CAP & A. ROD GOVERg0 to X 7! [(a;A); X℄ = AX � aX. As suh endomorphisms, elements of g0 areharaterised by the fat thath[(a;A); X℄; Y i + hX; [(a;A); Y ℄i = �2ahX;Y i;where h ; i is the standard inner produt of signature (p; q). Thus we see thatEnd0 TM onsists of all bundle maps � : TM ! TM suh that g(�(�); �)+g(�;�(�)) =2'g(�; �) for some real number ' for one (or, equivalently, any) metri g from theonformal lass. In abstrat index notation, this reads as gkj�ki + gik�kj = 2'gij,and so n' is exatly the trae of �, that is ' = 1n�ii. Note that, in the piture ofg0{valued funtions, ��' id orresponds to A and �' orresponds to the a of (a;A)(f. setion 2.2).Next, we have to identify the density bundles as assoiated bundles to G0. Byde�nition, any point u 2 G0 lying over x 2M is a onformal isometry u : g�1 ! TxM .Consequently, (�; �) 7! hu�1(�); u�1(�)i de�nes an element of Lx. For (; C) 2 G0, wesee from the de�nition of the prinipal right ation that (u�(; C))�1(�) = C�1u�1(�),so ating with this hanges the orresponding element of Lx by multipliation with2. Consequently, we see that onsidering the representation � : G0 ! R+ de�nedby �(; C) = 2, the mapping whih assigns to (u; �) the inner produt (�; �) 7!�hu�1(�); u�1(�)i indues an isomorphism G0 �G0 R+ �= L. Sine L �= E [�2℄, we seethat E [w℄ is the assoiated bundle to G0 with respet to the representation (; C) 7!jj�w or in�nitesimally E 7! �w, so our onvention di�ers in sign from the one of [3,4.15℄.As we have noted in 1.1, the brakets End0 TM 
 TM ! TM and T �M 
End0 TM ! T �M are given by the evaluation of endomorphisms, so in abstrat in-dex notation we have f�; �gi = �ij�j and f�; !gi = ��ji!j. To desribe the braketTM 
 T � ! End0 TM , reall from 2.2 that for X;Y 2 g�1 and Z 2 g1 we have[[X;Z℄; Y ℄ = ZXY + XZY � IZtXtIY . The �rst term is obtained by multiplyingY by the pairing of Z and X, while the seond one is obtained by multiplying Xby the pairing of Z and Y . For the last term, note that XtIY is the standard innerprodut of X and Y , while IZt is just the element of g�1 orresponding to Z 2 g1under the isomorphism provided by the inner produt. This easily implies that thebraket TM 
 T �M ! End0 TM is given byf�; !gij = �i!j � gjk�kgi`!` + �k!kÆij :An aÆne onnetion r on M is indued by a prinipal onnetion on G0 if andonly if it preserves the onformal lass [g℄ given on M . Moreover, there are torsionfree onnetions preserving this onformal lass (e.g. the Levi{Civita onnetion ofany given metri in the lass), so the (unique possible) ��{losed value of the torsionmust be zero. Hene, the preferred onnetions on M are exatly those torsion freeonnetions onM whih preserve the onformal lass, i.e. the Weyl{strutures on theonformal manifoldM .If r and r̂ are two suh Weyl{strutures, then we know from 1.1 that there is aunique one{form � 2 
1(M ) suh that r̂�� = r�� + ff�; �g; �g. In abstrat indexnotation, this reads aŝri�j = ri�j � �i�j + gik�kgj`�` ��k�kÆji :



TRACTOR BUNDLES FOR IRREDUCIBLE PARABOLIC GEOMETRIES 17Suppose thatr and r̂ are the Levi{Civita onnetions for g and ĝ = 
2g, respetively.In terms of g, the ondition r̂ĝ = 0 implies2
(��
)g(�; �) = 
2g(ff�; �g; �g; �) + 
2(�; ff�; �g; �g):Sine f�; �g 2 �(End0 TM ) and the above formula for the braket implies f�; �gii =�n�i�i, this leads to � = �
�1d
. Comparing with the formula in [1, 2.1℄ we seethat our � in the ase of Levi{Civita onnetions is the negative of the � there.For s a setion of any assoiated bundle to G0, we have the formula r̂�s = r�s +f�; �g � s by de�nition of the ation of indued onnetions. In partiular, for � 2�(E [w℄) we get (f. [3, 4.15℄) r̂�� = r�� + wn f�; �gii�, or in abstrat index notationr̂i� = ri� � w�i�. For later use, we note the formula for ! 2 �(Ei[w℄), whih isgiven by r̂�! = r�! + ff�; �g; !g+ wn f�; �gii!, i.e.r̂i!j = ri!j +�j!i � gijgk`�k!` + (1� w)�i!j:2.4. The �nal things we have to desribe are the rho{tensor Pij, the Weyl{urvatureW kij ` and the Cotton{York tensor CYijk for a preferred onnetion r. Let R kij ` bethe urvature of r. Put Riij = R kki j, the Rii urvature of r, whih is a setionof Eij. Note however, that for general preferred onnetions Ri is not symmetri(in ontrast to the speial ase of Levi{Civita onnetions). Finally, onsider thesalar urvature R 2 �(E [�2℄) de�ned by R = gijRiij . By de�nition, R(�; �) =W (�; �)�fP(�); �g+ fP(�); �g, and W kki j = 0. The de�ning equation an be writtenas R kij ` = W kij ` + 2P`[iÆkj℄ � 2gkmPm[igj℄` � 2P[ij℄Æk̀:From this formula it is visible, thatW is exatly the trae-free part of R (with respetto the indies i and k). Contrating over the indies i and k in this equation andrenaming some indies, we obtainRiij = �(n � 1)Pji + Pij � Pgij;where we de�ne P 2 �(E [�2℄) by Pijgij. Contrating the above equation with gij,we obtain P = � 12n�2R. Reinserting this, we easily getPij = � 1n�2 � 1nRiij + n�1n Riji � 12n�2Rgij� :In partiular, if r is a Levi{Civita onnetion, then by the Bianhi identity Riij issymmetri, so we obtain the usual simpler formula Pij = � 1n�2(Riij � 12n�2Rgij),whih shows that our Rho{tensor is the negative of the one used in [1℄. Moreover,this shows that for a Levi{Civita onnetion, the Rho{tensor is symmetri. In thatase, we further know that R kij k = 0, and together with symmetry of the rho{tensorwe may onlude from the deomposition of R above that also W kij k = 0.Finally, sine the torsion is trivial in this ase, the formula for the Cotton{Yorktensor of r is simply given by CYijk = riPkj �rjPki.



18 ANDREAS �CAP & A. ROD GOVER2.5. Here we use the results of setion 1 to onstrut the trator bundle EI (whereI is an abstrat index) orresponding to the standard representation V= Rn+2 of G.If we split an element of Vas a triple, with omponents of sizes 1, n and 1, then theation of the Lie algebra is given by(X; (a;A); Z)�0�uvw1A = 0� au+ Z(v)uX + Av �wIZt�XtIv� aw 1A :This immediately shows that we have found the splitting V= V�1 �V0 �V1 intoeigenspaes for the ation of the grading element E = (1; 0) 2 g0. Moreover, thisimmediately allows us to read o� all the data we need: The bundles V�1 orrespondingto V�1 visibly are simply E [�1℄. Comparing with the ation of g0 on g�1 we furthersee, that the bundle orresponding toV0 is just E i[�1℄. For further use, it will be moreuseful to view this as Ei[1℄ (via ontrating with gij). Finally, denoting an element of�!V = E [1℄� Ei[1℄� E [�1℄ by (�; �i; � ), the ation � of �!A = TM � End0 TM � T �Mon �!V is given by�((�;�; !))(�; �; � ) = (��i�i+ 1n�ii�; ��jgij��ji�j+ 1n�jj�i��!i;� 1n�ii� +gij�i!j):2.6. The standard trator bundle. | Consider the two{jet prolongation J2(E [1℄)of the density bundle E [1℄. By de�nition, we have the jet exat sequenes0! E(ij)[1℄! J2(E [1℄)! J1(E [1℄)! 0(6) 0! Ei[1℄! J1(E [1℄)! E [1℄! 0(7)As we have observed in 2.1 the onformal struture splits E(ij) as E(ij)0�E [�2℄, wherethe �rst spae is the kernel of the ontration with gij. Tensoring this with E [1℄, wesee that E(ij)0 [1℄ sits as a smooth subbundle in J2(E [1℄), and we de�ne EI to be thequotient bundle. So by de�nition, we have an exat sequene0! E(ij)0[1℄! J2(E [1℄)! EI ! 0;(8)while the 2-jet sequene gives us an exat sequene0! E [�1℄! EI ! J1(E [1℄)! 0:(9)In partiular, we see that the kernel of EI ! J1(E [1℄)! E [1℄ sits as subbundle withinthe kernel of EI ! J1(E [1℄) and so there is a anonial �ltration of EI suh that theassoiated graded bundle is isomorphi to E [1℄� Ei[1℄ � E [�1℄ = �!V . Consequently,this is a good andidate for the standard trator bundle.Note that our de�nition of EI has the advantage that it immediately implies theexistene of a seond order invariant di�erential operator DI : �(E [1℄) ! �(EI),whih is given by omposing the anonial projetion J2(E [1℄)! EI with the two{jetoperator j2.Proposition. | For a preferred onnetion r, the mapj2x� 7! ��!DI�(x) = (�(x);ri�(x); 1ngij(�rirj�(x) + Pij�(x)));



TRACTOR BUNDLES FOR IRREDUCIBLE PARABOLIC GEOMETRIES 19indues an isomorphism EI ! E [1℄ � Ei[1℄ � E [�1℄ of vetor bundles. Moreover,hanging r to r̂ with the orresponding one{form �, we obtain a normal tratorbundle transformation as required in theorem 1.3, i.e.\(�; �; � ) = (�; �i � ��i; � + gij�i�j � 12�gij�i�j):Proof. | Clearly, the formula in the proposition de�nes a bundle map J2(E [1℄) !E [1℄ � Ei[1℄ � E [�1℄. Moreover, if j2x� lies in the kernel of this map, then we musthave j1x� = 0 in order to have the �rst two omponents vanish. But then the lastomponent beomes gijrirj�(x) whih by de�nition vanishes if and only ifrirj�(x)lies in E(ij)0[1℄ � J2(E [1℄). (Note that the double ovariant derivative is symmetrisine j1x� = 0.) Consequently, the map fators to a bundle map EI ! �!V whih isinjetive on eah �bre. Sine both bundles have the same rank, it is an isomorphismof vetor bundles.If r̂ is another preferred onnetion orresponding to �, then learly the �rstomponent stays the same. For the seond omponent, we get r̂i� = ri����i from2.3, so we get the transformation law for the seond omponent. Di�erentiating thisone more, we obtain ri(r̂j�) = rirj� � �jri� � �ri�j :Aording to the last formula in 2.3, to get r̂i(r̂j�) we have to add to this �jr̂i��gijgk`�kr̂`�. Then expanding the result yieldsr̂ir̂j� = rirj� � �ri�j ��i�j� � gijgk`�kr`� + gijgk`�k�`�:On the other hand, we have to ompute the hange of the rho{tensor in abstratindex notation. From 1.1 we know that P̂(�) = P(�)�r��+ 12f�; f�; �gg. From theformulae in 2.3, one immediately reads o� that the last term is given by ��j�j�i +12gij�jgk`�k�`. This immediately implies thatP̂ij = Pij �rj�i � �i�j + 12gijgkl�k�`:Subtrating the above expression for r̂ir̂j� from �P̂ij and ontrating with 1ngij,we immediately get the transformation law laimed for the last omponent. That theformula for the transformation oinides with e�(�) an be immediately read o� theformula for � in 2.5.2.7. Now we an apply all the mahinery developed in setion 1 diretly to this ase.Using the formulae for �(�) and �(P(�)) from 2.5, we immediately see that by theorem1.3 the normal trator onnetion rV on EI is given by��!rV� t = (r�� � �i�i;r��i + �gij�j � �Pij�j;r�� + gij�iPjk�k);for �!t = (�; �i; � ), whih just means��!rVi t = (ri� � �i;ri�j + �gij � �Pji;ri� + gjk�jPki):The di�erenes between this formula and the one in [1, 2.3℄ are due to the di�erentsign of the Rho{tensor. Thus it follows immediately from theorem 1.3 that the trator



20 ANDREAS �CAP & A. ROD GOVERbundle and onnetion onstruted in [1℄ is the normal trator bundle with normalonnetion orresponding to the de�ning representation of so(p+ 1; p+ 1).Using the fat that the torsion vanishes and that the Weyl{urvature satis�esW kij k = 0, we onlude from theorem 1.3 and the formulae for � from 2.5 that theurvature of the normal trator onnetion is given by�������!RV (�; �)(t) = (0;W (�; �)ji�j � �CY (�; �)i; gij�iCY (�; �)j);where again �!t = (�; �i; � ).Next, we want to interpret the results of theorem 1.3 onerning the adjoint tratorbundle. By de�nition, the adjoint trator bundle A is a subbundle of EIJ , the bundleof endomorphisms of EI whih onsists of those endomorphisms whih are of theform ��!'(t) = �(�!' )(�!t ) for some �!' 2 A. But these endomorphisms an be easilyharaterised: On �!V we have the obvious analog of the inner produt on Rn+2 from2.2, i.e. ((�; �i; � ); (�0; �0i� 0)) 7! �� 0 + ��0 + gij�i�0j . From its onstrution it islear, that �!A onsists of all endomorphisms of �!V preserving this inner produt. Butthis inner produt indues an inner produt hIJ 2 �(E(IJ)) on EI , sine the hangebetween two isomorphisms is given by e�(�), whih in the group piture orrespondsto the ation of an element of P+, whih leaves the metri invariant. (Alternatively,this may also be veri�ed by a simple diret omputation.) So by onstrution A � EIJonsists of those endomorphisms sIJ whih satisfy hKIsKJ + hKJsKI = 0, so we mayas well identify A with the bundle E[IJ ℄. Moreover, we have the inverse isomorphismhIJ 2 �(E (IJ)), so we an always raise and lower trator indies.Any preferred onnetion leads to an isomorphismA �= �!A , and using the formulaefor the algebrai brakets from 2.3 and the formula for f�; f�; �gg from the proof ofproposition 2.6, we see that the hange of these isomorphisms is given by\(�i;�ij; !i) = (�i;�ij��i�j+gjk�kgi`�`��k�kÆij ; !i+�ji�j��j�j�i+12gij�jgk`�k�`):The normal trator onnetion rA on �!s = (�;�; !) is given by��!rA� s = (r�� + f�;�g;r��+ f�; !g+ fP(�); �g;r�! + fP(�);�g);and using the formulae for the brakets we immediately see that the �rst omponentof ��!rAi s equals ri�j ��ji , the last omponent is given by ri!j +�kjPki, while for themiddle omponent we getri�jk + Æji !k � gikgj`!` + !iÆjk � �jPki + gk`�`gjmPmi � �`P`iÆjk:3. Trator CalulusIn this �nal part we desribe and use some of the basi mahinery of the standardtrator alulus. In our urrent setting there are two main reasons for this. Firstly itenables us to relate, in a simple and expliit manner, adjoint trator expressions tothe orresponding standard trator expressions. The seond use, whih draws fromthe �rst, is that it enables us to extrat, from our onstrutions here (whih havebeen developed in the general setting of irreduible paraboli geometries and then



TRACTOR BUNDLES FOR IRREDUCIBLE PARABOLIC GEOMETRIES 21speialised to the onformal ase), the key objets of onformal trator alulus asdeveloped for example in [1, 7, 8℄. Along the way the treatment should give the readersome insight into the tehniques used to alulate expliitly via trator alulus.3.1. The inlusion E [�1℄ ,! EI in (9) is equivalent to a anonial setion XI of EI [1℄.On the other hand, we have the projetion EI ! E [1℄, whih an similarly be viewedas a anonial setion of EI [1℄. From the de�nition of the inner produt h it followsimmediately, that this setion is given by hIJXJ =: XI . From these de�nitions,we have immediately that XIXI = hIJXIXJ = 0. For any hoie of preferredonnetion r and any setion � 2 �(E [�1℄), the trator setion �XI is mapped to(0; 0; � ) 2 �(�!EI) under the isomorphism desribed in proposition 2.6. Thus XI isequivalent to the setion �!X I = (0; 0; 1) of �!EI [1℄ = �!EI 
 E [1℄.Next, hoosing a metri g from the onformal lass is equivalent to hoosing a globalnonzero setion �0 of E [1℄. Up to onstant multiples, �0 is haraterised by the fatthat r�0 = 0, where r denotes the Levi{Civita onnetion of g, whih is one of thepreferred onnetions. Aording to proposition 2.6 via the Levi{Civita onnetion,the hoie of g indues an isomorphism EI �= E [1℄� Ei[1℄� E [�1℄. In partiular, thisgives us a splitting EI ! E [�1℄ of the anonial inlusion, whih an be viewed as asetion YI of EI [�1℄ suh that YIXI = 1, and a splitting E [1℄! EI of the anonialprojetion, whih we may view as a setion Y I of EI [�1℄. By de�nition, XIY I =1, whih immediately leads to YI = hIJY J . Further, proposition 2.6 immediatelyimplies the expliit formula Y I = (�0)�1DI�0� 1nPXI . Finally we denote by ZIi thesetion of EIi[�1℄ whih gives the bundle injetion Ei[1℄! EI indued by the aboveisomorphism.In this notation, if �!t = (�; �; � ) 2 �!V (in the isomorphism orresponding to g),then tI = �Y I + ZIi�i + �XI . We will raise and lower indies using the onformalmetri gij, the trator metri hIJ and their inverses without further mention. Forexample ZIi := gijhIJZJj .These trator bundle setions an be used e�etively in the expliit desription ofrelationship between the bundles A and V = EI . In the previous setion we observedthat A may be identi�ed with E[IJ ℄. Choosing a preferred onnetion this may beunderstood by desribing �!A as a subbundle of �!E I 
 �!E J . In 2.5 we have alreadyexpliitly desribed the ation � of �!A on �!V . For �!s = (�;�; !) 2 �(�!A ) we an view�((�;�; !)) as a setion of (�!V )� 
 �!V and using the result from setion 2.5 we seethat in (1; n; 1)� (1; n; 1) blok form this is given by,0��' ! 0� �(0) �g�1(!; �)0 �g(�; �) ' 1Awhere �(0) is the trae-free part of � and ' := �ii=n. Or, in terms of the notationintrodued above, we an desribe s as the setion of EIJ as follows:sIJ = �IYJ � Y I�J +�(0)IJ + (Y IXJ �XIYJ )'+XI!J � !IXJ ;



22 ANDREAS �CAP & A. ROD GOVERwhere we have used the shorthand notation �I = ZI i�i etetera. Thus using hIJ tolower indies, we have sIJ = 2�[IYJ ℄ +�(0)IJ +2Y[IXJ ℄'+ 2X [I!J ℄ 2 �(E[IJ ℄). Notethat EIJ := 2Y[IXJ ℄ is the grading trator orresponding to the hoie of g. Thatis, identifying E[IJ ℄ with the bundle of endomorphisms of V preserving h, then thesplitting V = V�1�V0 �V1 orresponding to the eigenvalues i = �1; 0; 1 of EIJ , justreovers the isomorphism V ! �!V indued by g (via the Levi{Civita onnetion r).Sine EIJ is the unique setion with this property we are justi�ed in referring to itas the grading trator orresponding to r.To onlude we note that the adjoint trator metri B is easily desribed in termsof the standard trator notation. Let �!s 1 = (�1; '1; !1) and �!s 2 = (�2; '2; !2).Reall that the inner produt B on A is indued by 12 of the trae form on g. Thus,it is given by B(s1; s2) = !1(�2) + !2(�1) + tr(�1�2) and we an rewrite this asB(s1; s2) = 12sI1JsJ2 I = 12hILhJKsIJ1 sKL2 .3.2. The fundamental D{operator and the trator D . | The fundamentalD{operator an be desribed in terms of this notation. Reall that, given a hoie ofpreferred onnetion r, for t a setion of a weighted tensor bundle we have Dst =r�t � � � t, where �!s = (�;�; !). In partiular, if � is a setion of the line bundleE [w℄ then we have Ds� = r���w'�. Now in terms of the standard trators we haveobserved that s is given by 2�[IY J ℄ +�(0)IJ + 2Y [IXJ ℄'+ 2X [I!J ℄ and so it followsimmediately that on � 2 �(E [w℄) the (A-valued) operator D is given byDIJ� = X[J ~DI℄�where, ~DI� = (ZiIri + wYI)� or, equivalently, �!~D� = (w�;r�; 0). (Of ourse ~D�depends on the hoie of r but the operator � 7! 2X[J ~DI℄� is independent of thishoie.)One an use the fundamental D-operator to generate other invariant operators.For example we an onstrut the seond order \trator D{operator" as given in [1℄(but �rst disovered by Thomas [11℄). For any trator bundle T , this operator mapssetions of T [w℄ to setions of T [w� 1℄
EI . Here we will denote this operator by Dto distinguish it from the fundamental D{operator.We �rst deal with the bundle E [w℄. For s1; s2 2 A and t any weighted tensor �eldit is straightforward to show thatDDt(s1; s2) = r2t(�1; �2) ��1 � r�2t� �2 � r�1t +rf�1;�2gt++�2 ��1 � t� f!1; �2g � t+ fP(�1); �2g � t;where si = (�i;�i; wi), i = 1; 2. (This expression is derived expliitly in [3℄.) Thusfor � 2 E [w℄ this simpli�es toDD�(s1; s2) = �i1�j2rirj� + (1� w)'1�j2rj� �w'2�i1ri� + �1(0)ij�j2ri� ++w2'1'2� + w�iwi� �wPij�i1�j2�:



TRACTOR BUNDLES FOR IRREDUCIBLE PARABOLIC GEOMETRIES 23Sine this is sIJ1 sKL2 DIJDKL� it is easy to write down the (lengthy) expression forDIJDKL� in terms of XI ; YJ and rK := ZiKri. Contrating with 4hIK we obtain4hIKDIJDKL� =XJXL(�� �wP�)� (w � 1)XJrL� � (n +w � 1)XLrJ��w(w � 1)XJYL� �w(n+ w � 1)XLYJ� �whJL�;where � = gijrirj. Thus4hIKDI(JDL)0K� = �XJXL(�� �wP�) + (n+ 2w � 2)X(JrL)0�+ (n + 2w � 2)wX (JYL)0�where (� � � )0 indiates the symmetri trae-free (with respet to hIJ ) part of the en-losed indies. It is easily veri�ed expliitly that the map sK 7!X (ISK)0 determinesa bundle monomorphism EK [�1℄ ,! E(IK)0 . Thus we may dedue immediately that� 7! �XC(�� � wP�) + (n + 2w � 2)rC� + (n + 2w � 2)wYC� is an invariantdi�erential operator. In fat this is preisely the trator D{operator � 7! D C� forE [w℄.In fat, as stated in [1℄, this trator D{operator generalises to weighted tratorbundles. The easiest route to this result is via another simple observation. If T is atrator bundle then, sine both DIJ and rT satisfy a Leibniz rule, the mapt
 � 7! (X [JZiI℄rTi t)
 � + t 
X [J ~DI℄�;where t 2 �(T ) , determines a well de�ned linear operator on the weighted tratorbundle T 
 E [w℄. This is (apart from a fator of 2) preisely operator DIJ desribedin [7, 8℄; several appliations of this operator are also desribed in those soures. Herewe will denote this oupled operator by DTIJ to distinguish it from the fundamentalD operator. In this notation the T simply indiates any trator bundle rather thanany given �xed suh bundle.To simplify the omputation let us write ~DT to mean the trator onnetion ou-pled generalisation of ~D. That is if � 2 �(E [w℄) and t is a setion of some tratorbundle then ~DT is de�ned by the rule~DTI t
 � = (ZiIrTi t)
 � + t 
 ~DI�and that it satisfy the Leibniz rule ~DTI fs = (ZiIrif)s+f ~DTI s if s is a weighted trator�eld and f a funtion. As with ~D, ~DT depends on the hoie of a preferred onnetion.However we have the identity DTIJ s =X [J ~DTI℄s, for any weighted trator �eld s. Nextnote that it follows easily from the de�nition of ~DT and the expliit formula for �!rVin setion 2.7 that for any weighted trator �eld s we have ~DTI XJ s � XJ ~DTI s =(hIJ �XIYJ )s. Combining these two observations it is a very short alulation toverify that4hJKDTJ(IDTL)0Ks = �XIXL(�T � wP)s + (n + 2w � 2)X (I ~DTL)0s;with �T s := gijrTi rTj s and where, at this point, we mean by rT the oupledLevi-Civita{trator onnetion. This onstruts an invariant 2nd order operatorD Is = XI(�T � wP)s + (n + 2w � 2) ~DT s
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