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TRACTOR BUNDLES FOR IRREDUCIBLE PARABOLICGEOMETRIESbyAndreas �Cap & A. Rod GoverAbstra
t. | We use the general results on tra
tor 
al
uli for paraboli
 geometriesobtained in [3℄ to give a simple and e�e
tive 
hara
terisation of arbitrary normaltra
tor bundles on manifolds equipped with an irredu
ible paraboli
 geometry (also
alled almost Hermitian symmetri
{ or AHS{stru
ture in the literature). Moreover,we also 
onstru
t the 
orresponding normal adjoint tra
tor bundle and give expli
itformulae for the normal tra
tor 
onne
tions as well as the fundamental D{operatorson su
h bundles. For su
h stru
tures, part of this information is equivalent to givingthe 
anoni
al Cartan 
onne
tion. However it also provides all the information ne
-essary for building up the invariant tra
tor 
al
ulus. As an appli
ation, we give anew simple 
onstru
tion of the standard tra
tor bundle in 
onformal geometry, whi
himmediately leads to several elements of tra
tor 
al
ulus.1. Tra
tor bundles and normal tra
tor 
onne
tionsRiemannian and pseudo-Riemannian geometries are equipped with a 
anoni
almetri
 and the metri
 (or Levi-Civita) 
onne
tion that it determines. For this reason,in the setting of these geometries, it is natural to 
al
ulate dire
tly with the tangentbundle, its dual and the tensor bundles. On the other hand for many other interestingstru
tures su
h as 
onformal geometries, CR geometries, proje
tive geometries andquaternioni
 stru
tures the situation is not so fortunate. These stru
tures are amongthe broad 
lass of so-
alled paraboli
 geometries and for the geometries within this
lass there is no 
anoni
al 
onne
tion or metri
 on the tangent bundle or the tensorbundles. Nevertheless for these stru
tures there is a 
lass of natural ve
tor bundleswhi
h do have a 
anoni
al 
onne
tion. These are the tra
tor bundles and the 
al
ulusbased around these bundles is a natural analog of the tensor bundle and Levi-Civita
onne
tion 
al
ulus of Riemannian geometry.1991 Mathemati
s Subje
t Classi�
ation. | primary: 53B15, 53C05, 53C07, 53C15 se
ondary:53A20, 53A30, 53A40, 53A55.Key words and phrases. | Paraboli
 geometry, Cartan 
onne
tion, tra
tor bundle, tra
tor 
al
u-lus, invariant di�erential operator, invariant 
al
ulus.



2 ANDREAS �CAP & A. ROD GOVERTra
tor 
al
ulus has its origins in the work of T.Y. Thomas [11℄ who developed keyelements of the theory for 
onformal and proje
tive geometries. Far more re
ently thiswas redis
overed and extended in [1℄. Sin
e this last work tra
tor 
al
ulus has beenfurther extended and developed and the stru
tures treated expli
itly in
lude CR andthe almost Grassmannian/quaternioni
 geometries (see for example [6, 7, 8, 9℄ andreferen
es therein). In
luded in these works are many appli
ations to the 
onstru
tionof invariant operators and polynomial invariants of the stru
tures.In our re
ent paper [3℄ we have introdu
ed the 
on
epts of tra
tor bundles andnormal tra
tor 
onne
tions for all paraboli
 geometries. Besides showing that fromthese bundles one 
an re
over the Cartan bundle and the normal Cartan 
onne
tionof su
h a geometry, we have also developed an invariant 
al
ulus based on adjointtra
tor bundles and the so{
alled fundamental D{operators for all these geometries.Moreover, in that paper a general 
onstru
tion of the normal adjoint tra
tor bundlein the 
ase of irredu
ible paraboli
 geometries is presented. While this approa
h,based on the adjoint representation of the underlying Lie{algebra, has the advantageof working for all irredu
ible paraboli
 geometries simultaneously, there are a
tuallysimpler tra
tor bundles available for ea
h 
on
rete 
hoi
e of the stru
ture. In fa
t,all previously known examples of tra
tor 
al
uli as mentioned above are of the lattertype. It is thus important to be able to re
ognise general normal tra
tor bundles fora paraboli
 geomtry and to �nd the 
orresponding normal tra
tor 
onne
tions.The main result of this paper is theorem 1.3 whi
h o�ers a 
omplete solution for the
ase of irredu
ible paraboli
 geometries. For a given stru
ture and representation ofthe underlying Lie algebra, this gives a 
hara
terisation of the normal tra
tor bundle,as well as a univsersal formula for the normal tra
tor 
onne
tion. On the one handthis may be used to identify a bundle as the normal tra
tor bundle and then 
omputethe normal tra
tor 
onne
tion. On the other hand the theorem spe
i�es the ne
essaryingredients for the 
onstru
tion of su
h a bundle. It should be pointed out, that theresults obtained here are independent of the 
onstru
tion of the normal adjoint tra
torbundles for irredu
ible paraboli
 geometries given in [3℄. From that sour
e we onlyuse the te
hni
al ba
kground on these stru
tures.We will show the power of this approa
h in se
tion 2 and 3 by giving an alternative
onstru
tion of the most well known example of a normal tra
tor bundle, namely thestandard tra
tors in 
onformal geometry. Besides providing a short and simple routeto all the basi
 elements of 
onformal tra
tor 
al
ulus, this new 
onstru
tion alsoimmediately en
odes some more advan
ed elements of tra
tor 
al
ulus.1.1. Ba
kground on irredu
ible paraboli
 geometries. | Paraboli
 geome-tries may be viewed as 
urved analogs of homogeneous spa
es of the form G=P , whereG is a real or 
omplex simple Lie group and P � G is a paraboli
 subgroup. In general,a paraboli
 geometry of type (G;P ) on a smooth manifoldM is de�ned as a prin
i-pal P{bundle over M , whi
h is endowed with a Cartan 
onne
tion, whose 
urvaturesatis�es a 
ertain normalization 
ondition. This kind of de�nition is however veryunsatisfa
tory for our purposes. The point about this is that these normal Cartan
onne
tions usually are obtained from underlying stru
tures via fairly 
ompli
ated
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edures, see e.g. [4℄. Tra
tor bundles and 
onne
tions are an alter-native approa
h to these stru
tures, whi
h do not require knowledge of the Cartan
onne
tion but may be 
onstru
ted dire
tly from underlying stru
tures in many 
ases.Hen
e, in this paper we will rather fo
us on the underlying stru
tures and avoid thegeneral point of view via Cartan 
onne
tions.Fortunately, these underlying stru
tures are parti
ularly easy to understand for thesub
lass of irredu
ible paraboli
 geometries, whi
h 
orrespond to 
ertain maximalparaboli
s. The point is that for these stru
tures, one always has a (
lassi
al �rstorder) G0{stru
ture (for a 
ertain subgroup G0 � G) on M , as well as a 
lass ofpreferred 
onne
tions on the tangent bundle TM . While both these are there forany irredu
ible paraboli
 geometry, their role in des
ribing the stru
ture may varya lot, as 
an be seen from two important examples, namely 
onformal and 
lassi
alproje
tive stru
tures.In the 
onformal 
ase, the G0{stru
ture just is the 
onformal stru
ture, i.e. theredu
tion of the frame bundle to the 
onformal group, so this 
ontains all the in-formation. The preferred 
onne
tions are then simply all torsion free 
onne
tionsrespe
ting the 
onformal stru
ture, i.e. all Weyl 
onne
tions. On the other hand, inthe proje
tive 
ase, the group G0 turns out to be a full general linear group, so the�rst order G0{stru
ture 
ontains no information at all, while the proje
tive stru
tureis given by the 
hoi
e of a 
lass of preferred torsion free 
onne
tions.The basi
 input to spe
ify an irredu
ible paraboli
 geometry is a simple real Liegroup G together with a so{
alled j1j{grading on its Lie algebra g, i.e. a grading ofthe form g�1�g0�g1. It is then known in general (see e.g. [12, se
tion 3℄) that g0 is aredu
tive Lie algebra with one dimensional 
entre and the representation of g0 on g�1is irredu
ible (whi
h is the reason for the name \irredu
ible paraboli
 geometries").Moreover, any g{invariant bilinear form (for example the Killing form) indu
es aduality of g0{modules between g�1 and g1. Next, there is a 
anoni
al generator E,
alled the grading element , of the 
entre of g0, whi
h is 
hara
terised by the fa
t thatits adjoint a
tion on gj is given by multipli
ation by j for j = �1; 0; 1.Having given these data, we de�ne subgroups G0 � P � G byG0 = fg 2 G : Ad(g)(gi) � gi for all igP = fg 2 G : Ad(g)(gi) � gi � gi+1 for i = 0; 1g;where Ad denotes the adjoint a
tion and we agree that gi = f0g for jij > 1. It is easyto see that G0 has Lie algebra g0, while P has Lie algebra p = g0� g1. An importantresult is that P is a
tually the semidire
t produ
t of G0 and a ve
tor group. Morepre
isely, one proves (see e.g. [4, proposition 2.10℄) that for any element g 2 P thereare unique elements g0 2 G0 and Z 2 g1 su
h that g = g0 exp(Z). Hen
e if we de�neP+ � P as the image of g1 under the exponential map, then exp : g1 ! P+ is adi�eomorphism and P is the semidire
t produ
t of G0 and P+.If neither g nor its 
omplexi�
ation is isomorphi
 to sl(n; C ) with the j1j{gradinggiven in blo
k form by � g0 g1g�1 g0�, where the blo
ks are of size 1 and n� 1, then aparaboli
 geometry of type (G;P ) on a smooth manifoldM (of the same dimension



4 ANDREAS �CAP & A. ROD GOVERas g�1) is de�ned to be a �rst order G0{stru
ture on the manifold M , where G0 isviewed as a subgroup of GL(g�1) via the adjoint a
tion. We will hen
eforth refer tothese stru
tures as the stru
tures whi
h are not of proje
tive type.On the other hand, if either g or its 
omplexi�
ation is isomorphi
 to sl(n; C ) withthe above grading, then this is some type of a proje
tive stru
ture, whi
h is givenby a 
hoi
e of a 
lass of aÆne 
onne
tions on M (details below). See [5, 3.3℄ for adis
ussion of various examples of irredu
ible paraboli
 geometries.Given a j1j{graded Lie algebra g, the simplest 
hoi
e of group is G = Aut(g),the group of all automorphisms of the Lie algebra g. Note that, for this 
hoi
e ofthe group G, P is exa
tly the group Autf (g) of all automorphism of the �ltered Liealgebra g � p � g1, while G0 is exa
tly the group Autgr(g) of all automorphisms ofthe graded Lie algebra g = g�1�g0�g1. For a general 
hoi
e of G, the adjoint a
tionshows that P (respe
tively G0) is a 
overing of a subgroup of Autf (g) (respe
tivelyAutgr(g)) whi
h 
ontains the 
onne
ted 
omponent of the identity. Note however,that in any 
ase the group P+ is exa
tly the group of those automorphisms ' of gsu
h that for ea
h i = �1; 0; 1 and ea
h A 2 gi the image '(A) is 
ongruent to Amodulo gi+1 � gi+2.In any 
ase, as shown in [3, 4.2, 4.4℄, on any manifoldM equipped with a paraboli
geometry of type (G;P ) one has the following basi
 data:(1) A prin
ipal G0{bundle p : G0 ! M whi
h de�nes a �rst order G0{stru
ture onM . (In the non{proje
tive 
ases, this de�nes the stru
ture, while in the proje
tive
ases it is a full �rst order frame bundle.) The tangent bundle TM and the 
otangentbundle T �M are the asso
iated bundles to G0 
orresponding to the adjoint a
tionof G0 on g�1 and g1, respe
tively. There is an indu
ed bundle End0 TM whi
h isasso
iated to G0 via the adjoint a
tion of G0 on g0. This is 
anoni
ally a subbundleof T �M 
 TM and so we 
an view se
tions of this bundle either as endomorphismsof TM or of T �M .(2) An algebrai
 bra
ket f ; g : TM 
 T �M ! End0 TM , whi
h together with thetrivial bra
kets on TM 
 TM and on T �M 
 T �M , the bra
kets End0 TM 
 TM !TM given by f�; �g = �(�) and End0 TM 
T �M ! T �M given by f�; !g = ��(!),and the bra
ket on End0 TM 
 End0 TM ! End0 TM given by the 
ommutator ofendomorphisms of TM , makes TxM �End0 TxM � T �xM , for ea
h point x 2M , intoa graded Lie algebra isomorphi
 to g = g�1 � g0 � g1. (This algebrai
 bra
ket isindu
ed from the Lie algebra bra
ket of g.)(3) A preferred 
lass of aÆne 
onne
tions on M indu
ed from prin
ipal 
onne
tionson G0, su
h that for two preferred 
onne
tions r and r̂ there is a unique smooth one{form � 2 
1(M ) su
h that r̂�� = r��+ff�; �g; �g for all ve
tor �elds �; � onM . (Inthe proje
tive 
ases, the stru
ture is de�ned by the 
hoi
e of this 
lass of 
onne
tions,while in the non{proje
tive 
ases their existen
e is a nontrivial but elementary result.)Moreover, there is a restri
tion on the torsion of preferred 
onne
tions, see below.There is a ni
e reinterpretation of (1) and (2): De�ne the bundle �!A = A�1 �A0 � A1 ! M by A�1 = TM , A0 = End0 TM and A1 = T �M . Then the algebrai
bra
ket from (2) makes �!A into a bundle of graded Lie algebras. Moreover, sin
eAi is the asso
iated bundle G0 �G0 gi the de�nition of the algebrai
 bra
ket implies
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h point u0 2 G0 lying over x 2 M leads to an isomorphism u0 : g ! Ax ofgraded Lie algebras. In this pi
ture, the prin
ipal right a
tion of G0 on G0 leads tou0�g = u0 ÆAd(g).There are a few important fa
ts on preferred 
onne
tions that have to be noted.First, sin
e they are indu
ed from prin
ipal 
onne
tions on G0, the algebrai
 bra
ketsfrom (2) are 
ovariantly 
onstant with respe
t to any of the preferred 
onne
tions.Se
ond, the Ja
obi identity immediately implies that ff�; �g; �g is symmetri
 in � and�, so all preferred 
onne
tions have the same torsion T 2 �(�2T �M 
 TM ). Hen
e,this torsion is an invariant of the paraboli
 geometry. The normalisation 
onditionon the torsion mentioned above is that the tra
e over the last two entries of the map�2TM 
 T �M ! End0 TM de�ned by (�; �; !) 7! fT (�; �); !g vanishes. That is, inthe language of [3℄, the torsion is is ��{
losed.There are also a few fa
ts on the 
urvature of preferred 
onne
tions that we willneed in the sequel: Namely, if r is a preferred 
onne
tion, and R 2 �(�2T �M 
End0 TM ) is its 
urvature, then by [3, 4.6℄ one may split R 
anoni
ally as R(�; �) =W (�; �) � fP(�); �g + fP(�); �g, where P 2 �(T �M 
 T �M ) is the rho{tensor andW 2 �(�2T �M
End0 TM ) is 
alled the Weyl{
urvature of the preferred 
onne
tion.What makes this splitting 
anoni
al is the requirement that the tra
e over the lasttwo entries of the map �2T �M 
 T �M ! T �M de�ned by (�; �; !) 7! W (�; �)(!) =�fW (�; �); !g vanishes. Referring, on
e again, to the language of [3℄, this is the
ondition that W is ��{
losed. The 
hange of both P and W under a 
hange ofpreferred 
onne
tion is relatively simple. Namely, from [3, 4.6℄ we get for r̂�� =r�� + ff�; �g; �g the expressionsP̂(�) = P(�)�r�� + 12f�; f�; �ggŴ (�; �) = W (�; �) + f�; T (�; �)gIn parti
ular, if the torsion ofM vanishes, then the Weyl{
urvature is independent ofthe 
hoi
e of the preferred 
onne
tion and thus an invariant of the paraboli
 geometryon M .The Cotton{York tensor CY 2 �(�2T �M 
 T �M ) of a preferred 
onne
tion r isde�ned as the 
ovariant exterior derivative of the rho{tensor, i.e.CY (�; �) = (rP)(�; �)� (rP)(�; �) + P(T (�; �)):It turns out that if both the torsion and the Weyl{
urvature vanish, then CY isindependent of the 
hoi
e of the preferred 
onne
tion and thus an invariant of theparaboli
 geometry. Finally, it 
an be shown that if for one (equivalently any) pre-ferred 
onne
tion the torsion, the Weyl{
urvature and the Cotton{York tensor vanish,then the manifold is lo
ally isomorphi
 (as a paraboli
 geometry) to the 
at modelG=P .1.2. (g; P ){modules. | The basi
 ingredient for a tra
tor bundle on a manifoldMequipped with a paraboli
 geometry of type (G;P ) is a (�nite{dimensional) nontrivial(g; P ){moduleV. This means that onVone has given a
tions � of P and �0 of g su
hthat the restri
tion of �0 to the subalgebra p 
oin
ides with the derivative of � andsu
h that �0(Ad(g)�A) = �(g) Æ �0(A) Æ �(g�1) for all g 2 P and A 2 g. The basi




6 ANDREAS �CAP & A. ROD GOVERexamples of (g; P ){modules are provided by representations of the group G, by simplyrestri
ting the representation to P but keeping its derivative de�ned on g. Sin
e G issimple, any �nite dimensional g{module splits as a dire
t sum of irredu
ible modules,so we will hen
eforth assume that Vis irredu
ible as a g{module.Clearly we 
an restri
t the a
tion of P on V to G0 and hen
e view V as a G0{module (and thus also as a g0{module). The grading element E is 
ontained in the
entre of g0, and thus S
hur's lemma implies that it a
ts by a s
alar on any irredu
ibleg0{module. In parti
ular, we may split Vas �jVj a

ording to eigenvalues of E. ForA 2 gi and v 2 Vj note the 
omputation E�A�v = [E;A℄�v + A�E�v = (i + j)A�v.So the a
tion of gi maps ea
h Vj to Vj+i (where we de�ne Vk = 0 if an integer k isnot an eigenvalue of E a
ting on V). Sin
e any nontrivial representation of a simpleLie algebra is faithful, it follows that there are at least two nonzero 
omponents inthe sum �jVj, and in parti
ular, V is never an irredu
ible g0{module. Finally, notethat sin
e V is an irredu
ible g{module, it is generated by a single element. Thisimplies that if j0 is the lowest eigenvalue of E o

urring in V all other eigenvaluesare obtained by adding positive integers to j0, so the splitting a
tually has the formV= �Nj=0Vj0+j . The upshot of this is that we 
an en
ode the g{module stru
ture asthe sequen
e (Vj) of g0{modules, together with the a
tions g�1 �Vj !Vj�1.1.3. Let us hen
eforth �x a simple Lie group G with j1j{graded Lie algebra g, anirredu
ible (g; P ){moduleVwith de
ompositionV= �Vj a

ording to eigenvalues ofthe grading element E, and a smooth manifoldM endowed with a paraboli
 geometryof type (G;P ). Then sin
e ea
hVj is aG0{submodule ofV, we 
an form the asso
iatedbundle Vj = G0 �G0 Vj ! M and put �!V = �jVj . Moreover, the a
tion g !L(V;V) indu
es a bundle map � : �!A ! L(�!V ;�!V ), whi
h has the property that�(Ai)(Vj) � Vi+j for all i = �1; 0; 1 and all j. By 
onstru
tion, we have �(fs; tg) =�(s) Æ �(t)� �(t) Æ �(s) for all se
tions s; t of �!A . Note that in parti
ular, we 
an takeV= A := g, in whi
h 
ase we re
over the bundle �!A . Sin
e in this 
ase the a
tionis given by the algebrai
 bra
ket, we denote it by ad (instead of �). If we want todeal with both a
tions simultaneously, or if there is no risk of 
onfusion, we will alsosimply write � for the a
tion, i.e. s � t equals �(s)(t) or ad(s)(t) = fs; tg.Now we are ready to formulate the main result of this paper:Theorem. | Suppose that V ! M is a ve
tor bundle, and suppose that for ea
hpreferred 
onne
tion r on M we 
an 
onstru
t an isomorphism V ! �!V = �jVj ,whi
h we write as t 7! �!t = (: : : ; tj; tj+1; : : : ) both on the level of elements and ofse
tions. Suppose, further, that 
hanging from r to r̂ with 
orresponding one{form�, this isomorphism 
hanges to t 7! 
�!t = (: : : ; t̂j; t̂j+1; : : :), wheret̂k =Xi�0 1i!�(�)i(tk�i):Then for a point x 2 M the set Ax of all linear maps ' : Vx ! Vx for whi
h thereexists an element �!' 2 �!A x su
h that ��!'(t) = �(�!' )(�!t ) for all t 2 Vx is independentof the 
hoi
e of the preferred 
onne
tion r. The spa
es Ax form a smooth subbundle



TRACTOR BUNDLES FOR IRREDUCIBLE PARABOLIC GEOMETRIES 7A of L(V;V) = V� 
 V, whi
h is an adjoint tra
tor bundle on M in the sense of [3,2.2℄. Moreover the isomorphism A ! �!A de�ned by ' 7! �!' (given above) has thesame transformation property as the isomorphism above, i.e.'̂k =Xi�0 1i! ad(�)i('k�i):Then V is the V{tra
tor bundle for an appropriate adapted frame bundle for A.The expression (in the isomorphism 
orresponding to r)��!rV� t = r��!t + ��(�) + �(P(�))�(�!t )for � 2 X(M ) and t 2 �(V) de�nes a normal tra
tor 
onne
tion on V, and the sameformula with V repla
ed by A and � repla
ed by ad de�nes a normal tra
tor 
onne
tionon A. Thus, V and A are the (up to isomorphism unique) normal tra
tor bundles onM 
orresponding to Vand g, respe
tively.Finally, the 
urvature R of both these 
onne
tions is (in the isomorphism 
orre-sponding to r) given by������!R(�; �)(s) = (T (�; �) +W (�; �) +CY (�; �)) � �!s ;where T , W and CY are the torsion, the Weyl{
urvature and the Cotton{York tensorof r.The remainder of this se
tion is dedi
ated to the proof of this theorem.1.4. The adjoint tra
tor bundle determined by V. | To follow the approa
hto tra
tor bundles developed in [3℄, we need �rst an adjoint tra
tor bundle A ! Mbefore we 
an deal with (or even de�ne) general tra
tor bundles. So we �rst dis
ussthe bundle A from theorem 1.3.First note, that we 
an ni
ely rewrite the 
hange of isomorphisms from theorem1.3 as �̂!t = e�(�)(�!t ), where the exponential is de�ned as a power series as usual.Sin
e �(�) is by 
onstru
tion nilpotent, this sum is a
tually �nite. Moreover, sin
e� 
orresponds to the in�nitesimal a
tion of the Lie algebra g, e�(�) in that pi
ture
orresponds to the (group) a
tion of exp(Z), where Z 2 g1 
orresponds to �. Fromthe de�nition of a (g; P ){module in 1.2 it follows that for ea
h A 2 g and v 2 Vwehave exp(�Z)�A� exp(Z)�v = (Ad(exp(�Z))(A))�v = (e� ad(Z)(A))�v;and thus A� exp(Z)�v = exp(Z)�(e� ad(Z)(A))�v. Transferring this to the manifold, weobtain �(s) Æ e�(�) = e�(�) Æ �(e� ad(�)(s));(1)for ea
h � 2 
1(M ) and ea
h s 2 �(�!A ). Note further, that e� ad(�) is just the identityon A1 = T �M , while for � 2 A0 = End0 TM we have e� ad(�)(�) = � � f�;�g 2A0 � A1 and for � 2 A�1 = TM , we have e� ad(�)(�) = � � f�; �g+ 12f�; f�; �; gg.The de�ning equation for ' 2 L(Vx;Vx) to lie in Ax from theorem 1.3 is just��!'(t) = �(�!' )(�!t ) for some element �!' of �!A x (and all t 2 Vx). If r̂ is another



8 ANDREAS �CAP & A. ROD GOVERpreferred 
onne
tion and � 2 
1(M ) is the 
orresponding one{form, then usingformula (1) from above, we 
omputed��!'(t) = e�(�) Æ �(�!' )(�!t ) = �(ead(�)(�!' )) Æ e�(�)(�!t ) = �(ead(�)(�!' ))(
�!t );whi
h shows both that Ax is independent of the 
hoi
e of preferred 
onne
tion, andthat 
�!' = ead(�)(�!' ), so the 
hange of isomorphisms A ! �!A indu
ed by preferred
onne
tions is proved. A preferred 
onne
tion thus indu
es a global isomorphismA ! �!A , so A � V� 
 V is a smooth subbundle. Next, the (pointwise) 
ommutatorof endomorphisms de�nes an algebrai
 bra
ket f ; g on A, making it into a bundle ofLie algebras. From the fa
t that � 
omes from a representation of g we 
on
lude that�����!f'1; '2g = f�!'1;�!'2g, so for ea
h preferred 
onne
tion the isomorphism A ! �!A is anisomorphism of bundles of Lie algebras.From the formula
�!' = ead(�)(�!' ) it follows that if �!' lies in A0�A1 then the sameis true for 
�!' , and moreover their 
omponents in A0 are equal. Similarly, if �!' 2 A1then 
�!' = �!' . Thus, we get an invariantly de�ned �ltration A = A�1 � A0 � A1 ofA. Furthermore, writing gr(A) to denote the asso
iated graded ve
tor bundle of A(i.e. gr(A) = (A�1=A0) � (A0=A1) � A1) then we also get a 
anoni
al isomorphismfrom gr(A) ! �!A . In parti
ular, sin
e �!A is a lo
ally trivial bundle of graded Liealgebras modelled on g and the isomorphism A ! �!A provided by any preferred
onne
tion is �ltration preserving, we see that A is a lo
ally trivial bundle of �lteredLie algebras over M modelled on g, and thus an adjoint tra
tor bundle in the senseof [3, 2.2℄.Next, we 
an 
an use A to 
onstru
t a 
orresponding adapted frame bundle (see[3, 2.2℄), that is a prin
ipal P{bundle G !M su
h that A = G �P g, the asso
iatedbundle with respe
t to the adjoint a
tion. First note that ifA is given as an asso
iatedbundle in this way then, by de�nition, any point u 2 G lying over x 2 M indu
esan isomorphism u : g ! Ax of �ltered Lie algebras. Now if  : g ! Ax is anysu
h isomorphism, then we 
an pass to the asso
iated graded Lie algebras on bothsides and, in view of the 
anoni
al isomorphism from gr(A) to �!A 
onstru
ted above,the result is an isomorphism g ! �!A x. With this observations at hand, we nowde�ne Gx to be the set of all pairs (u0;  ), where u0 2 (G0)x and  : g ! Ax is anisomorphism of �ltered Lie algebras su
h that the indu
ed isomorphism g ! �!A x ofgraded Lie algebras equals u0, see 1.1. Putting G = [x2MGx we automati
ally get asmooth stru
ture on G, sin
e we 
an view G as a submanifold the �bred produ
t ofG0 with the linear frame bundle of A. The �rst proje
tion is a surje
tive submersionfrom this �bred produ
t onto G0 and we 
an 
ompose with this the usual proje
tionfrom G0 to M . Moreover, for ea
h u0 2 G0, 
omposing with u0 the inverse of theisomorphism Ax ! �!A x provided by any preferred 
onne
tion, gives by 
onstru
tionan isomorphism  su
h that (u0;  ) 2 G. Hen
e, the restri
tion of this surje
tivesubmersion to G is still surje
tive.Next, we de�ne a right a
tion of P on G by (u0;  )�g := (u0�g0;  ÆAd(g)), whereg = g0 exp(Z) and in the �rst 
omponent we use the prin
ipal right a
tion on G0.



TRACTOR BUNDLES FOR IRREDUCIBLE PARABOLIC GEOMETRIES 9Clearly, this is well de�ned (i.e. (u0;  )�g lies again in G) and a right a
tion. We
laim that this a
tion is free and transitive on ea
h �bre of the proje
tion G !M . If(u0;  )�g = (u0;  ) for one point, then we must have g0 = e sin
e the prin
ipal a
tionof G0 is free, so we must have g = exp(Z). But for Z 2 g1 the adjoint a
tion of exp(Z)equals the identity if and only if Z = 0, see [12, lemma 3.2℄, so freeness follows. Onthe other hand, the prin
ipal a
tion on G0 is transitive on ea
h �bre, so it suÆ
es todeal with the 
ase of two points of the form (u0;  1) and (u0;  2). But in this 
ase, by
onstru
tion  �11 Æ 2 : g! g is an automorphism of the �ltered Lie algebra g whi
hindu
es the identity on the asso
iated graded Lie algebra, and we have observed in 1.1that any su
h isomorphism is of the form Ad(exp(Z)) for some Z 2 g1. Thus, fromG we have on the one hand a prin
ipal P+ bundle (with a G0{equivariant proje
tion)G ! G0 and on the other hand a prin
ipal P bundle G !M .Next, 
onsider the map G � g ! A de�ned by ((u0;  ); X) 7!  (X). This 
learlymaps both ((u0;  )�g;X) and ((u0;  );Ad(g)(X)) to  (Ad(g)(X)), so it indu
es ahomomorphism G �P g ! A of ve
tor bundles. The restri
tion of this to ea
h �breby 
onstru
tion is a linear isomorphism and, in fa
t, an isomorphism of �ltered Liealgebras, so the whole map is an isomorphism of bundles of �ltered Lie algebras.Finally, we have to show that V = G�PV. To do this, 
hoose a preferred 
onne
tionr. This de�nes a smooth map � : G ! G0 � P+ as follows: For (u0;  ) 2 G 
onsiderthe 
omposition 
onsisting of  : g ! Ax followed by the isomorphism Ax ! �!A xprovided by r and then the isomorphism u0�1 : �!A x ! g. By 
onstru
tion, this isan isomorphism of �ltered Lie algebras whi
h indu
es the identity on the asso
iatedgraded Lie algebra, so it is given as Ad(� (u0;  )) for a unique element � (u0;  ) 2P+. Clearly AdÆ� is smooth and so � is smooth. From the de�ning equation oneimmediatelyveri�es that for g0 2 G0 and g0 2 P+ we get � ((u0;  )�g0) = g�10 � (u0;  )g0and � ((u0;  )�g0) = � (u0;  )g0, respe
tively.Now we de�ne a map f : G�V! V by requiring that ��������!f((u0;  ); v) = u0(� (u0;  )�v),where the a
tion on the right hand side is in the g{module V, and the isomorphismu0 : V! �!V x 
omes from the fa
t that �!V is an asso
iated bundle to G0. Usingthe fa
t that u0�g0(v) = u0(g0�v) and the equivarian
y properties of � we see that���������!f((u0;  )�g; v) = ���������!f((u0;  ); g�v) for all g whi
h are either in G0 or in P+ and thusfor all g 2 P . 
onsequently, f fa
tors to a homomorphism G �P V! V of ve
torbundles, whi
h by 
onstru
tion indu
es a linear isomorphism in ea
h �bre and thusis an isomorphism of ve
tor bundles. Hen
e, V is the V{tra
tor bundle 
orrespondingto the adapted frame bundle G for the adjoint tra
tor bundle A.It should be noted, at this point, that the isomorphism G �P V! V 
onstru
tedabove is a
tually independent of the 
hoi
e of the preferred 
onne
tion r. Indeed, if r̂is another preferred 
onne
tion 
orresponding to � 2 
1(M ), then the de�nition of �easily implies that �̂ (u0;  ) = exp(u0�1(�))� (u0;  ). Using this, and the formula for\��������!f((u0;  ); v), one easily veri�es dire
tly, that even the map f itself is independent ofthe 
hoi
e of r. Finally a point of notation. Sin
e V may be viewed as an asso
iatedbundle as established here it is 
lear that any point u 2 G lying over x 2 M indu
esa (g; P ){isomorphism u :V! Vx.
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tor 
onne
tions. | The next step is to prove that the de�nitionof the 
onne
tion rV in theorem 1.3 is independent of the 
hoi
e of the preferred
onne
tion r and that rV is a tra
tor 
onne
tion on V. Sin
e this uses only theformula for the transformation of isomorphisms indu
ed by a 
hange of preferred
onne
tion, we re
over at the same time the result for A, sin
e this is just the spe
ial
ase V= g.The de�nition of rV in theorem 1.3 reads as��!rV� t = r��!t + (�(�) + �(P(�)))(�!t ):Sin
e any preferred 
onne
tion r is indu
ed by a prin
ipal 
onne
tion on G0, and� : �!A ! L(�!V ;�!V ) is indu
ed by a G0{homomorphism g ! L(V;V) we 
on
lude thatr�(�(�)(�!t )) = �(r��)(�!t ) + �(�)(r��!t );for any ve
tor �eld � 2 X(M ), any one{form � and se
tion �!t of �!V . Taking intoa

ount that the bra
ket f ; g is trivial on 
1(M ) and hen
e the a
tions of one{formsvia � always 
ommute, we get this implies thatr�(�(�)i(�!t )) = i�(r��)�(�)i�1(�!t ) + �(�)i(r��!t );whi
h in turn leads tor�(e�(�)(�!t )) = �(r��)(e�(�)(�!t )) + e�(�)(r��!t ):(2)If r̂ is another preferred 
onne
tion and � is the 
orresponding one{form, thenr̂��!t = r��!t + �(f�; �g)(�!t ). Repla
ing in this formula �!t by 
�!t = e�(�)(�!t ) andusing formula (2) to 
ompute r�
�!t , we getr̂�
�!t = \(r��!t ) + �(r��)(
�!t ) + �(f�; �g)(
�!t ):From formula (1) of 1.4 we have �(�̂!s )
�!t = \�(�!s )�!t for any se
tions �!s 2 �(�!A )and �!t 2 �(�!V ). For example in the 
ase that V = A we have on one hand that for! 2 
1(M ), we have �(!)(
�!t ) = \�(!)(�!t ). On the other hand for � 2 X(M ), we get�(�)(
�!t ) = \�(�)(�!t )� �(f�; �g)(
�!t )� 12�(f�; f�; �gg)(
�!t ):From 1.1 we know that P̂(�) = P(�) �r�� + 12f�; f�; �gg. Thus, together withthe above we arrive at(�(�) + �(P̂(�)))(
�!t ) = \�(�)(�!t ) + \�(P(�))(�!t ) � �(r��)(
�!t ) � �(f�; �g)(
�!t );whi
h exa
tly 
an
els with the 
ontribution r̂�
�!t � \(r��!t ) 
al
ulated above, so rVis independent of the 
hoi
e of the preferred 
onne
tion r.To verify that rV is a tra
tor 
onne
tion, we �rst verify the non{degenera
y 
on-dition from [3, de�nition 2.5(2)℄, whi
h is very simple. In fa
t, the 
anoni
al �ltration� � � � Vj � Vj+1 � : : : on V is simply given by t 2 Vj if and only if�!t 2 Vj�Vj+1�: : : ,whi
h is 
learly independent of the 
hoi
e of the preferred 
onne
tion. In parti
ular,as we observed for A in 1.4, we get a 
anoni
al isomorphism between gr(�!V ), the
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tor bundle asso
iated to V, and �!V . But by 
onstru
tion, for ea
h ve
tor�eld �, r� preserves the de
omposition �!V = �Vj . Hen
e for a smooth se
tion t ofVj , we see that rV� t is a se
tion of Vj�1 and its 
lass in Vj�1=Vj is mapped underthe above isomorphism to �(�)(tj). Thus, the fa
t that any nontrivial representationof g is faithful implies the non{degenera
y 
ondition, sin
e it implies that for nonzero� 2 TxM we �nd a j and tj 2 (Vj)x su
h that �(�)(tj) is nonzero.The se
ond 
ondition is to verify that rV is a g{
onne
tion in the sense of [3,de�nition 2.5(1)℄. So what we have to do is the following: For a smooth se
tiont 2 �(V) 
onsider the 
orresponding P{equivariant map ~t : G ! V. Then take apoint u 2 G lying over x 2M , a tangent ve
tor �� 2 TuG and its image � 2 TxM , and
onsider the di�eren
e ���~t� u�1(rV� t(x)) 2V. The 
ondition to verify is that this isgiven by the a
tion of an element of g on ~t(u). Note �rst, that if �� is verti
al, these
ond term vanishes so the 
ondition is automati
ally satis�ed by (the in�nitesimalversion of) equivarian
y of ~t.E�e
tively, we have already observed in 1.4 above that any preferred 
onne
tionr indu
es a global se
tion � of G ! G0 by mapping u0 2 (G0)x to (u0;  ) 2 Gx,where  is the 
omposition of the inverse of the isomorphism Ax ! �!A x de�ned byr with u0 : g!�!A x. Moreover, by 
onstru
tion this se
tion is G0{equivariant. Nowif (u0;  ) 2 Gx is any point, then there is an element g0 2 P+ su
h that (u0;  ) =�(u0)�g0. This means that  is the 
omposition of  0 with Ad(g0), where �(u0) =(u0;  0) and g0 = exp(Z) for a unique Z 2 g1. Extend u0(Z) 2 TxM to a one{form � 2 
1(M ) and 
onsider the 
onne
tion r̂ 
orresponding to �. Then usingu0 Æ Ad(exp(Z)) = ead(�(x)) Æ u0, we see that the se
tion �̂ 
orresponding to r̂ hasthe property that �̂(u0) = (u0;  ).Returning to our original problem, we may thus assume without loss of generalitythat (u0;  ) = �(u0) for the se
tion � 
orresponding to a preferred 
onne
tion r.Moreover, adding an appropriate verti
al ve
tor, we may assume that �� = Tu0���0for some �0 2 Tu0G0, whi
h still proje
ts to � 2 TxM . But then ���~t(u) = �0�(~t Æ�)(u0). Now we just have to make a �nal observation. The 
orresponden
e betweense
tions and equivariant fun
tions is given by ~t(u0;  ) =  �1(t(x)). Moreover, sin
e(u0;  ) = �(u0), we see from 1.4 that  �1(t(x)) = u0�1(�!t (x)). Consequently, (~t Æ�) : G0 ! V is exa
tly the G0{equivariant fun
tion 
orresponding to �!t . Sin
e thepreferred 
onne
tion r is indu
ed from a prin
ipal 
onne
tion on G0, the di�eren
e�0�(~t Æ �)� u0(r��!t ) is given by the a
tion of an element of g0 (namely the value ofthe 
onne
tion form on �0) on ~t(�(u0)). Thus, also �0�(~t Æ �) � u0(��!rV� t) is given bythe a
tion of an element of g on this, namely the one just des
ribed plus the ones
orresponding to � and P(�). But sin
e  = (u0;  ) and thus  = �(u0), we see fromabove that u0�1(��!rV� t) = �(u0)�1(rV� t), so rV is indeed a g{
onne
tion and thus atra
tor 
onne
tion.



12 ANDREAS �CAP & A. ROD GOVER1.6. Curvature. | The �nal thing is to 
ompute the 
urvature and, as above, itsuÆ
es to do this for rV sin
e A is the spe
ial 
ase V= g. By de�nition��!rV� t = r��!t + (�(�) + �(P(�)))(�!t ):Sin
e � is 
ovariantly 
onstant for any preferred 
onne
tion, we getr���!rV� t = r�r��!t + �(r��)(�!t ) + �(�)(r��!t ) ++ �(r�(P(�)))(�!t ) + �(P(�))(r��!t ):(3)Thus, ����!rV�rV� t is given by adding to the above sum the terms�(�)(r��!t ) + �(�) Æ �(�)(�!t ) + �(�) Æ �(P(�))(�!t )) +�(P(�))(r��!t ) + �(P(�)) Æ �(�)(�!t ) + �(P(�)) Æ �(P(�))(�!t ):(4)Finally, dire
tly from the de�nition of rV , we get���!rV[�;�℄t = r[�;�℄�!t + (�([�; �℄) + �(P([�; �℄)))(�!t ):(5)To obtain the formula for �������!RV (�; �)(t), by de�nition of the 
urvature, we have to takeall terms from (3) and (4), then subtra
t the same terms with � and � ex
hanged and�nally subtra
t the terms from (5). Sin
e f�; �g = fP(�);P(�)g = 0, the se
ond andlast term in (4) are symmetri
 in � and � (see 1.3), so we may forget those. Moreoverthe �rst term in (4) together with the third term in the right hand side of (3), as wellas the fourth term in (4) together with the last term in the right hand side of (3) areagain symmetri
, so we may forget all those. Now the �rst term in the right hand sideof (3) together with its alternation and the negative of the �rst term in the right handside of (5) add up to �(R(�; �))(�!t ), where R 2 �(�2T �M
End0 TM ) is the 
urvatureof r (viewed as a 
onne
tion on TM ). On the other hand, the two remaining terms in(4) together with their alternations add up to �(fP(�); �g � fP(�); �g)(�!t ). Togetherwith the 
urvature term from above, this exa
tly leads to �(W (�; �))(�!t ). Then these
ond term in the right hand side of (3) together with its alternation and minus these
ond term in the right hand side of (5) give �(T (�; �))(�!t ) by the de�nition of thetorsion. The remaining part is simply�(r�(P(�)) �r�(P(�)) � P([�; �℄))(�!t ):Inserting [�; �℄ = r���r��� T (�; �) we see that this simply equals �(CY (�; �))(�!t )by de�nition of the Cotton{York tensor.Note that this immediately implies that rV is a normal tra
tor 
onne
tion onV, sin
e by 
onstru
tion T and W are ��{
losed, while for CY this is trivially truebe
ause of homogeneity (��(CY ) : �!A ! �!A would be homogeneous of degree three).1.7. The fundamental D{operators and a summary. | Starting from a bun-dle V !M with an appropriate 
lass of isomorphisms V ! �!V provided by preferred
onne
tions, we have 
onstru
ted the normal adjoint tra
tor bundle A ! M and
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tor bundle 
orresponding to A. Moreover, for any pre-ferred 
onne
tion r we get an isomorphism A ! �!A whi
h is 
ompatible with theisomorphisms for V in the sense that denoting the 
anoni
al a
tion A 
 V ! V by(s 
 t) 7! s � t, then ��!s � t = �(�!s )(�!t ). So we are able to work 
onsistently bothwith A and V by working with the bundles �!A and �!V whi
h are simply dire
t sumsof familiar, easily understood bundles. Moreover, we have 
onstru
ted expli
itly thenormal tra
tor 
onne
tions on V and A.The fundamental D-operators are �rst order invariant di�erential operators whi
hfor paraboli
 geometries generalise the notion of 
ovariant derivatives in a rathernatural way. For weighted tensor bundles, tra
tor bundles and tensor produ
ts ofthese the fundamental D-operators are des
ribed expli
itly in [3℄ in terms of thetra
tor 
onne
tion. In parti
ular via proposition 3.2 of that work and the results abovefor the tra
tor 
onne
tion we 
an 
ompute, in our 
urrent setting, the fundamentalD{operators both on V and on A. Expli
itly, on V, the fundamental D{operator isgiven by �!Dst = r��!t � �(�)(�!t ) � �(! � P(�))(�!t );where t 2 �(V) and s 2 �(A) is su
h that �!s = (�;�; !). In a similar notation, weget on A the formula���!Ds1s2 = r��!s2 � f�;�!s2g � f! � P(�);�!s2g;whi
h expanded into 
omponents exa
tly gives the formula in [3, 4.14℄. By naturalityof the fundamental D{operators (see [3, proposition 3.1℄) this implies that on anyof the bundles Vj (or of any of the subbundles of any su
h bundle 
orresponding toa G0-invariant 
omponent of Vj), the fundamental D{operator is given by Ds� =r�� � � � �, where again �!s = (�;�; !). Sin
e the fundamental D{operator is A�-valued and we know the fundamental D{operator on A �= A�, we may iterate thisoperator. For example, the formula for the square of D from [3, 4.14℄ 
ontinues tohold in this 
ase. 2. Conformal Standard tra
torsIn this se
tion we show that our results are very easy to apply in 
on
rete situations.Moreover, we show how to relate the bra
ket notation we have used here to a standardabstra
t index notation. Among parti
ular results we 
onstru
t a normal tra
torbundle with 
onne
tion, whi
h we term the standard tra
tor bundle, and observethat this is isomorphi
 to the tra
tor bundle in [1℄. This establishes that the latter is
onsistent with the 
anoni
al Cartan 
onne
tion.2.1. Conformal manifolds. | We shall work on a real 
onformal n-manifoldMwhere n � 3. That is, we have a pair (M; [g℄) where M is a smooth n-manifold and[g℄ is a 
onformal equivalen
e 
lass of metri
s. Two metri
s g and bg are said to be
onformally equivalent , or just 
onformal , if bg is a positive s
alar fun
tion multiple ofg. In this 
ase it is 
onvenient to write bg = 
2g for some positive smooth fun
tion 
.(The transformation g 7! bg, whi
h 
hanges the 
hoi
e of metri
 from the 
onformal
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lass, is termed a 
onformal res
aling .) We shall allow the metri
s in the equivalen
e
lass to have any �xed signature. For a given 
onformal manifold (M; [g℄) we willdenote by L the bundle of metri
s. That is L is a subbundle of S2T �M with �bre R+whose points 
orrespond to the values of the metri
s in the 
onformal 
lass.Following the usual 
onventions in abstra
t index notation, we will write E for thetrivial bundle over M , E i for TM and Ei for T �M . Tensor produ
ts of these bundleswill be indi
ated by adorning the symbol E with appropriate indi
es. For example, inthis notation 
2T �M is written Eij and we write E(ij) to indi
ate the symmetri
 partof this bundle, so in this notation L � E(ij). Unless otherwise indi
ated, our indi
eswill be abstra
t indi
es in the sense of Penrose [10℄. An index whi
h appears twi
e,on
e raised and on
e lowered, indi
ates a 
ontra
tion. In 
ase a frame is 
hosen andthe indi
es are 
on
rete, use of the Einstein summation 
onvention (to implementthe 
ontra
tion) is understood. Given a 
hoi
e of metri
, indi
es will be raised andlowered using the metri
 without expli
it mention. Finally we point out that these
onventions will be extended in an obvious way to the tra
tor bundles des
ribed below.We may view L as a prin
ipal bundle with group R+, so there are natural linebundles on (M; [g℄) indu
ed from the irredu
ible representations of R+. We writeE [w℄ for the line bundle indu
ed from the representation of weight �w=2 on R (thatis R+ 3 x 7! x�w=2 2 End(R)). Thus a se
tion of E [w℄ is a real valued fun
tion f on Lwith the homogeneity property f(
2g; x) = 
wf(g; x) where 
 is a positive fun
tionon M , x 2M and g is a metri
 form the 
onformal 
lass [g℄. We will use the notationEi[w℄ for Ei
E [w℄ and so on. Note that, as we shall see below, this 
onvention di�ersin sign from the one of [3, 4.15℄. We have kept with this 
onvention in order to be
onsistent with [1℄.Let E+[w℄ be the �bre subbundle of E [w℄ 
orresponding to R+ � R. Choosing ametri
 g from the 
onformal 
lass de�nes a fun
tion f : L ! R by f(ĝ; x) = 
�2,where ĝ = 
2g, and this 
learly de�nes a smooth se
tion of E [�2℄+. Conversely, if f issu
h a se
tion, then f(g; x)g is 
onstant up the �bres of L and so de�nes a metri
 in the
onformal 
lass. So E+[�2℄ is 
anoni
ally isomorphi
 to L, and the 
onformal metri
gij is the tautologi
al se
tion of Eij [2℄ that represents the map E+[�2℄ �= L ! E(ij).On the other hand, for a se
tion gij of L 
onsider the map 'ij 7! gk`'k`gij, whi
h isvisibly independent of the 
hoi
e of g. Thus, we get a 
anoni
al se
tion gij of E ij[�2℄su
h that gijgjk = Æki .2.2. To identify 
onformal stru
tures as a paraboli
 geometry we �rst need a j1j{graded Lie algebra g. To do this, for signature (p; q) (p + q = n) 
onsider Rn+2with 
oordinates x0; : : : ; xn+1 and the inner produ
t asso
iated to the quadrati
 form2x0xn+1+Ppi=1 x2i �Pni=p+1 x2i , and let g be the orthogonal Lie algebra with respe
tto this inner produ
t, so g = so(p+1; q+1). Let Ibe the n�n diagonal matrix withp 1's and q (�1)'s in the diagonal and putJ= 0�0 0 10 I 01 0 01A :
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es ~A su
h that ~AtJ = �J~A, so in(1; n; 1)� (1; n; 1) blo
k form, these are exa
tly the matri
es of the form0� a Z 0X A �IZt0 �XtI �a 1Awith X 2 Rn, Z 2 Rn�, a 2 R and A 2 so(p; q) (that is AtI= �IA). The grading isgiven by assigning degree �1 to the entry 
orresponding to X, degree zero to the ones
orresponding to a and A and degree one to the one 
orresponding to Z. Will use thenotation X 2 g�1, (a;A) 2 g0 and Z 2 g1. Then the a
tions of g0 on g�1 indu
edby the bra
ket are given by [(a;A); X℄ = AX � aX and [(a;A); Z℄ = aZ �ZA, whi
himmediately implies that the grading element E is given by E = (1; 0) 2 g0. As anappropriate g{invariant bilinear form on g we 
hoose 12 times the tra
e form on g anddenote this by B. The advantage of this 
hoi
e is that then the indu
ed g0{invariantpairing between g�1 and g1 is exa
tly given by the standard dual pairing betweenRn and Rn�. For later use, we also note that the bra
ket g�1 � g1 ! g0 is given by[X;Z℄ = (�ZX;XZ � IZtXtI).2.3. The group level. | Consider the group SO(p+1; q+1) whi
h has Lie algebrag. By de�nition, this 
onsists of all matri
es M su
h that M tJM = J and su
h thatM has determinant one. Sin
e the grading element E lies in the 
entre of g0, anyelement g of the 
orresponding subgroup G0 must satisfy Ad(g)(E) = E. Using thesetwo fa
ts, a straightforward 
omputation shows that any su
h element must be blo
kdiagonal and of the form 0�
 0 00 C 00 0 
�11Awith 
 2 R and C 2 SO(p; q) with respe
t to the standard inner produ
t (that is theinner produ
t given by I). Moreover, the adjoint a
tion of su
h an element on g�1 isgiven by (
; C)�X = 
�1CX. Hen
e we see that 
hoosing G = SO(p+ 1; q+ 1) in the
ase n = p+q odd (where � id is orientation reversing) and G = SO(p+1; q+1)=�id inthe 
ase n even, we get a group G su
h that the adjoint a
tion of G0 on g�1 indu
esan isomorphism of G0 with the group of all 
onformal isometries of g�1 (with thestandard inner produ
t of signature (p; q)), so this will be our 
hoi
e of groups.Now we 
an immediately interpret expli
itly all the obje
ts des
ribed in 1.1 on a
onformal manifold M . The �bre of the prin
ipal G0{bundle G0 ! M over x 2 Mis exa
tly the set of all 
onformal isometries u : g�1 ! TxM , and the prin
ipalright a
tion of g 2 G0 is given by u�g = u Æ Ad(g). This is by 
onstru
tion freeand transitive on ea
h �bre, so we really get a prin
ipal bundle. By 
onstru
tionTM = G0 �G0 g�1. The bilinear form B from 2.2 identi�es g1 with the dual G0{module of g�1, so T �M = G0 �G0 g1. In the pi
ture of equivariant fun
tions, thepairing between ve
tor �elds and one{forms indu
ed by this identi�
ation is indu
edby the pointwise pairing between g�1 = Rn and g1 = Rn� by our 
hoi
e of B.Next, we want to identify the asso
iated bundle End0 TM = G0�G0 g0. As statedin 1.1 we identify g0 with a set of linear maps g�1 ! g�1 by mapping (a;A) 2



16 ANDREAS �CAP & A. ROD GOVERg0 to X 7! [(a;A); X℄ = AX � aX. As su
h endomorphisms, elements of g0 are
hara
terised by the fa
t thath[(a;A); X℄; Y i + hX; [(a;A); Y ℄i = �2ahX;Y i;where h ; i is the standard inner produ
t of signature (p; q). Thus we see thatEnd0 TM 
onsists of all bundle maps � : TM ! TM su
h that g(�(�); �)+g(�;�(�)) =2'g(�; �) for some real number ' for one (or, equivalently, any) metri
 g from the
onformal 
lass. In abstra
t index notation, this reads as gkj�ki + gik�kj = 2'gij,and so n' is exa
tly the tra
e of �, that is ' = 1n�ii. Note that, in the pi
ture ofg0{valued fun
tions, ��' id 
orresponds to A and �' 
orresponds to the a of (a;A)(
f. se
tion 2.2).Next, we have to identify the density bundles as asso
iated bundles to G0. Byde�nition, any point u 2 G0 lying over x 2M is a 
onformal isometry u : g�1 ! TxM .Consequently, (�; �) 7! hu�1(�); u�1(�)i de�nes an element of Lx. For (
; C) 2 G0, wesee from the de�nition of the prin
ipal right a
tion that (u�(
; C))�1(�) = 
C�1u�1(�),so a
ting with this 
hanges the 
orresponding element of Lx by multipli
ation with
2. Consequently, we see that 
onsidering the representation � : G0 ! R+ de�nedby �(
; C) = 
2, the mapping whi
h assigns to (u; �) the inner produ
t (�; �) 7!�hu�1(�); u�1(�)i indu
es an isomorphism G0 �G0 R+ �= L. Sin
e L �= E [�2℄, we seethat E [w℄ is the asso
iated bundle to G0 with respe
t to the representation (
; C) 7!j
j�w or in�nitesimally E 7! �w, so our 
onvention di�ers in sign from the one of [3,4.15℄.As we have noted in 1.1, the bra
kets End0 TM 
 TM ! TM and T �M 
End0 TM ! T �M are given by the evaluation of endomorphisms, so in abstra
t in-dex notation we have f�; �gi = �ij�j and f�; !gi = ��ji!j. To des
ribe the bra
ketTM 
 T � ! End0 TM , re
all from 2.2 that for X;Y 2 g�1 and Z 2 g1 we have[[X;Z℄; Y ℄ = ZXY + XZY � IZtXtIY . The �rst term is obtained by multiplyingY by the pairing of Z and X, while the se
ond one is obtained by multiplying Xby the pairing of Z and Y . For the last term, note that XtIY is the standard innerprodu
t of X and Y , while IZt is just the element of g�1 
orresponding to Z 2 g1under the isomorphism provided by the inner produ
t. This easily implies that thebra
ket TM 
 T �M ! End0 TM is given byf�; !gij = �i!j � gjk�kgi`!` + �k!kÆij :An aÆne 
onne
tion r on M is indu
ed by a prin
ipal 
onne
tion on G0 if andonly if it preserves the 
onformal 
lass [g℄ given on M . Moreover, there are torsionfree 
onne
tions preserving this 
onformal 
lass (e.g. the Levi{Civita 
onne
tion ofany given metri
 in the 
lass), so the (unique possible) ��{
losed value of the torsionmust be zero. Hen
e, the preferred 
onne
tions on M are exa
tly those torsion free
onne
tions onM whi
h preserve the 
onformal 
lass, i.e. the Weyl{stru
tures on the
onformal manifoldM .If r and r̂ are two su
h Weyl{stru
tures, then we know from 1.1 that there is aunique one{form � 2 
1(M ) su
h that r̂�� = r�� + ff�; �g; �g. In abstra
t indexnotation, this reads aŝri�j = ri�j � �i�j + gik�kgj`�` ��k�kÆji :
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onne
tions for g and ĝ = 
2g, respe
tively.In terms of g, the 
ondition r̂ĝ = 0 implies2
(��
)g(�; �) = 
2g(ff�; �g; �g; �) + 
2(�; ff�; �g; �g):Sin
e f�; �g 2 �(End0 TM ) and the above formula for the bra
ket implies f�; �gii =�n�i�i, this leads to � = �
�1d
. Comparing with the formula in [1, 2.1℄ we seethat our � in the 
ase of Levi{Civita 
onne
tions is the negative of the � there.For s a se
tion of any asso
iated bundle to G0, we have the formula r̂�s = r�s +f�; �g � s by de�nition of the a
tion of indu
ed 
onne
tions. In parti
ular, for � 2�(E [w℄) we get (
f. [3, 4.15℄) r̂�� = r�� + wn f�; �gii�, or in abstra
t index notationr̂i� = ri� � w�i�. For later use, we note the formula for ! 2 �(Ei[w℄), whi
h isgiven by r̂�! = r�! + ff�; �g; !g+ wn f�; �gii!, i.e.r̂i!j = ri!j +�j!i � gijgk`�k!` + (1� w)�i!j:2.4. The �nal things we have to des
ribe are the rho{tensor Pij, the Weyl{
urvatureW kij ` and the Cotton{York tensor CYijk for a preferred 
onne
tion r. Let R kij ` bethe 
urvature of r. Put Ri
ij = R kki j, the Ri

i 
urvature of r, whi
h is a se
tionof Eij. Note however, that for general preferred 
onne
tions Ri
 is not symmetri
(in 
ontrast to the spe
ial 
ase of Levi{Civita 
onne
tions). Finally, 
onsider thes
alar 
urvature R 2 �(E [�2℄) de�ned by R = gijRi
ij . By de�nition, R(�; �) =W (�; �)�fP(�); �g+ fP(�); �g, and W kki j = 0. The de�ning equation 
an be writtenas R kij ` = W kij ` + 2P`[iÆkj℄ � 2gkmPm[igj℄` � 2P[ij℄Æk̀:From this formula it is visible, thatW is exa
tly the tra
e-free part of R (with respe
tto the indi
es i and k). Contra
ting over the indi
es i and k in this equation andrenaming some indi
es, we obtainRi
ij = �(n � 1)Pji + Pij � Pgij;where we de�ne P 2 �(E [�2℄) by Pijgij. Contra
ting the above equation with gij,we obtain P = � 12n�2R. Reinserting this, we easily getPij = � 1n�2 � 1nRi
ij + n�1n Ri
ji � 12n�2Rgij� :In parti
ular, if r is a Levi{Civita 
onne
tion, then by the Bian
hi identity Ri
ij issymmetri
, so we obtain the usual simpler formula Pij = � 1n�2(Ri
ij � 12n�2Rgij),whi
h shows that our Rho{tensor is the negative of the one used in [1℄. Moreover,this shows that for a Levi{Civita 
onne
tion, the Rho{tensor is symmetri
. In that
ase, we further know that R kij k = 0, and together with symmetry of the rho{tensorwe may 
on
lude from the de
omposition of R above that also W kij k = 0.Finally, sin
e the torsion is trivial in this 
ase, the formula for the Cotton{Yorktensor of r is simply given by CYijk = riPkj �rjPki.



18 ANDREAS �CAP & A. ROD GOVER2.5. Here we use the results of se
tion 1 to 
onstru
t the tra
tor bundle EI (whereI is an abstra
t index) 
orresponding to the standard representation V= Rn+2 of G.If we split an element of Vas a triple, with 
omponents of sizes 1, n and 1, then thea
tion of the Lie algebra is given by(X; (a;A); Z)�0�uvw1A = 0� au+ Z(v)uX + Av �wIZt�XtIv� aw 1A :This immediately shows that we have found the splitting V= V�1 �V0 �V1 intoeigenspa
es for the a
tion of the grading element E = (1; 0) 2 g0. Moreover, thisimmediately allows us to read o� all the data we need: The bundles V�1 
orrespondingto V�1 visibly are simply E [�1℄. Comparing with the a
tion of g0 on g�1 we furthersee, that the bundle 
orresponding toV0 is just E i[�1℄. For further use, it will be moreuseful to view this as Ei[1℄ (via 
ontra
ting with gij). Finally, denoting an element of�!V = E [1℄� Ei[1℄� E [�1℄ by (�; �i; � ), the a
tion � of �!A = TM � End0 TM � T �Mon �!V is given by�((�;�; !))(�; �; � ) = (��i�i+ 1n�ii�; ��jgij��ji�j+ 1n�jj�i��!i;� 1n�ii� +gij�i!j):2.6. The standard tra
tor bundle. | Consider the two{jet prolongation J2(E [1℄)of the density bundle E [1℄. By de�nition, we have the jet exa
t sequen
es0! E(ij)[1℄! J2(E [1℄)! J1(E [1℄)! 0(6) 0! Ei[1℄! J1(E [1℄)! E [1℄! 0(7)As we have observed in 2.1 the 
onformal stru
ture splits E(ij) as E(ij)0�E [�2℄, wherethe �rst spa
e is the kernel of the 
ontra
tion with gij. Tensoring this with E [1℄, wesee that E(ij)0 [1℄ sits as a smooth subbundle in J2(E [1℄), and we de�ne EI to be thequotient bundle. So by de�nition, we have an exa
t sequen
e0! E(ij)0[1℄! J2(E [1℄)! EI ! 0;(8)while the 2-jet sequen
e gives us an exa
t sequen
e0! E [�1℄! EI ! J1(E [1℄)! 0:(9)In parti
ular, we see that the kernel of EI ! J1(E [1℄)! E [1℄ sits as subbundle withinthe kernel of EI ! J1(E [1℄) and so there is a 
anoni
al �ltration of EI su
h that theasso
iated graded bundle is isomorphi
 to E [1℄� Ei[1℄ � E [�1℄ = �!V . Consequently,this is a good 
andidate for the standard tra
tor bundle.Note that our de�nition of EI has the advantage that it immediately implies theexisten
e of a se
ond order invariant di�erential operator DI : �(E [1℄) ! �(EI),whi
h is given by 
omposing the 
anoni
al proje
tion J2(E [1℄)! EI with the two{jetoperator j2.Proposition. | For a preferred 
onne
tion r, the mapj2x� 7! ��!DI�(x) = (�(x);ri�(x); 1ngij(�rirj�(x) + Pij�(x)));
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es an isomorphism EI ! E [1℄ � Ei[1℄ � E [�1℄ of ve
tor bundles. Moreover,
hanging r to r̂ with the 
orresponding one{form �, we obtain a normal tra
torbundle transformation as required in theorem 1.3, i.e.\(�; �; � ) = (�; �i � ��i; � + gij�i�j � 12�gij�i�j):Proof. | Clearly, the formula in the proposition de�nes a bundle map J2(E [1℄) !E [1℄ � Ei[1℄ � E [�1℄. Moreover, if j2x� lies in the kernel of this map, then we musthave j1x� = 0 in order to have the �rst two 
omponents vanish. But then the last
omponent be
omes gijrirj�(x) whi
h by de�nition vanishes if and only ifrirj�(x)lies in E(ij)0[1℄ � J2(E [1℄). (Note that the double 
ovariant derivative is symmetri
sin
e j1x� = 0.) Consequently, the map fa
tors to a bundle map EI ! �!V whi
h isinje
tive on ea
h �bre. Sin
e both bundles have the same rank, it is an isomorphismof ve
tor bundles.If r̂ is another preferred 
onne
tion 
orresponding to �, then 
learly the �rst
omponent stays the same. For the se
ond 
omponent, we get r̂i� = ri����i from2.3, so we get the transformation law for the se
ond 
omponent. Di�erentiating thison
e more, we obtain ri(r̂j�) = rirj� � �jri� � �ri�j :A

ording to the last formula in 2.3, to get r̂i(r̂j�) we have to add to this �jr̂i��gijgk`�kr̂`�. Then expanding the result yieldsr̂ir̂j� = rirj� � �ri�j ��i�j� � gijgk`�kr`� + gijgk`�k�`�:On the other hand, we have to 
ompute the 
hange of the rho{tensor in abstra
tindex notation. From 1.1 we know that P̂(�) = P(�)�r��+ 12f�; f�; �gg. From theformulae in 2.3, one immediately reads o� that the last term is given by ��j�j�i +12gij�jgk`�k�`. This immediately implies thatP̂ij = Pij �rj�i � �i�j + 12gijgkl�k�`:Subtra
ting the above expression for r̂ir̂j� from �P̂ij and 
ontra
ting with 1ngij,we immediately get the transformation law 
laimed for the last 
omponent. That theformula for the transformation 
oin
ides with e�(�) 
an be immediately read o� theformula for � in 2.5.2.7. Now we 
an apply all the ma
hinery developed in se
tion 1 dire
tly to this 
ase.Using the formulae for �(�) and �(P(�)) from 2.5, we immediately see that by theorem1.3 the normal tra
tor 
onne
tion rV on EI is given by��!rV� t = (r�� � �i�i;r��i + �gij�j � �Pij�j;r�� + gij�iPjk�k);for �!t = (�; �i; � ), whi
h just means��!rVi t = (ri� � �i;ri�j + �gij � �Pji;ri� + gjk�jPki):The di�eren
es between this formula and the one in [1, 2.3℄ are due to the di�erentsign of the Rho{tensor. Thus it follows immediately from theorem 1.3 that the tra
tor
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onne
tion 
onstru
ted in [1℄ is the normal tra
tor bundle with normal
onne
tion 
orresponding to the de�ning representation of so(p+ 1; p+ 1).Using the fa
t that the torsion vanishes and that the Weyl{
urvature satis�esW kij k = 0, we 
on
lude from theorem 1.3 and the formulae for � from 2.5 that the
urvature of the normal tra
tor 
onne
tion is given by�������!RV (�; �)(t) = (0;W (�; �)ji�j � �CY (�; �)i; gij�iCY (�; �)j);where again �!t = (�; �i; � ).Next, we want to interpret the results of theorem 1.3 
on
erning the adjoint tra
torbundle. By de�nition, the adjoint tra
tor bundle A is a subbundle of EIJ , the bundleof endomorphisms of EI whi
h 
onsists of those endomorphisms whi
h are of theform ��!'(t) = �(�!' )(�!t ) for some �!' 2 A. But these endomorphisms 
an be easily
hara
terised: On �!V we have the obvious analog of the inner produ
t on Rn+2 from2.2, i.e. ((�; �i; � ); (�0; �0i� 0)) 7! �� 0 + ��0 + gij�i�0j . From its 
onstru
tion it is
lear, that �!A 
onsists of all endomorphisms of �!V preserving this inner produ
t. Butthis inner produ
t indu
es an inner produ
t hIJ 2 �(E(IJ)) on EI , sin
e the 
hangebetween two isomorphisms is given by e�(�), whi
h in the group pi
ture 
orrespondsto the a
tion of an element of P+, whi
h leaves the metri
 invariant. (Alternatively,this may also be veri�ed by a simple dire
t 
omputation.) So by 
onstru
tion A � EIJ
onsists of those endomorphisms sIJ whi
h satisfy hKIsKJ + hKJsKI = 0, so we mayas well identify A with the bundle E[IJ ℄. Moreover, we have the inverse isomorphismhIJ 2 �(E (IJ)), so we 
an always raise and lower tra
tor indi
es.Any preferred 
onne
tion leads to an isomorphismA �= �!A , and using the formulaefor the algebrai
 bra
kets from 2.3 and the formula for f�; f�; �gg from the proof ofproposition 2.6, we see that the 
hange of these isomorphisms is given by\(�i;�ij; !i) = (�i;�ij��i�j+gjk�kgi`�`��k�kÆij ; !i+�ji�j��j�j�i+12gij�jgk`�k�`):The normal tra
tor 
onne
tion rA on �!s = (�;�; !) is given by��!rA� s = (r�� + f�;�g;r��+ f�; !g+ fP(�); �g;r�! + fP(�);�g);and using the formulae for the bra
kets we immediately see that the �rst 
omponentof ��!rAi s equals ri�j ��ji , the last 
omponent is given by ri!j +�kjPki, while for themiddle 
omponent we getri�jk + Æji !k � gikgj`!` + !iÆjk � �jPki + gk`�`gjmPmi � �`P`iÆjk:3. Tra
tor Cal
ulusIn this �nal part we des
ribe and use some of the basi
 ma
hinery of the standardtra
tor 
al
ulus. In our 
urrent setting there are two main reasons for this. Firstly itenables us to relate, in a simple and expli
it manner, adjoint tra
tor expressions tothe 
orresponding standard tra
tor expressions. The se
ond use, whi
h draws fromthe �rst, is that it enables us to extra
t, from our 
onstru
tions here (whi
h havebeen developed in the general setting of irredu
ible paraboli
 geometries and then
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ialised to the 
onformal 
ase), the key obje
ts of 
onformal tra
tor 
al
ulus asdeveloped for example in [1, 7, 8℄. Along the way the treatment should give the readersome insight into the te
hniques used to 
al
ulate expli
itly via tra
tor 
al
ulus.3.1. The in
lusion E [�1℄ ,! EI in (9) is equivalent to a 
anoni
al se
tion XI of EI [1℄.On the other hand, we have the proje
tion EI ! E [1℄, whi
h 
an similarly be viewedas a 
anoni
al se
tion of EI [1℄. From the de�nition of the inner produ
t h it followsimmediately, that this se
tion is given by hIJXJ =: XI . From these de�nitions,we have immediately that XIXI = hIJXIXJ = 0. For any 
hoi
e of preferred
onne
tion r and any se
tion � 2 �(E [�1℄), the tra
tor se
tion �XI is mapped to(0; 0; � ) 2 �(�!EI) under the isomorphism des
ribed in proposition 2.6. Thus XI isequivalent to the se
tion �!X I = (0; 0; 1) of �!EI [1℄ = �!EI 
 E [1℄.Next, 
hoosing a metri
 g from the 
onformal 
lass is equivalent to 
hoosing a globalnonzero se
tion �0 of E [1℄. Up to 
onstant multiples, �0 is 
hara
terised by the fa
tthat r�0 = 0, where r denotes the Levi{Civita 
onne
tion of g, whi
h is one of thepreferred 
onne
tions. A

ording to proposition 2.6 via the Levi{Civita 
onne
tion,the 
hoi
e of g indu
es an isomorphism EI �= E [1℄� Ei[1℄� E [�1℄. In parti
ular, thisgives us a splitting EI ! E [�1℄ of the 
anoni
al in
lusion, whi
h 
an be viewed as ase
tion YI of EI [�1℄ su
h that YIXI = 1, and a splitting E [1℄! EI of the 
anoni
alproje
tion, whi
h we may view as a se
tion Y I of EI [�1℄. By de�nition, XIY I =1, whi
h immediately leads to YI = hIJY J . Further, proposition 2.6 immediatelyimplies the expli
it formula Y I = (�0)�1DI�0� 1nPXI . Finally we denote by ZIi these
tion of EIi[�1℄ whi
h gives the bundle inje
tion Ei[1℄! EI indu
ed by the aboveisomorphism.In this notation, if �!t = (�; �; � ) 2 �!V (in the isomorphism 
orresponding to g),then tI = �Y I + ZIi�i + �XI . We will raise and lower indi
es using the 
onformalmetri
 gij, the tra
tor metri
 hIJ and their inverses without further mention. Forexample ZIi := gijhIJZJj .These tra
tor bundle se
tions 
an be used e�e
tively in the expli
it des
ription ofrelationship between the bundles A and V = EI . In the previous se
tion we observedthat A may be identi�ed with E[IJ ℄. Choosing a preferred 
onne
tion this may beunderstood by des
ribing �!A as a subbundle of �!E I 
 �!E J . In 2.5 we have alreadyexpli
itly des
ribed the a
tion � of �!A on �!V . For �!s = (�;�; !) 2 �(�!A ) we 
an view�((�;�; !)) as a se
tion of (�!V )� 
 �!V and using the result from se
tion 2.5 we seethat in (1; n; 1)� (1; n; 1) blo
k form this is given by,0��' ! 0� �(0) �g�1(!; �)0 �g(�; �) ' 1Awhere �(0) is the tra
e-free part of � and ' := �ii=n. Or, in terms of the notationintrodu
ed above, we 
an des
ribe s as the se
tion of EIJ as follows:sIJ = �IYJ � Y I�J +�(0)IJ + (Y IXJ �XIYJ )'+XI!J � !IXJ ;



22 ANDREAS �CAP & A. ROD GOVERwhere we have used the shorthand notation �I = ZI i�i et
etera. Thus using hIJ tolower indi
es, we have sIJ = 2�[IYJ ℄ +�(0)IJ +2Y[IXJ ℄'+ 2X [I!J ℄ 2 �(E[IJ ℄). Notethat EIJ := 2Y[IXJ ℄ is the grading tra
tor 
orresponding to the 
hoi
e of g. Thatis, identifying E[IJ ℄ with the bundle of endomorphisms of V preserving h, then thesplitting V = V�1�V0 �V1 
orresponding to the eigenvalues i = �1; 0; 1 of EIJ , justre
overs the isomorphism V ! �!V indu
ed by g (via the Levi{Civita 
onne
tion r).Sin
e EIJ is the unique se
tion with this property we are justi�ed in referring to itas the grading tra
tor 
orresponding to r.To 
on
lude we note that the adjoint tra
tor metri
 B is easily des
ribed in termsof the standard tra
tor notation. Let �!s 1 = (�1; '1; !1) and �!s 2 = (�2; '2; !2).Re
all that the inner produ
t B on A is indu
ed by 12 of the tra
e form on g. Thus,it is given by B(s1; s2) = !1(�2) + !2(�1) + tr(�1�2) and we 
an rewrite this asB(s1; s2) = 12sI1JsJ2 I = 12hILhJKsIJ1 sKL2 .3.2. The fundamental D{operator and the tra
tor D . | The fundamentalD{operator 
an be des
ribed in terms of this notation. Re
all that, given a 
hoi
e ofpreferred 
onne
tion r, for t a se
tion of a weighted tensor bundle we have Dst =r�t � � � t, where �!s = (�;�; !). In parti
ular, if � is a se
tion of the line bundleE [w℄ then we have Ds� = r���w'�. Now in terms of the standard tra
tors we haveobserved that s is given by 2�[IY J ℄ +�(0)IJ + 2Y [IXJ ℄'+ 2X [I!J ℄ and so it followsimmediately that on � 2 �(E [w℄) the (A-valued) operator D is given byDIJ� = X[J ~DI℄�where, ~DI� = (ZiIri + wYI)� or, equivalently, �!~D� = (w�;r�; 0). (Of 
ourse ~D�depends on the 
hoi
e of r but the operator � 7! 2X[J ~DI℄� is independent of this
hoi
e.)One 
an use the fundamental D-operator to generate other invariant operators.For example we 
an 
onstru
t the se
ond order \tra
tor D{operator" as given in [1℄(but �rst dis
overed by Thomas [11℄). For any tra
tor bundle T , this operator mapsse
tions of T [w℄ to se
tions of T [w� 1℄
EI . Here we will denote this operator by Dto distinguish it from the fundamental D{operator.We �rst deal with the bundle E [w℄. For s1; s2 2 A and t any weighted tensor �eldit is straightforward to show thatDDt(s1; s2) = r2t(�1; �2) ��1 � r�2t� �2 � r�1t +rf�1;�2gt++�2 ��1 � t� f!1; �2g � t+ fP(�1); �2g � t;where si = (�i;�i; wi), i = 1; 2. (This expression is derived expli
itly in [3℄.) Thusfor � 2 E [w℄ this simpli�es toDD�(s1; s2) = �i1�j2rirj� + (1� w)'1�j2rj� �w'2�i1ri� + �1(0)ij�j2ri� ++w2'1'2� + w�iwi� �wPij�i1�j2�:
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e this is sIJ1 sKL2 DIJDKL� it is easy to write down the (lengthy) expression forDIJDKL� in terms of XI ; YJ and rK := ZiKri. Contra
ting with 4hIK we obtain4hIKDIJDKL� =XJXL(�� �wP�)� (w � 1)XJrL� � (n +w � 1)XLrJ��w(w � 1)XJYL� �w(n+ w � 1)XLYJ� �whJL�;where � = gijrirj. Thus4hIKDI(JDL)0K� = �XJXL(�� �wP�) + (n+ 2w � 2)X(JrL)0�+ (n + 2w � 2)wX (JYL)0�where (� � � )0 indi
ates the symmetri
 tra
e-free (with respe
t to hIJ ) part of the en-
losed indi
es. It is easily veri�ed expli
itly that the map sK 7!X (ISK)0 determinesa bundle monomorphism EK [�1℄ ,! E(IK)0 . Thus we may dedu
e immediately that� 7! �XC(�� � wP�) + (n + 2w � 2)rC� + (n + 2w � 2)wYC� is an invariantdi�erential operator. In fa
t this is pre
isely the tra
tor D{operator � 7! D C� forE [w℄.In fa
t, as stated in [1℄, this tra
tor D{operator generalises to weighted tra
torbundles. The easiest route to this result is via another simple observation. If T is atra
tor bundle then, sin
e both DIJ and rT satisfy a Leibniz rule, the mapt
 � 7! (X [JZiI℄rTi t)
 � + t 
X [J ~DI℄�;where t 2 �(T ) , determines a well de�ned linear operator on the weighted tra
torbundle T 
 E [w℄. This is (apart from a fa
tor of 2) pre
isely operator DIJ des
ribedin [7, 8℄; several appli
ations of this operator are also des
ribed in those sour
es. Herewe will denote this 
oupled operator by DTIJ to distinguish it from the fundamentalD operator. In this notation the T simply indi
ates any tra
tor bundle rather thanany given �xed su
h bundle.To simplify the 
omputation let us write ~DT to mean the tra
tor 
onne
tion 
ou-pled generalisation of ~D. That is if � 2 �(E [w℄) and t is a se
tion of some tra
torbundle then ~DT is de�ned by the rule~DTI t
 � = (ZiIrTi t)
 � + t 
 ~DI�and that it satisfy the Leibniz rule ~DTI fs = (ZiIrif)s+f ~DTI s if s is a weighted tra
tor�eld and f a fun
tion. As with ~D, ~DT depends on the 
hoi
e of a preferred 
onne
tion.However we have the identity DTIJ s =X [J ~DTI℄s, for any weighted tra
tor �eld s. Nextnote that it follows easily from the de�nition of ~DT and the expli
it formula for �!rVin se
tion 2.7 that for any weighted tra
tor �eld s we have ~DTI XJ s � XJ ~DTI s =(hIJ �XIYJ )s. Combining these two observations it is a very short 
al
ulation toverify that4hJKDTJ(IDTL)0Ks = �XIXL(�T � wP)s + (n + 2w � 2)X (I ~DTL)0s;with �T s := gijrTi rTj s and where, at this point, we mean by rT the 
oupledLevi-Civita{tra
tor 
onne
tion. This 
onstru
ts an invariant 2nd order operatorD Is = XI(�T � wP)s + (n + 2w � 2) ~DT s
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tion of any tra
tor bundle tensored with E [w℄. This derivation follows [7℄and has re
overed the usual `tra
tor-D' operator on weighted tra
tor bundles as in[1℄.Note that if w = 1�n=2 then the se
ond term on the right hand side of the displayabove vanishes. This immediately implies that �T �(1�n=2)P is invariant on tra
torse
tions of any type and with weight 1�n=2. This is the tra
tor generalisation of theYamabe operator.It is 
lear from the last display that a
ting on E [w℄ this re
overs the the op-erator 
onstru
ted above. This may at �rst seem rather surprising sin
e the in-gredients seem di�erent. So as a �nal point we explain why 4hJKDTJ(IDTL)0K and4hJKDJ(IDL)0K agree on E [w℄. Note that for � 2 �(E [w℄) we have, from the def-inition of DTIJ , that DTDT � = DTD�. Using this observation and [3℄ proposi-tion 3.2, DTD�(s1; s2) � DD�(s1; s2) = Dfs2;s1g�. It follows that if we let �IL :=hJKDTJIDLK� � hJKDJIDLK� then, sin
e hJK 2 E (JK), we have that �IL = ��LIand so hJKDTJIDLK��hJKDJIDLK� vanishes upon symmetrisation over the indi
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