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PARTIALLY INTEGRABLE ALMOST CR MANIFOLDS OF

CR DIMENSION AND CODIMENSION TWO

ANDREAS ČAP AND GERD SCHMALZ

Abstract. We extend the results of [11] on embedded CR manifolds
of CR dimension and codimension two to abstract partially integrable
almost CR manifolds. We prove that points on such manifolds fall into
three different classes, two of which (the hyperbolic and the elliptic
points) always make up open sets. We prove that manifolds consisting
entirely of hyperbolic (respectively elliptic) points admit canonical Car-
tan connections. More precisely, these structures are shown to be exactly
the normal parabolic geometries of types (PSU(2, 1)×PSU(2, 1), B×B),
respectively (PSL(3,C), B), where B indicates a Borel subgroup. We
then show how general tools for parabolic geometries can be used to
obtain geometric interpretations of the torsion part of the harmonic
components of the curvature of the Cartan connection in the elliptic
case.

1. Introduction

For non–degenerate real hypersurfaces in Cn+1 (or more generally in com-
plex manifolds) there is a nice geometric setup based on Cartan connections.
The Levi form in any point of such a hypersurface is a non–degenerate Her-
mitian form, so up to isomorphism (in an obvious sense) it is determined by
its signature. In particular, this signature is constant on connected compo-
nents of M , so without loss of generality one may assume that it is constant
on M . This can be interpreted as follows: The tangent spaces of M come
with a canonical filtration provided by the maximal complex subspaces, and
the constancy of the Levi form provides a reduction of the structure group of
the associated graded bundle of the tangent bundle to a reductive subgroup
of the group PSU(p + 1, q + 1) of CR automorphisms of the homogeneous
model. This observation is the basis for the construction of a canonical Car-
tan connection for non–degenerate CR manifolds of hypersurface type in [5]
and [12], although in these two papers the associated graded vector bundle
to the tangent bundle and the reduction of its structure group do not show
up explicitly. In the paper [3], reductions of the above type are used as
the basis of a general construction of normalized Cartan connections, which
immediately shows that in the CR case, canonical Cartan connections do
not only exist for (integrable) CR manifolds but more generally for partially
integrable almost CR structures (still non–degenerate and of hypersurface
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type), which was also observed in [12]. Also, in the approach of [3] embed-
dability plays no role at all, it is only the filtration of the tangent bundle
and the reduction of structure group of the associated graded vector bundle
that is used.

For CR structures of higher codimension (i.e. real submanifolds of higher
codimension in complex manifolds) the situation is much more complicated.
The main problem is that the Levi form at a point now has values in a real
vector space of dimension bigger than one, and the classification of such
forms up to isomorphism is much more difficult. More drastically, one may
have continuously varying isomorphism classes in general, so even the asso-
ciated graded vector spaces to the tangent spaces are not locally isomorphic
(under an isomorphism preserving the Levi form). In such cases, there seems
to be no hope for geometric structures similar to Cartan connections.

There are, however, a few cases in which the set of isomorphism classes
is still discrete, and which thus are more manageable. The simplest of
these cases is the case of CR dimension two and codimension two, which
is the one that will be treated in this paper. The basic examples of such
structures are provided by non–degenerate codimension two submanifolds in
C4, whose tangent spaces are not complex subspaces. In this case, there are
three possible isomorphism classes of Levi–forms, referred to as hyperbolic,
elliptic, and exceptional (to avoid confusion with parabolic geometries, we
do not use the classical name “parabolic” for this class). Moreover, being
of hyperbolic or elliptic type are open properties, so one may study local
properties around such points by restricting to manifolds all of whose points
are of fixed type. In the paper [11], the authors used a simple normal form
argument to show that embedded elliptic and hyperbolic CR manifolds of
CR dimension and codimension two are examples of parabolic geometries, as
discussed for example in [13], [3]. The general theory developed in the latter
two papers as well as in [9] and [14] then shows that these manifolds carry a
canonical Cartan connection. It is known in general that the harmonic part
of the curvature of the Cartan connection is a complete obstruction against
local flatness. This harmonic part splits into several irreducible components,
and [11] contains geometric interpretations of those components which are
of torsion type. It is also shown the latter paper, that some of these torsions
vanish automatically in the embedded case, so [11] partly deals with the
more general abstrac parabolic geometries of appropriate type, but without
relating them to (almost) CR structures.

In this paper, we extend the approach of [11] to abstract CR structures.
It turns out that, as in the hypersurface case, the integrability condition
needed to obtain a parabolic geometry is exactly partial integrability, which
is a quite simple and natural condition in the real picture. It is inter-
esting that partial integrability is also exactly the condition under which
the paper [8] develops analogs of Webster–Tanaka connections for higher
codimension almost CR manifolds. We give an independent proof that for
non–degenerate partially integrable almost CR manifolds of CR dimension
two and codimension two (i.e. six dimensional manifolds endowed with a
rank two complex subbundle in the tangent bundle which satisfying partial
integrability and a non–degeneracy condition) the possible Levi–brackets
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(i.e. the bundle maps induced by the Lie bracket) fall into three different
classes, called hyperbolic, elliptic and exceptional. Next, we show that the
oriented manifolds all of whose points are hyperbolic (elliptic) are exactly
the normal parabolic geometries of type (PSU(2, 1) × PSU(2, 1), B × B)
(respectively of type (PSL(3,C), B)), where B indicates a Borel subgroup.
Thus we prove that reducing to the connected component of the structure
group used in [11] exactly corresponds to picking an orientation. While the
passage from the CR structure to the parabolic geometry is rather straight-
forward in the hyperbolic case, there is a more tricky point in the elliptic
case, which involves flipping of the almost complex structure on the sub-
bundle. Next, we give a geometric interpretation of the harmonic curvature
components in the elliptic case, which was discussed rather briefly in [11].
We derive some improved interpretations of torsion components as well as
complete proofs for results whose proofs where only sketched in [11]. For
example we prove, that torsion–free elliptic manifolds are automatically real
analytic and therefore embeddable. Throughout the presentation we stress
the fact that these interpretations can be obtained by applying standard
tools available for any parabolic geometry. We do not include a discussion
of the hyperbolic case, since this was treated in detail in [11].

2. Partially integrable almost CR manifolds of CR dimension
and codimension two

2.1. almost CR manifolds. We start by considering an (abstract) almost
CR manifold of CR dimension k and codimension `, i.e. a smooth manifold
M of real dimension 2k + `, together with a rank k complex subbundle
HM ⊂ TM , the CR subbundle of M . Since we shall meet a different almost
complex structure on HM which is more important in the sequel, we will
denote the corresponding almost complex structure on H by J̃ or by J̃H .
A smooth map between two almost CR manifolds is called a CR map, if
and only if its derivative in each point maps the CR subspace to the CR
subspace and the restriction to the CR subspace is complex linear.

Let QM := TM/HM be the quotient bundle, which is a real vector
bundle of rank ` and let q : TM → QM be the canonical quotient map.
For two smooth sections ξ, η of HM the value of q([ξ, η]) in a point x ∈M
depends only on the values of ξ and η in x, so this induces a bilinear, skew
symmetric bundle map L : HM ×HM → QM , the Levi–bracket of M . Any
CR map f : M1 → M2 induces a homomorphism QM1 → QM2 of vector
bundles, which we also denote by Tf . A (local) CR diffeomorphism between
manifolds of the same CR dimension and codimension is a (locally defined)
CR map, which is a diffeomorphism (onto its image). If f : M1 → M2 is
a local CR diffeomorphism, then f ∗LM2 = LM1 , i.e. LM2(Txf·ξ, Txf·η) =
Txf·LM1(ξ, η) for all elements ξ, η ∈ HM1.
Definition. An almost CR manifold M is called partially integrable if the
Levi bracket is totally real, i.e. L(J̃ξ, J̃η) = L(ξ, η).

This partial integrability condition shows up as condition (A1) in [12, p.
170] (included into the definition of an almost CR manifold) and it plays an
important role in [8]. To see why it is called partial integrability, one has to
pass to the complexified tangent bundle TCM = TM⊗C of M . Since HM ⊂
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TM is a complex subbundle, its complexification HCM = HM ⊗ C splits
into a holomorphic and an antiholomorphic part, HCM = H1,0M ⊕H0,1M .

A typical smooth section of H1,0M is of the form ξ−iJ̃ξ for a smooth section
ξ of HM . Taking two such sections and computing their bracket, we obtain

[ξ, η]− [J̃ξ, J̃η]− i([J̃ξ, η] + [ξ, J̃η]).

Now the condition of partial integrability as stated above is obviously equiv-
alent to the fact that both the real and the imaginary part of this are again
sections of HM , so it is equivalent to the bracket of two sections of H1,0M
being a section of HCM . Recall that an almost CR manifold is called in-
tegrable or a CR manifold if and only if the bundle H1,0M is integrable,
i.e. the bracket of two sections of H1,0M is again a section of H1,0M . As-
suming partial integrability, this condition can be nicely expressed without
using complexifications as follows: By partial integrability, for two sections
ξ, η of HM , both [ξ, η] − [J̃ξ, J̃η] and [ξ, J̃η] + [J̃ξ, η] are again sections of

HM . Thus, we may define the Nijenhuis–tensor Ñ of M by

Ñ(ξ, η) = [ξ, η]− [J̃ξ, J̃η] + J̃([J̃ξ, η] + [ξ, J̃η]).

The usual proof shows that this is bilinear over smooth functions, so it de-
fines a smooth section of the bundle H∗M⊗H∗M⊗HM , where H∗M is the
bundle dual to HM . Moreover, from the definition it follows immediately
that Ñ is skew symmetric and conjugate linear in both variables. Clearly,
integrability of H1,0M is equivalent to vanishing of the Nijenhuis tensor. Fi-

nally note that since H0,1M = H1,0M , integrability of H1,0M and of H0,1M
are equivalent.

2.2. Embedded almost CR manifolds. The typical examples of almost
CR manifolds are certain submanifolds in smooth manifolds endowed with
an almost complex structure. Suppose thatM is a smooth manifold of real
dimension 2k + 2` endowed with an almost complex structure JM, and let
M ⊂ M be a smooth submanifold of codimension `. For a point x ∈ M ,
consider the subspace HxM = TxM ∩ JM(TxM). By construction, this is

a complex subspace of TxM (with the complex structure J̃ given by the
restriction of JM). If the complex dimension of this spaces is equal to k
for all x ∈ M , then the union of the HxM defines a smooth subbundle
HM ⊂ TM , which makes M into an almost CR manifold of CR dimension
k and codimension `.

In fact, any almost CR manifold arises in that way. To see this, consider
the quotient bundle π : QM → M , which is a vector bundle of real rank
`, into which M canonically embeds as the zero section. Choosing a linear
connection on this vector bundle, we get an associated isomorphism TQM ∼=
V QM ⊕ π∗TM , where V QM is the vertical tangent bundle and π∗TM is
the pullback of the tangent bundle on M . Since the connection is linear,
the zero section is covariantly constant, which implies that along the zero
section, the horizontal complement to the vertical tangent space coincides
with the image of the tangent map of the zero section. Let us further choose
a splitting of the projection q : TM → QM , which gives us an isomorphism
TM ∼= HM ⊕ QM of vector bundles. For a vector bundle, the vertical
bundle is canonically isomorphic to the pullback of the original bundle, so
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putting all our choices and observations together, we see that we get an
isomorphism from TQM to π∗QM ⊕ π∗HM ⊕ π∗QM , such that the first
Q–factor corresponds to the vertical bundle. Now define an endomorphism
J of TQM by J(ξ, η, ζ) = (−ζ, J̃η, ξ) in the above decomposition, where

J̃ comes from the almost complex structure on HM . Obviously, J 2 = id,
so this defines an almost complex structure on the manifold QM . From
the above observation on the horizontal subspaces in the points of the zero
section we conclude that viewing M as a submanifold of QM , then in the
above splitting the tangent space to M consists of all elements of the form
(0, η, ζ) and hence the maximal complex subspace consists of all elements of
the form (0, η, 0), so we exactly obtain the given subbundle HM .

If M is actually a complex manifold, then M is automatically a CR
manifold. However, the converse question, whether any CR manifold can
be embedded into a complex manifold is much more subtle, and it is well
known that the answer is negative in general. There is however one case in
which one gets a fairly simple general result. Although this is certainly well
known to specialists, it seems that it is not easy to find a general proof in
the literature, so we include the argument, which is based on the proof for
the hypersurface case in [6].

Proposition. Let (M,HM, J̃) be a real analytic CR manifold, i.e. M is
a real analytic manifold, HM ⊂ TM is a real analytic subbundle and the
bundle map J̃ : HM → HM is real analytic. Then M is locally embeddable,
i.e. any point x ∈ M has an open neighborhood U in M which embeds into
Ck+` in such a way that HM becomes the subbundle of maximal complex
subspaces.

Proof. Choosing local coordinates on M in such a way that in each point
the subspace generated by the last ` coordinate vector fields is transversal to
the subbundle HM , we may reduce to the case where M is an open subset
U ⊂ R2k × R` such that for each x ∈ U we have HxU ∩ TxR` = {0}. We
view R2k ×R` as a subspace of R2k ×C`, and denote the coordinates on the
latter space by x1, . . . , x2k, x2k+1 + iy2k+1, . . . , x2k+` + iy2k+`. In particular,
we may view the coordinate vector fields ∂

∂xj
as a C–Basis of TU ⊗ C.

Since HM is a real analytic subbundle of TU and J̃ is real analytic, too,
the subbundle H0,1U ⊂ TU⊗C is real analytic, and possibly shrinking U , we

find a real analytic frame ξ1, . . . , ξk for this bundle, i.e. ξj =
∑2k+`

m=1 ajm
∂

∂xm
for real analytic functions ajm : U → C. Now there exists a neighborhood

Ũ of U in R2k×C`, such that all the functions ajm extend to Ũ as functions

holomorphic in the C`–factor. Next, we define sections ξ̃1, . . . , ξ̃k of T Ũ ⊗C
by ξ̃j =

∑2k+`
m=1 ãjm

∂
∂xm

, and for j = 1, . . . , ` we put ξ̃k+j := ∂
∂x2k+j

+ i ∂
∂y2k+j

.

Since the values of ξ1, . . . , ξk in each point of U are linearly independent,
we conclude that (possibly shrinking Ũ) also the values of ξ̃1, . . . , ξ̃k in each

point of Ũ are linearly independent, which easily implies that ξ̃1, . . . , ξ̃k+`

span a rank k + ` complex subbundle V of T Ũ ⊗ C. Next, we claim that
V ∩ V̄ = {0}: Suppose that λ1, . . . , λk+`, µ1, . . . , µk+` ∈ C are such that in
a point of U we have

λ1ξ̃1 + . . . λk+`ξ̃k+` = µ1
¯̃
ξ1 + · · ·+ µk+`

¯̃
ξk+`.
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Looking at the coefficients of the fields ∂
∂yj

one immediately concludes that

µj = −λj for j = k + 1, . . . , k + `. But then the equation reduces to

µ1
¯̃
ξ1 + · · ·+ µk

¯̃
ξk − λ1ξ̃1 − · · · − λkξ̃k = 2λk+1

∂
∂xk+1

+ · · ·+ 2λk+`
∂

∂xk+`
.

The left hand side of this equation lies in HU ⊗C, while the right hand side
lies in the complex span of the fields ∂

∂xj
for j = 2k + 1, . . . , 2k + `. But

by our assumptions, these two spaces are transversal, so the two sides have
to vanish individually. Since H1,0M ∩ H̄1,0M = {0}, we thus conclude that

V ∩ V̄ = {0} along U , so possibly shrinking Ũ again, we may assume that

this holds on the whole of Ũ .
Hence V defines an almost complex structure on Ũ , and since U is just

the subset on which y2k+1 = · · · = y2k+` = 0, one immediately concludes
that for x ∈ U the subspace (TxU⊗C)∩Vx coincides with the fiber of H0,1U
at x. To finish the proof, we only have to show that the distribution V is
involutive, since then Ũ is a complex manifold and thus locally isomorphic
to Ck+`. But by assumption H0,1U is involutive, so any bracket [ξi, ξj ] is

a linear combination (with real analytic coefficients) of ξm’s. Since the ξ̃
are defined as partial holomorphic extensions of the ξ, we conclude that
for i, j ≤ k, any bracket [ξ̃i, ξ̃j ] can be written as a linear combination of

ξ̃m with m = 1, . . . , k. On the other hand, we obviously have [ξ̃i, ξ̃j ] = 0
if i, j > k, while for i ≤ k and j > k we get the same result since the
coefficients of ξ̃i are holomorphic in the last ` factors, and the coefficients of
ξ̃j are constant. ¤

2.3. Non–degeneracy. Let (M,HM, J̃) be a partially integrable almost
CR manifold with Levi–bracket L. Consider the dual Q∗M of the quotient
bundle QM . If x ∈ M is a point and ψ ∈ Q∗xM is any element, we con-
sider the totally real, skew symmetric bilinear map Lψ : HxM ×HxM → R
defined by Lψ(ξ, η) = ψ(L(ξ, η)). A point x ∈ M is called non–degenerate
if L(ξ, η) = 0 for all η ∈ TxM implies ξ = 0 and for each nonzero ele-
ment ψ ∈ Q∗xM the map Lψ is non–zero. The first condition just means
that the Levi bracket at x is non–degenerate as a bilinear map, while the
second condition is a coordinate–free version of linear independence of the
components of L. Obviously, non–degeneracy is an open condition, so if x
is non–degenerate then there is an open neighborhood of x in M in which
all points are non–degenerate. Since any CR diffeomorphism preserves the
Levi brackets, it also preserves non–degeneracy, i.e. maps non–degenerate
points to non–degenerate points. From now on, we will only consider non–
degenerate partially integrable almost CR manifolds, i.e. manifolds all of
whose points are non–degenerate.

Let us again compare this to the complexified picture. Here one usu-
ally considers the quotient bundle QCM = TCM/HCM , which is a rank `
complex bundle, and the Levi–form H : H1,0M ×H1,0M → QCM induced

by (ξ, η) 7→ qC( i2 [ξ, η̄]). This turns out to be a hermitian form, and the
usual non–degeneracy condition is just that H is non–degenerate and its
components are linearly independent. A simple computation then shows
that assuming partial integrability, the Levi bracket L corresponds exactly
to the imaginary part of H under the identification HM → H1,0M given by
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mapping ξ to ξ − iJξ. Now obviously non–degeneracy of H is equivalent to
non–degeneracy of its imaginary part, while (complex) linear independence
of the components of H is equivalent to (real) linear independence of the
components of its imaginary part, so we recover the usual conditions.

2.4. The case of CR dimension and codimension two. For partially
integrable almost CR manifolds of general CR dimension k and codimension
`, the classification of possible Levi brackets up to the obvious notion of
isomorphism is fairly complicated. In the special case k = ` = 2 however,
we shall see below that there are only three possible cases. This is quite
well known, see e.g. [10] but since we will need detailed information about
the classification in the further constructions we will reproduce it here in a
form convenient for our purposes.

The key to this classification is to consider the bilinear maps Lψx : HxM×
HxM → R for nonzero elements ψ ∈ Q∗xM . By our non–degeneracy assump-
tion, these maps are all nonzero, skew symmetric, and totally real, so since

k = 2 they are either non–degenerate, or there is a complex subspace Hψ
xM

of complex dimension one in HxM such that Lψ(ξ, η) = 0 for all η ∈ HxM

if and only if ξ ∈ Hψ
xM . Note that clearly both the question whether Lψx is

degenerate and the space Hψ
xM in the degenerate case depend only on the

class [ψ] of ψ in the projectivization P (Q∗xM) ∼= RP 1 of Q∗xM . We write

L[ψ]
x for the class of forms corresponding to [ψ] and in the case when L[ψ]

x is

degenerate, we write H
[ψ]
x M for the corresponding subspace of HxM .

Proposition. Let M be a (non–degenerate) partially integrable almost CR
manifold of CR dimension and codimension two and let x ∈ M be a point.
Then there are exactly three possibilities:

(1) There are two points [ψ1] 6= [ψ2] ∈ P (Q∗xM) such that Lψ : HxM ×
HxM → R is degenerate if and only if ψ ∈ [ψ1] or ψ ∈ [ψ2]. In this

case, we have HxM = H
[ψ1]
x M ⊕ H [ψ2]

x M and the point x is called
hyperbolic.

(2) There is one point [ψ0] ∈ P (Q∗xM) such that Lψ is degenerate if and
only if ψ ∈ [ψ0]. In this case, the point x is called exceptional.

(3) Lψ is non–degenerate for all nonzero elements ψ ∈ Q∗xM . In this
case, the point x is called elliptic.

Proof. Let us first assume that [ψ1] 6= [ψ2] ∈ P (Q∗xM) are such that Lψ1 and

Lψ2 are degenerate. If ξ ∈ H [ψ1]
x M ∩H [ψ2]

x M then Lψ1(ξ, η) = Lψ2(ξ, η) = 0
for all η ∈ HxM . But since [ψ1] 6= [ψ2], the elements ψ1 and ψ2 form a basis
of Q∗xM , so Lψ(ξ, η) = 0 for all ψ ∈ Q∗xM . Thus, ξ = 0 by non–degeneracy

of L, and consequently HxM = H
[ψ1]
x M ⊕H [ψ2]

x M .
If we assume ψ ∈ Q∗xM is another nonzero element such that Lψ is de-

generate, and such that [ψ] is different from both [ψ1] and [ψ2], then on

one hand, we may write Lψx = aLψ1
x + bLψ2

x for nonzero real numbers a and

b. On the other hand, H
[ψ]
x M is complementary both to H

[ψ1]
x M and to

H
[ψ2]
x M and thus for each element ξ ∈ H [ψ1]

x M , there is a unique element

ϕ(ξ) ∈ H [ψ2]
x M , such that ξ+ϕ(ξ) ∈ H [ψ]

x M , and ϕ is a linear isomorphism.

Since Lψ = aLψ1
x + bLψ2

x , ξ ∈ H
[ψ1]
x M and ϕ(ξ) ∈ H

[ψ2]
x M , we see that
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ξ + ϕ(ξ) ∈ H
[ψ]
x M simply means that 0 = aLψ1

x (ϕ(ξ), η) + bLψ2
x (ξ, η), for

all η in HxM . But inserting η from H
[ψ1]
x M we get Lψ2

x (ξ, η) = 0, for all

ξ, η ∈ H [ψ1]
x M . Thus Lψ2

x would be identically zero, a contradiction. ¤

Remarks. (1) Clearly, the separation into these three classes is invariant
under CR diffeomorphisms, so any CR diffeomorphism maps a point from
one of the three classes to a point of the same class. Moreover, by definition,
the properties of being hyperbolic or elliptic are stable, so any hyperbolic
(elliptic) point has an open neighborhood in M which consists entirely of
hyperbolic (elliptic) points. Consequently, for local questions one may re-
strict to manifolds, all of whose points are either hyperbolic or elliptic.
(2) Traditionally, exceptional points are called parabolic points, but in view
of the fact that parabolic geometries can be used to describe the hyperbolic
and elliptic cases, we prefer to avoid this name. With these exceptional
points, the situation is more complicated. On one hand, there are mani-
folds consisting entirely of exceptional points (for example an appropriate
quadric), but it may also happen that any neighborhood of an exceptional
point contains elliptic and/or hyperbolic points. Also, even the case in which
all points are exceptional cannot be studied using parabolic geometries. It
should also be mentioned that the exceptional points are more degener-
ate than the hyperbolic and elliptic ones. Namely, in our combination of
dimensions, one can also consider the following (even more natural) non–
degeneracy condition: The Levi bracket L may be considered as a smooth
section of the bundle Λ2

RH
∗M ⊗QM . Hence, L ∧ L is a smooth section of

Λ4
RH
∗M⊗S2QM and thus can be viewed as a quadratic polynomial on Q∗M

defined up to scale. If one requires these polynomials to be non–degenerate,
then only hyperbolic and elliptic points survive, see [2]. In the latter pa-
per it is also shown that parts of the basic theory we develop here, carry
over to the case where HM ⊂ TM is only a real rank four vector bundle
(i.e. without an almost complex structure).

2.5. The hyperbolic case. We next want to identify hyperbolic partially
integrable almost CR manifolds of CR dimension and codimension two with
a parabolic geometry. To avoid having to deal with non–connected groups,
we restrict to the case when M is oriented, which definitely makes no prob-
lems locally. So let us assume that M is oriented and that all points of M
are hyperbolic.

By proposition 2.4, for each point x ∈ M we find the two distinguished
classes [ψ1], [ψ2] ∈ P (Q∗xM). Moreover, in local coordinates these are the so-
lutions of a smooth equation, which implies that the classes [ψ] ∈ P (Q∗M)

which have the property that L[ψ] is degenerate form a smooth submani-
fold of the bundle P (Q∗M). Since M is hyperbolic, for any point x ∈ M
there are exactly two points in this submanifold lying over x, and since the
projection P (Q∗M) → M is a surjective submersion, it restricts to a local
diffeomorphism from the submanifold to M , so we get a two–sheeted cover-
ing of M . Hence, we can choose local smooth sections ψ1 and ψ2 of Q∗M
which represent the distinguished classes in each point of their domain of
definition. But then the null spaces of Lψ1 and Lψ2 form smooth subbun-
dles H1M and H2M of HM , which are independent of the choice of the
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sections ψ1 and ψ2 (up to their numbering). So locally, we get a splitting
HM = H1M ⊕H2M of HM into a sum of complex line bundles. Now for
i = 1, 2 let ξi be a local non vanishing section of H iM and consider the local
vector fields {ξ1, Jξ1, [ξ1, Jξ1], ξ2, Jξ2, [ξ2, Jξ2]} on M . We claim that these
form a local frame for TM . By construction, {ξi, Jξi} is a local frame for
H iM , and since HM = H1M ⊕H2M these four vector fields together form
a local frame for HM . Applying q : TM → QM on the other hand, kills ξi
and Jξi for i = 1, 2 and maps the remaining vector fields to L(ξ1, Jξ1) and
L(ξ2, Jξ2), respectively. Moreover, by definition ψ1(L(ξ1, Jξ1)) = 0. On the
other hand, ψ1(L(ξ2, Jξ2)) must be nonzero, since ψ1 ◦ L = Lψ1 is nonzero,
but has H1M as its null space. Similarly, ψ2 vanishes on L(ξ2, Jξ2) but is
nonzero on L(ξ1, Jξ1), which implies our claim.

The question whether the above local frame is positively or negatively
oriented is independent of the choice of ξ1 and ξ2. Indeed, one could even
choose an arbitrary linearly independent section η1 instead of Jξ1, since ex-
changing the two sections changes the sign of the Lie bracket. Thus, we
get a preferred order of the two subbundles, which we indicate by calling
them H+M and H−M . Furthermore, choosing corresponding sections ψ±
of Q∗M , they fit together globally, which shows that the two–fold cover-
ing constructed above is trivial. In particular, this means that we globally
have HM = H+M ⊕ H−M and we find global smooth nonzero section
ψ± of Q∗M representing the distinguished classes of functionals. Moreover,
putting Q+M := ker(ψ−) and Q−M := ker(ψ+) we get a decomposition
QM = Q+M ⊕ Q−M as a sum of real line bundles, which is indepen-
dent of the choice of ψ±, so it is intrinsic to M . In this language, we can
rephrase the definition of the subbundles H±M as ξ ∈ H±M if and only if
L(ξ, η) ∈ Q±M for all η ∈ HM . Hence, L vanishes on H+M ×H−M , so it
splits as L = L+ ⊕ L−, where L± : H±M ×H±M → Q±M .

2.6. Hyperbolic almost CR manifolds as parabolic geometries. Pass-
ing from the data (M,H+M,H−M,QM = Q+M ⊕ Q−M) to a parabolic
geometry is now rather straightforward. Consider C3 with the hermitian
inner product 〈z, w〉 = z1w̄3 + z3w̄1 + z2w̄2. This is clearly non–degenerate
and has signature (2, 1). Let G := PSU(2, 1) be the quotient of the group
of all complex automorphisms of C3 respecting this inner product by its
center, and let su(2, 1) be the Lie algebra of this group. Then this is exactly
the space of all complex 3× 3–matrices, which are skew hermitian with re-
spect to the above inner product. One easily computes directly that su(2, 1)

is exactly the space of all matrices of the form



A Z iz
X −2i im(A) −Z̄
ix −X̄ −Ā


,

where X,A,Z ∈ C and x, z ∈ R. This Lie algebra gets a grading of the

form g = g−2 ⊕ · · · ⊕ g2 by




g0 g1 g2

g−1 g0 g1

g−2 g−1 g0


. In particular, g±1

∼= C and

g±2
∼= R. Next, we define G0 ⊂ B ⊂ G as the subgroups of all elements

whose adjoint action preserves the grading respectively the corresponding
filtration of g. This means that g lies in G0 (respectively B) if and only if
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Ad(g)(gi) ⊂ gi (respectively ⊂ gi⊕ · · · ⊕ g2) for all i = −2, . . . , 2. Note that
B is actually a Borel subgroup of G.

Now one verifies directly, that any element of G0 must be the class of
a diagonal matrix, and a diagonal matrix lies in SU(2, 1) if and only if
its entries on the diagonal are (a, āa ,

1
ā) for a ∈ C \ {0}. The Lie bracket

g−1×g−1 → g−2 is just given by (X,Y ) 7→ Ȳ X−X̄Y . A simple computation
shows that the adjoint action of G induces an isomorphism from G0 to the
group of complex linear isomorphisms of g−1 (which is isomorphic to C\{0})
and the action on g−2 is chosen in such a way that it is compatible with the
Lie bracket.

Now consider a product G+ × G− of two copies of G, with the corre-
sponding Lie algebra g+ ⊕ g−. Then the adjoint action is component–wise,
we get a grading of g+ ⊕ g− and the subgroup of elements whose adjoint
action preserves this grading (respectively the corresponding filtration) is
exactly G+

0 × G−0 (respectively B+ × B−). Now suppose that M is an ori-
ented hyperbolic partially integrable almost CR manifold of CR dimension
and codimension two. Let G0 be the complex frame bundle of the com-
plex vector bundle H+M ⊕H−M viewed as being modeled on g+

−1 ⊕ g−−1,

i.e. the fiber of G0 over x ∈ M is exactly the set of all pairs (u+, u−),
where u± : g±−1 → H±x M is a complex linear isomorphism. For any b ∈ G0,
Ad(b) : g−1 → g−1 is a complex linear isomorphism which respects the split-
ting, so (u+, u−)·b := (u+, u−)◦Ad(b) defines right action of G0 on G0, which
obviously is free and transitive on each fiber, thus making p0 : G0 →M into
a G0–principal bundle.

Next, we define a filtration V G0 ⊂ T−1G0 ⊂ TG0, where V G0 denotes the
vertical bundle, by putting T−1G0 := (Tp0)−1(HM). We get a canonical
one–form θ−2 ∈ Ω1(G0, g−2) as follows: Take a point u = (u+, u−) ∈ G0.
Then u+ : g+

−1 → H+
x M is a complex linear isomorphism, so there exist

unique linear isomorphism ũ+ : g+
−2 → Q+

xM such that Lx(u+(X), u+(Y )) =

ũ+([X,Y ]), and similarly we get linear isomorphism ũ− : g−−2 → Q−xM . For
a tangent vector ξ ∈ TuG0, consider Tp0·ξ ∈ TxM , and define

θ−2(ξ) := ((ũ+)−1(q+(Tp0·ξ)), (ũ−)−1(q−(Tp0·ξ))),
where q± : TM → Q±M are the canonical projections. It is easy to see
that this is a smooth one–form, and by construction its kernel in a point
u is exactly the space T−1

u G0. Moreover, since the action of G0 on g is
compatible with the Lie bracket, it follows that for (v+, v−) = (u+, u−)·b we
get (ṽ+, ṽ−) = (ũ+, ũ−) ◦ Ad(b). Since Tp0 ◦ Trb = Tp0, this implies that
(rb)∗θ−2 = Ad(b−1) ◦ θ−2, so θ−2 is equivariant.

Similarly, we get a canonical section θ−1 ∈ Γ(L(T−1G0, g−1)). Namely, if
ξ ∈ T−1

u G0, then Tp0·ξ ∈ Hp0(u)M , so we uniquely decompose this as ξ++ξ−

with ξ± ∈ H±p0(u)M , and we define

θ−1(ξ) := ((u+)−1(ξ+), (u−)−1(ξ−)).

Again, this is visibly smooth and its kernel in a point u is exactly the vertical
tangent space VuG0. Again since Tp0◦Trb = Tp0, the definition of the action
of G0 immediately implies that (rb)∗θ−1 = Ad(b−1) ◦ θ−1. Consequently,
θ = (θ−2, θ−1) is a frame form of length one in the sense of [3, 3.2]. Moreover,
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by [3, proposition 4.2] this frame form satisfies the structure equation, so
(G0, θ) is a P–frame bundle of degree one in the sense of [3, 3.6].

Theorem. If M is an oriented hyperbolic partially integrable almost CR
manifold of CR dimension and codimension two, then there is a canonical
principal bundle p : G → M with structure group B × B, where B is the
Borel subgroup in PSU(2, 1) endowed with a normal Cartan connection ω ∈
Ω1(G, su(2, 1)× su(2, 1)).

Conversely, such a principal bundle and Cartan connection over a six
dimensional smooth manifold M canonically make M into an oriented hy-
perbolic partially integrable almost CR manifolds of CR dimension and codi-
mension two. These two constructions actually describe an equivalence of
categories.

Proof. The first part is a special case of the main result of [3] or of the
prolongation procedure of [9]. Moreover, the uniqueness part of this result
implies that a local CR diffeomorphism M1 →M2 lifts to a homomorphism
Φ : G1 → G2 of principal bundles such that Φ∗ω2 = ω1.

Conversely, let us assume that p : G → M is a B–principal bundle over
a smooth six dimensional manifold M endowed with a normal Cartan con-
nection ω. For a point x ∈M choose a point u ∈ G with p(u) = x. Consider
the component ω−2 of the Cartan connection which has values in g−2. Then
ω−2(u) : TuG → g+

−2 ⊕ g−−2 is a surjective linear map which vanishes on

the vertical subbundle, so it induces a linear map TxM → g+
−2 ⊕ g−−2. Let

us denote by HxM the kernel of this map and by QxM the quotient space
TxM/HxM . Then we get a decomposition QxM = Q+

xM⊕Q−xM by putting
Q±xM the subspaces mapped to g±−2. Further, the restriction of ω−1(u) to
the kernel of ω−2(u) has as kernel exactly the vertical tangent space, so
it descends to a linear isomorphism HxM ∼= g+

−1 ⊕ g−−1, which gives us a

decomposition HxM = H+
x M ⊕ H−x M into two one–dimensional complex

spaces. If we choose a different point ũ instead of u, then there is a unique
element b ∈ P such that ũ = u·b and equivariancy of the Cartan connection
reads as ω(ũ)(Trb·ξ) = Ad(b−1)(ω(u)(ξ)). Since p ◦ rb = p, this implies that
the maps induced on tangent spaces of M change only by composition with
Ad(b−1). Now B consists of elements respecting the filtration of g so the
adjoint action respects the set of elements with trivial g−2–component, and
thus the subspace HxM remains unchanged. Moreover, on this subspace,
the action of B factors through G0 (see [3, 2.12]), which implies that also
the complex structure and the decomposition of HxM remain unchanged.
Since the adjoint action of any element of G respects the decomposition
g = g+ ⊕ g−, also the decomposition of QxM remains unchanged.

Since the structures are independent of the choice of the point u, we can
now use a local smooth section of p : G → M to construct the data locally
around a point and by uniqueness they fit together globally, showing that we
actually get a smooth subbundle HM , with a decomposition H+M ⊕H−M
into a sum of complex line bundles, as well as a decomposition QM =
Q+M ⊕ Q−M of the quotient bundle QM = TM/HM . In particular,
(M,HM) is an almost CR manifold of CR dimension and codimension two.
The fact that the Cartan connection is normal implies that the underlying
frame form of length one satisfies the structure equations, which in turn by
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[3, propositon 4.2] implies that the Levi bracket on M coincides with the
algebraic bracket coming from the G0–structure underlying the principal
bundle G. In particular, this implies that the Levi bracket is totally real,
so (M,HM) is partially integrable. Moreover, we get that the bilinear map
L is non–degenerate, it satisfies L(H±M,HM) ⊂ Q±M and for any point
x ∈M the image of L contains Q+

xM and Q−xM , and thus all of QM . But
this immediately implies that for each nonzero ψ ∈ Q∗xM the map Lψ is
nonzero, so (M,HM) is non–degenerate. Denoting by π± : QM → Q±M
the canonical projections and choosing any local trivializations ϕ± of Q±
we see that ψ± = ϕ± ◦ π± are two linearly independent functionals such
that Lψ± is degenerate (with null space H±), so we see that (M,HM) is
hyperbolic.

Finally, assume that G1 → M1 and G2 → M2 are two such principal
bundles endowed with normal Cartan connections, and Φ : G1 → G2 is a
homomorphism of principal bundles which covers a local diffeomorphism
f : M1 → M2. From the above construction of the CR structures on the
Mi it is then immediate that Φ∗ω2 = ω1 implies that f : M1 →M2 is a CR
map, and thus a local CR diffeomorphism, which establishes the equivalence
of categories. ¤

2.7. The elliptic case. Next, we will consider the case of oriented elliptic
partially integrable almost CR manifolds of CR dimension and codimension
two. So we have (M,HM, J̃) such that for any point x ∈M and any nonzero

element ψ ∈ Q∗xM the form Lψx : HxM × HxM → R introduced in 2.4 is
non–degenerate. Note that since the complex subbundle HM ⊂ TM is
canonically oriented, choosing an orientation of M is equivalent to choosing
an orientation of the quotient bundle QM .

Proposition. Let (M,HM, J̃) be an oriented elliptic partially integrable
almost CR manifold of CR dimension and codimension two with quotient
bundle QM .
(1) There is a unique almost complex structure JQ on the bundle QM which
is compatible with the orientation of M and has the property that for each
point x ∈ M there is a nonzero element η ∈ HxM such that Lx(J̃ξ, η) =
JQLx(ξ, η) for all ξ ∈ HxM .
(2) If we define H±x M to be the subspaces consisting of all η ∈ HxM such

that Lx(J̃ξ, η) = ±JQLx(ξ, η) for all ξ ∈ HxM , then these subspaces fit
together to form smooth subbundles H±M ⊂ HM , which both are complex
line bundles and have the property that HM = H+M ⊕ H−M . Also, the
Levi–bracket L vanishes on H+M ×H+M and on H−M ×H−M .
(3) If we define a new almost complex structure J on HM by J |H+M = −J̃
and J |H−M = J̃ , then with respect to the almost complex structures J and
JQ the Levi bracket L : HM ×HM → QM is complex bilinear.

Proof. Consider the complexification QCM = QM ⊗ C and the map H :
HM × HM → QCM defined by H(ξ, η) = L(J̃ξ, η) + iL(ξ, η). Using the
fact that L is totally real, one immediately verifies that this is a QCM–valued
hermitian form on HM .
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Next, for a point x ∈ M consider the (complex) dual (QC)∗xM of the
fiber of QCM at x. By definition, an element ψ of this space is a C–
linear map (QC)xM → C. Similarly to 2.4 above, we can now consider

Hψx = ψ ◦ Hx : HxM ×HxM → C. This is not a hermitian form any more,
but it still is complex linear in the first and conjugate linear in the second
variable, and we may still ask whether it is degenerate or non–degenerate.

Moreover, as before the question whether Hψx is degenerate or not as well as
the null space in the case where it is degenerate depends only on the class
of ψ in the (complex) projectivization P((QC)∗xM) ∼= CP 1. As before, we
use square brackets to indicate the class in a projectivization. Choosing a
real basis of QxM (and considering the corresponding basis of the complex-
ification) we can split H into two components H1, H2, and choosing further
a complex basis ξ1, ξ2 of HxM , we can consider the Hermitian matrices H1,
H2 corresponding to this basis. Moreover, from the basis of (QC)xM , we
get homogeneous coordinates on P((QC)∗xM) and in this picture the condi-
tion that Hψ is degenerate exactly means that we have a solution (λ : µ) of
the homogeneous polynomial of degree two given by det(λH1 + µH2) = 0.
Since the matrices Hi are Hermitian, for any solution (λ, µ) of this equa-

tion, also (λ̄, µ̄) is a solution. By definition, Hψx (ξ, η) = 0 if and only if

ψ(L(J̃ξ, η)) = iψ(L(ξ, η)). Now consider the image of QxM ⊂ QxM ⊗ C
under ψ, which is a real linear subspace of C. If this is a proper subspace,
then the above equation can only hold if the two sides both vanish. Since

M is elliptic, we conclude that Hψx is non–degenerate if ψ(QxM) 6= C.
In particular, det(λH1 +µH2) is not identically zero, so there are exactly

two points [ψ], [ψ̄] ∈ P((QC)∗xM) representing the solutions. From above,
we know that the restrictions of ψ and ψ̄ to QxM are injective, so both maps
define linear isomorphisms QxM → C. Clearly, exactly one of the maps ψ
and ψ̄ is orientation preserving as a real linear map from QxM to C (with
the canonical orientation), so we assume that ψ has this property. Thus, we

get a complex structure JQx on the vector space QxM , which clearly depends
on the class [ψ] only.

Using the formula from above, we see that the condition that Hψ is de-
generate exactly means that there is a nonzero element η ∈ HxM such that
ψ(L(J̃ξ, η)) = iψ(L(ξ, η)) for all ξ ∈ HxM . By definition of JQ, the last

equation just reads as L(J̃ξ, η) = JQL(ξ, η). Similarly, for an element η to

lie in the null space of Hψ̄ is equivalent to Lx(J̃ξ, η)) = −JQLx(ξ, η), so the
two null spaces are exactly H±x M as defined in the theorem. By construc-
tion, they are both complex subspaces and nonzero, and their intersection
is zero since L is non–degenerate, so the only possibility is that they both
are of complex dimension one and HxM = H+

x M ⊕H−x M , so (1) follows.
To see that we get smooth subbundles H±M ⊂ HM , one just has to note

that the above constructions depend smoothly on the point x. Indeed, H is
a smooth form HM×HM → QCM . Choosing smooth local frames for HM
and QM and the corresponding homogeneous coordinates on P((QC)∗M),
we see that (x, λ, µ) 7→ det(λH1(x) + µH2(x)) is a smooth function, which
is regular since the polynomial has different roots in each point, so the
solutions form a smooth submanifold in P((QC)∗M), which by construction
is a two–fold covering of M . The condition on the orientation distinguishes
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the two sheets of the covering, so we get a smooth section M → P((QC)∗M)
whose value in each point is exactly the class leading to the almost complex

structure JQx . Thus JQ : QM → QM is smooth and hence an almost
complex structure. Finally, choosing a local section ψ of Q∗CM whose class
in each point x is the distinguished element of P((QC)∗xM), we get a smooth

vector bundle map HM → L(HM,C) defined by ηx 7→ Hψx ( , η), and H+M
is exactly the kernel of this bundle map, which we already know is of constant
rank, so it is a smooth subbundle. Similarly, one deals with H−M .

By construction, if one considers the restriction of the Levi–bracket L
to H+M × H+M , then this is complex bilinear and skew symmetric, so
it vanishes since H+M has complex rank one. Similarly, L vanishes on
H−M ×H−M , so (2) is proved.

Thus, the only part of the Levi–bracket that has to be considered is its
restriction to H+M × H−M . By construction, this is conjugate linear in
the first and complex linear in the second variable, so switching the almost
complex structure on H+M , it becomes complex bilinear. ¤

2.8. An equivalence of categories. The structure (M,H+M,H−M,JQ)
obtained in proposition 2.7 is preserved under orientation preserving local
CR diffeomorphisms. Suppose that (Mk, HMk, J̃k) are oriented elliptic par-
tially integrable almost CR manifolds and f : M1 → M2 is an orientation
preserving (local) CR diffeomorphism. For x ∈ M1 consider f(x) ∈ M2

and the induced linear isomorphism Txf : QxM1 → QxM2. Pulling back
the complex structure on QxM2 obtained from proposition 2.7(1) to QxM1,
we obtain a complex structure which is compatible with the orientation
since f was assumed to be orientation preserving and the restriction of Txf
to the CR tangent spaces is complex linear and thus orientation preserv-
ing. Choosing η ∈ HxM1 such that Txf·η ∈ H+

f(x)M2, we conclude from

f∗LM2 = LM1 that Lx( , η) is complex linear for the pulled back structure,
so by the uniqueness in proposition 2.7(1), we see that Txf : QxM1 → QxM2

is complex linear for the structures obtained from proposition 2.7(1). More-
over, the above argument also shows that Txf(H±x M1) ⊂ H±f(x)M2. But

then the fact that Txf : HM1 → HM2 is complex linear for the structures
J̃ implies that it is also complex linear for the structures J obtained by
proposition 2.7(3).

Conversely, assume that M is a smooth manifold of dimension 6 equipped
with two complementary complex line bundles H±M ⊂ TM , an almost
complex structure JQ on the quotient QM = TM/HM , where HM =
H+M ⊕H−M , which is such that the bundle map L : HM ×HM → QM
induced by the Lie bracket is complex bilinear and non–degenerate. Then
on HM consider the almost complex structure J̃ defined by flipping the
complex structure on H+M and keeping the complex structure on H−M .
The Levi bracket L : HM ×HM → QM is by assumption non–degenerate.
For ξ, η ∈ HM , we can split ξ = ξ+ +ξ− and similarly for η and we compute

L(J̃ξ, J̃η) =L(−Jξ+ + Jξ−,−Jη+ + Jη−) =

− L(Jξ−, Jη+)− L(Jξ+, Jη−) =

L(ξ−, η+) + L(ξ+, η−) = L(ξ, η),
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where we have used that L is complex bilinear for J and H±M are isotropic
for L since they have complex dimension one. Thus (M,HM, J̃) is a par-
tially integrable almost CR manifold of CR dimension and codimension two.
Finally, consider nonzero elements ψ ∈ Q∗xM and ξ ∈ HxM . As before,
we may split ξ = ξ+ + ξ−, and let us assume without loss of generality
that ξ+ 6= 0. Then L(ξ+, ) restricts to a nonzero complex linear (and
thus surjective) map H−x M → QxM , so we can find η ∈ H−x M such that
ψ(L(ξ+, η)) 6= 0. But since η ∈ H−x M , we have L(ξ, η) = L(ξ+, η), which im-

plies that Lψ is non–degenerate, and hence (M,HM, J̃) is elliptic. Finally,

if (Mj , H
+Mj , H

−Mj , J
Q
j ) are such manifolds for j = 1, 2 and f : M1 →M2

is a (local) diffeomorphism such that Tf restricts to complex linear isomor-
phism H±M1 → H±M2 then f defines a (local) CR diffeomorphism from

(M1, HM1, J̃1) to (M2, HM2, J̃2). Note that the condition on Tf preserving
the subbundles H± implies that we get an induced map Tf : QM1 → QM2,
which is automatically complex linear since Tf·L(ξ, η) = L(Tf·ξ, Tf·η) be-
cause L is induced by the Lie–bracket. Thus we get

Theorem. The category of elliptic partially integrable almost CR mani-
folds of CR dimension and codimension two and local CR diffeomorphisms
is equivalent to the category whose objects are six dimensional manifolds M
endowed with two complementary complex line bundles H±M ⊂ TM and
an almost complex structure on QM = TM/HM such that the Levi bracket
L : HM ×HM → QM is non–degenerate and complex bilinear, and whose
morphisms are the local diffeomorphisms whose derivative in each point re-
stricts to complex linear isomorphisms between the subbundles H±M .

2.9. Real parabolic geometries of type (PSL(3,C), B). To show that
the category from theorem 2.8 above is equivalent to a category of normal
parabolic geometries is now strictly parallel to the hyperbolic case, so we are
more brief on that. Consider first the Lie algebra g = sl(3,C) (as a real Lie
algebra), let g0 be its Cartan subalgebra, i.e. the subalgebra of all trace free
diagonal matrices and let b be its Borel subalgebra, i.e. the subalgebra of all
trace free upper triangular matrices. As a module over g0, g decomposes as a
direct sum of g0 and the root spaces, and we write this decomposition as g =

g−2⊕(g−−1⊕g+
−1)⊕g0⊕(g−1 ⊕g+

1 )⊕g2 defined by




g0 g+
1 g2

g+
−1 g0 g−1

g−2 g−−1 g0


. Clearly,

this makes g into a graded Lie algebra, i.e. [gi, gj ] ⊂ gi+j . The subalgebra
b is exactly the non–negative part in this grading, so the adjoint action of
b never moves down in the grading, which implies that the corresponding
filtration is b invariant. By the grading property, we have in particular the
bracket g−1 × g−1 → g−2. Like all brackets in g this is complex bilinear,
and hence g+

−1 and g−−1 are isotropic, while the restriction of the bracket to

g+
−1 × g−−1 is non–degenerate.

Next, consider the adjoint group G = PSL(3,C) of g. We define sub-
groups G0 ⊂ B ⊂ G as the groups of those elements whose adjoint actions
preserve the grading respectively the filtration on g. According to the gen-
eral theory (see [3, proposition 2.9]), G0 has Lie algebra g0 and B has Lie
algebra b, so it is a Borel subgroup in G. The group G is the quotient of



16 ANDREAS ČAP AND GERD SCHMALZ

SL(3,C) by its center, which is just the third roots of unity times the iden-
tity matrix, so we will usually work in SL(3,C) keeping in mind that we
work modulo the center. Now it is easy to verify that for g ∈ G0, any rep-
resentative in SL(3,C) must be diagonal. If a, b, c are the diagonal entries
(and abc = 1), then one immediately verifies that the adjoint action on g+

−1,

g−−1 and g−2 is given by multiplication by a−1b, b−1c and a−1c, respectively.

Taking 0 6= λ, µ ∈ C we see that putting a = (λ−2µ−1)1/3, b = (λµ−1)1/3

and c = (λµ2)1/3 we obtain an element that acts on g+
−1 by multiplication

with λ and on g−−1 by µ, while the action on g−2 is fixed by compatibility
with the Lie bracket. Moreover, one easily sees that by this condition the
diagonal matrix with entries a, b, c is uniquely determined up to multiplica-
tion with a third root of unity times the identity matrix. Thus we see that
the adjoint action identifies G0 with the group of pairs ϕ+, ϕ−, where ϕ±
is a complex linear isomorphism of g±−1, and the action on g−2 is fixed by
compatibility with the Lie bracket.

Now let M be a smooth manifold of dimension 6 equipped with two com-
plementary complex line bundles H±M ⊂ TM , an almost complex structure
on QM = TM/HM such that the Levi bracket L : HM ×HM → QM is
non–degenerate and complex bilinear. As in the hyperbolic case we consider
the complex frame bundle G0 of H+M ⊕ H−M as modeled on g−1, and
via the adjoint action we can view this as a principal G0–bundle. Denoting
elements of G0 as (u+, u−), where u± : g±−1 → H±x M is a complex linear iso-
morphism, we now get a unique complex linear isomorphism ũ : g−2 → QxM
such that L(u+(X), u−(Y )) = ũ([X,Y ]), which allows us to define a form
θ−2 ∈ Ω1(G0, g−2) as in the hyperbolic case. As there one shows that the
form is equivariant and its kernel is exactly T−1G0 = (Tp0)−1(HM). On
the other hand, the definition of θ−1 ∈ Γ(L(T−1G0, g−1)) is completely the
same as in the hyperbolic case, and also the properties are verified in the
same way. Hence we again get a frame form (θ−2, θ−1) of length one on G0,
which satisfies the structure equations, since L is induced by the Lie bracket
of vector fields, and we get:

Theorem. For any elliptic partially integrable almost CR manifold M there
exists a canonical principal bundle p : G →M with group B equipped with a
normal Cartan connection ω ∈ Ω1(G, sl(3,C)). Conversely, a principal B–
bundle G over a smooth 6–dimensional manifold M endowed with a normal
Cartan connection makes M canonically into an oriented elliptic partially
integrable almost CR manifold. These constructions actually give rise to an
equivalence of categories.

Proof. Existence of G and ω for an elliptic partially integrable almost CR
manifold follows from the main result of [3] or the procedure of [9] or (with
a reinterpretation of the underlying structure along the lines of [3, 4.4])
from the original procedure of Tanaka, see [13]. In view of theorem 2.8,
the converse is completely analogous to the hyperbolic case. Explicitly,
HM = Tp(ker(ω−2)), the almost complex structure on QM is induced by
ω−2 and the splitting of HM , as well as the almost complex structure J on
HM are induced by ω−1. (To get back to a CR picture, one has to flip the
almost complex structure on H+M as in 2.8.)
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Also, establishing the equivalence of categories is done exactly like in the
hyperbolic case. ¤

3. Interpretations of torsions in the elliptic case

One of the main advantages of having a canonical Cartan connection is
that this offers a conceptual approach to obstructions against local flatness.
It is well known in general (see e.g. [3, proposition 4.12] for a proof in the
setting of parabolic geometries) that the curvature of a Cartan connection is
a complete obstruction against local flatness. In our setting this means that
a point x ∈ M has a neighborhood which is CR diffeomorphic to an open
subset of the flat model (which is a quadric in our case) if and only if the
curvature of the Cartan connection vanishes identically locally around x. In
the case of normal Cartan connection there is a further refinement of that.
In this section we will show how general tools for parabolic geometries can
be used to give geometric interpretations of these obstructions. Since this
has been done in the hyperbolic case in some detail in [11], we restrict to
the elliptic case here, in which we get several new results and improvements
compared to the latter paper.

3.1. The curvature of the normal Cartan connection. As a start, we
have to describe the normalization condition on our Cartan connections in
a little more detail. For the Cartan connection ω ∈ Ω1(G, g), we define the
curvature function κ : G → L(Λ2g−, g), where g− = g−2 ⊕ g−1 and the
exterior product is over R, by κ(u)(X,Y ) = dω(ω−1

u (X), ω−1
u (Y )) + [X,Y ].

Recall that by definition, ωu : TuG → g is a linear isomorphism, so ω−1
u (X)

makes sense. This curvature function captures all the information about the
curvature of the Cartan connection. Note that κ splits into homogeneous
degrees with respect to the grading as κ = κ(0) + · · ·+κ(6), where κ(0) maps
Λ2g−1 to g−2, κ(1) maps Λ2g−1 to g−1 and g−2⊗g−1 to g−2, and so on. The
first normalization condition on ω is that κ(0) is identically zero.

To formulate the second normalization condition, observe that L(Λ2g−, g)
is just the second chain group in the standard complex computing the (real!)
Lie algebra cohomology H∗R(g−, g). The spaces in this complex are just the

spaces L(ΛkRg−, g) of k–linear, alternating maps gk− → g, and the differential

∂ : L(Λkg−, g)→ L(Λk+1g−, g) is defined by the usual formula

∂ϕ(X0, . . . , Xk) =
k∑

i=0

(−1)i[Xi, ϕ(X0, . . . , X̂i, . . . , Xk)]+

+
∑

i<j

(−1)i+jϕ([Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xk).

For our purpose the essential fact is that extending a construction of Kostant
(see [7]) one can show that there is a natural adjoint ∂∗ : L(Λkg−, g) →
L(Λk−1g−, g) to the Lie algebra differential, see [3, 2.5,2.6]. It turns out that
both ∂ and ∂∗ are differentials, so ∂2 = (∂∗)2 = 0, defining the Laplacian
¤ = ∂∂∗ + ∂∗∂ one gets a Hodge decomposition L(Λkg−, g) = Im(∂) ⊕
Ker(¤)⊕Im(∂∗) and Ker(¤) is naturally isomorphic to the k–th cohomology
group Hk

R(g−, g). A formula for ∂∗ can be easily obtained from the fact that
it is the dual map to another Lie algebra differential. For this, one has to
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note that the Killing form on g induces a duality of g0–modules between
g− and g+. We shall only need the formula for ∂∗ : L(Λ2g−, g)→ L(g−, g),
which is given by

∂∗ϕ(X) =
∑

α

(
[Zα, ϕ(Xα, X)] + 1

2ϕ([Zα, X]−, Xα)
)
,

where {Xα} is a basis of g−, {Zα} is the dual basis of g+ and [ , ]− denotes
the g−–component of the bracket, see [3, 2.5]. The second normalization
condition on the Cartan connection is that the curvature function has values
in Ker(∂∗) = Ker(¤) ⊕ Im(∂∗). Note that from the formulae it is obvious
that both ∂ and ∂∗ preserve homogeneous degrees, so this conditions can be
applied to various homogeneous degrees of κ separately. Also, this implies
that the cohomology groups split as direct sums Hk(g−, g) =

∑
`H

k
(`)(g−, g)

according to homogeneous degree.
For later use, we note one further refinement: Since g is a complex repre-

sentation of g−, we can also view L(ΛkRg−, g) ∼= ΛkRg
∗
−⊗Rg as (ΛkRg

∗
−⊗RC)⊗C

g. Now ΛkRg
∗
− ⊗R C can be identified with ΛkC(g∗− ⊗R C) and the splitting of

the complexification of g∗− into a holomorphic and an antiholomorphic part

induces a splitting L(Λk
Rg−,C) = ⊕p+q=kLp,q(g−,C), which in turn induces

a similar splitting for L(Λk
Rg−, g). Explicitly, L1,0(g−, g) and L0,1(g−, g)

are the spaces of complex linear respectively conjugate linear maps. More
generally, Lk,0(g−, g) and L0,k(g−, g) are the spaces of those k–linear alter-
nating maps which are complex linear respectively complex anti–linear in
each variable. The last bit of information that we will need is that L1,1(g−, g)
is exactly the set of those bilinear, alternating maps ϕ : g− × g− → g which
have the property that ϕ(iX, iY ) = ϕ(X,Y ) for all X,Y ∈ g−.

Thus, the final splitting of the spaces in the standard complex looks as
L(Λkg−, g) = ⊕p+q=k;`L

p,q
(`)(g−, g), where ` refers to the homogeneous degree.

The fact that the brackets in g all are complex bilinear together with the
fact that ∂ preserves homogeneous degrees now implies that ∂(Lp,q(`)(g−, g)) ⊂
Lp+1,q

(`) (g−, g). For all fixed q and ` we have a subcomplex L∗,q(`)(g−, g), and the

cohomology groups finally split as Hk(g−, g) = ⊕p+q=k;`H
p,q
(`) (g−, g). From

the construction of the adjoint ∂∗ one can verify that also ∂∗ is compati-
ble with bidegrees, so ∂∗(Lp,q(`)(g−, g)) ⊂ Lp−1,q

(`) (g−, g). In particular, ∂∗ is

identically zero on L0,k
(`) (g−, g) for all k, `.

The final point we have to observe is the Bianchi identity for the curva-
ture of a Cartan connection, which can be used to compute ∂ ◦ κ. By [3,
proposition 4.9] this reads as

(∂ ◦ κ)(X,Y, Z) =
∑

cycl

(
κ(κ−(X,Y ), Z) + (ω−1(X)·κ)(Y, Z)

)
.

Here the sum is over all cyclic permutations of the arguments, κ− is the
component of κ in g−, and in the last term we use the vector field ω−1(X)
to differentiate the function κ. The importance of this identity is that if
we consider a fixed homogeneous degree on the left hand side, then only
lower homogeneous degrees can enter on the right hand side. In particular,
the lowest nonzero homogeneous degree of κ must have values in Ker(∂) ∩
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Ker(∂∗) = Ker(¤) which is isomorphic to an appropriate cohomology group.
This can be used to show (see [3, proposition 4.10]) that κ vanishes if and
only if its harmonic part (i.e. its component in Ker(¤)) vanishes. Moreover,
from the formula one can obviously get informations on possible bidegrees of
∂ ◦κ if the possible bidegrees of lower homogeneous components are known.

3.2. Harmonic curvature components. The relevant cohomology group
H2(g−, g) for our case has been computed in [11]. Expressed in terms of
bidegrees the results read as follows:

(1) The only nonzero components in H2(g−, g) are H0,2
(1) , H1,1

(1) , and H2,0
(4) .

(2) H0,2
(1) splits as a B0–module into two one–dimensional components,

which are represented by maps g−2 × g±−1 → g−2.

(3) H1,1
(1) splits into four one–dimensional components which are repre-

sented by totally real maps Λ2g+
−1 → g−−1, and Λ2g−−1 → g+

−1 respec-

tively by maps g+
−1 × g−−1 → g−−1 and g−−1 × g+

−1 → g+
−1, which are

complex linear in the first and conjugate linear in the second vari-
able (this last point needs a slightly closer look on the description of
cohomologies in [11]).

(4) H2,0
(4) splits into two one dimensional components represented by com-

plex bilinear maps g−2 × g+
−1 → g+

1 respectively g−2 × g−−1 → g−1 .

In particular, we have six irreducible torsion–type components (the com-
ponents homogeneous of degree one) and two curvature–type components.

Note moreover, that the homogeneous component κ(1) of the curvature func-
tion is harmonic by the Bianchi identity, so only the components indicated
in 2 and 3 of the above list may actually be nonzero.

Our next task is to give geometric interpretations of the harmonic com-
ponents of the curvature which are of torsion–type. Most of this has already
been done in [11], but we partly have different interpretations and partly
simpler and more complete proofs.The main tool for deducing these inter-
pretations is the following general result on parabolic geometries which is a
variant of [11, lemma 2.10]:

Lemma. Let (p : G → M,ω) be a parabolic geometry, i.e. a principal P–
bundle endowed with a g–valued Cartan connection, where P ⊂ G is a para-
bolic subgroup, and let κ be the curvature function of ω. Suppose that x ∈M
is a point and u ∈ G is such that p(u) = x. Then there is a neighborhood
U of x ∈M and an extension operator ξx 7→ ξ from the tangent space TxM
to the set of local vector fields defined on U , which is compatible with all
structures on TM carried over from g− using ω, and which has the follow-
ing property: For ξx, ηx ∈ TxM let X,Y ∈ g− be the unique elements such
that ξx = Tup·ω−1

u (X) and ηx = Tup·ω−1
u (Y ). Then

[ξ, η](x) = Tup·ω−1
u ([X,Y ]− κ(u)(X,Y )).

Proof. (see [11, lemma 2.10]) Note first that X and Y are well defined since
the difference of two lifts of a tangent vector on M lies in the vertical bundle,
which is mapped by ω to b. Denoting by Flξ the flow of a vector field ξ, we

consider the map ϕ(X) := Fl
ω−1(X)
1 (u), which is defined on a neighborhood

V of 0 in g−. The tangent map in zero of p ◦ ϕ : V → M is a linear
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isomorphism, so possibly shrinking V we may assume that ϕ and p ◦ ϕ
are both diffeomorphisms onto their images. Denoting U := p(ϕ(V )), we
get a smooth local section σ : U → ϕ(V ), since p has to restrict to a
diffeomorphism ϕ(V ) → U . Now given ξx ∈ TxM we define the extension
ξ ∈ X(U) by ξ(y) := Tp·(ω(σ(y))−1(X)). Clearly, this extension operator
is compatible with all structures on TM carried over from g− via ω. To
verify the condition on the brackets, let us start with two tangent vectors
ξx and ηx and the corresponding elements X,Y ∈ g−. Any point in p−1(U)
can be uniquely written as σ(y)b for y ∈ U and b ∈ P . Defining a local

vector field ξ̃ on p−1(U) by ξ̃(σ(y)·b) := Trb·(ω(σ(y))−1(X)), we obviously
get a projectable vector field, which projects onto ξ and similarly we get
a field η̃ projecting onto η. Hence, [ξ, η](x) = Tup·[ξ̃, η̃](u). Moreover,

u = σ(p), so the flow lines of ξ̃ and η̃ through u stay in the image of σ,

and thus ω(ξ̃) is constant along the flow line of η̃ through u and vice versa.

But then the definition of the exterior derivative implies that ω([ξ̃, η̃])(u) =

−dω(u)(ξ̃(u), η̃(u)), and since ξ̃(u) = ω(u)−1(X) and similarly for η, the
result follows from the definition of κ. ¤

The main upshot of this result is that whenever one has a tensorial quan-
tity which can be expressed as a combination of Lie brackets of vector fields
(i.e. whenever one has an expression in Lie brackets which becomes linear
over smooth functions in all arguments), then one can compute the value of
the corresponding tensor on tangent vectors using the extensions described
in the proposition, and thus immediately get an interpretation of the tensor
in terms of the curvature function κ.

3.3. The Nijenhuis tensor. Let (M,HM, J̃) be an elliptic partially inte-
grable almost CR manifold. Then there is an obvious first candidate for a
torsion type object, namely the Nijenhuis tensor Ñ : HM×HM → HM in-
troduced in 2.1. As we have seen, Ñ is skew symmetric and conjugate linear
(with respect to J̃) in both arguments, so its restriction to H+M ×H+M
and to H−M ×H−M vanishes since both these subbundles are of complex
rank one, so what remains is Ñ : H+M ×H−M → HM , which we can split
as Ñ+ +Ñ− according to the splitting of the values. Then both components
are conjugate linear with respect to J̃ in both arguments, so with respect
to J they both become sesquilinear, which fits well to two of the harmonic
curvature components described above. In fact, vanishing of the parts of the
Nijenhuis tensor is equivalent to vanishing of the corresponding irreducible
components of the curvature function:

Proposition. Let κ be the curvature function of the canonical Cartan con-
nection. Then the restriction of κ(1) to g+

−1× g−−1 has values in g+
−1 (respec-

tively g−−1) if and only if Ñ− = 0 (respectively Ñ+ = 0). In particular, M is

integrable and thus a CR manifold if and only if κ(1) vanishes on g+
−1× g−−1.

Proof. For tangent vectors ξx ∈ H+
x M and ηx ∈ H−x M , the Nijenhuis tensor

can be computed as

Ñ(ξx, ηx) = [ξ, η](x)− [J̃ξ, J̃η](x) + J̃([J̃ξ, η](x) + [ξ, J̃η](x)),
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for any extensions ξ, η to local smooth vector fields. Splitting the result
into Ñ+ + Ñ−, we may replace the J̃ ′s by plus or minus J . Denoting
by π± : HxM → H±x M the canonical projections, we obtain the following

expressions for Ñ+(ξx, ηx) and Ñ−(ξx, ηx)

π+([ξ, η](x) + [Jξ, Jη](x))− Jπ+(−[Jξ, η](x) + [ξ, Jη](x))

π−([ξ, η](x) + [Jξ, Jη](x)) + Jπ−(−[Jξ, η](x) + [ξ, J̃η](x)),

Let us start by discussing Ñ+. Choose a point u ∈ G with p(u) = x, and
let X,Y ∈ g− be the elements corresponding to ξx and ηx as in lemma
3.2. Then X ∈ g+

−1 and Y ∈ g−−1. By lemma 3.2 and complex bilinearity
of the bracket on g, the element [ξ, η](x) + [Jξ, Jη](x) is simply given by
−Tup·(ω−1

u (κ(X,Y ) + κ(iX, iY ))). Moreover, since ω−1
u (b) is killed by Tup,

we may in this equation as well replace κ by κ(1), and since we know from
3.2 that the restriction of κ(1) to g+

−1 × g−−1 is sesquilinear, we may replace

κ(1)(X,Y ) + κ(1)(iX, iY ) by 2κ(1)(X,Y ). Thus, π+([ξ, η](x) + [Jξ, Jη](x))

is obtained by projecting down ω−1
u of the g+

−1–component of −2κ(1)(X,Y ).
Similarly, one sees that −Jπ+(−[Jξ, η](x) + [ξ, Jη](x)) is obtained by pro-

jecting down ω−1
u of the g+

−1–component of −2iκ
(1)
+ (iX, Y ). But from 3.2

we know that this component is conjugate linear in the first variable, so we
see that 1

4Ñ
+(ξx, ηx) is obtained by projecting down the g+

−1–component of

−κ(1)(X,Y ), so we see that vanishing of Ñ+ is equivalent to the fact that

κ(1)(X,Y ) ∈ g−−1 for all X ∈ g+
−1 and Y ∈ g−−1. Similarly, one deals with

Ñ−. ¤
Remark. Note that embedded partially integrable almost CR structures
(i.e. manifolds for which the almost CR structure comes from an embedding
into a complex manifold of appropriate dimension) are automatically CR, so

the restriction of κ(1) to g+
−1 × g−−1 vanishes automatically in the embedded

case.

3.4. The other torsions of type (1, 1). The other two (1, 1)–components
in the homogeneous part of degree one of the curvature are even easier to
interpret. Recall that by construction both H+M and H−M are isotropic
with respect to the (complex bilinear) Levi–bracket. Consequently, for two
sections ξ, η ∈ Γ(H+M), the Lie bracket [ξ, η] is a section of HM , so we
can project it to H−M . Obviously, the result is bilinear over smooth func-
tions, so there is a well defined tensorial map T+ : Λ2

RH
+M → H−M

defined by T+(ξ, η) = π−([ξ, η]) for smooth sections ξ, η as above. Note
that since H+M is of complex rank one and T+ is skew symmetric, it must
be automatically totally real. Clearly T+ vanishes identically if and only
if the Lie bracket of two sections of H+M is again a section of H+M ,
i.e. if and only if H+M is integrable. Similarly, we obtain a bundle map
T− : Λ2H−M → H+M whose vanishing is equivalent to integrability of the
bundle H−M .

Proposition. Let κ be the curvature function of the canonical Cartan con-
nection. Then the restriction of κ(1) to Λ2g+

−1 (respectively to Λ2g−−1) van-

ishes if and only if the subbundle H+M ⊂ TM (respectively H−M ⊂ TM)
is integrable.
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Proof. Consider tangent vectors ξx, ηx ∈ H+
x M and a point u ∈ G with

p(u) = x. Then by definition the corresponding elements X,Y ∈ g− from
lemma 3.2 lie in g+

−1. Moreover, the extensions ξ, η provided by lemma

3.2 are sections of H+M , and we have [ξ, η](x) = −Tup·ω−1
u (κ(X,Y )), since

[X,Y ] = 0. Again, since vertical elements are killed by Tp, we may replace κ

by κ(1) in this expression. Moreover, from 3.2 we know that κ(1)(X,Y ) ∈ g−−1

for X,Y ∈ g+
−1, so the projection coincides with π−([ξ, η](x)) = T+(ξx, ηx).

Consequently, vanishing of the restriction of κ(1) to Λ2g+
−1 is equivalent to

vanishing of T+ and thus to integrability of H+M . The other component is
treated similarly. ¤

3.5. Torsions of type (0, 2). To interpret the remaining two components

of κ(1) it is convenient (although not formally necessary) to construct first
an almost complex structure J on M , which combines the almost complex
structures J on HM and JQ on QM . Using the canonical Cartan connection
ω it is clear how to get such an extension. In fact, for each point u ∈ G, we
get an isomorphism g− → Tp(u)M defined by X 7→ Tup·ω−1

u (X) and thus a
complex structure on TxM , where x = p(u). Moreover, changing the point
u to u·g for g ∈ B, equivariancy of ω implies that the new isomorphism
is given by composing the old one with Ad(g), which is complex linear, so
the complex structure on TxM is canonical. Clearly, this defines a smooth
almost complex structure J on M . Moreover, this has the property that the
bundle maps H±M → TM and TM → QM are complex linear, since the
structures on the other spaces are also induced by ω.

Now we can easily characterize this almost complex structure: To do this,
consider an arbitrary almost complex structure Ĵ on M such that H±M →
TM and q : TM → QM are complex linear. For a vector field ξ on M and a
section η of HM consider the expression q([Ĵξ, η])−JQq([ξ, η]). Since q(η) =

0 this is linear over smooth functions in η and since q(Ĵξ) = JQq(ξ) is also
linear over smooth functions in ξ, so it defines a tensor TM ×HM → QM .
Moreover, for ξ ∈ HM , the tensor is given by L(Jξ, η) − JQ(L(ξ, η)) = 0
by complex bilinearity of the Levi bracket. Hence we can factor to QM in
the first variable and splitting HM = H+M ⊕H−M we obtain two tensors
S± : QM × H±M → QM . Note that these tensors by construction are
conjugate linear in the first variable.

Proposition. The almost complex structure J on M induced by the canon-
ical Cartan connection ω is the unique almost complex structure on M
such that the bundle maps H±M → TM and TM → QM are complex
linear and such that the tensors S± : QM × H±M → QM induced by
(ξ, η) 7→ q([Jξ, η]) − JQ([ξ, η]) are both conjugate linear in the second vari-

able. Moreover, the restriction of κ(1) to g−2 × g+
−1 (respectively g−2 × g−−1)

vanishes if and only if S+ (respectively S−) is identically zero.
Finally, vanishing of both S+ and S− is equivalent to integrability of the

almost complex structure J on M .

Proof. Let us first verify that the almost complex structure induced by ω
has the stated property. Take ξx ∈ TxM and ηx ∈ HxM and a point
u ∈ G with p(u) = X. Let X ∈ g− and Y ∈ g−1 be the corresponding
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elements from lemma 3.2, and ξ, η the extensions provided by lemma 3.2.
Then Jξ is the extension of Jxξx provided by lemma 3.2, so [Jξ, η](x) =
−Tup·ω−1

u (κ(iX, Y ) + [iX, Y ]) and [ξ, η](x) = −Tup·ω−1
u (κ(X,Y ) + [X,Y ]).

For the classes provided by q, only the g−2–component of the result is sig-
nificant, so we can again replace κ by κ(1), and we see that our tensor is
given by taking the class of the image under Tup of

−ω−1
u

(
κ(1)(iX−2, Y ) + [iX, Y ]−2 − iκ(1)(X−2, Y )− i[X,Y ]−2

)
,

where the subscripts −2 indicate the component in g−2. Since the bracket in
g is complex bilinear, the bracket terms cancel. Moreover, from 3.2 we know
that the restriction of κ(1) to g−2×g−1 is conjugate linear in both variables.
Now conjugate linearity in the first variable implies that the tensor is actu-
ally given by taking the class of the projection of ω−1

u (2κ(1)(X−2, Y )), and
conjugate linearity in the second variable then implies our claim. Moreover,
the equivalent conditions for vanishing of components of κ(1) are obvious
from this computation.

To prove the uniqueness of J , assume that Ĵ is another almost complex
structure on M such that H±M → TM and TM → QM are complex
linear. For a vector field ξ on M we have by assumption q(Jξ) = q(Ĵξ),

so there is a smooth section ξ′ of HM such that Ĵξ = Jξ + ξ′. But then
q([Ĵξ, η]) = q([Jξ, η]) + L(ξ′, η) for all η, and the second term is complex
linear in η. Since ξ′ 7→ L(ξ′, ) induces an isomorphism between HM and
the bundle of complex linear maps HM → QM by non–degeneracy and
complex bilinearity of the Levi bracket, the uniqueness follows.

The final statement is a little more subtle to prove. If both S+ and S−

vanish, then from above we know that the restriction of κ(1) to g−2 × g−1

vanishes, so from 3.2 we conclude that κ(1) is totally real and has values
in g−1 only. Now take two elements ξx, ηx ∈ TxM and a point u ∈ G with
p(u) = x, and let X,Y ∈ g− be the corresponding elements from lemma
3.2. Applying lemma 3.2 one sees that the value N(ξx, ηx) of the Nijenhuis
tensor of J on ξx and ηx is given by

−Tup·ω−1
u

(
κ(X,Y )− κ(iX, iY ) + i(κ(iX, Y ) + κ(X, iY ))

)
,

which obviously equals −4Tup·ω−1
u (κ0,2(X,Y )), where κ0,2 denotes the com-

ponent of κ which is conjugate linear in both arguments, and the terms
involving brackets in g do not show up since this bracket is complex bilin-
ear. From above, we know that in this expression only components of κ of
homogeneity ≥ 2 may enter. Moreover, since vertical elements are killed by
Tp, we only have to consider components of κ0,2(X,Y ) which lie in g−. Now
the homogeneous component of degree ` of κ maps Λ2

Rg−1 to g`−2, g−2⊗g−1

to g`−3 and Λ2
Rg−2 to g`−4. Moreover, maps which are conjugate linear in

both arguments automatically vanish on Λ2g−2 since g−2 is of complex di-
mension one. Thus we see that the only relevant contribution to the above

expression could come from the part of κ
(2)
0,2 which maps g−2 ⊗ g−1 to g−1.

The only other possible component of κ
(2)
0,2 maps Λ2g−1 to g0.
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Specialized to homogeneity two, the Bianchi identity from 3.1 tells us that
(∂ ◦ κ(2))(X,Y, Z) can be computed as

∑

cycl

(
κ(1)(κ(1)(X,Y ), Z) + (ω−1(Z)·κ(1))(X,Y )

)
.

Since κ(1) has values in g−1, the same must hold for ∂ ◦κ(2) by this formula.
Consequently, ∂ ◦ κ(2) has to vanish on g−2 ⊗ Λ2g−1 since ∂ preserves ho-
mogeneities. Moreover, since we have observed in 3.1 that ∂(Lp,q(g−, g)) ⊂
Lp+1,q(g−, g), we conclude that also ∂◦κ(2)

0,2 must vanish on g−2⊗Λ2g−1. For

X ∈ g−2 and Y, Z ∈ g−1 we have [X,Y ] = [X,Z] = 0 and κ
(2)
0,2([Y, Z], X) = 0

since κ
(2)
0,2 must vanish on Λ2g−2, and inserting the definition of ∂, we see

that (∂ ◦ κ(2)
0,2)(X,Y, Z) = 0 is equivalent to

[Y, κ
(2)
0,2(X,Z)] = [X,κ

(2)
0,2(Y, Z)] + [Z, κ

(2)
0,2(X,Y )].

Replacing X by iX the same equation must hold. On the other hand, doing
that multiplies the left hand side by −i, the first term in the right hand side
by i and the second term in the right hand side by −i, so we conclude that

[X,κ
(2)
0,2(Y, Z)] = 0 and thus [Y, κ

(2)
0,2(X,Z)] = [Z, κ

(2)
0,2(X,Y )] for all X ∈ g−2

and Y, Z ∈ g−1. But replacing Y by iY in this equation, the left hand
side gets multiplied by i and the right hand side by −i, so we must have

[Y, κ
(2)
0,2(X,Z)] = 0 for all X,Y, Z, and thus the restriction of κ

(2)
0,2 to g−2⊗g−1

vanishes by non–degeneracy of the bracket and the result follows. ¤
3.6. Torsion free elliptic CR manifolds. We conclude the discussion of
geometric interpretations of the torsion–type components of the curvature
of the canonical Cartan connection by discussing the case where all torsion
type components vanish simultaneously. In this case, since by 3.1 the lowest
nonzero homogeneous component of κ must be harmonic, we immediately
see that there are no nonzero components of homogeneity less than four,
and moreover κ(4) is complex bilinear and its only nonzero components are
g−2 ⊗ g+

−1 → g+
1 and g−2 ⊗ g−−1 → g−1 . But indeed, much more can be said

in this case:

Theorem. Suppose that M is an elliptic partially integrable almost CR
manifold of CR dimension and codimension two such that Ñ± = T± = S± =
0. Then the almost complex structure on G induced by ω is integrable, and
the projection p : G → M is holomorphic, so G is a holomorphic principal
B–bundle over M . Moreover, the Cartan connection ω ∈ Ω1(G, g) is a
holomorphic (1, 0)–form, so (p : G →M,ω) is a complex parabolic geometry
of type (PSL(3,C), B). Conversely, any complex parabolic geometry of that
type is torsion free when viewed as a real parabolic geometry.

Proof. The Cartan connection ω defines a trivialization TG ∼= G × g of the
tangent bundle of G, so since g is a complex vector space, it induces an
almost complex structure JG on G. The almost complex structure J on M
was defined via ω, so it follows immediately that p : G → M has complex
linear derivative. Moreover, since S± = 0, the almost complex structure
J is integrable by proposition 3.4. To prove the first statement, we only
have to show that torsion freeness implies integrability of JG . For X ∈ g,
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let us denote by X̃ ∈ X(G) the vector field ω−1(X). The definition of the
curvature function together with the fact that the curvature of ω is horizontal
easily implies that ω([X̃, Ỹ ]) = −κ(X−, Y−) − [X,Y ], where the subscript
− denotes the g−–component. Using this and the fact that the bracket
in g is complex bilinear, one now concludes that the Nijenhuis–tensor on
G evaluated on X̃ and Ỹ is just −1

4κ0,2(X−, Y−), where κ0,2 denotes the
component of the curvature which is conjugate linear in both arguments.

Once we have shown integrability of JG , we know that ω is a smooth (1, 0)–
form, and holomorphicity of this form is equivalent to ∂̄ω = 0, i.e. to dω
being a (2, 0)–form. (Mistakenly, it was claimed in [11] that holomorphicity
of ω is trivially satisfied.) But since the bracket on g is complex bilinear,
the fact that dω is of type (2, 0) is equivalent to κ(u) being complex bilinear
for any u ∈ G. Hence proving complex bilinearity of κ suffices to prove the
theorem. One possibility to prove this is to eliminate first the possibilities
of having a nontrivial component of type (0, 2) in κ and then eliminating
possible (1, 1)–components using a pretty involved analysis of the Bianchi
identity, similar to the proof of proposition 3.5. Following an idea of [1] on
strengthening the Bianchi identity, there is a neat way around all that using
fairly heavy tools:

Since the curvature function κ is an equivariant map G → Λ2g− ⊗ g, it
can be viewed as an element of Ω2(M,A), where A = G ×B g is the adjoint
tractor bundle. In [4], the twisted exterior derivative dg : Ωi(M,A) →
Ωi+1(A) is constructed. On the other hand, the Cartan connection induces
a principal connection ω̃ on G×BG and since A can be viewed as associated
to that bundle, we get an induced covariant exterior derivative dω̃ between
the same spaces. In [4, 3.11] it is shown that in the torsion free case these two
operators coincide. Moreover, the curvature of ω̃ is also given by κ, so the
Bianchi identity for principal connections implies dω̃(κ) = 0. Now since ω is
normal, the curvature κ has ∂∗–closed values and the harmonic part κ0 may
simply be viewed as the image of κ under the bundle map πH corresponding
to the projection ker(∂∗)→ ker(∂∗)/ im(∂∗), see [4, 4.2]. This projection is
splitted by an invariant differential operator L, whose construction is one
of the main achievements of the paper [4]. In [4, lemma 4.12] it is shown
that this operator is characterized by πH(L(s)) = s and ∂∗ ◦ dg ◦ L = 0,
which implies that κ = L(κ0) in the torsion free case. But then [4, theorem
4.8] shows that κ has values in the B–submodule generated by the values of
κ0, and since κ0 has only complex bilinear values, the generated B–module
consists of complex bilinear maps only. ¤

Corollary. Let (M,HM, J̃) be a torsion free elliptic CR manifold of CR
dimension and codimension two. Then M is a real analytic manifold and
the subbundle HM ⊂ TM and the endomorphism J̃ : HM → HM are real
analytic. In particular, M is automatically locally embeddable.

Proof. By proposition 3.5 M is a complex manifold, and thus in particular
real analytic. Moreover, by the last theorem, the Cartan bundle p : G →M
is a holomorphic principal bundle and the Cartan connection ω ∈ Ω1(G, g)
is holomorphic. Hence, ω−1(g−1 ⊕ · · · ⊕ g2) is a real analytic subbundle of
TG. By construction, this projects onto the subbundle HM ⊂ TM , which
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thus also is real analytic. Similarly, the subbundles H±M and the almost
complex structure J is analytic, since they all are induced from ω. Since J̃ is
obtained by keeping J on H−M and flipping it on H+M , it is real analytic,
too. Embeddability then follows from proposition 2.2. ¤
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