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tWootters [Phys. Rev. Lett. 80, 2245 (1998)℄ has given an expli
it formula forthe entanglement of formation of two qubits in terms of what he 
alls the 
on-
urren
e of the joint density operator. Wootters's 
on
urren
e is de�ned withthe help of the superoperator that 
ips the spin of a qubit. We generalize thespin-
ip superoperator to a \universal inverter," whi
h a
ts on quantum sys-tems of arbitrary dimension, and we introdu
e the 
orresponding 
on
urren
efor joint pure states of D1 � D2 bipartite quantum systems. The universalinverter, whi
h is a positive, but not 
ompletely positive superoperator, is
losely related to the 
ompletely positive universal-NOT superoperator, thequantum analogue of a 
lassi
al NOT gate. We present a physi
al realizationof the universal-NOT superoperator.I. INTRODUCTIONEntanglement plays a 
entral role in quantum information theory [1℄. Perhaps the mostimportant measure of entanglement for bipartite systems is the entanglement of formation[2,3℄. For a bipartite pure state j	ABi, the entanglement of formation is given by the entropyof the marginal density operators, �A and �B, of systems A and B. For a bipartite mixedstate �AB, the entanglement of formation is given by the minimum average marginal entropyof ensemble de
ompositions of �AB.Hill and Wootters [4℄ introdu
ed another measure of entanglement, 
alled the 
on
ur-ren
e, for pairs of qubits. The 
on
urren
e is de�ned with the help of a superoperator S2,whose a
tion on a qubit density operator � = 12(I + ~P � ~�) is to 
ip the spin of the qubit:S2(�) = �y���y = 12(I � ~P � ~�) : (1.1)1



Here �� is the 
omplex 
onjugate (or transpose) of � relative to the eigenbasis of �z. The
on
urren
e of a pure state j	ABi of two qubits is de�ned to beC2(	AB) � rD	AB���S2 
 S2(j	ABih	ABj)���	ABE = jh	ABj�y 
 �yj	�ABij : (1.2)The 
on
urren
e of a mixed state �AB of two qubits is then, by analogy with the entanglementof formation, the minimum average pure-state 
on
urren
e over all ensemble de
ompositionsof �AB. Wootters [5℄ derived an expli
it expression for the mixed-state 
on
urren
e of twoqubits and showed that the entanglement of formation of an arbitrary two-qubit mixed state
an be obtained from the 
orresponding mixed-state 
on
urren
e.In this paper we generalize the notion of 
on
urren
e to pairs of quantum systems ofarbitrary dimension. We show in Se
. II that if the 
on
urren
e is to be generated by aprodu
t superoperator, as in the expression (1.2), then the only suitable superoperator togo into the tensor produ
t is what we 
all the \universal inverter." For a D-dimensionalquantum system, whi
h we 
all a \qudit," we denote the universal inverter by SD. Thea
tion of the universal inverter on a qudit state � is given bySD(�) = �D(I � �) ; (1.3)where �D is a positive 
onstant. A
ting on a pure qudit state j i, the universal invertermaps j i to a multiple of the maximally mixed state in the subspa
e orthogonal to j i.The 
orresponding 
on
urren
e for a joint pure state j	ABi of a D1 �D2 system isC(	AB) � rD	AB���SD1 
 SD2(j	ABih	AB j)���	ABE = 2�D1�D2[1� tr(�2A)℄ : (1.4)Thus, for pure states, the generalized 
on
urren
e is simply related to the purity of themarginal density operators. A sensible 
hoi
e for the 
onstant �D, 
onsistent with the
on
urren
e for qubits, is �D = 1.The universal inverter is a natural generalization to higher dimensions of the qubit spin
ip. Only for D = 2, the spin 
ip, does the universal inverter map pure states to pure states.The universal inverter 
annot be realized as a quantum dynami
s, be
ause the universalinverter, though a positive superoperator, is not 
ompletely positive. In Se
. IID we explorea one-parameter family of tra
e-preserving superoperators that are 
losely related to theuniversal inverter, and we show that the 
ompletely positive member of this family that is
losest to the universal inverter is the universal-NOT superoperator [6,7℄. The universal-NOT is thus the quantum analogue of the 
lassi
al NOT gate. The a
tion of the universal-NOT, denoted GNOT, on a qudit state is given byGNOT(�) = 1D2 � 1(DI � �) � �NOT : (1.5)In Se
. III we give a physi
al realization of the universal-NOT in terms of the quantuminformation distributor introdu
ed by Braunstein, Bu�zek, and Hillery [8℄.The paper 
on
ludes with a brief dis
ussion in Se
. IV)2



II. UNIVERSAL INVERTERIn this se
tion we �rst review, in Se
. IIA, Wootters's spin-
ip operation for a qubitand how it leads to an entanglement measure 
alled the 
on
urren
e for an arbitrary purestate of two qubits [5℄. The main result of this paper is to generalize the spin 
ip to asuperoperator that we 
all the universal inverter . The universal inverter is de�ned in allHilbert-spa
e dimensions, and it leads to a 
on
urren
e for joint pure states of two quantumsystems of arbitrary dimension. In Se
. II B we formulate the requirements for the universalinverter and explore some of its properties, in Se
. II C we show that these requirementspi
k out a unique universal inverter up to a 
onstant multiple, and in Se
. IID we 
onsidertra
e-preserving superoperators that are 
losely related to the universal inverter.The formalism we use for superoperators has been used extensively in open-systemstheory [9℄. The parti
ular notation we use 
an be found in Ref. [10℄ and is summarizedbrie
y in Appendix A, along with a des
ription of several superoperators that play key rolesin our dis
ussion. In 
ontrast to Ref. [10℄, we use �, instead of 
, to denote the slot intowhi
h one inserts the operator on whi
h a superoperator a
ts, reserving 
 to denote tensorprodu
ts between quantum systems. This superoperator formalism has been used to analyzeentanglement in Ref. [11℄.We refer to the two subsystems of a bipartite system as systems A and B. Wherene
essary for 
larity, we use subs
ripts A, B, and AB to distinguish quantities belongingto the subsystems and to the joint system. To redu
e notational 
lutter, however, we omitthese subs
ripts on pure states, denoting pure states of a single system by a lower-
ase Greekletter, e.g., j i, and joint pure states of a bipartite system by an upper-
ase Greek letter,e.g., j	i. A. Spin 
ip and qubit 
on
urren
eA spin 
ip for a single qubit is e�e
ted by the anti-unitary operator �yC = �C�y, whereC denotes 
omplex 
onjugation in the eigenbasis of �z. A
ting on a state ve
tor j i or anoperator A, the anti-unitary 
omplex 
onjugation operator gives Cj i = j �i or CA = A�C,where j �i and A� denote 
omplex 
onjugation of the state or operator in the eigenbasis of�z. For a des
ription of other properties and uses of anti-linear operators, see Ref. [12℄.Promoted to an operator on operators, the spin 
ip be
omes an anti-linear superoperator�yC �Cy�yy = �yC �C�y, whi
h a
ts on operators a

ording to �yCAC�y = �yA��y. Sin
e weare only interested in the operation of the spin 
ip on Hermitian operators, where 
omplex
onjugation is equivalent to transposition, we 
an repla
e this anti-linear superoperator withthe 
orresponding linear superoperatorS2 = �y � �y Æ T2 ; (2.1)where T2 denotes transposition in the eigenbasis of �z (see Appendix A). The subs
ript 2distinguishes the spin 
ip and transposition in two dimensions from the similar quantitiesfor arbitrary dimensions that we introdu
e later in this se
tion.The a
tion of the spin-
ip superoperator on an arbitrary qubit density operator, � =12(I + ~P � ~�), is to invert the Blo
h ve
tor ~P through the origin, as in Eq. (1.1). Sin
e3



inversion 
ommutes with rotations, representing unitary operators, we have immediatelythat S2 
ommutes with all unitary operators U , i.e., S2 Æ U � Uy = U � Uy Æ S2.For a quantum state � of a two-qubit system, the spin-
ipped density operator, distin-guished by a tilde, is ~� = S2 
 S2(�) = �y 
 �y���y 
 �y : (2.2)Wootters [5℄ de�ned the 
on
urren
e of a two-qubit pure state, � = j	ih	j, to beC2(	) � qtr(�~�) = rD	���S2 
 S2(j	ih	j)���	E = jh	j�y 
 �yj	�ij : (2.3)The joint pure state 
an be written in terms of a S
hmidt de
omposition,j	i = a1je1i 
 jf1i+ a2je2i 
 jf2i ; (2.4)where jeji and jfji are the orthonormal eigenve
tors of the marginal density operators forthe two qubits and a1 and a2 are the (positive) square roots of the 
orresponding eigenvalues.Sin
e S2 
ommutes with all unitary operators, the 
on
urren
e C2(	) is un
hanged by lo
alunitary transformations. This means that C2(	) is a fun
tion only of a1 and a2; it iseasy to verify that C2(	) = 2a1a2. As noted by Wootters, the 
on
urren
e 
an serve as ameasurement of entanglement: it is invariant under lo
al unitary transformations, as anygood measure of entanglement should be, and it varies smoothly from 0 for pure produ
tstates to 1 for maximally entangled pure states.Wootters [5℄ went on to show that the 
on
urren
e 
an also be used to measure theentanglement of mixed states of two qubits. He de�ned the 
on
urren
e of a two-qubitmixed state to be the minimumaverage pure-state 
on
urren
e, where the minimum is takenover all ensemble de
ompositions of �. He derived an expli
it expression for this mixed-state
on
urren
e in terms of the eigenvalues of �~� and showed that the entanglement of formationof an arbitrary two-qubit mixed state 
an be written in terms of the 
orresponding mixed-state 
on
urren
e. B. Universal inverter and generalized 
on
urren
eOur goal in this paper is to generalize the spin-
ip superoperator S2 for a qubit toa superoperator SD that a
ts on qudit states and generates a 
on
urren
e for D1 � D2bipartite quantum systems. The spin-
ip superoperator has several important propertiesthat we might wish its generalization to retain:1. S2 maps Hermitian operators to Hermitian operators.2. S2 
ommutes with all unitary operators.3. h	jS2 
 S2(j	ih	j)j	i is nonnegative for all joint pure states j	i and goes to zero ifand only if j	i is a produ
t state.4. S2 is a positive superoperator; i.e., it maps positive operators to positive operators.5. S2 is tra
e preserving. 4



6. S2 maps any pure state j ih j to the orthogonal pure state j ?ih ?j.Property 1 guarantees that S2 
 S2 maps Hermitian operators to Hermitian operators (seeAppendix B) and thus that the quantity h	jS2
S2(j	ih	j)j	i of property 3 is real. Prop-erty 2 ensures that C2(	) is un
hanged by lo
al unitary transformations, as an entanglementmeasure should be. Property 3 makes C2(	) well de�ned, by ensuring that the quantityinside the square root is nonnegative, and it sets the zero so that pure produ
t states, butno other pure states, have vanishing 
on
urren
e.In generalizing the spin 
ip to higher dimensions, we want the 
on
urren
e of a purestate � = j	ih	j of a D1 �D2 bipartite system to be de�ned as for qubits, i.e.,C(	) � rD	���SD1 
 SD2(j	ih	j)���	E : (2.5)It is 
lear that the analogues of properties 1{3 are desirable properties of SD, for the samereasons as for qubits, and it turns out that they are suÆ
ient to pi
k out a unique superop-erator SD up to a 
onstant multiple.The upshot of this dis
ussion is that we require SD to have the following properties:10. SD maps Hermitian operators to Hermitian operators.20. SD 
ommutes with all unitary operators.30. h	jSD1 
 SD2(j	ih	j)j	i is nonnegative for all joint pure states j	i and goes to zeroif and only if j	i is a produ
t state.The only superoperator that has these three properties isSD = �D(I� I) ; (2.6)where I is the unit superoperator relative to the left-right a
tion, I is the unit superoperatorrelative to the ordinary a
tion, and �D is an arbitrary real 
onstant. For the 
onsiderationsin Se
. IID, we allow �D to have a dependen
e on D. For purposes of de�ning a 
on
urren
e,however, �D should be independent of D; otherwise the 
on
urren
e of joint pure state 
ouldbe 
hanged simply by adding extra, unused dimensions to one or both systems.We show that SD is the only superoperator allowed by properties 10{30 in Se
. II C. Forthe remainder of this subse
tion, we show that SD does satisfy properties 10{30, and we spellout some of its other properties and properties of the 
orresponding 
on
urren
e. Noti
e�rst that SD takes an operator A toSD(A) = �D[ I(A)� I(A)℄ = �D[tr(A)I �A℄ ; (2.7)from whi
h it is 
lear that SD satis�es properties 10 and 20. If A is a density operator �, weget SD(�) = �D(I � �) : (2.8)Sin
e I � � is a positive operator for any �, we have immediately that SD is a positivesuperoperator provided that �D is positive. The 
on
urren
e is indi�erent to a 
hange in the5



sign of �D, so we are free to 
hoose �D to be positive, whi
h we do hen
eforth, thus makingSD positive. If �D = 1=(D�1), SD is tra
e preserving; this tra
e-preserving normalization isuseful for the 
onsiderations of Se
. IID, but we see below that �D = 1 is a more reasonablenormalization to use for the 
on
urren
e C(	). Finally, SD maps a pure state � = j ih jto a positive multiple of the proje
tor orthogonal to �:SD(j ih j) = �D(I � j ih j) : (2.9)It is this property that prompts us to 
all SD the universal inverter. Other properties ofSD, whi
h follow dire
tly from the 
orresponding properties of I and I (see Appendix A),are that SD is Hermitian relative to the ordinary a
tion, i.e., S�D = SD, and that it 
hangessign under sharping, i.e., S#D = �SD.We now see that properties 4{6 of the qubit spin 
ip survive, in amended form, in itsgeneralization:40. SD is a positive superoperator.50. SD is a positive multiple of a tra
e-preserving superoperator, i.e., S�D(I) = �D(D�1)I.60. SD maps any pure state j ih j to a positive multiple of the proje
tor onto the subspa
eorthogonal to j i.It is worth pointing out that if we added to properties 10{30 the additional requirement thatSD map ea
h pure state to a multiple of some orthogonal state, then the superoperator ofEq. (2.6) would trivially be the only possibility for the universal inverter.We still have to deal with property 30. For that purpose we need the tensor-produ
tsuperoperator SD1 
 SD2 = �D1�D2(I
 I� I 
 I� I
 I + I 
 I) : (2.10)Applied to an arbitrary joint density operator �AB, this tensor-produ
t superoperator givesSD1 
 SD2(�AB) = �D1�D2(I 
 I � �A 
 I � I 
 �B + �AB) : (2.11)Proje
ting ba
k onto �AB givestr��ABSD1 
 SD2(�AB)� = �D1�D2 [1� tr(�2A)� tr(�2B) + tr(�2AB)℄ � 0 : (2.12)The inequality here, whi
h shows that the quantity in property 30 is nonnegative, is provedin Appendix C, where it is also shown that the inequality is saturated if and only if �AB =�A 
 �B is a produ
t state, with �A or �B a pure state. For a joint pure state �AB, thisestablishes property 30.It is useful to spe
ialize Eq. (2.12) to a joint pure state j	i, in whi
h 
ase it be
omes thesquare of the pure-state 
on
urren
e:C2(	) = D	���SD1 
 SD2(j	ih	j)���	E = 2�D1�D2 [1� tr(�2A)℄ : (2.13)Thus the 
on
urren
e measures the entanglement of a pure state in terms of the purity,tr(�2A) = tr(�2B), of the marginal density operators. A joint pure state has a S
hmidtde
omposition, 6



j	i =Xj ajjeji 
 jfji ; aj > 0; (2.14)in terms of whi
h the squared 
on
urren
e be
omesC2(	) = 2�D1�D2 1 �Xj a4j! = 4�D1�D2 Xj<k a2ja2k : (2.15)For de�ning a 
on
urren
e, one should 
hoose the s
aling fa
tor �D to be independent of D|otherwise, as noted above, the pure state 
on
urren
e 
ould be 
hanged simply by addingextra, unused dimensions to one of the subsystems|and to be 
onsistent with the qubit
on
urren
e, one should 
hoose �D = 1. With this 
hoi
e the pure-state 
on
urren
e runsfrom zero for produ
t states to q2(M � 1)=M , where M = min(D1;D2), for a maximallyentangled state.There is another interesting form of the universal inverter, whi
h makes a dire
t 
on-ne
tion to the form (2.2) of the spin 
ip. Choosing an orthonormal basis jeji, let T bethe superoperator that transposes matrix representations in this basis, and let PA be thesuperoperator proje
tor, relative to the left-right a
tion, whi
h proje
ts onto the subspa
eof operators that are antisymmetri
 in this basis. We show in Appendix A thatSD=�D = 2PA Æ T : (2.16)For qubits, if we use the eigenstates of �z as the 
hosen basis, then the antisymmetri
operator subspa
e is spanned by the normalized operator �y=p2, so the proje
tor onto thissubspa
e is PA = j�y)(�yj=2 = �y� �y=2. Thus in the two dimensions the universal inverterbe
omes S2 = �2�y � �y Æ T2, whi
h agrees with the spin 
ip if �2 = 1.C. Derivation of universal inverterWe now show that the only superoperator that satis�es properties 10{30 of the pre
edingsubse
tion is the universal inverter (2.6). As we pro
eed through the proof, we use GD todenote the operator under 
onsideration.As we show in Appendix B, property 10 implies that GD is left-right Hermitian, i.e.,GD = GyD, and thus has an eigende
ompositionGD =X� ��j��)(��j =X� ���� � � y� ; (2.17)where the �� are real (left-right) eigenvalues and the operators �� are the 
orrespondingorthonormal eigenoperators.Property 20 implies thatGD = Uy � U Æ GD Æ U � Uy =X� ��Uy��U � Uy� y�U ; (2.18)whi
h means that Uy��U is an eigenoperator of GD, with eigenvalue ��, for any unitaryoperator U . This result 
an be restated as saying that the degenerate eigensubspa
es ofGD are invariant under all unitary transformations. We show in Appendix D that the7



only operator subspa
es that are invariant under all unitary transformations are the one-dimensional subspa
e spanned by the unit operator and the (D2 � 1)-dimensional subspa
eof tra
efree operators. As a 
onsequen
e, GD must have the formGD = �DI=D + �DF : (2.19)Here I = I � I is the unit superoperator relative to the ordinary a
tion, F is the superop-erator that proje
ts onto the subspa
e of tra
efree operators when a
ting to the right (seeAppendix A), �D is the eigenvalue of GD 
orresponding to the normalized eigenoperatorI=pD, and �D is the eigenvalue 
orresponding to all of the tra
efree operators. Noti
e thatGD is Hermitian relative to the ordinary a
tion, i.e., GD = G�D.If we add I=pD to a 
omplete, orthonormal set of tra
efree operators, we obtain a
omplete, orthonormal set of operators, so the unit superoperator in the left-right sense isgiven by I = I=D + F ; (2.20)from whi
h we get GD = �DI + �DI ; (2.21)where �D = (�D � �D)=D : (2.22)Now we impose property 30. In doing so, it is suÆ
ient to 
onsider the requirements ofproperty 30 in the 
ase where the two subsystems have the the same dimension D. In this
ase the tensor-produ
t superoperator takes the formGD 
 GD = �2DI 
 I + �D�D(I 
 I+ I
 I) + �2DI
 I : (2.23)Applying this superoperator to a joint density operator �AB givesGD 
 GD(�AB) = �2D�AB + �D�D(�A 
 I + I 
 �B) + �2DI 
 I ; (2.24)and proje
ting this ba
k onto �AB yieldstr��ABGD 
 GD(�AB)� = �2Dtr(�2AB) + �D�D[tr(�2A) + tr(�2B)℄ + �2D : (2.25)Spe
ializing to a joint pure state j	i, we getD	���GD 
 GD(j	ih	j)���	E = �2D + �2D + 2�D�Dtr(�2A) = (�D � �D)2 � 2�D�D[1� tr(�2A)℄ :(2.26)If �D�D � 0, the top sign in Eq. (2.26) shows that the quantity in property 30 is stri
tlypositive, unless �D = �D = 0, a 
ase of no interest. If �D�D < 0, the bottom sign in Eq. (2.26)shows that the quantity is nonnegative and goes to zero if and only if �D = ��D and �Ais pure, i.e., the joint pure state is a produ
t state. Thus it turns out that the quantity inproperty 30 is nonnegative for all superoperators of the form (2.21), but the only way to setthe zero properly is to 
hoose �D = ��D, thus giving the universal inverter of Eq. (2.6). Theleft-right eigenvalues of the universal inverter are �D and �D = D�D + �D = �(D � 1)�D.8



D. Tra
e-preserving superoperatorsAll superoperators of the form (2.21) are proportional to a tra
e-preserving superopera-tor, sin
e G�D(I) = GD(I) = (�D +D�D)I : (2.27)Requiring GD to be tra
e preserving gives the 
ondition�D = 1 �D�D (2.28)[�D = D � �D(D2 � 1)℄, whi
h allows us to eliminate one parameter and to write thetra
e-preserving version of GD asGDT = (1 �D�D)I + �DI : (2.29)A
ting on an arbitrary input state �, this superoperator givesGDT (�) = (1 �D�D)� + �DI : (2.30)It is instru
tive to investigate this one-parameter family of tra
e-preserving operators.We �rst ask whi
h of the tra
e-preserving operators (2.29) are 
ompletely positive. The
ondition that a superoperator be 
ompletely positive is that its left-right eigenvalues benonnegative (see Appendix A). Thus the 
ondition for the 
omplete positivity of GDT isthat �D � 0 and �D � 0, whi
h is equivalent to0 � �D � DD2 � 1 : (2.31)When �D = 0, GDT = I is the unit superoperator, and when �D = D=(D2 � 1),GDT = DD2 � 1F = 1D2 � 1(DI � I) � GNOT (2.32)is the universal-NOT superoperator [6,7℄. Noti
e that the universal-NOT is a multiple of F ,the superoperator whose right a
tion proje
ts onto the subspa
e of tra
efree operators. Sin
ethe dynami
s of a quantum system must be 
ompletely positive, the universal-NOT is the
losest physi
al approximation to the universal inverter and thus is the quantum analogueof the 
lassi
al NOT gate. We present a realization of the universal-NOT in Se
. III.Another interesting 
ompletely positive superoperator o

urs for �D = 1=(D + 1):GDT = 1D + 1(I+ I) = 1DI + 1D + 1F � GAV : (2.33)This superoperator was used to generate operator expansions in Ref. [11℄, where it was shownthat it is the unique tra
e-preserving superoperator that satis�es G = Gy = G� = G# and
ommutes with all unitaries. In 
ontrast, the universal inverter is the unique superoperatorthat satis�es G = Gy = G� = �G# and 
ommutes with all unitaries.As shown in Ref. [11℄, the superoperator GAV is the tra
e-preserving version of the su-peroperator that des
ribes proje
tion onto a random pure state,9



GAV = D Z dVV j ih j � j ih j ; (2.34)where dV is the unitarily invariant integration measure on proje
tive Hilbert spa
e and V isthe 
orresponding total volume. Proje
tion onto a random pure state is the measurementthat results in the optimal estimation of the state of the qudit [13℄. This estimated state isgiven by the density operator GAV(�) = 1D + 1(I + �) : (2.35)We now 
onsider whi
h of the tra
e-preserving operators (2.29) are positive. Letting pjbe the eigenvalues of the input density operator �, one sees that the eigenvalues of GDT (�)[Eq. 2.30)℄ are (1�D�D)pj+�D. The 
ondition that GDT be positive is that these eigenvaluesbe nonnegative for all input eigenvalues pj , whi
h is equivalent to0 � �D � 1D � 1 : (2.36)When �D = 1=(D � 1), GDT be
omes the tra
e-preserving version of the universal inverter,SDT = 1D � 1(I� I) : (2.37)The positive superoperators are 
onvex 
ombinations of I and SDT :GDT = [1� �D(D � 1)℄I + �D(D � 1)SDT : (2.38)Noti
e that the universal-NOT 
an be written asGNOT = 12(SDT + GAV) : (2.39)III. PHYSICAL REALIZATION OF THE UNIVERSAL-NOTIn this se
tion we give a physi
al realization of universal-NOT superoperator GNOT ofEq. (2.32). Consider a qudit in a pure state � = j ih j. As shown in Se
. II, the idealinversion of this state is given bySDT (�) = 1D � 1(I � �) � �? ; (3.1)where SDT is the tra
e preserving version of the universal inverter [see Eq. (2.37)℄. Theinverted state �? is the maximally mixed state in the (D�1)-dimensional orthogonal to theinput state � = j ih j. Noti
e that by 
onstru
tion, tr(��?) = 0 for pure input states.As shown in Se
. IID, the tra
e-preserving universal inverter SDT is a positive, but not
ompletely positive superoperator and as su
h 
annot be realized physi
ally. In the one-parameter family of tra
e-preserving inverters 
onsidered in Se
. IID, the universal-NOTsuperoperator GNOT of Eq. (2.32) is the 
losest 
ompletely positive superoperator to the10



universal inverter. We denote the best physi
ally possible inversion of the state �, obtainedusing the universal-NOT, as�NOT � GNOT(�) = 1D2 � 1(DI � �) : (3.2)In order to realize the universal-NOT, we 
ouple the qudit to be inverted, denoted by A,to the quantum information distributor (QID) introdu
ed in Ref. [8℄. The QID is 
omposedof two an
illa qudits, B and C, ea
h of whi
h has the same dimension D as qudit A. Todes
ribe the universal inverter, we introdu
e several operators and states for qudits.First we need the 
onjugate \position" and \momentum" operators, x and p. Theeigenve
tors of x are denoted by jxki,xjxki = xkjxki ; (3.3)with the eigenvalues given by xk = kq2�=D; analogously, the eigenstates of p are denotedby jpki, pjpki = pkjpki ; (3.4)with the eigenvalues given by pk = kq2�=D. We use units su
h that the two operatorsare dimensionless. The two sets of eigenve
tors, fjxkig and fjpkig, form bases in the quditHilbert spa
e and are related by a dis
rete Fourier transform,jxki = 1pD D�1Xl=0 e�2�ikl=Djpli ; (3.5)jpli = 1pD D�1Xk=0 e2�ikl=Djxki : (3.6)The translation (shift) operators, de�ned byRx(n) = e�ixnp ; Rp(m) = eipmx ; (3.7)
y
li
ally permute the basis ve
tors a

ording toRx(n)jxki = jx(k+n)modDi ; (3.8)Rp(m)jpli = jp(l+m)modDi ; (3.9)where the sums of indi
es are taken modulo D.An orthonormal basis of D2 two-qudit maximally entangled states j�mni is given byj�mni = 1pD D�1Xk=0 e2�imk=Djxki 
 jx(k+n)modDi ; (3.10)where m;n = 0; : : : ;D � 1. Using Eq. (3.5), we 
an rewrite the states j�mni in the jointmomentum basis: j�mni = 1pD D�1Xl=0 e�2�inl=Djp(m�l)modDi 
 jpli : (3.11)11



The state j�00i 
an be written asj�00i = 1pD D�1Xk=0 jxki 
 jxki = 1pD D�1Xl=0 jp�lmodDi 
 jpli : (3.12)It is interesting to note that the whole set of D2 maximally entangled states j�mni 
an begenerated from j�00i by the a
tion of lo
al unitary operations (shifts):j�mni = Rp(m)
Rx(n)j�00i : (3.13)Now we are ready to des
ribe the QID. The an
illa qudits, B and C, are initiallyprepared in the state j�iBC = �1j�00iBC + �2jx0iB 
 jp0iC : (3.14)The phase freedom in j�iBC 
an be used to make �1 real and nonnegative, but then �2 is ingeneral 
omplex. We do not use the freedom to make �1 nonnegative, thereby retaining foruse below the ability to multiply both �1 and �2 by �1.Normalization of j�BCi imposes the 
onstraint1 = �21 + j�2j2 + �1(�2 + ��2)D = �21 + a2 + b2 + 2a�1D ; (3.15)where �2 = a+ ib. Solving for �1, we get�1 = � aD +s1 � b2 � a2D2 � 1D2 : (3.16)We dis
ard the other solution of the quadrati
 equation, be
ause it 
an be 
onverted to thissolution by multiplying both �1 and �2 by �1. Sin
e �1 is real, we must haveD2 � 1D2 a2 + b2 � 1 ; (3.17)whi
h means that �2 lies on or within an ellipse that has prin
ipal radius D=pD2 � 1 � 1along the real axis and prin
ipal radius 1 along the imaginary axis. Therefore, we 
on
ludethat 0 � j�2j2 � D2D2 � 1 : (3.18)It is easy to see that the minimum value of �1 o

urs when �2 = D=pD2 � 1, this minimumvalue being �1 = �1=pD2 � 1. It is also easy to see that the maximum value of �1 o

urswhen �2 is real; the maximum o

urs at �2 = �1=pD2 � 1 and is given by �1 = D=pD2 � 1.The upshot is that �1 is bounded by� 1pD2 � 1 � �1 � DpD2 � 1 : (3.19)12



The negative values of �1 are unimportant, be
ause they 
an be 
onverted to positive valuesby multiplying both �1 and �2 by �1. What is important is that j�1j2 has the same range ofpossible values as j�2j2.We now allow qudit A to intera
t with the two an
illa qudits, the resulting dynami
sdes
ribed by the unitary operatorUABC = exp[�i(xC � xB)pA℄ exp[�ixA(pB + pC)℄ (3.20)(for more details, see Ref. [8℄). For an initial pure state j i of qudit A, the joint state afterthe intera
tion isUABCj iA 
 j�iBC = �1j iA 
 j�00iBC + �2j iB 
 j�00iAC : (3.21)The output states of the individual qudits after tra
ing out the other two qudits are�(out)A =  �21 + �1(�2 + ��2)D !�+ j�2j2D I ; (3.22)�(out)B =  j�2j2 + �1(�2 + ��2)D !�+ �21DI ; (3.23)�(out)C = �1(�2 + ��2)D �T + �21 + j�2j2D I ; (3.24)where � is an arbitrary initial state of qudit A and �T is its transpose. Taking into a

ountthe 
onstraint (3.15), we 
an rewrite the output states of qudits A and B as�(out)A = (1� j�2j2)�+ j�2j2I=D ; (3.25)�(out)B = (1� �21)�+ �21I=D : (3.26)As far as qudit A is 
on
erned, the QID a
ts like the superoperator GDT of Eqs. (2.29) and(2.30) with D�D = j�2j2. As far as qudit B is 
on
erned, the QID �rst swaps the states ofA and B and then a
ts like GDT with D�D = �21 .Rewriting the output state of qudit A in terms of the ideal inverted state �? = (I ��)=(D � 1), we get�(out)A = (j�2j2 � 1)(D � 1)�? + [D � j�2j2(D � 1)℄I=D : (3.27)To make �(out)A as 
lose as possible to �?, we need to maximize j�2j2; i.e., we need to 
hooseD�D = j�2j2 = D2D2 � 1 ; (3.28)thus making the a
tion of the QID on qudit A the same as the a
tion of the universal-NOTgiven in Eq. (3.2). Noti
e that the QID gives the superoperator GAV of Eq. (2.33) whenD�D = j�2j2 = D=(D + 1).When j�2j2 has its maximum value, �21 = 1=(D2 � 1), so the output state (3.26) of quditB be
omes �(out)B = �1� 1D2 � 1� �+ 1(D2 � 1) ID : (3.29)13



Noti
e that in the limit of large D, we have j�2j ! 1 and �1 ! 0. The output state of quditB redu
es to the input state of qudit A, and the output states of A and C redu
e to themaximally mixed state I=D. All this is a 
onsequen
e of the fa
t that the initial state ofqudits B and C limits to j�iBC ! jx0iB 
 jp0iC , and the QID swaps the states of A and B:UABCj iA 
 j�00iBC = j iB 
 j�00iAC : (3.30)IV. CONCLUSIONThe 
on
urren
e introdu
ed by Hill and Wootters [4℄ and by Wootters [5℄ provides agood measure of the entanglement of any state of two qubits, pure or mixed. The Hill-Wootters 
on
urren
e is generated with the help of the superoperator that 
ips the spin of aqubit. In this paper we have identi�ed the 
ru
ial properties of the spin-
ip superoperator,whi
h allow it to generate a good entanglement measure for pure states of two qubits.By generalizing these properties to systems of arbitrary dimension, we have singled out aunique superoperator, whi
h we 
all the universal inverter. In the same way that the spin 
ipgenerates a 
on
urren
e for pairs of qubits, the universal inverter generates a 
on
urren
efor joint pure states of pairs of quantum systems of arbitrary dimension. This pure-state
on
urren
e measures entanglement in terms of the purity of the marginal density operatorsof the joint pure state.It is natural to de�ne the 
on
urren
e of mixed states of D1 �D2 quantum systems asthe minimum average 
on
urren
e of ensemble de
ompositions of the joint density operator.We are investigating the properties of this de�nition of mixed-state 
on
urren
e and how itis related to other measures of mixed-state entanglement.The universal inverter turns out to be the ideal inverter of pure states, sin
e it takes apure state to the maximally state in the subspa
e orthogonal to the pure state. Be
ausethe universal inverter is a positive, but not 
ompletely superoperator, it 
annot be realizedas the dynami
s of a quantum system 
oupled to an an
illa. We have shown that the
ompletely positive superoperator that 
omes 
losest to a
hieving an ideal state inversion isa superoperator 
alled the universal-NOT, and we have presented a physi
al realization ofthe universal-NOT. ACKNOWLEDGMENTSThis work was supported in part by the OÆ
e of Naval Resear
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eFoundation (Grant No. PHY-9970507).APPENDIX A: SUPEROPERATOR FORMALISM AND SPECIALSUPEROPERATORSThe formalism we use for superoperators has been used extensively in open-systemstheory [9℄. In this Appendix, we summarize our notation, whi
h follows that of Ref. [10℄,14



and we introdu
e and des
ribe key properties of several superoperators that are importantfor our analysis.The spa
e of linear operators a
ting on a Hilbert spa
e H is a D2-dimensional 
omplexve
tor spa
e. We introdu
e operator \kets" jA) = A and \bras" (Aj = Ay, distinguished fromve
tor kets and bras by the use of smooth bra
kets. The natural operator inner produ
t 
anbe written as (AjB) = tr(AyB). An orthonormal basis jeji indu
es an orthonormal operatorbasis jejihekj = �jk � �� ; (A1)where the Greek index is an abbreviation for two Roman indi
es. Not all orthonormal oper-ator bases are of this outer-produ
t form. In the following, �� 
an be a general orthonormaloperator basis, or it 
an be spe
ialized to an outer-produ
t basis.The spa
e of superoperators on H, i.e., linear maps on operators, is a D4-dimensional
omplex ve
tor spa
e. A superoperator A is spe
i�ed by its \matrix elements"Alj;mk � Del���A(jejihekj)���emE ; (A2)for the superoperator 
an be written in terms of its matrix elements asA = Xlj;mkAlj;mkjelihejj � jekihemj =X�;� A�� �� � � y� =X�;� A��j��)(��j : (A3)The ordinary a
tion of A on an operator A, used above to generate the matrix elements, isobtained by dropping an operator A into the 
enter of the representation of A, in pla
e ofthe � sign, i.e., A(A) =X�;� A�� ��A� y� : (A4)There is 
learly another way that A 
an a
t on A, the left-right a
tion,AjA) �X�;� A��j��)(��jA) ; (A5)in terms of whi
h the matrix elements areA�� = (��jAj��) = �jelihejj���A���jemihekj� = Del���A(jejihekj)���emE = Alj;mk : (A6)This expression provides the fundamental 
onne
tion between the two a
tions of a superop-erator.With respe
t to the left-right a
tion, a superoperator works just like an operator. Mul-tipli
ation of superoperators B and A is given byBA = X�;�;
B�
A
�j��)(��j ; (A7)and the \left-right" adjoint, de�ned by(AjAyjB) = (BjAjA)� ; (A8)15



is given by Ay =X�;�A����� � � y� =X�;� A���j��)(��j : (A9)With respe
t to the ordinary a
tion, superoperator multipli
ation, denoted as a 
ompositionB Æ A, is given by B Æ A = X�;�;
;ÆB
ÆA�� �
�� � � y�� yÆ : (A10)The adjoint with respe
t to the ordinary a
tion, denoted by A�, is de�ned bytr�[A�(B)℄yA� = tr�ByA(A)� : (A11)In terms of a representation in an operator basis, this \
ross" adjoint be
omesA� =X�;� A��� � y� � �� : (A12)Noti
e that (B Æ A)y = By Æ Ay and (BA)� = B�A� : (A13)We 
an formalize the 
onne
tion between the two kinds of a
tion by de�ning an operation,
alled \sharp," whi
h ex
hanges the two:A#jA) � A(A) : (A14)Simple 
onsequen
es of the de�nition are that(A#)y = (A�)# ; (A15)(B Æ A)# = B#A# : (A16)The matrix elements of A# are given byA#lj;mk = �jelihejj���A#���jemihekj�= tr�jejiheljA(jemihekj)�= Del���A(jemihekj)���ejE= Alm;jk ; (A17)whi
h implies that A# = Xlj;mkAlj;mkjelihemj � jekihejj : (A18)A superoperator is left-right Hermitian, i.e., Ay = A, if and only if it has an eigende-
omposition 16



A =X� ��j��)(��j =X� ���� � � y� ; (A19)where the �� are real (left-right) eigenvalues and the operators �� are orthonormal eigenop-erators.A superoperator is tra
e preserving if, under the ordinary a
tion, it leaves the tra
eun
hanged, i.e., if tr(A) = tr(A(A)) = tr([A�(I)℄yA) for all operators A. Thus A is tra
epreserving if and only if A�(I) = I.A superoperator is said to be positive if it maps positive operators to positive operatorsunder the ordinary a
tion. A superoperator is 
ompletely positive if it and all its extensionsI 
 A to tensor-produ
t spa
es, where I is the unit superoperator on the appended spa
e,are positive. It 
an be shown that A is 
ompletely positive if and only if it is positiverelative to the left-right a
tion, i.e., (AjAjA) � 0 for all operators A (for a proof in thepresent notation, see Ref. [10℄). This is equivalent to saying that A is left-right Hermitianwith nonnegative left-right eigenvalues.In this paper we make use of several spe
ial superoperators, whose properties we sum-marize here. The identity superoperator with respe
t to the ordinary a
tion isI = I � I =Xj;k jejihej j � jekihekj : (A20)This superoperator is Hermitian in both senses, i.e., I = Iy = I�. It is the identitysuperoperator relative to the ordinary a
tion be
ause I(A) = A for all operators A, but itsleft-right a
tion gives IjA) = tr(A)I.The identity superoperator with respe
t to the left-right a
tion isI =X� j��)(��j =Xj;k jejihekj � jekihej j : (A21)This superoperator is also Hermitian in both senses, i.e., I = Iy = I�. It is the identitysuperoperator relative to the left-right a
tion be
ause IjA) = A for all operators A, but itsordinary a
tion gives I(A) = tr(A)I. Sin
e sharping ex
hanges the two kinds of a
tion, it is
lear that I# = I.To de�ne the remaining superoperators, it is useful to introdu
e a set of D2�1 tra
efree,Hermitian operators [14℄, whi
h are the generators of SU(D). We label these operators bya Greek index �, whi
h runs from 1 to D2 � 1. The operators are de�ned by� = 1; : : : ;D � 1 :�� = �j � 1qj(j � 1) 0� j�1Xk=1 �kk � (j � 1)�jj1A ; 2 � j � D ; (A22)� = D; : : : ; (D + 2)(D � 1)=2 :�� = �(+)jk � 1p2 (�jk + �kj) ; 1 � j < k � D ; (A23)� = D(D + 1)=2; : : : ;D2 � 1 :�� = �(�)jk � �ip2 (�jk � �kj) ; 1 � j < k � D : (A24)17



In Eq. (A22), � stands for a single Roman index j, whereas in Eqs. (A23) and (A24), itstands for the pair of Roman indi
es, jk. These operators are Hermitian generalizations ofthe two-dimensional Pauli operators: the operators (A22) are diagonal in the 
hosen basis,like �z; for ea
h pair of dimensions, the operators (A23) are like the Pauli operator �x; andfor ea
h pair of dimensions, the operators (A24) are like �y.Like the Pauli operators, the operators �� are orthonormal, i.e.,(��j��) = tr(����) = Æ�� : (A25)Thus they 
onstitute an operator basis for the subspa
e of tra
efree operators. Indeed, we
an de�ne a superoperator proje
tor,F �X� j��)(��j =X� �� � �� ; (A26)whi
h relative to the left-right a
tion, proje
ts onto the subspa
e of tra
efree operators.Noti
e that F = Fy = F�.If we add to the set of operators �� the normalized unit operator I=pD, we obtain anorthonormal operator basis. Thus the unit superoperator I 
an be written asI = jI)(IjD +X� j��)(��j = I=D + F : (A27)Writing F = I� I=D, we �nd thatF# = I � ID = D2 � 1D2 I � FD : (A28)In the 
hosen basis, the operators (A22) and (A23) are real and symmetri
. Together withI=pD, they 
onstitute a set of D(D+1)=2 orthonormal operators, whi
h span the subspa
eof operators that are symmetri
 in the 
hosen basis. In 
ontrast, the D(D � 1)=2 operatorsin Eq. (A24) are pure imaginary and antisymmetri
 and span the subspa
e of operators thatare antisymmetri
 in the 
hosen basis. We 
an de�ne superoperator proje
tors,PS � jI)(IjD + X�� real j��)(��j ; (A29)PA � X�� imaginary j��)(��j ; (A30)whi
h relative to the left-right a
tion, proje
t onto the symmetri
 and antisymmetri
 oper-ator subspa
es. Noti
e that PS = PyS = P�S and PA = PyA = P�A . It is 
lear thatI = PS + PA : (A31)The last superoperator we need is the superoperator that transposes operators in the
hosen basis. The ordinary a
tion of the transposition superoperator is given byT (A) =Xj;k jejihekjAjejihekj ; (A32)18



so the superoperator has the formT =Xj;k jejihekj � jejihekj : (A33)The transposition superoperator is Hermitian in both senses and is un
hanged by sharp-ing, i.e., T = T y = T � = T #. In addition to satisfying T Æ T = I, the transpositionsuperoperator has the property that I Æ T = I ; (A34)whi
h in view of Eq. (A16), is equivalent to IT = I.It is easy to see that PS �PA, a
ting to the right, transposes an operator, i.e.,PSjA)�PAjA) = T (A) = T #jA) ; (A35)whi
h gives us, sin
e T is invariant under sharping,T = T # = PS �PA : (A36)Combined with Eq. (A31), this gives usPS = 12(I+ T ) ; (A37)PA = 12(I� T ) : (A38)Combining these forms with Eq. (A34) yields2PS Æ T = I+ I = (D + 1)GAV ; (A39)2PA Æ T = I� I = SD=�D : (A40)APPENDIX BIn this Appendix we show that a superoperator is Hermitian relative to the left-righta
tion if and only if it maps all Hermitian operators to Hermitian operators.Let A be a superoperator, and let jeji be an orthonormal basis, whi
h indu
es an or-thonormal operator basis jejihekj. Noti
e thatDel���Ay(jejihekj)���emE = � jelihej j ���Ay��� jemihekj �= � jemihekj ���A��� jelihejj ��= Dem���A(jekihej j)���elE�= Del���[A(jekihejj )℄y���emE : (B1)Here the �rst and third equalities follow from relating the ordinary a
tion of a superoperatorto its left-right a
tion [Eq. (A6)℄, the se
ond equality follows from the de�nition of the left-right adjoint of A [Eq. (A8)℄, and the fourth equality follows from the de�nition of the19



operator adjoint. Equation (B1) gives the relation between the operator adjoint and theleft-right superoperator adjoint:Ay(jejihekj) = [A(jekihejj)℄y : (B2)Thus we have that A = Ay, i.e., A is left-right Hermitian, if and only ifA(jejihekj) = [A(jekihej j)℄y (B3)for all j and k. This result allows us to prove the desired theorem easily.Theorem. A superoperator A is left-right Hermitian if and only if it maps all Hermitianoperators to Hermitian operators.Proof: First suppose A is left-right Hermitian, i.e., A = Ay. This implies that Ahas a 
omplete, orthonormal set of eigenoperators ��, with real eigenvalues ��. Using theeigende
omposition (A19), we have for any Hermitian operator H,A(H) =X� ����H� y� = A(H)y : (B4)Now suppose A maps all Hermitian operators to Hermitian operators. Letting �jk =jejihekj, it follows thatA(�jk) = A�12(�jk + �kj) + i�i2 (�jk � �kj)�= A�12(�jk + �kj)�+ iA��i2 (�jk � �kj)�= �A�12(�jk + �kj)��y + i�A��i2 (�jk � �kj)��y= �A�12(�jk + �kj)�� iA��i2 (�jk � �kj)��y= �A�12(�jk + �kj)� i�i2 (�jk � �kj)��y= [A(�kj)℄y : (B5)Equation (B3) then implies that A = Ay.Sin
e a superoperator is left-right Hermitian if and only if it has an eigende
omposition asin Eq. (A19), we 
an 
on
lude, by grouping together positive and negative eigenvalues, thatbeing left-right Hermitian is equivalent to being the di�eren
e between two 
ompletely pos-itive superoperators. Using the theorem, we have that a superoperator takes all Hermitianoperators to Hermitian operators if and only if it is the di�eren
e between two 
ompletelypositive superoperators. This generalizes a result of Yu [15℄, who showed that a positivesuperoperator is the di�eren
e between two 
ompletely positive superoperators. From ourperspe
tive, we 
an say that sin
e a positive superoperator takes positive operators to posi-tive operators, it also takes Hermitian operators to Hermitian operators and thus is left-rightHermitian. A positive operator that is not 
ompletely positive has one or more negativeleft-right eigenvalues.We 
an get one further result relevant to the 
onsiderations in this paper: if A and B areleft-right Hermitian superoperators for two separate quantum systems, then A 
 B is alsoleft-right Hermitian and thus maps all Hermitian operators of the joint system to Hermitianoperators. 20



APPENDIX CLet �A = D1Xj=1 �jjejihej j and �B = D2Xk=1 �kjfkihfkj (C1)be the eigende
ompositions of �A and �B. In the joint basis jeji 
 jfki, �AB has the form�AB = Xj;k;l;m �jk;lmjejihelj 
 jfkihfmj : (C2)The diagonal forms of the marginal density operators show thatD2Xk=1 �jk;lk = �jÆjl and D1Xj=1 �jk;jm = �kÆkm : (C3)Thus the diagonal elements of �jk;lm are a probability distribution pjk = �jk;jk, whosemarginals are the eigenvalues of the marginal density operators:D2Xk=1 pjk = �j and D1Xj=1 pjk = �k : (C4)We now 
an write1 + tr(�2AB) = 1 + Xj;k;l;m j�jk;lmj2� 1 +Xj;k p2jk= Xj;k;l;m pjkplm +Xj;k p2jk= Xj;k;m pjkpjm + Xj 6=l;k;m pjkplm +Xj;k;l pjkplk � Xj 6=l;k pjkplk=Xj �Xk pjk�2 +Xk �Xj pjk�2 + Xj 6=l;k 6=m pjkplm�Xj �2j +Xl �2k= tr(�2A) + tr(�2B) : (C5)The �rst inequality here is saturated if and only if �AB is diagonal in the basis jeji
jfki.The se
ond inequality is saturated if and only if pjkplm = 0 whenever j 6= l and k 6= m.This requirement is equivalent to saying that the nonzero entries in pjk are restri
ted to onerow or to one 
olumn. In view of the �rst requirement, this means that overall equality isa
hieved in Eq. (C5) if and only if �AB = �A 
 �B is a produ
t state, with �A or �B a purestate. 21



APPENDIX DIn this Appendix we show that the ve
tor spa
e of operators a
ting on a D-dimensionalHilbert spa
e has only two proper operator subspa
es that are invariant under all unitarytransformations. These two subspa
es are the one-dimensional subspa
e spanned by theunit operator I and the subspa
e 
onsisting of all tra
efree operators.It is obvious that the subspa
e 
onsisting of multiples of I and the subspa
e of tra
e-freeoperators are unitarily invariant. To show that these are the only unitarily invariant propersubspa
es, we 
onsider a unitarily invariant subspa
e that is not the subspa
e spanned byI, and we show that this subspa
e is either the subspa
e of tra
efree operators or the entireoperator spa
e. Let A be a nonzero operator in the unitarily invariant subspa
e, whi
h isnot a multiple of I. There exists an orthonormal basis jeji su
h that A11 6= A22. Adopt thisbasis, in whi
h A has the representationA = DXj;k=1Ajkjejihekj : (D1)Consider the unitary operator U that 
hanges the sign of je1i, i.e., U je1i = �je1i andU jeji = jeji for j = 2; : : : ;D. Also in the unitarily invariant subspa
e is the operatorB = 12(A+ UAUy) = A11je1ihe1j+ DXj;k=2Ajkjejihekj : (D2)Do the same thing to the se
ond basis ve
tor; i.e., use the unitary operator V de�ned byV je2i = �je2i, and V jeji = jeji for j = 1 and j = 3; : : : ;D. Also in the subspa
e is theoperator C = 12(B + V BV y) = A11je1ihe1j+A22je2ihe2j+ DXj;k=3Ajkjejihekj : (D3)Now 
onsider the unitary operator W that swaps je1i and je2i, i.e., W je1i = je2i, W je2i =je1i, and W jeji = jeji for j = 3; : : : ;D. Also in the subspa
e is the (nonzero) tra
efreeoperator D = C �WCW y = (A11 �A22)(je1ihe1j � je2ihe2j) : (D4)We 
on
lude that the subspa
e 
ontains the tra
efree operator je1ihe1j � je2ihe2j, whi
his a Pauli �z operator for the �rst two dimensions. From this operator, we 
an generate byunitary transformations that inter
hange basis ve
tors a �z-like operator for every pair ofdimensions, and from these �z operators, we 
an generate by unitary transformations a �xand a �y operator for every pair of dimensions. Sin
e these Pauli-like operators span thespa
e of tra
efree operators, we 
on
lude that any unitarily invariant operator subspa
e thatis not the spa
e spanned by I 
ontains all tra
efree operators.The unitarily invariant subspa
e 
ould be the subspa
e of tra
efree operators. Supposethat it is not and thus 
ontains an operator E that is not tra
efree. De�ning a tra
efreeoperator F = E � tr(E)I=D, we see that I 
an be written as linear 
ombination of F andE and thus is in the subspa
e. Sin
e the tra
efree operators together with I span the entirespa
e of operators, we 
on
lude that in this 
ase the unitarily invariant subspa
e is the entireoperator spa
e. This establishes our result. 22
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