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Universal state inversion and onurrene in arbitrary dimensionsPranaw Rungta,(1) V. Bu�zek,(2)� Carlton M. Caves,(1)M. Hillery,(3) and G. J. Milburn(4)(1)Center for Advaned Studies, Department of Physis and Astronomy,University of New Mexio, Albuquerque, NM 87131{1156, USA(2)The Erwin Shr�odinger Institute for Mathematial Physis,Boltzmanngasse 9, A-1090 Wien, Austria(3)Department of Physis and Astronomy, Hunter College of CUNY,695 Park Avenue, New York, NY 10021, USA(4)Center for Quantum Computer Tehnology,The University of Queensland, QLD 4072, Australia(2001 February 6)AbstratWootters [Phys. Rev. Lett. 80, 2245 (1998)℄ has given an expliit formula forthe entanglement of formation of two qubits in terms of what he alls the on-urrene of the joint density operator. Wootters's onurrene is de�ned withthe help of the superoperator that ips the spin of a qubit. We generalize thespin-ip superoperator to a \universal inverter," whih ats on quantum sys-tems of arbitrary dimension, and we introdue the orresponding onurrenefor joint pure states of D1 � D2 bipartite quantum systems. The universalinverter, whih is a positive, but not ompletely positive superoperator, islosely related to the ompletely positive universal-NOT superoperator, thequantum analogue of a lassial NOT gate. We present a physial realizationof the universal-NOT superoperator.I. INTRODUCTIONEntanglement plays a entral role in quantum information theory [1℄. Perhaps the mostimportant measure of entanglement for bipartite systems is the entanglement of formation[2,3℄. For a bipartite pure state j	ABi, the entanglement of formation is given by the entropyof the marginal density operators, �A and �B, of systems A and B. For a bipartite mixedstate �AB, the entanglement of formation is given by the minimum average marginal entropyof ensemble deompositions of �AB.Hill and Wootters [4℄ introdued another measure of entanglement, alled the onur-rene, for pairs of qubits. The onurrene is de�ned with the help of a superoperator S2,whose ation on a qubit density operator � = 12(I + ~P � ~�) is to ip the spin of the qubit:S2(�) = �y���y = 12(I � ~P � ~�) : (1.1)1



Here �� is the omplex onjugate (or transpose) of � relative to the eigenbasis of �z. Theonurrene of a pure state j	ABi of two qubits is de�ned to beC2(	AB) � rD	AB���S2 
 S2(j	ABih	ABj)���	ABE = jh	ABj�y 
 �yj	�ABij : (1.2)The onurrene of a mixed state �AB of two qubits is then, by analogy with the entanglementof formation, the minimum average pure-state onurrene over all ensemble deompositionsof �AB. Wootters [5℄ derived an expliit expression for the mixed-state onurrene of twoqubits and showed that the entanglement of formation of an arbitrary two-qubit mixed statean be obtained from the orresponding mixed-state onurrene.In this paper we generalize the notion of onurrene to pairs of quantum systems ofarbitrary dimension. We show in Se. II that if the onurrene is to be generated by aprodut superoperator, as in the expression (1.2), then the only suitable superoperator togo into the tensor produt is what we all the \universal inverter." For a D-dimensionalquantum system, whih we all a \qudit," we denote the universal inverter by SD. Theation of the universal inverter on a qudit state � is given bySD(�) = �D(I � �) ; (1.3)where �D is a positive onstant. Ating on a pure qudit state j i, the universal invertermaps j i to a multiple of the maximally mixed state in the subspae orthogonal to j i.The orresponding onurrene for a joint pure state j	ABi of a D1 �D2 system isC(	AB) � rD	AB���SD1 
 SD2(j	ABih	AB j)���	ABE = 2�D1�D2[1� tr(�2A)℄ : (1.4)Thus, for pure states, the generalized onurrene is simply related to the purity of themarginal density operators. A sensible hoie for the onstant �D, onsistent with theonurrene for qubits, is �D = 1.The universal inverter is a natural generalization to higher dimensions of the qubit spinip. Only for D = 2, the spin ip, does the universal inverter map pure states to pure states.The universal inverter annot be realized as a quantum dynamis, beause the universalinverter, though a positive superoperator, is not ompletely positive. In Se. IID we explorea one-parameter family of trae-preserving superoperators that are losely related to theuniversal inverter, and we show that the ompletely positive member of this family that islosest to the universal inverter is the universal-NOT superoperator [6,7℄. The universal-NOT is thus the quantum analogue of the lassial NOT gate. The ation of the universal-NOT, denoted GNOT, on a qudit state is given byGNOT(�) = 1D2 � 1(DI � �) � �NOT : (1.5)In Se. III we give a physial realization of the universal-NOT in terms of the quantuminformation distributor introdued by Braunstein, Bu�zek, and Hillery [8℄.The paper onludes with a brief disussion in Se. IV)2



II. UNIVERSAL INVERTERIn this setion we �rst review, in Se. IIA, Wootters's spin-ip operation for a qubitand how it leads to an entanglement measure alled the onurrene for an arbitrary purestate of two qubits [5℄. The main result of this paper is to generalize the spin ip to asuperoperator that we all the universal inverter . The universal inverter is de�ned in allHilbert-spae dimensions, and it leads to a onurrene for joint pure states of two quantumsystems of arbitrary dimension. In Se. II B we formulate the requirements for the universalinverter and explore some of its properties, in Se. II C we show that these requirementspik out a unique universal inverter up to a onstant multiple, and in Se. IID we onsidertrae-preserving superoperators that are losely related to the universal inverter.The formalism we use for superoperators has been used extensively in open-systemstheory [9℄. The partiular notation we use an be found in Ref. [10℄ and is summarizedbriey in Appendix A, along with a desription of several superoperators that play key rolesin our disussion. In ontrast to Ref. [10℄, we use �, instead of 
, to denote the slot intowhih one inserts the operator on whih a superoperator ats, reserving 
 to denote tensorproduts between quantum systems. This superoperator formalism has been used to analyzeentanglement in Ref. [11℄.We refer to the two subsystems of a bipartite system as systems A and B. Whereneessary for larity, we use subsripts A, B, and AB to distinguish quantities belongingto the subsystems and to the joint system. To redue notational lutter, however, we omitthese subsripts on pure states, denoting pure states of a single system by a lower-ase Greekletter, e.g., j i, and joint pure states of a bipartite system by an upper-ase Greek letter,e.g., j	i. A. Spin ip and qubit onurreneA spin ip for a single qubit is e�eted by the anti-unitary operator �yC = �C�y, whereC denotes omplex onjugation in the eigenbasis of �z. Ating on a state vetor j i or anoperator A, the anti-unitary omplex onjugation operator gives Cj i = j �i or CA = A�C,where j �i and A� denote omplex onjugation of the state or operator in the eigenbasis of�z. For a desription of other properties and uses of anti-linear operators, see Ref. [12℄.Promoted to an operator on operators, the spin ip beomes an anti-linear superoperator�yC �Cy�yy = �yC �C�y, whih ats on operators aording to �yCAC�y = �yA��y. Sine weare only interested in the operation of the spin ip on Hermitian operators, where omplexonjugation is equivalent to transposition, we an replae this anti-linear superoperator withthe orresponding linear superoperatorS2 = �y � �y Æ T2 ; (2.1)where T2 denotes transposition in the eigenbasis of �z (see Appendix A). The subsript 2distinguishes the spin ip and transposition in two dimensions from the similar quantitiesfor arbitrary dimensions that we introdue later in this setion.The ation of the spin-ip superoperator on an arbitrary qubit density operator, � =12(I + ~P � ~�), is to invert the Bloh vetor ~P through the origin, as in Eq. (1.1). Sine3



inversion ommutes with rotations, representing unitary operators, we have immediatelythat S2 ommutes with all unitary operators U , i.e., S2 Æ U � Uy = U � Uy Æ S2.For a quantum state � of a two-qubit system, the spin-ipped density operator, distin-guished by a tilde, is ~� = S2 
 S2(�) = �y 
 �y���y 
 �y : (2.2)Wootters [5℄ de�ned the onurrene of a two-qubit pure state, � = j	ih	j, to beC2(	) � qtr(�~�) = rD	���S2 
 S2(j	ih	j)���	E = jh	j�y 
 �yj	�ij : (2.3)The joint pure state an be written in terms of a Shmidt deomposition,j	i = a1je1i 
 jf1i+ a2je2i 
 jf2i ; (2.4)where jeji and jfji are the orthonormal eigenvetors of the marginal density operators forthe two qubits and a1 and a2 are the (positive) square roots of the orresponding eigenvalues.Sine S2 ommutes with all unitary operators, the onurrene C2(	) is unhanged by loalunitary transformations. This means that C2(	) is a funtion only of a1 and a2; it iseasy to verify that C2(	) = 2a1a2. As noted by Wootters, the onurrene an serve as ameasurement of entanglement: it is invariant under loal unitary transformations, as anygood measure of entanglement should be, and it varies smoothly from 0 for pure produtstates to 1 for maximally entangled pure states.Wootters [5℄ went on to show that the onurrene an also be used to measure theentanglement of mixed states of two qubits. He de�ned the onurrene of a two-qubitmixed state to be the minimumaverage pure-state onurrene, where the minimum is takenover all ensemble deompositions of �. He derived an expliit expression for this mixed-stateonurrene in terms of the eigenvalues of �~� and showed that the entanglement of formationof an arbitrary two-qubit mixed state an be written in terms of the orresponding mixed-state onurrene. B. Universal inverter and generalized onurreneOur goal in this paper is to generalize the spin-ip superoperator S2 for a qubit toa superoperator SD that ats on qudit states and generates a onurrene for D1 � D2bipartite quantum systems. The spin-ip superoperator has several important propertiesthat we might wish its generalization to retain:1. S2 maps Hermitian operators to Hermitian operators.2. S2 ommutes with all unitary operators.3. h	jS2 
 S2(j	ih	j)j	i is nonnegative for all joint pure states j	i and goes to zero ifand only if j	i is a produt state.4. S2 is a positive superoperator; i.e., it maps positive operators to positive operators.5. S2 is trae preserving. 4



6. S2 maps any pure state j ih j to the orthogonal pure state j ?ih ?j.Property 1 guarantees that S2 
 S2 maps Hermitian operators to Hermitian operators (seeAppendix B) and thus that the quantity h	jS2
S2(j	ih	j)j	i of property 3 is real. Prop-erty 2 ensures that C2(	) is unhanged by loal unitary transformations, as an entanglementmeasure should be. Property 3 makes C2(	) well de�ned, by ensuring that the quantityinside the square root is nonnegative, and it sets the zero so that pure produt states, butno other pure states, have vanishing onurrene.In generalizing the spin ip to higher dimensions, we want the onurrene of a purestate � = j	ih	j of a D1 �D2 bipartite system to be de�ned as for qubits, i.e.,C(	) � rD	���SD1 
 SD2(j	ih	j)���	E : (2.5)It is lear that the analogues of properties 1{3 are desirable properties of SD, for the samereasons as for qubits, and it turns out that they are suÆient to pik out a unique superop-erator SD up to a onstant multiple.The upshot of this disussion is that we require SD to have the following properties:10. SD maps Hermitian operators to Hermitian operators.20. SD ommutes with all unitary operators.30. h	jSD1 
 SD2(j	ih	j)j	i is nonnegative for all joint pure states j	i and goes to zeroif and only if j	i is a produt state.The only superoperator that has these three properties isSD = �D(I� I) ; (2.6)where I is the unit superoperator relative to the left-right ation, I is the unit superoperatorrelative to the ordinary ation, and �D is an arbitrary real onstant. For the onsiderationsin Se. IID, we allow �D to have a dependene on D. For purposes of de�ning a onurrene,however, �D should be independent of D; otherwise the onurrene of joint pure state ouldbe hanged simply by adding extra, unused dimensions to one or both systems.We show that SD is the only superoperator allowed by properties 10{30 in Se. II C. Forthe remainder of this subsetion, we show that SD does satisfy properties 10{30, and we spellout some of its other properties and properties of the orresponding onurrene. Notie�rst that SD takes an operator A toSD(A) = �D[ I(A)� I(A)℄ = �D[tr(A)I �A℄ ; (2.7)from whih it is lear that SD satis�es properties 10 and 20. If A is a density operator �, weget SD(�) = �D(I � �) : (2.8)Sine I � � is a positive operator for any �, we have immediately that SD is a positivesuperoperator provided that �D is positive. The onurrene is indi�erent to a hange in the5



sign of �D, so we are free to hoose �D to be positive, whih we do heneforth, thus makingSD positive. If �D = 1=(D�1), SD is trae preserving; this trae-preserving normalization isuseful for the onsiderations of Se. IID, but we see below that �D = 1 is a more reasonablenormalization to use for the onurrene C(	). Finally, SD maps a pure state � = j ih jto a positive multiple of the projetor orthogonal to �:SD(j ih j) = �D(I � j ih j) : (2.9)It is this property that prompts us to all SD the universal inverter. Other properties ofSD, whih follow diretly from the orresponding properties of I and I (see Appendix A),are that SD is Hermitian relative to the ordinary ation, i.e., S�D = SD, and that it hangessign under sharping, i.e., S#D = �SD.We now see that properties 4{6 of the qubit spin ip survive, in amended form, in itsgeneralization:40. SD is a positive superoperator.50. SD is a positive multiple of a trae-preserving superoperator, i.e., S�D(I) = �D(D�1)I.60. SD maps any pure state j ih j to a positive multiple of the projetor onto the subspaeorthogonal to j i.It is worth pointing out that if we added to properties 10{30 the additional requirement thatSD map eah pure state to a multiple of some orthogonal state, then the superoperator ofEq. (2.6) would trivially be the only possibility for the universal inverter.We still have to deal with property 30. For that purpose we need the tensor-produtsuperoperator SD1 
 SD2 = �D1�D2(I
 I� I 
 I� I
 I + I 
 I) : (2.10)Applied to an arbitrary joint density operator �AB, this tensor-produt superoperator givesSD1 
 SD2(�AB) = �D1�D2(I 
 I � �A 
 I � I 
 �B + �AB) : (2.11)Projeting bak onto �AB givestr��ABSD1 
 SD2(�AB)� = �D1�D2 [1� tr(�2A)� tr(�2B) + tr(�2AB)℄ � 0 : (2.12)The inequality here, whih shows that the quantity in property 30 is nonnegative, is provedin Appendix C, where it is also shown that the inequality is saturated if and only if �AB =�A 
 �B is a produt state, with �A or �B a pure state. For a joint pure state �AB, thisestablishes property 30.It is useful to speialize Eq. (2.12) to a joint pure state j	i, in whih ase it beomes thesquare of the pure-state onurrene:C2(	) = D	���SD1 
 SD2(j	ih	j)���	E = 2�D1�D2 [1� tr(�2A)℄ : (2.13)Thus the onurrene measures the entanglement of a pure state in terms of the purity,tr(�2A) = tr(�2B), of the marginal density operators. A joint pure state has a Shmidtdeomposition, 6



j	i =Xj ajjeji 
 jfji ; aj > 0; (2.14)in terms of whih the squared onurrene beomesC2(	) = 2�D1�D2 1 �Xj a4j! = 4�D1�D2 Xj<k a2ja2k : (2.15)For de�ning a onurrene, one should hoose the saling fator �D to be independent of D|otherwise, as noted above, the pure state onurrene ould be hanged simply by addingextra, unused dimensions to one of the subsystems|and to be onsistent with the qubitonurrene, one should hoose �D = 1. With this hoie the pure-state onurrene runsfrom zero for produt states to q2(M � 1)=M , where M = min(D1;D2), for a maximallyentangled state.There is another interesting form of the universal inverter, whih makes a diret on-netion to the form (2.2) of the spin ip. Choosing an orthonormal basis jeji, let T bethe superoperator that transposes matrix representations in this basis, and let PA be thesuperoperator projetor, relative to the left-right ation, whih projets onto the subspaeof operators that are antisymmetri in this basis. We show in Appendix A thatSD=�D = 2PA Æ T : (2.16)For qubits, if we use the eigenstates of �z as the hosen basis, then the antisymmetrioperator subspae is spanned by the normalized operator �y=p2, so the projetor onto thissubspae is PA = j�y)(�yj=2 = �y� �y=2. Thus in the two dimensions the universal inverterbeomes S2 = �2�y � �y Æ T2, whih agrees with the spin ip if �2 = 1.C. Derivation of universal inverterWe now show that the only superoperator that satis�es properties 10{30 of the preedingsubsetion is the universal inverter (2.6). As we proeed through the proof, we use GD todenote the operator under onsideration.As we show in Appendix B, property 10 implies that GD is left-right Hermitian, i.e.,GD = GyD, and thus has an eigendeompositionGD =X� ��j��)(��j =X� ���� � � y� ; (2.17)where the �� are real (left-right) eigenvalues and the operators �� are the orrespondingorthonormal eigenoperators.Property 20 implies thatGD = Uy � U Æ GD Æ U � Uy =X� ��Uy��U � Uy� y�U ; (2.18)whih means that Uy��U is an eigenoperator of GD, with eigenvalue ��, for any unitaryoperator U . This result an be restated as saying that the degenerate eigensubspaes ofGD are invariant under all unitary transformations. We show in Appendix D that the7



only operator subspaes that are invariant under all unitary transformations are the one-dimensional subspae spanned by the unit operator and the (D2 � 1)-dimensional subspaeof traefree operators. As a onsequene, GD must have the formGD = �DI=D + �DF : (2.19)Here I = I � I is the unit superoperator relative to the ordinary ation, F is the superop-erator that projets onto the subspae of traefree operators when ating to the right (seeAppendix A), �D is the eigenvalue of GD orresponding to the normalized eigenoperatorI=pD, and �D is the eigenvalue orresponding to all of the traefree operators. Notie thatGD is Hermitian relative to the ordinary ation, i.e., GD = G�D.If we add I=pD to a omplete, orthonormal set of traefree operators, we obtain aomplete, orthonormal set of operators, so the unit superoperator in the left-right sense isgiven by I = I=D + F ; (2.20)from whih we get GD = �DI + �DI ; (2.21)where �D = (�D � �D)=D : (2.22)Now we impose property 30. In doing so, it is suÆient to onsider the requirements ofproperty 30 in the ase where the two subsystems have the the same dimension D. In thisase the tensor-produt superoperator takes the formGD 
 GD = �2DI 
 I + �D�D(I 
 I+ I
 I) + �2DI
 I : (2.23)Applying this superoperator to a joint density operator �AB givesGD 
 GD(�AB) = �2D�AB + �D�D(�A 
 I + I 
 �B) + �2DI 
 I ; (2.24)and projeting this bak onto �AB yieldstr��ABGD 
 GD(�AB)� = �2Dtr(�2AB) + �D�D[tr(�2A) + tr(�2B)℄ + �2D : (2.25)Speializing to a joint pure state j	i, we getD	���GD 
 GD(j	ih	j)���	E = �2D + �2D + 2�D�Dtr(�2A) = (�D � �D)2 � 2�D�D[1� tr(�2A)℄ :(2.26)If �D�D � 0, the top sign in Eq. (2.26) shows that the quantity in property 30 is stritlypositive, unless �D = �D = 0, a ase of no interest. If �D�D < 0, the bottom sign in Eq. (2.26)shows that the quantity is nonnegative and goes to zero if and only if �D = ��D and �Ais pure, i.e., the joint pure state is a produt state. Thus it turns out that the quantity inproperty 30 is nonnegative for all superoperators of the form (2.21), but the only way to setthe zero properly is to hoose �D = ��D, thus giving the universal inverter of Eq. (2.6). Theleft-right eigenvalues of the universal inverter are �D and �D = D�D + �D = �(D � 1)�D.8



D. Trae-preserving superoperatorsAll superoperators of the form (2.21) are proportional to a trae-preserving superopera-tor, sine G�D(I) = GD(I) = (�D +D�D)I : (2.27)Requiring GD to be trae preserving gives the ondition�D = 1 �D�D (2.28)[�D = D � �D(D2 � 1)℄, whih allows us to eliminate one parameter and to write thetrae-preserving version of GD asGDT = (1 �D�D)I + �DI : (2.29)Ating on an arbitrary input state �, this superoperator givesGDT (�) = (1 �D�D)� + �DI : (2.30)It is instrutive to investigate this one-parameter family of trae-preserving operators.We �rst ask whih of the trae-preserving operators (2.29) are ompletely positive. Theondition that a superoperator be ompletely positive is that its left-right eigenvalues benonnegative (see Appendix A). Thus the ondition for the omplete positivity of GDT isthat �D � 0 and �D � 0, whih is equivalent to0 � �D � DD2 � 1 : (2.31)When �D = 0, GDT = I is the unit superoperator, and when �D = D=(D2 � 1),GDT = DD2 � 1F = 1D2 � 1(DI � I) � GNOT (2.32)is the universal-NOT superoperator [6,7℄. Notie that the universal-NOT is a multiple of F ,the superoperator whose right ation projets onto the subspae of traefree operators. Sinethe dynamis of a quantum system must be ompletely positive, the universal-NOT is thelosest physial approximation to the universal inverter and thus is the quantum analogueof the lassial NOT gate. We present a realization of the universal-NOT in Se. III.Another interesting ompletely positive superoperator ours for �D = 1=(D + 1):GDT = 1D + 1(I+ I) = 1DI + 1D + 1F � GAV : (2.33)This superoperator was used to generate operator expansions in Ref. [11℄, where it was shownthat it is the unique trae-preserving superoperator that satis�es G = Gy = G� = G# andommutes with all unitaries. In ontrast, the universal inverter is the unique superoperatorthat satis�es G = Gy = G� = �G# and ommutes with all unitaries.As shown in Ref. [11℄, the superoperator GAV is the trae-preserving version of the su-peroperator that desribes projetion onto a random pure state,9



GAV = D Z dVV j ih j � j ih j ; (2.34)where dV is the unitarily invariant integration measure on projetive Hilbert spae and V isthe orresponding total volume. Projetion onto a random pure state is the measurementthat results in the optimal estimation of the state of the qudit [13℄. This estimated state isgiven by the density operator GAV(�) = 1D + 1(I + �) : (2.35)We now onsider whih of the trae-preserving operators (2.29) are positive. Letting pjbe the eigenvalues of the input density operator �, one sees that the eigenvalues of GDT (�)[Eq. 2.30)℄ are (1�D�D)pj+�D. The ondition that GDT be positive is that these eigenvaluesbe nonnegative for all input eigenvalues pj , whih is equivalent to0 � �D � 1D � 1 : (2.36)When �D = 1=(D � 1), GDT beomes the trae-preserving version of the universal inverter,SDT = 1D � 1(I� I) : (2.37)The positive superoperators are onvex ombinations of I and SDT :GDT = [1� �D(D � 1)℄I + �D(D � 1)SDT : (2.38)Notie that the universal-NOT an be written asGNOT = 12(SDT + GAV) : (2.39)III. PHYSICAL REALIZATION OF THE UNIVERSAL-NOTIn this setion we give a physial realization of universal-NOT superoperator GNOT ofEq. (2.32). Consider a qudit in a pure state � = j ih j. As shown in Se. II, the idealinversion of this state is given bySDT (�) = 1D � 1(I � �) � �? ; (3.1)where SDT is the trae preserving version of the universal inverter [see Eq. (2.37)℄. Theinverted state �? is the maximally mixed state in the (D�1)-dimensional orthogonal to theinput state � = j ih j. Notie that by onstrution, tr(��?) = 0 for pure input states.As shown in Se. IID, the trae-preserving universal inverter SDT is a positive, but notompletely positive superoperator and as suh annot be realized physially. In the one-parameter family of trae-preserving inverters onsidered in Se. IID, the universal-NOTsuperoperator GNOT of Eq. (2.32) is the losest ompletely positive superoperator to the10



universal inverter. We denote the best physially possible inversion of the state �, obtainedusing the universal-NOT, as�NOT � GNOT(�) = 1D2 � 1(DI � �) : (3.2)In order to realize the universal-NOT, we ouple the qudit to be inverted, denoted by A,to the quantum information distributor (QID) introdued in Ref. [8℄. The QID is omposedof two anilla qudits, B and C, eah of whih has the same dimension D as qudit A. Todesribe the universal inverter, we introdue several operators and states for qudits.First we need the onjugate \position" and \momentum" operators, x and p. Theeigenvetors of x are denoted by jxki,xjxki = xkjxki ; (3.3)with the eigenvalues given by xk = kq2�=D; analogously, the eigenstates of p are denotedby jpki, pjpki = pkjpki ; (3.4)with the eigenvalues given by pk = kq2�=D. We use units suh that the two operatorsare dimensionless. The two sets of eigenvetors, fjxkig and fjpkig, form bases in the quditHilbert spae and are related by a disrete Fourier transform,jxki = 1pD D�1Xl=0 e�2�ikl=Djpli ; (3.5)jpli = 1pD D�1Xk=0 e2�ikl=Djxki : (3.6)The translation (shift) operators, de�ned byRx(n) = e�ixnp ; Rp(m) = eipmx ; (3.7)ylially permute the basis vetors aording toRx(n)jxki = jx(k+n)modDi ; (3.8)Rp(m)jpli = jp(l+m)modDi ; (3.9)where the sums of indies are taken modulo D.An orthonormal basis of D2 two-qudit maximally entangled states j�mni is given byj�mni = 1pD D�1Xk=0 e2�imk=Djxki 
 jx(k+n)modDi ; (3.10)where m;n = 0; : : : ;D � 1. Using Eq. (3.5), we an rewrite the states j�mni in the jointmomentum basis: j�mni = 1pD D�1Xl=0 e�2�inl=Djp(m�l)modDi 
 jpli : (3.11)11



The state j�00i an be written asj�00i = 1pD D�1Xk=0 jxki 
 jxki = 1pD D�1Xl=0 jp�lmodDi 
 jpli : (3.12)It is interesting to note that the whole set of D2 maximally entangled states j�mni an begenerated from j�00i by the ation of loal unitary operations (shifts):j�mni = Rp(m)
Rx(n)j�00i : (3.13)Now we are ready to desribe the QID. The anilla qudits, B and C, are initiallyprepared in the state j�iBC = �1j�00iBC + �2jx0iB 
 jp0iC : (3.14)The phase freedom in j�iBC an be used to make �1 real and nonnegative, but then �2 is ingeneral omplex. We do not use the freedom to make �1 nonnegative, thereby retaining foruse below the ability to multiply both �1 and �2 by �1.Normalization of j�BCi imposes the onstraint1 = �21 + j�2j2 + �1(�2 + ��2)D = �21 + a2 + b2 + 2a�1D ; (3.15)where �2 = a+ ib. Solving for �1, we get�1 = � aD +s1 � b2 � a2D2 � 1D2 : (3.16)We disard the other solution of the quadrati equation, beause it an be onverted to thissolution by multiplying both �1 and �2 by �1. Sine �1 is real, we must haveD2 � 1D2 a2 + b2 � 1 ; (3.17)whih means that �2 lies on or within an ellipse that has prinipal radius D=pD2 � 1 � 1along the real axis and prinipal radius 1 along the imaginary axis. Therefore, we onludethat 0 � j�2j2 � D2D2 � 1 : (3.18)It is easy to see that the minimum value of �1 ours when �2 = D=pD2 � 1, this minimumvalue being �1 = �1=pD2 � 1. It is also easy to see that the maximum value of �1 ourswhen �2 is real; the maximum ours at �2 = �1=pD2 � 1 and is given by �1 = D=pD2 � 1.The upshot is that �1 is bounded by� 1pD2 � 1 � �1 � DpD2 � 1 : (3.19)12



The negative values of �1 are unimportant, beause they an be onverted to positive valuesby multiplying both �1 and �2 by �1. What is important is that j�1j2 has the same range ofpossible values as j�2j2.We now allow qudit A to interat with the two anilla qudits, the resulting dynamisdesribed by the unitary operatorUABC = exp[�i(xC � xB)pA℄ exp[�ixA(pB + pC)℄ (3.20)(for more details, see Ref. [8℄). For an initial pure state j i of qudit A, the joint state afterthe interation isUABCj iA 
 j�iBC = �1j iA 
 j�00iBC + �2j iB 
 j�00iAC : (3.21)The output states of the individual qudits after traing out the other two qudits are�(out)A =  �21 + �1(�2 + ��2)D !�+ j�2j2D I ; (3.22)�(out)B =  j�2j2 + �1(�2 + ��2)D !�+ �21DI ; (3.23)�(out)C = �1(�2 + ��2)D �T + �21 + j�2j2D I ; (3.24)where � is an arbitrary initial state of qudit A and �T is its transpose. Taking into aountthe onstraint (3.15), we an rewrite the output states of qudits A and B as�(out)A = (1� j�2j2)�+ j�2j2I=D ; (3.25)�(out)B = (1� �21)�+ �21I=D : (3.26)As far as qudit A is onerned, the QID ats like the superoperator GDT of Eqs. (2.29) and(2.30) with D�D = j�2j2. As far as qudit B is onerned, the QID �rst swaps the states ofA and B and then ats like GDT with D�D = �21 .Rewriting the output state of qudit A in terms of the ideal inverted state �? = (I ��)=(D � 1), we get�(out)A = (j�2j2 � 1)(D � 1)�? + [D � j�2j2(D � 1)℄I=D : (3.27)To make �(out)A as lose as possible to �?, we need to maximize j�2j2; i.e., we need to hooseD�D = j�2j2 = D2D2 � 1 ; (3.28)thus making the ation of the QID on qudit A the same as the ation of the universal-NOTgiven in Eq. (3.2). Notie that the QID gives the superoperator GAV of Eq. (2.33) whenD�D = j�2j2 = D=(D + 1).When j�2j2 has its maximum value, �21 = 1=(D2 � 1), so the output state (3.26) of quditB beomes �(out)B = �1� 1D2 � 1� �+ 1(D2 � 1) ID : (3.29)13



Notie that in the limit of large D, we have j�2j ! 1 and �1 ! 0. The output state of quditB redues to the input state of qudit A, and the output states of A and C redue to themaximally mixed state I=D. All this is a onsequene of the fat that the initial state ofqudits B and C limits to j�iBC ! jx0iB 
 jp0iC , and the QID swaps the states of A and B:UABCj iA 
 j�00iBC = j iB 
 j�00iAC : (3.30)IV. CONCLUSIONThe onurrene introdued by Hill and Wootters [4℄ and by Wootters [5℄ provides agood measure of the entanglement of any state of two qubits, pure or mixed. The Hill-Wootters onurrene is generated with the help of the superoperator that ips the spin of aqubit. In this paper we have identi�ed the ruial properties of the spin-ip superoperator,whih allow it to generate a good entanglement measure for pure states of two qubits.By generalizing these properties to systems of arbitrary dimension, we have singled out aunique superoperator, whih we all the universal inverter. In the same way that the spin ipgenerates a onurrene for pairs of qubits, the universal inverter generates a onurrenefor joint pure states of pairs of quantum systems of arbitrary dimension. This pure-stateonurrene measures entanglement in terms of the purity of the marginal density operatorsof the joint pure state.It is natural to de�ne the onurrene of mixed states of D1 �D2 quantum systems asthe minimum average onurrene of ensemble deompositions of the joint density operator.We are investigating the properties of this de�nition of mixed-state onurrene and how itis related to other measures of mixed-state entanglement.The universal inverter turns out to be the ideal inverter of pure states, sine it takes apure state to the maximally state in the subspae orthogonal to the pure state. Beausethe universal inverter is a positive, but not ompletely superoperator, it annot be realizedas the dynamis of a quantum system oupled to an anilla. We have shown that theompletely positive superoperator that omes losest to ahieving an ideal state inversion isa superoperator alled the universal-NOT, and we have presented a physial realization ofthe universal-NOT. ACKNOWLEDGMENTSThis work was supported in part by the OÆe of Naval Researh (Grant No. N00014-00-1-0578), the EQUIP projet of the European Union 5th Framework researh program,Information Soiety Tehnologies (Contrat No. IST-1999-11053), and the National SieneFoundation (Grant No. PHY-9970507).APPENDIX A: SUPEROPERATOR FORMALISM AND SPECIALSUPEROPERATORSThe formalism we use for superoperators has been used extensively in open-systemstheory [9℄. In this Appendix, we summarize our notation, whih follows that of Ref. [10℄,14



and we introdue and desribe key properties of several superoperators that are importantfor our analysis.The spae of linear operators ating on a Hilbert spae H is a D2-dimensional omplexvetor spae. We introdue operator \kets" jA) = A and \bras" (Aj = Ay, distinguished fromvetor kets and bras by the use of smooth brakets. The natural operator inner produt anbe written as (AjB) = tr(AyB). An orthonormal basis jeji indues an orthonormal operatorbasis jejihekj = �jk � �� ; (A1)where the Greek index is an abbreviation for two Roman indies. Not all orthonormal oper-ator bases are of this outer-produt form. In the following, �� an be a general orthonormaloperator basis, or it an be speialized to an outer-produt basis.The spae of superoperators on H, i.e., linear maps on operators, is a D4-dimensionalomplex vetor spae. A superoperator A is spei�ed by its \matrix elements"Alj;mk � Del���A(jejihekj)���emE ; (A2)for the superoperator an be written in terms of its matrix elements asA = Xlj;mkAlj;mkjelihejj � jekihemj =X�;� A�� �� � � y� =X�;� A��j��)(��j : (A3)The ordinary ation of A on an operator A, used above to generate the matrix elements, isobtained by dropping an operator A into the enter of the representation of A, in plae ofthe � sign, i.e., A(A) =X�;� A�� ��A� y� : (A4)There is learly another way that A an at on A, the left-right ation,AjA) �X�;� A��j��)(��jA) ; (A5)in terms of whih the matrix elements areA�� = (��jAj��) = �jelihejj���A���jemihekj� = Del���A(jejihekj)���emE = Alj;mk : (A6)This expression provides the fundamental onnetion between the two ations of a superop-erator.With respet to the left-right ation, a superoperator works just like an operator. Mul-tipliation of superoperators B and A is given byBA = X�;�;B�A�j��)(��j ; (A7)and the \left-right" adjoint, de�ned by(AjAyjB) = (BjAjA)� ; (A8)15



is given by Ay =X�;�A����� � � y� =X�;� A���j��)(��j : (A9)With respet to the ordinary ation, superoperator multipliation, denoted as a ompositionB Æ A, is given by B Æ A = X�;�;;ÆBÆA�� ��� � � y�� yÆ : (A10)The adjoint with respet to the ordinary ation, denoted by A�, is de�ned bytr�[A�(B)℄yA� = tr�ByA(A)� : (A11)In terms of a representation in an operator basis, this \ross" adjoint beomesA� =X�;� A��� � y� � �� : (A12)Notie that (B Æ A)y = By Æ Ay and (BA)� = B�A� : (A13)We an formalize the onnetion between the two kinds of ation by de�ning an operation,alled \sharp," whih exhanges the two:A#jA) � A(A) : (A14)Simple onsequenes of the de�nition are that(A#)y = (A�)# ; (A15)(B Æ A)# = B#A# : (A16)The matrix elements of A# are given byA#lj;mk = �jelihejj���A#���jemihekj�= tr�jejiheljA(jemihekj)�= Del���A(jemihekj)���ejE= Alm;jk ; (A17)whih implies that A# = Xlj;mkAlj;mkjelihemj � jekihejj : (A18)A superoperator is left-right Hermitian, i.e., Ay = A, if and only if it has an eigende-omposition 16



A =X� ��j��)(��j =X� ���� � � y� ; (A19)where the �� are real (left-right) eigenvalues and the operators �� are orthonormal eigenop-erators.A superoperator is trae preserving if, under the ordinary ation, it leaves the traeunhanged, i.e., if tr(A) = tr(A(A)) = tr([A�(I)℄yA) for all operators A. Thus A is traepreserving if and only if A�(I) = I.A superoperator is said to be positive if it maps positive operators to positive operatorsunder the ordinary ation. A superoperator is ompletely positive if it and all its extensionsI 
 A to tensor-produt spaes, where I is the unit superoperator on the appended spae,are positive. It an be shown that A is ompletely positive if and only if it is positiverelative to the left-right ation, i.e., (AjAjA) � 0 for all operators A (for a proof in thepresent notation, see Ref. [10℄). This is equivalent to saying that A is left-right Hermitianwith nonnegative left-right eigenvalues.In this paper we make use of several speial superoperators, whose properties we sum-marize here. The identity superoperator with respet to the ordinary ation isI = I � I =Xj;k jejihej j � jekihekj : (A20)This superoperator is Hermitian in both senses, i.e., I = Iy = I�. It is the identitysuperoperator relative to the ordinary ation beause I(A) = A for all operators A, but itsleft-right ation gives IjA) = tr(A)I.The identity superoperator with respet to the left-right ation isI =X� j��)(��j =Xj;k jejihekj � jekihej j : (A21)This superoperator is also Hermitian in both senses, i.e., I = Iy = I�. It is the identitysuperoperator relative to the left-right ation beause IjA) = A for all operators A, but itsordinary ation gives I(A) = tr(A)I. Sine sharping exhanges the two kinds of ation, it islear that I# = I.To de�ne the remaining superoperators, it is useful to introdue a set of D2�1 traefree,Hermitian operators [14℄, whih are the generators of SU(D). We label these operators bya Greek index �, whih runs from 1 to D2 � 1. The operators are de�ned by� = 1; : : : ;D � 1 :�� = �j � 1qj(j � 1) 0� j�1Xk=1 �kk � (j � 1)�jj1A ; 2 � j � D ; (A22)� = D; : : : ; (D + 2)(D � 1)=2 :�� = �(+)jk � 1p2 (�jk + �kj) ; 1 � j < k � D ; (A23)� = D(D + 1)=2; : : : ;D2 � 1 :�� = �(�)jk � �ip2 (�jk � �kj) ; 1 � j < k � D : (A24)17



In Eq. (A22), � stands for a single Roman index j, whereas in Eqs. (A23) and (A24), itstands for the pair of Roman indies, jk. These operators are Hermitian generalizations ofthe two-dimensional Pauli operators: the operators (A22) are diagonal in the hosen basis,like �z; for eah pair of dimensions, the operators (A23) are like the Pauli operator �x; andfor eah pair of dimensions, the operators (A24) are like �y.Like the Pauli operators, the operators �� are orthonormal, i.e.,(��j��) = tr(����) = Æ�� : (A25)Thus they onstitute an operator basis for the subspae of traefree operators. Indeed, wean de�ne a superoperator projetor,F �X� j��)(��j =X� �� � �� ; (A26)whih relative to the left-right ation, projets onto the subspae of traefree operators.Notie that F = Fy = F�.If we add to the set of operators �� the normalized unit operator I=pD, we obtain anorthonormal operator basis. Thus the unit superoperator I an be written asI = jI)(IjD +X� j��)(��j = I=D + F : (A27)Writing F = I� I=D, we �nd thatF# = I � ID = D2 � 1D2 I � FD : (A28)In the hosen basis, the operators (A22) and (A23) are real and symmetri. Together withI=pD, they onstitute a set of D(D+1)=2 orthonormal operators, whih span the subspaeof operators that are symmetri in the hosen basis. In ontrast, the D(D � 1)=2 operatorsin Eq. (A24) are pure imaginary and antisymmetri and span the subspae of operators thatare antisymmetri in the hosen basis. We an de�ne superoperator projetors,PS � jI)(IjD + X�� real j��)(��j ; (A29)PA � X�� imaginary j��)(��j ; (A30)whih relative to the left-right ation, projet onto the symmetri and antisymmetri oper-ator subspaes. Notie that PS = PyS = P�S and PA = PyA = P�A . It is lear thatI = PS + PA : (A31)The last superoperator we need is the superoperator that transposes operators in thehosen basis. The ordinary ation of the transposition superoperator is given byT (A) =Xj;k jejihekjAjejihekj ; (A32)18



so the superoperator has the formT =Xj;k jejihekj � jejihekj : (A33)The transposition superoperator is Hermitian in both senses and is unhanged by sharp-ing, i.e., T = T y = T � = T #. In addition to satisfying T Æ T = I, the transpositionsuperoperator has the property that I Æ T = I ; (A34)whih in view of Eq. (A16), is equivalent to IT = I.It is easy to see that PS �PA, ating to the right, transposes an operator, i.e.,PSjA)�PAjA) = T (A) = T #jA) ; (A35)whih gives us, sine T is invariant under sharping,T = T # = PS �PA : (A36)Combined with Eq. (A31), this gives usPS = 12(I+ T ) ; (A37)PA = 12(I� T ) : (A38)Combining these forms with Eq. (A34) yields2PS Æ T = I+ I = (D + 1)GAV ; (A39)2PA Æ T = I� I = SD=�D : (A40)APPENDIX BIn this Appendix we show that a superoperator is Hermitian relative to the left-rightation if and only if it maps all Hermitian operators to Hermitian operators.Let A be a superoperator, and let jeji be an orthonormal basis, whih indues an or-thonormal operator basis jejihekj. Notie thatDel���Ay(jejihekj)���emE = � jelihej j ���Ay��� jemihekj �= � jemihekj ���A��� jelihejj ��= Dem���A(jekihej j)���elE�= Del���[A(jekihejj )℄y���emE : (B1)Here the �rst and third equalities follow from relating the ordinary ation of a superoperatorto its left-right ation [Eq. (A6)℄, the seond equality follows from the de�nition of the left-right adjoint of A [Eq. (A8)℄, and the fourth equality follows from the de�nition of the19



operator adjoint. Equation (B1) gives the relation between the operator adjoint and theleft-right superoperator adjoint:Ay(jejihekj) = [A(jekihejj)℄y : (B2)Thus we have that A = Ay, i.e., A is left-right Hermitian, if and only ifA(jejihekj) = [A(jekihej j)℄y (B3)for all j and k. This result allows us to prove the desired theorem easily.Theorem. A superoperator A is left-right Hermitian if and only if it maps all Hermitianoperators to Hermitian operators.Proof: First suppose A is left-right Hermitian, i.e., A = Ay. This implies that Ahas a omplete, orthonormal set of eigenoperators ��, with real eigenvalues ��. Using theeigendeomposition (A19), we have for any Hermitian operator H,A(H) =X� ����H� y� = A(H)y : (B4)Now suppose A maps all Hermitian operators to Hermitian operators. Letting �jk =jejihekj, it follows thatA(�jk) = A�12(�jk + �kj) + i�i2 (�jk � �kj)�= A�12(�jk + �kj)�+ iA��i2 (�jk � �kj)�= �A�12(�jk + �kj)��y + i�A��i2 (�jk � �kj)��y= �A�12(�jk + �kj)�� iA��i2 (�jk � �kj)��y= �A�12(�jk + �kj)� i�i2 (�jk � �kj)��y= [A(�kj)℄y : (B5)Equation (B3) then implies that A = Ay.Sine a superoperator is left-right Hermitian if and only if it has an eigendeomposition asin Eq. (A19), we an onlude, by grouping together positive and negative eigenvalues, thatbeing left-right Hermitian is equivalent to being the di�erene between two ompletely pos-itive superoperators. Using the theorem, we have that a superoperator takes all Hermitianoperators to Hermitian operators if and only if it is the di�erene between two ompletelypositive superoperators. This generalizes a result of Yu [15℄, who showed that a positivesuperoperator is the di�erene between two ompletely positive superoperators. From ourperspetive, we an say that sine a positive superoperator takes positive operators to posi-tive operators, it also takes Hermitian operators to Hermitian operators and thus is left-rightHermitian. A positive operator that is not ompletely positive has one or more negativeleft-right eigenvalues.We an get one further result relevant to the onsiderations in this paper: if A and B areleft-right Hermitian superoperators for two separate quantum systems, then A 
 B is alsoleft-right Hermitian and thus maps all Hermitian operators of the joint system to Hermitianoperators. 20



APPENDIX CLet �A = D1Xj=1 �jjejihej j and �B = D2Xk=1 �kjfkihfkj (C1)be the eigendeompositions of �A and �B. In the joint basis jeji 
 jfki, �AB has the form�AB = Xj;k;l;m �jk;lmjejihelj 
 jfkihfmj : (C2)The diagonal forms of the marginal density operators show thatD2Xk=1 �jk;lk = �jÆjl and D1Xj=1 �jk;jm = �kÆkm : (C3)Thus the diagonal elements of �jk;lm are a probability distribution pjk = �jk;jk, whosemarginals are the eigenvalues of the marginal density operators:D2Xk=1 pjk = �j and D1Xj=1 pjk = �k : (C4)We now an write1 + tr(�2AB) = 1 + Xj;k;l;m j�jk;lmj2� 1 +Xj;k p2jk= Xj;k;l;m pjkplm +Xj;k p2jk= Xj;k;m pjkpjm + Xj 6=l;k;m pjkplm +Xj;k;l pjkplk � Xj 6=l;k pjkplk=Xj �Xk pjk�2 +Xk �Xj pjk�2 + Xj 6=l;k 6=m pjkplm�Xj �2j +Xl �2k= tr(�2A) + tr(�2B) : (C5)The �rst inequality here is saturated if and only if �AB is diagonal in the basis jeji
jfki.The seond inequality is saturated if and only if pjkplm = 0 whenever j 6= l and k 6= m.This requirement is equivalent to saying that the nonzero entries in pjk are restrited to onerow or to one olumn. In view of the �rst requirement, this means that overall equality isahieved in Eq. (C5) if and only if �AB = �A 
 �B is a produt state, with �A or �B a purestate. 21



APPENDIX DIn this Appendix we show that the vetor spae of operators ating on a D-dimensionalHilbert spae has only two proper operator subspaes that are invariant under all unitarytransformations. These two subspaes are the one-dimensional subspae spanned by theunit operator I and the subspae onsisting of all traefree operators.It is obvious that the subspae onsisting of multiples of I and the subspae of trae-freeoperators are unitarily invariant. To show that these are the only unitarily invariant propersubspaes, we onsider a unitarily invariant subspae that is not the subspae spanned byI, and we show that this subspae is either the subspae of traefree operators or the entireoperator spae. Let A be a nonzero operator in the unitarily invariant subspae, whih isnot a multiple of I. There exists an orthonormal basis jeji suh that A11 6= A22. Adopt thisbasis, in whih A has the representationA = DXj;k=1Ajkjejihekj : (D1)Consider the unitary operator U that hanges the sign of je1i, i.e., U je1i = �je1i andU jeji = jeji for j = 2; : : : ;D. Also in the unitarily invariant subspae is the operatorB = 12(A+ UAUy) = A11je1ihe1j+ DXj;k=2Ajkjejihekj : (D2)Do the same thing to the seond basis vetor; i.e., use the unitary operator V de�ned byV je2i = �je2i, and V jeji = jeji for j = 1 and j = 3; : : : ;D. Also in the subspae is theoperator C = 12(B + V BV y) = A11je1ihe1j+A22je2ihe2j+ DXj;k=3Ajkjejihekj : (D3)Now onsider the unitary operator W that swaps je1i and je2i, i.e., W je1i = je2i, W je2i =je1i, and W jeji = jeji for j = 3; : : : ;D. Also in the subspae is the (nonzero) traefreeoperator D = C �WCW y = (A11 �A22)(je1ihe1j � je2ihe2j) : (D4)We onlude that the subspae ontains the traefree operator je1ihe1j � je2ihe2j, whihis a Pauli �z operator for the �rst two dimensions. From this operator, we an generate byunitary transformations that interhange basis vetors a �z-like operator for every pair ofdimensions, and from these �z operators, we an generate by unitary transformations a �xand a �y operator for every pair of dimensions. Sine these Pauli-like operators span thespae of traefree operators, we onlude that any unitarily invariant operator subspae thatis not the spae spanned by I ontains all traefree operators.The unitarily invariant subspae ould be the subspae of traefree operators. Supposethat it is not and thus ontains an operator E that is not traefree. De�ning a traefreeoperator F = E � tr(E)I=D, we see that I an be written as linear ombination of F andE and thus is in the subspae. Sine the traefree operators together with I span the entirespae of operators, we onlude that in this ase the unitarily invariant subspae is the entireoperator spae. This establishes our result. 22
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