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CORRESPONDENCE SPACES AND TWISTOR SPACES

FOR PARABOLIC GEOMETRIES

ANDREAS ČAP

Abstract. For a semisimple Lie group G with parabolic subgroups
Q ⊂ P ⊂ G, we associate to a parabolic geometry of type (G,P ) on
a smooth manifold N the correspondence space CN , which is the total
space of a fiber bundle over N with fiber a generalized flag manifold,
and construct a canonical parabolic geometry of type (G,Q) on CN .

Conversely, for a parabolic geometry of type (G,Q) on a smooth
manifold M , we construct a distribution corresponding to P , and find
the exact conditions for its integrability. If these conditions are satisfied,
then we define the twistor space N as a local leaf space of the corre-
sponding foliation. We find equivalent conditions for the existence of a
parabolic geometry of type (G,P ) on the twistor space N such that M
is locally isomorphic to the correspondence space CN , thus obtaining a
complete local characterization of correspondence spaces.

We show that all these constructions preserve the subclass of normal
parabolic geometries (which are determined by some underlying geomet-
ric structure) and that in the regular normal case, all characterizations
can be expressed in terms of the harmonic curvature of the Cartan con-
nection, which is easier to handle. Several examples and applications are
discussed.

1. Introduction

This paper is devoted to the study of relations between different geometric
structures via the construction of correspondence spaces and twistor spaces.
The structures we deal with are the so–called parabolic geometries, which
may be viewed as curved analogs of homogeneous spaces of the form G/P ,
where G is a semisimple Lie group and P ⊂ G is a parabolic subgroup.
Parabolic geometries form a rather large class of structures, including for
example projective, conformal and non-degenerate CR–structures of hyper-
surface type, as well as certain higher codimension CR structures.

The starting point of twistor theory was R. Penrose’s idea to associate to
the Grassmannian Gr2(C4) of planes in C4, which is viewed as compactified
complexified Minkowski space, the twistor space CP 3, and to study the
conformal geometry of Gr2(C4) via the complex geometry of the twistor
space. The connection between these two manifolds is the correspondence
space F1,2(C4), the flag manifold of lines in planes in C4, which canonically
fibers over Gr2(C4) and over CP 3 and defines a correspondence between the
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two spaces. This correspondence gives rise to the Penrose transform, which
is a basic element of twistor theory.

Later on, twistor theory and the Penrose transform have been extended
in two directions. On one hand, the original correspondence is homoge-
neous under the simple Lie group SL(4,C), which governs the projective
geometry of CP 3 and (via the isomorphism with SO(6,C)) the conformal
geometry of Gr2(C4). The subgroups of SL(4,C) leading to these two ho-
mogeneous spaces are parabolic subgroups. Now one may replace SL(4,C)
by an arbitrary semisimple Lie group G and fix two parabolic subgroups
P1, P2 ⊂ G such that P1 ∩ P2 ⊂ G is parabolic. Then the natural fibrations
from G/(P1 ∩P2) onto G/P1 and G/P2 define a correspondence. This is the
subject of the book [4], in which these correspondences and the resulting
Penrose transforms are studied, and applications to differential geometry
and representation theory are described.

On the other hand, it has been know for quite some time that certain geo-
metric structures, like conformal, projective, or almost quaternionic struc-
tures can be viewed as “curved analogs” of homogeneous spaces of the form
G/P as above. In the case of four–dimensional conformal structures, twistor
theory has been first extended to curved situations in [1] and [19]. Later on,
the techniques were generalized to further geometries and they have found
many applications, see for example [16] and the collection [2]. There are two
important remarks to be made at this point. One is that twistor theory in
many cases requires a restriction on the geometric structure, like self duality
in four–dimensional conformal geometry, or torsion freeness in quaternionic
geometry. The second important point is that compared to the flat versions
of the correspondence discussed above, the situation loses its symmetry.
While the passage “up” from the original manifold to the correspondence
space is very similar to the flat case, the passage “down” is given by passing
to the leaf space of a certain foliation, so usually this is only possible locally.
More drastically, usually there is no local geometric structure on the twistor
space, but it is only a smooth or complex manifold.

Using E. Cartan’s concept of a generalized space, one may associate to any
homogeneous space a geometric structure defined via Cartan connections on
suitable principal bundles. In the case of homogeneous spaces of the form
G/P as above the corresponding geometric structures are called parabolic
geometries. A general construction of Cartan connections of this type (under
small technical restrictions) was given in the pioneering work of N. Tanaka,
see [22]. In [17], these results were embedded into the more general theory of
Cartan connections associated to geometric structures on filtered manifolds,
i.e. manifolds endowed with a filtration of the tangent bundle by subbundles.

The main emphasis in these considerations was the solution of the equiv-
alence problem, while the geometry of the structures in question was only a
secondary issue. Although there were some applications of Tanaka theory to
geometrical problems which are quite close to twistor theory, see e.g. [20],
these works unfortunately never became well known to people working in
twistor theory, which may also be due to their rather complicated and tech-
nical nature.
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During the last years there was a renewed interest in this class of struc-
tures and it turned out that apart from containing interesting examples it
can be studied in a remarkably uniform way. Besides new constructions of
the Cartan connections and descriptions of the underlying structures (see
[7]), there is a general theory of classes of preferred connections for parabolic
geometries (see [9]) which generalizes Weyl connections in conformal geome-
try. This leads to a systematic way of expressing the curvature of the Cartan
connection (which is the essential invariant of any parabolic geometry) in
terms of underlying data and to powerful tools like normal coordinates for
arbitrary parabolic geometries. Finally, there are strong general results on
invariant differential operators, i.e. differential operators intrinsic to a par-
abolic geometry (see [11] and [5]).

The impact of this in the direction of twistor theory is that in many cases
the geometric structures showing up “on top” of the correspondence (i.e. in
the place of the correspondence space) are highly interesting and much more
subtle than the geometric structures showing up “downstairs”. In this paper,
we will show that the construction of a correspondence space works in the
curved setting without restrictions, so one may always pass “up”. Then we
will give a complete local characterization of the geometries obtained in that
way. This is done in two steps: first we find conditions for the existence of
a twistor space, which is a candidate for a space carrying the “downstairs”
structure; secondly, we derive the conditions which ensure the existence of
this geometric structure. Combining the results for going up and going down,
we obtain the precise conditions on the existence of twistor correspondences
in the classical sense.

Let us describe the contents of the paper in a little more detail. Technically
speaking, we have to deal only with one side of the correspondence. Thus,
we consider a semisimple Lie group G and two parabolic subgroups Q ⊂
P ⊂ G. Starting with any parabolic geometry of type (G,P ) on a manifold
N , a simple construction leads to the correspondence space CN , which is
the total space of a natural fiber bundle over N with fiber a generalized flag
manifold, and canonically carries a parabolic geometry of type (G,Q). In
fact, the Cartan connections (and thus also their curvatures) are the same
for both structures, which implies some simple restrictions on the curvature
of correspondence spaces. It is less obvious but still rather simple, that the
normalization conditions for Cartan connections of the two different types
are compatible, so for a normal parabolic geometry the correspondence space
is normal, too.

The main result of section 2 is that the simple curvature restrictions
from above actually characterize correspondence spaces locally. If M is a
smooth manifold equipped with a parabolic geometry of type (G,Q), then
the subalgebra p ⊂ g gives rise to a distribution on M . Under a weak torsion
condition, this distribution is integrable, so we can consider a local leaf–space
for the corresponding foliation, which is then called the twistor space N of
M . The main result is then that if M satisfies the curvature restriction for
correspondence spaces from above, then there is a parabolic geometry of
type (G,P ) on the twistor space N (which is uniquely determined provided
that P/Q is connected) such that M is locally isomorphic to CN .
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To get to the classical form of the twistor correspondence, one starts with
two parabolics P1, P2 ⊂ G which contain the same Borel subgroup, takes
a parabolic geometry of type (G,P1), constructs the correspondence spaces
associated to P1 ∩ P2 ⊂ P1 and then the twistor space corresponding to
P2 ⊃ P1 ∩P2. It should be emphasized that for the existence of the Penrose
transform, a parabolic geometry on the twistor space is not needed, since
one side of the transform (the pull back part) does not need any geometric
structure. On the other side one then has a fiber bundle with fiber a gen-
eralized flag manifold, and thus results from representation theory apply to
the push down part, which is much more subtle.

The curvature of the canonical Cartan connection is a rather complicated
object in general. A well known nice feature of regular normal parabolic
geometries is that one can pass from this curvature to the harmonic curva-
ture, which is a much simpler object. In section 3, we show how rather deep
general results on parabolic geometries can be used to prove that for regu-
lar normal parabolic geometries, the curvature restrictions from above are
equivalent to the analogous restrictions for the harmonic curvature, which
are much easier to verify. Hence we arrive at effective conditions for the
existence of a twistor space, as well as for the existence of a parabolic ge-
ometry on this twistor space. We show that these results also work in the
holomorphic category.

In section 4, we discuss several examples and outline some applications.
We first discuss in detail the example of Lagrangian contact structures,
which leads to an interesting geometric interpretation of the projective cur-
vature of a linear connection, as well as to results on contact structures
and partial connections on projectivized tangent bundles. Next, we briefly
outline the case of elliptic partially integrable almost CR structures of CR
dimension and codimension two, in which even the construction of corre-
spondence spaces leads to unexpected results. Finally, we briefly discuss the
example of almost Grassmannian structures which leads to an interpretation
of path geometries as parabolic geometries and contains the classical twistor
theory for split signature conformal four–manifolds.

Acknowledgments: This work was supported by project P 15747–N05 of
the Fonds zur Förderung der wissenschaftlichen Forschung (FWF). Discus-
sions with M. Eastwood, R. Gover, D. Grossman, P. Michor, G. Schmalz,
J. Slovak, V. Souček, and J. Teichmann have been extremely important. I
would also like to thank the referee for his profound and helpful comments.

2. Correspondence spaces and twistor spaces

We start by briefly reviewing some general facts about parabolic geome-
tries, see [7], [11], and [9] for more information.

2.1. |k|–graded Lie algebras and parabolic geometries. Let g be a
(real or complex) semisimple Lie algebra endowed with a |k|–grading, i.e. a
grading of the form g = g−k ⊕ · · · ⊕ g0 ⊕ · · · ⊕ gk such that g1 generates the
subalgebra p+ := g1 ⊕ · · · ⊕ gk, and such that none of the simple ideals of
g is contained in g0. Define p to be the subalgebra g0 ⊕ p+. Since we will
deal with different parabolics at the same time, we will write p0 for g0 and
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we will write p− for the subalgebra g−k ⊕ · · · ⊕ g−1, which is usually called
g−. Be aware of the fact that p− is not contained in p. While the grading
of g is not p–invariant, it gives rise to an invariant decreasing filtration
g = g−k ⊃ g−k+1 ⊃ · · · ⊃ gk defined by gi := gi⊕· · ·⊕gk for all i = −k, . . . , k.
It turns out (see [23]), that this filtration is completely determined by the
subalgebra p which is parabolic, and conversely any parabolic subalgebra
gives rise to a |k|–grading.

Next, let G be a Lie group with Lie algebra g, and define subgroups
P0 ⊂ P ⊂ G (usually P0 is denoted by G0) as the subgroups of those
elements, whose adjoint actions on g preserve the grading respectively the
filtration of g. One shows that Lie algebras of P and P0 are p and p0,
the exponential map restricts to a diffeomorphism from p+ onto a normal
subgroup P+ ⊂ P , and that P is the semidirect product of P0 and P+.

A parabolic geometry of type (G,P ) on a smooth manifold M (having
the same dimension as the homogeneous space G/P ) is given by a principal
P–bundle p : G → M and a Cartan connection ω ∈ Ω1(G, g), i.e. a smooth
one–form with values in g such that

(1) ω(ζA) = A for all fundamental fields ζA, A ∈ p
(2) (rg)∗ω = Ad(g−1) ◦ ω for all g ∈ P
(3) ω|TuG : TuG → g is a linear isomorphism for all u ∈ G.

The homogeneous model for this parabolic geometry is the principal P–
bundle p : G→ G/P together with the left Maurer–Cartan form as a Cartan
connection. A morphism between parabolic geometries (p : G → M,ω) and
(p′ : G′ → M ′, ω′) of the same type is a principal bundle map F : G → G ′
such that F ∗ω′ = ω. This compatibility of F with the Cartan connections
implies that it is a local diffeomorphism.

The curvature–function κ : G → L(Λ2g, g) of a parabolic geometry (p :
G → M,ω) is defined by κ(u)(X,Y ) := dω(ω−1

u (X), ω−1
u (Y )) + [X,Y ] for

u ∈ G, so this exactly measures to what extent the Maurer–Cartan equation
fails to hold. The defining properties of ω imply that κ is P–equivariant and
it vanishes if one of its entries lies in p ⊂ g. Hence we will view κ as an
equivariant smooth function G → L(Λ2g/p, g). The values of the curvature
function can be used to define various subcategories of parabolic geometries:

First, if κ is identically zero, then the corresponding parabolic geometry
is called (locally) flat . General results on Cartan connections imply that flat
parabolic geometries are locally isomorphic (as parabolic geometries) to the
homogeneous model G/P , see Proposition 4.12 in [7] for a proof in the realm
of parabolic geometries.

Second, the parabolic geometry is called torsion–free if the curvature func-
tion has the property that κ(u)(X,Y ) ∈ p for all u ∈ G and X,Y ∈ g.

Finally, the parabolic geometry is called regular if for all u ∈ G, all i, j < 0
and all X ∈ gi and Y ∈ gj one has κ(u)(X,Y ) ∈ gi+j+1. This means that
with respect to the grading on g, all nonzero homogeneous components of κ
are of strictly positive degree. Notice that torsion free parabolic geometries
are automatically regular, so regularity should be viewed as a condition
avoiding particularly bad types of torsion.
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2.2. Normal parabolic geometries. Parabolic geometries are mainly
studied because they provide a conceptual way to describe certain underly-
ing geometric structures, for example conformal, almost quaternionic, or CR
structures of hypersurface type. This underlying structure easily leads to a
principal P0–bundle G0 → M for an appropriate choice of G and P . Using
quite sophisticated procedures, one extends this bundle to a principal P–
bundle G →M and constructs a canonical Cartan connection on G. To make
this Cartan connection unique (up to isomorphism), one has to impose an
additional normalization condition on the curvature. One then arrives at an
equivalence of categories between the underlying geometric structures and
regular normal parabolic geometries. Different versions of such prolongation
procedures can be found in [22], [17], and [7].

For general Cartan connections the problem of finding an appropriate nor-
malization condition is very subtle, but for parabolic geometries Lie theory
offers a uniform approach. The Killing form of g defines a duality between
g/p and p+ which is compatible with the natural P–actions on both spaces
(which both come from the restriction of the adjoint action of G). Hence
for each k we get an isomorphism L(Λkg/p, g) ∼= Λkp+ ⊗ g of P–modules.
The latter spaces are the groups in the standard complex computing the
Lie algebra homology of p+ with coefficients in g. The differentials in this
standard complex define linear maps

∂∗ : L(Λkg/p, g)→ L(Λk−1g/p, g),

which are traditionally referred to as the codifferential . From the explicit
formula for theses differentials one immediately reads off that they are P–
homomorphisms. For the curvature function κ : G → L(Λ2g/p, g) of a par-
abolic geometry, we can form ∂∗ ◦ κ : G → L(g/p, g) and the geometry is
called normal if this composition vanishes identically.

By construction, ∂∗ ◦ ∂∗ = 0 and the resulting complex computes the
Lie algebra homology of p+ with coefficients in g. Let us denote the kth
homology group (which is a P–module by construction) by Hkg . One easily

shows that P+ acts trivially on Hkg , so the P–action is determined by the
action of P0. Kostant’s version of the Bott–Borel–Weyl theorem in [15] can
be used to algorithmically compute the cohomology groups H∗(p+, g), which
are well known to be dual to the homology groups, as representations of P0.

The curvature function κ : G → L(Λ2g/p, g) of any parabolic geometry
is by construction P–equivariant. For a normal parabolic geometry, we get
∂∗◦κ = 0 and thus we can consider the induced function κH : G → H2

g, which
is again P–equivariant. This is called the harmonic curvature of the para-
bolic geometry. For a regular normal parabolic geometry the Bianchi iden-
tity implies that κ vanishes identically provided that κH vanishes identically.
This reduction to the harmonic curvature is a major simplification. Equiv-
ariancy of κH implies that it determines a section of the bundle G ×P H2

g.

But since P+ acts trivially on H2
g we may identify this associated bundle

with G0×P0 H2
g, where G0 := G/P+. This is exactly the bundle encoding the

underlying geometric structure, so the harmonic curvature can be directly
interpreted in terms of this underlying structure, while to understand the
Cartan curvature κ one needs the full Cartan bundle G.
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A conceptual approach to the computation and geometric interpretation
of the harmonic curvature is offered by the so–called Weyl–structures, see
[9]. These are global smooth G0–equivariant sections σ : G0 → G of the
natural projection G → G/P+ = G0. In [9] it is shown that such sections
always exist, and how the pull-back σ∗κ can be computed in terms of tensors
and connections naturally associated to σ. Now σ∗κ corresponds to a P0–
equivariant function G0 → L(Λ2g/p, g) and on the latter space one has a
P0–equivariant algebraic Hodge decomposition, see 3.1 below. The harmonic
part of this function can be interpreted as a P0–equivariant function G0 →
H2

g, which exactly represents the harmonic curvature κH . It should also be
noted that usually there are more direct interpretations for the components
of κH of lowest homogeneity, in particular if they are of torsion type, i.e. have
values in p−. We will discuss this in some examples in section 4.

2.3. Suppose that g is complex, and we have fixed a Cartan subalgebra
h ⊂ g and a choice of positive roots. Then any parabolic subalgebra of
g is conjugate to a standard parabolic subalgebra, i.e. one that contains
h and all positive root spaces. Standard parabolic subalgebras in g are in
bijective correspondence with subsets Σ ⊂ ∆0 of the set of simple roots.
The corresponding |k|–grading of g is then given by the Σ–height, i.e. the
root space corresponding to a root α lies in gj , where j is the sum of the
coefficients of all elements of Σ in the (unique) expansion of α as a linear
combination of simple roots. In particular, Σ consists of those simple roots
α, for which the (−α)–root space is not contained in the parabolic.

Let us now consider the case of two nested (standard) parabolic subal-

gebras q ⊂ p ⊂ g. By construction, the subset Σ̃ associated to q has to
contain the subset Σ associated to p. In the language of Dynkin diagrams
with crossed nodes (see chapter 2 of [4] and [7]) this just means that in the
complex case one passes from p to q by changing any number of uncrossed
nodes to crossed nodes. In the real case one in addition has to take care that
the new parabolic subalgebra of the complexification comes from the given
real form, which can be read off the Satake diagram.

In any case, we get the two decompositions g = p− ⊕ p0 ⊕ p+ and g =
q− ⊕ q0 ⊕ q+. Since Σ ⊂ Σ̃ we conclude that p± ⊂ q±, q0 ⊂ p0, and that
q− = p−⊕ (p∩ q−) and p = (p∩ q−)⊕ q. Finally note that p∩ q− = p0 ∩ q−.

The first crucial observation is that the codifferentials ∂∗p and ∂∗q cor-
responding to the two parabolics are compatible. The inclusion p+ ↪→ q+

induces an inclusion

j : L(Λkg/p, g) ∼= Λkp+ ⊗ g→ Λkq+ ⊗ g ∼= L(Λkg/q, g).

Since the standard differentials for Lie algebra homology of p+ and q+ are
both restrictions of the standard differential for Lie algebra homology of g
we conclude

Proposition. For the natural inclusion j : L(Λkg/p, g) → L(Λkg/q, g) we
have ∂∗q ◦ j = j ◦ ∂∗p .

2.4. Let G be a Lie group with Lie algebra g and let q ⊂ p ⊂ g be parabolic
subalgebras as before. The explicit descriptions of p and q, the corresponding
gradings of g in terms of root spaces, and the definition of the subgroups
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P,Q ⊂ G imply that Q is a closed subgroup of P , and P+ ⊂ Q+. It can
be shown that P/Q is the quotient of the semisimple part of P0 by some
parabolic subgroup and thus a generalized flag manifold, see section 2.4 of
[4].

Now suppose that (p : G → N,ω) is a parabolic geometry of type (G,P ).
Since G is a principal P–bundle, we may restrict the principal action to the
closed subgroup Q ⊂ P , which still acts freely on G. Thus, the orbit space
CN := G/Q is a smooth manifold.

Definition. The correspondence space CN of the parabolic geometry (p :
G → N,ω) of type (G,P ) is the orbit space G/Q.

Proposition. The correspondence space CN is the total space of a natural
fiber bundle over N with fiber the generalized flag manifold P/Q. It carries
a natural parabolic geometry of type (G,Q). The curvature function κCN of
this geometry is given by j ◦κN , where κN denotes the curvature function of
N and j : L(Λ2g/p, g)→ L(Λ2g/q, g) is the natural inclusion. In particular:
(1) κCN (X,Y ) = 0 if X ∈ p/q ⊂ g/q.
(2) If one starts from a normal parabolic geometry on N , then the induced
parabolic geometry on CN is normal, too.

Proof. The orbit space CN = G/Q is naturally isomorphic to the associated
bundle G×P P/Q, so it is the total space of a natural fiber bundle with fiber
P/Q. The natural projection π : G → G/Q which maps any point to its orbit
is a principal Q–bundle. The Cartan connection ω ∈ Ω1(G, g) defining the
parabolic geometry on N is equivariant for the action of the group P ⊃ Q
and reproduces the generators in p ⊃ q of fundamental vector fields. Hence
it is also a Cartan connection on the principal Q–bundle G → CN and we
have obtained a natural parabolic geometry of type (G,Q) on CN .

Since the parabolic geometries on N and CN are given by the same Cartan
connection, κCN and κN coincide as functions with values in L(Λ2g, g) so
we clearly get κCN = j ◦ κN as a function with values in L(Λ2g/q, g). From
this, (1) is obvious, while (2) follows from Proposition 2.3. ¤
Remark. For parabolic geometries (p : G → N,ω) and (p′ : G′ → N ′, ω′),
a morphism by definition is a homomorphism Φ : G → G ′ of principal P–
bundles such that Φ∗ω′ = ω. Of course, this implies that Φ is equivariant for
the action of the subgroup Q ⊂ P , so it also defines a morphism of parabolic
geometries of type (G,Q) from (G → CN,ω) to (G ′ → CN ′, ω). Thus forming
the correspondence space is a functorial construction.

Conversely, a morphism between the two correspondence spaces is a Q–
equivariant map Φ : G → G ′ such that Φ∗ω′ = ω. To understand the behavior
of Φ with respect to the action of the group P ⊃ Q, observe that ω and ω ′

both reproduce the generators of fundamental vector fields corresponding to
the P–action. From this one easily concludes that Φ is equivariant for the
action of elements of the form exp(A) for A ∈ p. If P/Q is connected, then
these elements together with Q generate all of P , so Φ is automatically P–
equivariant. In particular we see that if P/Q is connected, then isomorphism
of the correspondence spaces CN and CN ′ implies isomorphism of N and
N ′, and in particular for any N the automorphism groups of the geometries
on N and CN coincide.
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2.5. The first step towards a converse of the construction of the correspon-
dence space is to observe that the subalgebra p gives rise to a distribution
on the base space of any parabolic geometry (π : G →M,ω) of type (G,Q).
Since ω is a Cartan connection on G, the tangent bundle of M is the asso-
ciated bundle G ×Q (g/q). Since Q ⊂ P , the subspace p ⊂ g is Q–invariant,
and q ⊂ p. Thus, p/q ⊂ g/q is a Q–invariant subspace which gives rise to a
smooth subbundle E := G×Q (p/q) of TM , i.e. a smooth distribution of con-
stant rank on M . Explicitly, the subspace Ex ⊂ TxM can be described as the
space of those tangent vectors such that for one (or equivalently any) point

u ∈ G such that π(u) = x and one (or equivalently any) lift ξ̃ of ξ to TuG we

have ω(ξ̃) ∈ p. From the construction of the correspondence space it follows
immediately that for M = CN the distribution E is exactly the vertical
subbundle with respect to the projection π : CN → N , so this distribution
is globally integrable with leaf–space N . Integrability of the distribution E
is a rather weak condition in general:

Proposition. Let (π : G → M,ω) be a parabolic geometry of type (G,Q)
with curvature function κ and let E ⊂ TM be the smooth distribution cor-
responding to the subalgebra p ⊃ q. Then the distribution E is integrable if
and only if for all u ∈ G and X,Y ∈ p/q, we have κ(u)(X,Y ) ∈ p ⊂ g.

Proof. Locally, any vector field on M can be lifted to a vector field on G.
Sections of the subbundle E ⊂ TM correspond exactly to sections of the
subbundle ω−1(p) ⊂ TG. Since the Lie bracket of two lifts is a lift of the
Lie bracket of the original fields, we see that E is integrable provided that
the space of sections of ω−1(p) ⊂ TG is closed under the Lie bracket. By
definition of the exterior derivative, this is equivalent to dω(ξ, η) ∈ p for all
ξ, η ∈ Γ(ω−1(p)). By definition of the curvature function,

dω(ξ, η) = κ(ω(ξ), ω(η))− [ω(ξ), ω(η)].

Since p ⊂ g is a Lie subalgebra, we see that κ(X,Y ) ∈ p for all X,Y ∈ p/q
implies integrability of E.

Conversely, if we findX,Y ∈ p/q and a point u ∈ G such that κ(u)(X,Y ) /∈
p, then choose representatives X̃, Ỹ ∈ p for X and Y . The tangent vec-
tors ω−1(X̃)(u) and ω−1(Ỹ )(u) have nonzero projections to TM . Extending
them to projectable sections of the subbundle ω−1(p), we obtain two sec-
tions whose Lie bracket does not lie in ω−1(p). Their projections on M are
sections of E, whose Lie bracket cannot be contained in E. ¤

2.6. Once the distribution E ⊂ TM from 2.5 is integrable, we can locally
define a twistor space for M as a local leaf space for the corresponding
foliation, i.e. a smooth manifold N together with a surjective submersion ψ
from an open subset U of M onto N such that ker(Txψ) = Ex for all x ∈ U .
The existence of local leaf spaces for integrable distributions immediately
follows from the local version of the Frobenius theorem (see e.g.[14], theorem
3.22) by projecting on one factor of an adapted chart. One easily shows that
for two local leaf spaces ψ : U → N and ψ′ : U ′ → N ′ there is a unique
diffeomorphism ϕ : ψ(U ∩ U ′)→ ψ′(U ∩ U ′) such that ϕ ◦ ψ = ψ′.

At this stage the twistor space is just a smooth manifold and only locally
defined. However Penrose transforms may be used to interpret geometric
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objects on the twistor space on the original manifold M , which makes the
construction interesting, even without getting some local geometric struc-
tures on the twistor space.

Our aim is to find conditions on the curvature function of the geometry
(π : G →M,ω) which enable us to define a parabolic geometry of type (G,P )
on a sufficiently small local leaf space ψ : U → N such that U is isomorphic
(as a parabolic geometry) to an open subset in the correspondence space
CN . This will be done in two steps, which require different conditions on
κ. First we have to construct a diffeomorphism from an appropriate open
subset of G to an open subset in a principal P–bundle over N which satisfies
a certain equivariancy condition. For X ∈ g let us denote by XG ∈ X(G) the
vector field characterized by ω(XG) = X.

Proposition. Let (π : G → M,ω) be a parabolic geometry of type (G,Q)
and let E ⊂ TM be the subbundle corresponding to p as in 2.5. Suppose
further that the curvature function κ has the property that κ(u)(X,Y ) = 0
for all u ∈ G and X,Y ∈ p/q ⊂ g/q.

Then for any sufficiently small local leaf space ψ : U → N of the foliation
defined by E, there is a Q–equivariant diffeomorphism Φ from a Q–invariant
open subset of the trivial principal bundle N×P to a Q–invariant open subset
of G such that ψ ◦ π ◦ Φ = pr1 : N × P → N and such that for A ∈ p and
the fundamental vector field ζA ∈ X(N × P ) we get TΦ ◦ ζA = AG ◦ Φ.

Proof. For A,B ∈ p ⊂ g consider AG , BG ∈ X(G) and the Lie bracket
[AG , BG ]. Then we compute

ω([AG , BG ]) = −dω(AG , BG) = [A,B]− κ(A+ q, B + q),

so the assumption on κ implies that [AG , BG ] = [A,B]G . Hence A 7→ AG

restricts to a Lie algebra homomorphism p → X(G), i.e. an action of the
Lie algebra p on G. By Lie’s second fundamental theorem, see pp. 47–49
and 58 of [18], this Lie algebra action integrates to a local group action. In
particular, for any u0 ∈ G there is an open neighborhood W of (u0, e) in
G × P and a smooth map F : W → G such that

• If (u, e) ∈W , then F (u, e) = u and d
dt |t=0F (u, exp(tA)) = AG(u) for

all A ∈ p.
• F (F (u, g), h) = F (u, gh) provided that (u, g), (u, gh) and (F (u, g), h)

all lie in W .

Now consider a local leaf space ψ : U → N which is so small that there is a
smooth section σ : N → G of ψ◦π : π−1(U)→ N . Possibly shrinking the leaf

space further, we find an open neighborhood Ṽ of e in P such that for some
set W as above we have (σ(x), g) ∈W and (F (σ(x), g), e) ∈W for all x ∈ N
and all g ∈ Ṽ . Then we define Φ : N × Ṽ → G by Φ(x, g) := F (σ(x), g). For
x ∈ N the tangent map T(x,e)Φ : TxN × p → Tσ(x)G is evidently given by

(ξ, A) 7→ Txσ·ξ +AG(σ(x)) so it is a linear isomorphism. Possibly shrinking

U and Ṽ , we may assume that Φ is a diffeomorphism onto an open subset
Ũ ⊂ G. We may further assume that Ṽ = {exp(X) exp(B) : X ∈ V1, B ∈ V2}
where V1 is an open neighborhood of zero in p ∩ q− such that (X,h) 7→
exp(X)h is a diffeomorphism from V1 ×Q onto an open neighborhood V of
Q in P and V2 is a ball around zero in q.
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For a fixed point x ∈ N , any vector tangent to {x} × Ṽ can be written

as ζA(x, g) = d
dt |t=0(x, g exp(tA)) for some g ∈ Ṽ and A ∈ p. For sufficiently

small t, we by construction have Φ(x, g exp(tA)) = F (Φ(x, g), exp(tA)), and
thus T(x,g)Φ maps this tangent vector to AG(Φ(x, g)). Thus we see that TΦ◦
ζA = AG ◦Φ on N× Ṽ . Moreover, TΦ◦ζA always lies in ω−1(p) ⊂ TG, which

implies that Φ̃({x}×Ṽ ) is contained in one leaf of the foliation corresponding
to the integrable distribution ω−1(p) ⊂ TG. From 2.5 we conclude that the

map ψ ◦ π ◦Φ is constant on {x}× Ṽ , and since Φ(x, e) = σ(x) we conclude

that ψ ◦ π ◦ Φ = pr1 : N × Ṽ → N .

For X ∈ V1 and B ∈ V2 we have exp(X) exp(tB) ∈ Ṽ for all t ∈
[0, 1]. Since BG is the fundamental vector field on G generated by B ∈ q,
the infinitesimal condition TΦ ◦ ζB = BG ◦ Φ immediately implies that
Φ(x, exp(X) exp(B)) = Φ(x, exp(X))· exp(B), where in the right hand side
we use the principal right action on G. Since Q acts freely both on N × V
and on G we can uniquely extend Φ to a Q–equivariant diffeomorphism from
N × V to the Q–invariant open subset {u·g : u ∈ Ũ , g ∈ Q} ⊂ G. Since the
family of fundamental vector fields on N × P and the family of the vec-
tor fields AG on G have the same equivariancy property, this extension still
satisfies TΦ ◦ ζA = AG ◦ Φ for all A ∈ p. ¤

2.7. The second step in the construction is to use the diffeomorphism from
Proposition 2.6 to carry over the Cartan connection to the principal bundle
N × P , which needs an additional condition on the curvature.

Theorem. Let (π : G →M,ω) be a parabolic geometry of type (G,Q) whose
curvature κ satisfies κ(u)(X,Y ) = 0 for all u ∈ G, X ∈ p and all Y ∈ g.
Let ψ : U → N be a sufficiently small local leaf space for the integrable
distribution E ⊂ TM corresponding to p/q ⊂ g/q. Then:
(1) ω induces a Cartan connection ω̃ on the trivial principal bundle N ×P ,
which is normal if (π : G →M,ω) is normal.
(2) The parabolic geometry (π−1(U), ω|π−1(U)) is isomorphic to an open sub-
set of the correspondence space (N × P → N × (P/Q), ω̃). If P/Q is con-
nected, this condition determines the parabolic geometry on N up to isomor-
phism.

Proof. (1) By Proposition 2.6 there is a open neighborhood V of e in P
and a diffeomorphism Φ from N × V onto an open subset of G such that
ψ ◦ π ◦ Φ = pr1 : N × V → N and such that TΦ ◦ ζA = AG ◦ Φ for all
A ∈ p. Hence we can form Φ∗ω ∈ Ω1(N × V, g), which restricts to a linear
isomorphism on each tangent space. Let us denote by ρ the principal right
action of P on N × P . We can extend the values of this form in N × {e}
equivariantly to a g–valued one–form ω̃ on N × P by putting

ω̃(x, g) := Ad(g−1) ◦ (Φ∗ω)(x, e) ◦ Tρg−1
.

By construction, this form restricts to an isomorphism on each tangent space
and satisfies (ρg)∗ω̃ = Ad(g)−1 ◦ ω̃ for all g ∈ P . Since the vector fields ζA
and AG are Φ–related, their flows are Φ related. Thus Φ◦ρexp(tA) = FlA

G
t ◦Φ,

whenever the left hand side is defined. The curvature condition κ(A, Y ) = 0
for all Y ∈ g and A ∈ p reads as − ad(A) ◦ ω = iAGdω = LAGω, where



12 ANDREAS ČAP

in the last step we have used that ω(AG) is constant. This infinitesimal

equivariancy condition easily implies local equivariancy, i.e. that (FlA
G

t )∗ω =
Ad(exp(−tA)) ◦ ω, whenever the flow is defined. Hence for A ∈ p such that

exp(tA) ∈ V for all t ∈ [0, 1] we have (ρexp(A))∗Φ∗ω(x, e) = Ad(exp(A)−1) ◦
ω(x, e) for all x ∈ N . This shows that ω̃ coincides with Φ∗ω on an open
neighborhood of N in N × P , so ω̃ is smooth on this neighborhood and
hence by equivariancy on all of N × P .

By construction, Φ∗ω reproduces the generators of fundamental vector
fields. Hence ω̃ has the same property in points of the form (x, e) with x ∈ N ,
and thus by equivariancy in all points of N × P . We have therefore verified
that ω̃ ∈ Ω1(N × P, g) is a Cartan connection, and thus defines a parabolic
geometry of type (G,P ) on N . Concerning normality, we have observed
above that ω̃ coincides with Φ∗ω on an open neighborhood of N × {e}. On
this neighborhood, the curvature function κ̃ of ω̃ is given by j ◦ κ̃ = κ ◦ Φ,
where j is the inclusion from 2.3. Now the claim on normality follows from
Proposition 2.3, equivariancy of κ̃, and the fact that ∂∗p is P–equivariant.
(2) Take the map Φ : N × V → G from (1). By Proposition 2.6 we may
assume N × V to be a Q–invariant subset of N × P and Φ to be a Q–
equivariant diffeomorphism onto a Q–invariant open subset Ũ ⊂ G. From (1)
we know that Φ∗ω = ω̃ on an open subset of N , which has to be Q–invariant
since both Φ∗ω and ω̃ are Q–equivariant. But this exactly means that Φ
defines an isomorphism of parabolic geometries of type (G,Q) from an open

subset in CN = N × V/Q to the open subset π(Ũ) ⊂ M . Finally, we have
seen in Remark 2.4 that isomorphism of the correspondence spaces implies
isomorphism of the underlying spaces provided that P/Q is connected. ¤
Corollary. Suppose that P/Q is connected and let (G →M,ω) be a parabolic
geometry of type (G,Q) satisfying the curvature restriction of the theorem.
Suppose that ψ : U → N is any local leaf space for the foliation corresponding
to E. Then N carries a canonical parabolic geometry of type (G,P ), which is
normal if (G, ω) is normal and such that U is isomorphic to an open subset
of CN as a parabolic geometry.

Proof. By part (1) of the theorem we get appropriate parabolic geometries
on sufficiently small open subsets of N . By part (2) these locally defined
structures fit together to define a principal bundle and a Cartan connection
on N . Also the isomorphisms between open subsets of the correspondence
spaces and appropriate subsets of U piece together smoothly by part (2) and
Remark 2.4. ¤
Remarks. (1) For many structures, there are intermediate curvature con-
ditions lying between the one in Proposition 2.5, which ensures existence of
a twistor space, and the one in the theorem above, which ensures existence
of a parabolic geometry on the twistor space. In some cases, these conditions
imply the existence of geometric structures on the twistor space which are
weaker than a parabolic geometry, see 4.6 for an example.
(2) To get the classical forms of the twistor correspondence, one has to
combine the constructions of correspondence and twistor spaces. One starts
with two parabolic subalgebras p1, p2 ⊂ g which contain the same Borel
subalgebra. Then q = p1 ∩ p2 is a parabolic subalgebra, too. Starting from
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a parabolic geometry of type (G,P1) on a manifold M one forms the corre-
spondence space CM , which carries a parabolic geometry of type (G,Q). The
parabolic p2 ⊃ q gives rise to a distribution E on CM . Since the curvature
function of CM coincides with the curvature function of M , the condition
for integrability of this distribution from Proposition 2.5 can be expressed
in terms of the curvature of M (and with the help of the results in the next
section even in terms of the harmonic curvature). Given the correspond-
ing curvature restrictions, one can form local twistor spaces. A priori, they
are only defined locally on CM , but using the fact that the fibers P1/Q of
CM → M are compact, one obtains a full correspondence over sufficiently
small open subsets of M . The fibers of CM →M then descend to subman-
ifolds in such twistor space, and the global structure of these submanifolds
encodes the local geometry of M . On the other hand, under further re-
strictions on the curvature, the local twistor spaces inherit local geometric
structures. Again, this will be discussed in the examples in section 4.

3. Reduction to harmonic curvature components

The curvature of a Cartan connection is a rather complicated object,
and one needs the full Cartan bundle to interpret it geometrically. As we
have noted in 2.2 in the case of regular normal parabolic geometries there
is the harmonic curvature, which can be directly interpreted in terms of the
underlying structure determining the parabolic geometry. As noted in 2.2
the harmonic curvature is still a complete obstruction to local flatness in
the regular normal case. Our aim in this section is to express (in the regular
normal case) the curvature condition from 2.5–2.7 equivalently in terms of
the harmonic curvature, which leads to much more effective conditions.

The key to this is that one may recover the full curvature from the har-
monic curvature by applying an invariant differential operator, which was
first shown by D. Calderbank and T. Diemer in [5]. The authors suggested
to use this as a strengthening of the Bianchi identity. The relation between
curvature and harmonic curvature follows from the theory of Bernstein–
Gelfand–Gelfand (BGG) sequences. The main result of this section is The-
orem 3.2, which partly works in the realm of general BGG sequences.

Throughout this section, we fix two parabolic subgroups Q ⊂ P of a
semisimple Lie group G corresponding to subalgebras q ⊂ p ⊂ g as in 2.3.

3.1. BGG sequences. Any representation of the Lie group Q gives rise
to a natural vector bundle on the category of parabolic geometries of type
(G,Q) by forming associated bundles to the principal Cartan bundles. The
first step towards BGG sequences is the observation that restrictions of
representations of G play a special role. If V is representation of G, then we
can also view it as a representation of Q ⊂ G, and the corresponding natural
vector bundle is called a tractor bundle. The main feature of these bundles is
that for each parabolic geometry (p : G → M,ω), the Cartan connection ω
induces a linear connection on the tractor bundle VM := G×QV, see [6]. To
deal with the curvature, we have to consider V = g, and the corresponding
tractor bundle AM := G ×Q g is called the adjoint tractor bundle.
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There are two ways to extend the natural linear connection on a trac-
tor bundle VM to an operator on VM–valued differential forms, see sec-
tion 2 of [11]. First, there is the usual covariant exterior derivative, which
we denote by dω : Ωk(M,VM) → Ωk+1(M,VM). Second, one may start
from the covariant exterior derivative on the homogeneous model G/Q, and
extend this in a different way to all parabolic geometries of type (G,Q).
This leads to the twisted exterior derivative dV. The relation between these
two operators can be easily described explicitly. The curvature function
κ has values in L(Λ2g/q, g). Projecting in the last factor to g/q we ob-
tain a Q–equivariant map G → L(Λ2g/q, g/q), which corresponds to a sec-
tion κ− of the associated bundle Λ2T ∗M ⊗ TM . This is exactly the tor-
sion of the Cartan connection ω. This leads to an insertion operator iκ,
i.e. for ϕ ∈ Ωk(M,VM), the form iκϕ ∈ Ωk+1(M,VM) is the alternation
of (ξ0, . . . , ξk) 7→ ϕ(κ−(ξ0, ξ1), ξ2, . . . , ξk). Then dωϕ = dVϕ+ iκϕ, so in par-
ticular, the two operators coincide for torsion free parabolic geometries. To
unify the presentation, let us write d for either dω or dV in the sequel.

The second step is to compress either of these sequences of first order
operators defined on VM–valued differential forms to a sequence of higher
order operators defined on smaller bundles. The bundle ΛkT ∗M ⊗ VM cor-
responds to the representation L(Λkg/q,V) of Q. Similarly as in 2.3, via the
duality (g/q)∗ ∼= q+ the differentials in the standard complex computing
Lie algebra homology of q+ with coefficients in V define Q–homomorphisms
∂∗ : L(Λkg/q,V) → L(Λk−1g/q,V) such that ∂∗ ◦ ∂∗ = 0. The quotient
ker(∂∗)/ im(∂∗) is a representation of Q, which we denote by HkV. It turns
out that Q+ ⊂ Q acts trivially on this quotient, so this representation is
completely reducible and determined by the Q0–action.

The Q–homomorphisms ∂∗ induce vector bundle maps ΛkT ∗M ⊗ VM →
Λk−1T ∗M ⊗ VM and correspondingly algebraic operators on VM–valued
forms, which we all denote by the same symbol. The kernel an image of ∂∗

are natural subbundles in ΛkT ∗M⊗VM and their quotient can be naturally
identified with Hk

VM := G×QHkV. Since Q+ acts trivially on HkV we can also

view Hk
VM as G0 ×Q0 HkV, so this admits a direct interpretation in terms of

underlying structures.
The key step for the construction of BGG sequence is to construct an

invariant differential operator S : Γ(Hk
VM)→ Ωk(M,VM), called the split-

ting operator, such that for all s ∈ Γ(Hk
VM) we have

• ∂∗(S(s)) = 0 and πH(S(s)) = s.
• ∂∗(dS(s)) = 0.

Here πH denotes the natural algebraic projection from sections of ker(∂∗) ⊂
ΛkT ∗M ⊗ VM to sections of Hk

VM .
These operators were first constructed in [11] in terms of homomorphisms

of semi–holonomic jet modules. In [5] the authors gave a simpler construc-
tion and extended them to operators defined on Ωk(M,VM). We will sketch
this construction next. The operator ¤R := d ◦ ∂∗ + ∂∗ ◦ d is an invari-
ant operator on Ωk(M,VM) for each k. Since ∂∗ ◦ ∂∗ = 0, this opera-
tor preserves the subspace of sections of the bundle im(∂∗). One shows
that the restriction of ¤R to sections of this subbundle is invertible and
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the inverse is again a differential operator, which then is natural by con-
struction. Let L : Ωk(M,VM) → Ωk−1(M,VM) be the composition of
this inverse with ∂∗. Given a section σ ∈ Γ(Hk

VM) one chooses a sec-

tion ϕ of ker(∂∗) ⊂ ΛkT ∗M ⊗ VM such that πH(ϕ) = σ and shows that
S(σ) := ϕ − Ldϕ is independent of the choice of ϕ and this recovers the
splitting operator S. From this point of view it is also easy to see that S
is uniquely determined by the two properties listed above. Suppose that
ϕ ∈ Ωk(M,VM) is such that ∂∗(ϕ) = 0 and ∂∗dϕ = 0. Then one easily
shows that ϕ − S(πH(ϕ)) must be a section of im(∂∗) which lies in the
kernel of ¤R, and thus vanishes identically.

In particular, we may apply this to the special case V = g, k = 2 and the
curvature κ. Equivariancy of the curvature function implies that κ can be
viewed as an element of Ω2(M,AM). Normality of the parabolic geometry
exactly means ∂∗κ = 0. Moreover, κ coincides with the curvature of the
natural linear connection on AM , so the Bianchi identity for linear connec-
tions implies dω(κ) = 0. In particular, ∂∗(dω(κ)) = 0, which implies that
κ = S(κH), where S is the splitting operator for d = dω.

One of the tricky points of the theory is that there seems to be no way
to write down the operator L (or S) in a manifestly invariant way. To get a
formula, one first has to choose a Weyl structure σ, see 2.2. This reduces the
structure group of all bundles in question to Q0. Now the Q0–submodule
q− ⊂ g is complementary to q, so g/q ∼= q− as a Q0–module. Consequently,
on the level of Q0, we can view the spaces L(Λkg/q,V) as the chain groups
in the standard complex computing the Lie algebra cohomology H∗(q−,V).
The differential ∂ in this complex is a Q0–homomorphism (but not a Q–
homomorphism). Then ¤ := ∂ ◦ ∂∗ + ∂∗ ◦ ∂ is a Q0–homomorphism and
thus, after a choice of a Weyl structure, gives rise to a bundle map on
each ΛkT ∗M ⊗ VM . It turns out ∂ and ∂∗ are adjoint with respect to a
certain inner product. The resulting algebraic Hodge decomposition shows
that as a Q0–representation we have HkV ∼= ker(¤) ⊂ L(Λkq−,V), and this
representation is computable via Kostant’s version of the Bott–Borel–Weil
theorem, see [15]. The Hodge decomposition also implies that ¤ is invertible
on im(∂∗), and we can finally state the formula:

L =

( ∞∑

i=0

(−1)i(¤−1¤R − id)i

)
¤−1∂∗.

The sum in this formula is actually finite since ¤−1¤R− id increases homo-
geneous degrees with respect to a natural grading on V.

3.2. We next have to study algebraic properties of the operators L and
S. Consider a Q–submodule E ⊂ ker(∂∗) ⊂ L(Λkg/q,V). Then we get a
Q0–submodule E0 := E ∩ ker(¤) ⊂ HkV by identifying L(Λkg/q,V) with

L(Λkq−,V) as above. We want to find conditions which make sure that the
splitting operator S maps sections of G0×Q0E0 to sections of G×QE. For the
operator corresponding to d = dV this is rather easy and has been discussed
in [11], but for d = dω, the problem is much more subtle.

Definition. Let E ⊂ L(Λkg/q,V) and F ⊂ L(Λ2g/q, g) be Q–submodules.
We say that E is stable under F–insertions if for ϕ ∈ E and ψ ∈ F we
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have ∂∗(iψϕ) ∈ E, where iψϕ is the alternation of the map (X0, . . . , Xk) 7→
ϕ(ψ(X0, X1) + q, X2, . . . , Xk) for Xi ∈ g/q.

Theorem. Let (p : G →M,ω) be a regular normal parabolic geometry, with
curvature κ, and harmonic curvature κH . Let V be a representation of G,
and let E ⊂ ker(∂∗) ⊂ L(Λkg/q,V) and F ⊂ ker(∂∗) ⊂ L(Λ2g/p, g) be Q–
submodules. Put E0 := E ∩ ker(¤) ⊂ HkV and F0 := E ∩ ker(¤) ⊂ H2

g. Let

E0M = G0 ×Q0 E0 ⊂ Hk
VM and EM = G ×Q E ⊂ ΛkT ∗M ⊗ VM be the

corresponding subbundles, and similarly for F0M and FM .
(1) The splitting operator S : Γ(Hk

VM) → Ωk(M,VM) for d = dV maps
sections of E0M to sections of EM .
(2) Suppose that ¤(E) ⊂ E, E is stable under F insertions and κ has values
in FM . Then the splitting operator for d = dω maps sections of E0M to
sections of EM .
(3) If ¤(F) ⊂ F, F is stable under F insertions and κH is a section of F0M ,
then κ is a section of FM .

Proof. We first claim that if ¤(E) ⊂ E, then ∂∗ ◦ dV maps sections of EM
to sections of EM : Let us compute in jet–modules as it is done in [11]. So
consider the first jet prolongation J 1(Λk(g/q)∗⊗V), which as a Q0–module
is isomorphic to (Λk(q−)∗ ⊗V)⊕ (q∗− ⊗Λk(q−)∗ ⊗V). By lemma 2.1 of [11]

dV is induced by the homomorhism J 1(Λk(q−)∗ ⊗ V) → Λk+1(q−)∗ ⊗ V,
which is given by (e, Z ⊗ f) 7→ ∂(e) + (n + 1)Z ∧ f for e, f ∈ Λk(q−)∗ ⊗ V
and Z ∈ q∗−. Thus, ∂∗ ◦ dV corresponds to the homomorphism (e, Z ⊗ f) 7→
∂∗∂(e)+(n+1)∂∗(Z∧f). Since E ⊂ ker(∂∗) the first summand coincides with
¤(e) and by formula (1.2) of [11] the second summand gives −(n + 1)Z·f ,
so the claim follows.
(1) Let Ẽ be the P–submodule of L(Λkg/q,V) generated by E0, and let ẼM

be the corresponding bundle, so ẼM ⊂ EM . By claim 2.2 of [11] we get

¤(Ẽ) ⊂ Ẽ, so by the above claim ∂∗ ◦ dV maps sections of E0M to sections

of ẼM . By definition

L ◦ dV =

( ∞∑

i=0

(−1)i(¤−1¤R − id)i

)
¤−1∂∗dV.

Since ¤ preserves Ẽ, the corresponding algebraic operator preserves sec-
tions of ẼM for any choice of Weyl structure. Hence the operator ¤−1

preserves sections of the subbundle im(∂∗) ∩ ẼM . Finally, on the image of
∂∗ the operator ¤R by definition coincides with ∂∗ ◦ dV, so it preserves sec-
tions of im(∂∗) ∩ ẼM . Hence the splitting operator maps sections of E0M

to sections of ẼM ⊂ EM .
(2) Since E is stable under F insertions and κ has values in FM we see
that ∂∗ ◦ iκ maps sections of EM to sections of EM . Since ¤(E) ⊂ E, this
together with the claim implies that ∂∗◦dω maps sections of EM to sections
of EM . Now the result follows exactly as in (1).
(3) Let us denote by L the operator corresponding to dω. Further, put ¤R =

∂∗ ◦dV+dV ◦∂∗ and ¤̃R = ∂∗ ◦dω +dω ◦∂∗. Since dω = dV+ iκ, we conclude
that on the image of ∂∗, we have

(∗) ¤−1¤̃R − id = ¤−1¤R − id +¤−1∂∗iκ.
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From 3.1 we know that κ = κH − L(dωκH). Since we deal with a regular
parabolic geometry, all nonzero homogeneous components of κ have degree
bounded from below by some ` > 0, and by the Bianchi identity (see [7],
4.9) the lowest nonzero homogeneous component of κ is harmonic. Hence
κ is congruent to κH ∈ Γ(FM) modulo elements of homogeneous degree
≥ ` + 1. Hence ∂∗(iκκH) is congruent modulo elements homogeneous of
degree ≥ 2`+ 1 to ∂∗(iκHκH), and the latter element lies in Γ(FM), since F
is stable under F–insertions. Hence we conclude that ∂∗dωκH is congruent
to a section of FM modulo elements of homogeneous degree ≥ 2` + 1.
From the definition of L and formula (∗) above, we then conclude that
κ = κH−L(dωκH) is congruent to a section of FM modulo elements of that
homogeneity.

As above, this implies that ∂∗(iκκH) is congruent to a section of FM mod-
ulo elements homogeneous of degree ≥ 3`+ 1. Hence ∂∗dωκH and therefore
κ are congruent to sections of FM modulo elements of that homogeneity,
and iterating this argument, the result follows. ¤
Corollary. Let E ⊂ ker(∂∗) ⊂ L(Λ2g/q, g) be a Q–submodule and put
E0 := E ∩ ker(¤) ⊂ H2

g. Let (p : G → M,ω) be a regular normal para-
bolic geometry such that the harmonic curvature κH has values in E0. If
either (G, ω) is torsion free or ¤(E) ⊂ E and E is stable under E–insertions,
then the curvature function κ has values in E.

3.3. Suppose that G is a semisimple Lie group, q ⊂ p ⊂ g are two parabolic
subalgebras as in 2.3 and Q ⊂ P ⊂ G are the corresponding subgroups.
Consider a regular normal parabolic geometry (p : G →M,ω) of type (G,Q).
Let κ be the curvature function, κH the harmonic curvature and κ− the
torsion, which we consider as a section of the bundle L(Λ2TM,TM). Let
E ⊂ TM be the distribution corresponding to p/q ⊂ g/q. Then we have:

Theorem. (1) The distribution E is integrable if and only if κ−(ξ, η) ∈ E
for all ξ, η ∈ E.
(2) The parabolic geometry (G, ω) satisfies the curvature condition of Theo-
rem 2.7 if and only if κH has values in the space of those maps which vanish
if one of their entries is from p ∩ q−.

Proof. (1) is only a straightforward reformulation of Proposition 2.5.
(2) Consider the submodule E ⊂ L(Λ2g/q, g) of those maps which vanish if
one of their entries lies in p/q. To prove that κ has values in E, by Corollary
3.2 we have to show that ¤(E) ⊂ E and E is stable under E–insertions. By
definition E is exactly the image of the natural inclusion

j : L(Λ2g/p, g) ∼= Λ2p+ ⊗ g→ Λ2q+ ⊗ g ∼= L(Λ2g/q, g)

from 2.3. By definition of the insertion operator, for j(ϕ), j(ψ) ∈ E, we
get ij(ϕ)j(ψ) = j(iϕψ) ∈ E. But by Proposition 2.3 we get ∂∗q (j(iϕψ)) =
j(∂∗p(iϕψ)) ∈ E, so E is stable under E–insertions.

To prove that ¤(E) ⊂ E, we use Kostant’s algebraic formula for ¤. Let
j̃ : Λ2q+ ⊗ g → Λ2g ⊗ g be the inclusion. Recall from 2.3 that we have the
decomposition g = p− ⊕ (p ∩ q−) ⊕ q0 ⊕ (p0 ∩ q+) ⊕ p+. The Killing form
of g induces dualities between the first and last, and the second and fourth
summands and its restriction to the third summand is non–degenerate. Now
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we choose a basis {Xα} of g consisting of homogeneous elements, which
starts with bases of the first three summands and has the duals of the first
two bases in the last two summands. Denoting by {Yα} the dual basis with
respect to the Killing form, we by construction have [Xα, Yα] ∈ p0 for all
α and the first elements of {Yα} (which lie in p+) coincide with the last
elements of {Xα} and vice versa. According to Theorem 4.4 of [15], one can
write j̃ ◦¤ as

1
2

(∑

α

id⊗(adYα ◦ adXα) +
∑

α:Xα∈q−

ρYα ◦ ρXα −
∑

α:Xα∈q

ρYα ◦ ρXα
)
◦ j̃.

Here ad denotes the adjoint action of g on g, while ρ denotes the natural
action of g on Λ2g ⊗ g. The subspace im(j̃ ◦ j) is invariant under any map
which acts only on the g part, as well as under ρA for each A ∈ p. In
particular, any summand in the first sum preserves this subspace, while
for the other two sums the same holds for summands in which Xα lies in
(p∩q−)⊕q0⊕(p0∩q+) ⊂ p,since then also Yα lies in this subspace. It remains
to show that

∑
α:Xα∈p− ρYα ◦ ρXα −

∑
α:Xα∈p+

ρYα ◦ ρXα also preserves this

subspace. But by construction, we can rewrite this part as
∑

α:Xα∈p−

(ρYα ◦ ρXα − ρXα ◦ ρYα) =
∑

α:Xα∈p−

ρ[Yα,Xα],

and since [Yα, Xα] ∈ p, the result follows. ¤

3.4. The relation between real and complex parabolic geometries.
Let us demonstrate the power of the theory developed so far by analyzing
the relation between real and complex parabolic geometries. In particular,
we will show that the theory of twistor spaces also works in the holomor-
phic category. This is of considerable interest, since twistor correspondences
usually only work directly for some real forms of a complex semisimple Lie
algebra. For other real forms of interest, one has to restrict to real analytic
structures, pass to complexifications, and interpret the final result on the
original manifold.

Let g be a complex semisimple Lie algebra, p ⊂ g a parabolic subalge-
bra, G a Lie group with Lie algebra g and P ⊂ G the parabolic subgroup
corresponding to p. Then one can consider complex parabolic geometries of
type (G,P ), defined as holomorphic principal P–bundles G →M over com-
plex manifolds M which are endowed with holomorphic Cartan connections
ω ∈ Ω1,0(G, g). On the other hand, we may also consider g as a real Lie
algebra endowed with a parabolic subalgebra p, and thus consider real para-
bolic geometries of type (G,P ), which are given by smooth principal bundles
endowed with smooth Cartan connections. See 4.6 for the discussion of an
interesting example.

If (p : G → M,ω) is a real parabolic geometry of type (G,P ), then for
each point u ∈ G, ω(u) is a linear isomorphism from TuG to the complex
vector space g, so ω defines an almost complex structure JG on G. The ver-
tical subspace in TuG is just the preimage under ω(u) of p. Since this is a
complex subspace, we get a complex structure on the quotient space Tp(u)M .
If we change from u to another preimage of p(u), the resulting isomorphism
Tp(u)M → g/p changes by the adjoint action of an element of P , which is a
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complex linear map. Thus, we also get a well defined almost complex struc-
ture J on M , and the tangent map to the projection p : G →M is complex
linear. These almost complex structures imply that differential forms on M
and G with values in any complex vector space or vector bundle split accord-
ing to their complex linearity or anti-linearity properties into (p, q)–types.
In particular, the adjoint tractor bundle is a complex vector bundle in this
case, so this applies to the curvature and its harmonic part viewed as two–
forms on M . (Note that even the real cohomologies canonically are complex
vector spaces.)

Theorem. Let g be a complex semisimple Lie algebra, p ⊂ g a parabolic
subalgebra, G a complex Lie group with Lie algebra g and P ⊂ G the parabolic
subgroup corresponding to p. A real parabolic geometry (p : G → M,ω) of
type (G,P ) is actually a complex parabolic geometry (i.e. M is a complex
manifold, p : G → M a holomorphic principal bundle and ω a holomorphic
Cartan connection) if and only if its curvature function is of type (2, 0).

If the parabolic geometry (p : G → M,ω) is regular and normal, then it
suffices that the harmonic curvature is of type (2, 0).

Proof. We can split L(Λ2g/p, g) according to (p, q)–types into L2,0 ⊕L1,1 ⊕
L0,2. Since the adjoint action of P is by complex linear maps, this is a
splitting of P–modules. Since g is a complex Lie algebra, both ∂ and ∂∗

preserve complex multilinear maps, so for E := L2,0 we get ¤(E) ⊂ E. One
easily verifies that E is stable under E–insertions. Hence by Corollary 3.2, in
the regular normal case, the harmonic curvature κH is of type (2, 0) if and
only if the whole curvature κ is of type (2, 0).

For X ∈ g, we have the vector field XG = ω−1(X) on G, and in the proof
of Proposition 2.6 we have seen that κ(X,Y ) = [X,Y ]− ω([XG , Y G ]). Since
the bracket in g is complex bilinear this formula immediately implies that
the (0, 2)–part of κ maps X,Y ∈ g to − 1

4ω(N(XG , Y G)), where N denotes

the Nijenhuis tensor of JG . Consequently, the integrability of the almost
complex structure JG is equivalent to vanishing of the (0, 2)–component of
the curvature function, and this vanishing also implies integrability of the
almost complex structure J on M . If the almost complex structures are in-
tegrable then the projection p : G → M is by construction holomorphic.
Equivariancy of ω immediately implies that for u ∈ G and g ∈ P we get
ωu·g ◦ Turg = Ad(b−1) ◦ ωu, which implies that rg : G → G is a holomorphic
mapping. On the other hand, since ω reproduces the generators of funda-
mental vector fields, the map g 7→ u·g is holomorphic, too, and these two
facts imply that the principal right action r : G × P → G is holomorphic, so
p : G →M is a holomorphic principal bundle.

Given that G is a complex manifold, the Cartan connection ω, which
by construction is a (1, 0)–form, is holomorphic, if and only if its exterior
derivative is a (2, 0)–form, and since the bracket in g is complex bilinear,
this is equivalent to the curvature being of type (2, 0), which implies the
result. ¤

We can deduce from this that our results on correspondence spaces and
twistor spaces continue to hold in the realm of complex parabolic geometries.
While this is obvious for the correspondence part, it is quite nontrivial for
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the twistor part. Assume that g is a complex semisimple Lie algebra with
standard parabolic subalgebras q ⊂ p ⊂ g as in 2.3, G is a complex Lie
group with Lie algebra g and Q ⊂ P ⊂ G are the parabolic subgroups
corresponding to q and p. If (p : G → N,ω) is a complex parabolic geometry,
then clearly CN = G ×P P/Q is a complex manifold, and (G → CN,ω) is a
complex parabolic geometry of type (G,Q), which is normal if (G → N,ω)
is normal.

On the other hand, assume that (p : G → M,ω) is a complex parabolic
geometry of type (G,Q), and suppose that the curvature satisfies the restric-
tions of Theorem 2.7 or (in the regular normal case) 3.3. Then viewed as a
real parabolic geometry, M is locally isomorphic to a correspondence space
CN for a (unique) real parabolic geometry of type (G,P ) on a manifold N .
But the curvature function for this parabolic geometry is the same as the
curvature function of M , so in particular, it has complex bilinear values. By
the theorem N is a complex parabolic geometry, and we get

Corollary. Let (p : G → M,ω) be a complex parabolic geometry of type
(G,Q), which satisfies the curvature restrictions of Theorem 2.7 respectively
3.3. Then the twistor space N of M is automatically a complex parabolic
geometry (and in particular a complex manifold) and the local isomorphism
between M and the correspondence space CN is automatically a biholomor-
phism.

4. Examples and applications

In this section, we apply our results to three concrete examples. These
relate Lagrangian contact structures to projective structures, certain almost
CR structures to an almost complex version of projective structures, and
finally projective and almost Grassmannian structures to a generalization of
path geometries.

Lagrangian contact structures

In this case, the construction of the correspondence space is described in
[20] but the main result obtained there is just that the correspondence space
is locally flat if and only if the original geometry is locally flat. Our results
in this case go much further. In one direction, we obtain a nice geometric
interpretation of the projective curvature of a torsion free affine connection,
while in the other direction we get results on contact structures and on
partial connections on projectivized cotangent bundles.

4.1. For n ≥ 2 consider the Lie group G = PSL(n+ 1,R), the quotient of
SL(n + 1,R) by its center. The Lie algebra g = sl(n + 1,R) consists of all
tracefree linear endomorphisms of Rn+1. Define p ⊂ g to be the stabilizer
of the line through the first vector in the standard basis of Rn+1. Let q ⊂ p
be the subalgebra of those maps which in addition preserve the hyperplane
W generated by the first n vectors in the standard basis. Then p and q give
rise to a |1|–grading, respectively a |2|–grading of g, defined by

(
p0 p1

p−1 p0

) 


q0 qL1 q2

qL−1 q0 qR1
q−2 qR−1 q0


 ,
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where in the first matrix, the blocks are of size 1 and n, while in the second
matrix, they are of size 1, n− 1 and 1. For later use, we have indicated the
finer decomposition q±1 = qL±1 ⊕ qR±1.

The group G does not act on Rn+1 but only on the projective space
RPn. The parabolic subgroups P,Q ⊂ G are defined as consisting of those
elements whose adjoint action preserves the filtration of g induced by the
corresponding subalgebra. One easily verifies that P is exactly the stabilizer
of the point in RP n corresponding to the line through the first basis vector,
so G/P ∼= RPn, and Q ⊂ P consists of those elements which in addition
stabilize the projective hyperplane corresponding to W .

It is well known, see e.g. [20], that normal parabolic geometries of type
(G,P ) (which are automatically regular since we deal with a |1|–grading) are
exactly the classical projective structures on n–manifolds. Hence specifying
such a geometry on an n–dimensional manifold M is equivalent to giving a
projective equivalence class [∇] of torsion–free connections on the tangent
bundle TM . Projective equivalence means that two connections in the class
differ by the action of a one–form Υ ∈ Ω1(M), i.e. ∇̂ξη = ∇ξη + Υ(ξ)η +

Υ(η)ξ, and it says precisely, that ∇ and ∇̂ have the same geodesics up to
parametrization. Moreover, P0 = GL(n,R) and the underlying P0–bundle
G0 →M is simply the full first order frame bundle in this case.

The parabolic subalgebra q is of contact type, i.e. it defines a |2|–grading
on g, the components q±2 have dimension one, and the bracket q−1×q−1 →
q−2 is non degenerate. Therefore we get an example of a parabolic contact
structure, i.e. regular normal parabolic geometries of type (G,Q) have an
underlying contact structure. These geometries have been first studied in
[20], where they were called Lagrangian contact structures (although Leg-
endrian contact structures would be closer to the usual terminology). To
describe them, consider a contact structure H ⊂ TM on a smooth manifold
M of dimension 2n+ 1. This means that H is a subbundle of rank 2n which
is maximally non–integrable in the sense that the skew symmetric bundle
map L : H×H → TM/H induced by the Lie bracket of vector fields is non–
degenerate. A subbundle E ⊂ H is called isotropic if the restriction of L to
E × E vanishes identically. Elementary linear algebra shows that isotropic
subbundles have rank at most n, and isotropic subbundles of maximal rank
are usually called Legendrian or Lagrangian.

Definition. A Lagrangian contact structure on a smooth manifold M of
dimension 2n + 1 is a contact structure H ⊂ TM together with a fixed
splitting H = HL ⊕ HR of the contact subbundle as a direct sum of two
rank n isotropic subbundles.

Note that if (M,H = HL ⊕HR) is a Lagrangian contact structure, then
L induces an isomorphism HR ∼= L(HL, TM/H), so the two subbundles are
almost dual to each other.

In [20], the author used Tanaka’s prolongation procedure from [22] to
construct a parabolic geometry from a Lagrangian contact structure. We
sketch a construction using the procedure from [7], which uses a simpler
description of the underlying structures. We have noted above that the Lie
bracket [ , ] : q−1×q−1 → q−2 is non–degenerate, and one observes that the
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subspaces qL−1 and qR−1 are isotropic. Next, one verifies that the adjoint action
identifies the subgroup Q0 ⊂ Q with the group of all linear isomorphisms
ϕ : q−1 → q−1 which preserve the decomposition qL−1 ⊕ qR−1 and have the
property that there exists a linear isomorphism ψ : q−2 → q−2 such that
[ϕ(X), ϕ(Y )] = ψ([X,Y ]) for all X,Y ∈ g−1. Of course, the map ψ is then
uniquely determined by ϕ. In the description of [7] for a parabolic geometry
of type (G,Q) one first needs a manifold of dimension 2n+1 together with a
subbundle H ⊂ TM of rank dim(g−1) = 2n. Then regular normal parabolic
geometries of type (G,Q) are in bijective correspondence with reductions of
the associated graded H ⊕ TM/H to the structure group Q0 such that the
bundle map Λ2H → TM/H obtained from the Lie bracket of vector fields
looks like the bracket [ , ] : Λ2q−1 → q−2 in each fiber. The condition on
the bracket exactly means that H defines a contact structure on M , and the
reduction to Q0 is exactly equivalent to the decomposition H = HL ⊕HR

into a sum of Lagrangian subbundles.
Now we can apply the construction of correspondence spaces to this case,

which recovers all the results of [20]:

Theorem. Let [∇] be a projective structure on a smooth manifold N , and
let (p : G → N,ω) be the associated parabolic geometry of type (G,P ).
Then the correspondence space CN for q ⊂ p is the projectivized cotangent
bundle P(T ∗N). The induced Lagrangian contact structure H = HL ⊕HR

on P(T ∗N) has the following form: H ⊂ TP(T ∗N) is the canonical contact
structure, HR is the vertical subbundle of CN → N , and HL is obtained
from the horizontal distributions of the connections in the projective class.

Proof. Since the Killing form induces a duality between g/p and p1, the
cotangent bundle T ∗N is the associated bundle G ×P p1. By definition, the
subgroup Q ⊂ P preserves the line q2 ⊂ p1, and one immediately verifies
that this property characterizes Q. Passing to the projectivization, we see
that P(p1) ∼= P/Q, which implies that CN = G/Q = G ×P (P/Q) is exactly
the projectivized cotangent bundle P(T ∗N).

The tangent bundle to P(T ∗N) is G ×Q (g/q), while the tangent bundle
to N is G ×P (g/p). The tangent map of the projection π : P(T ∗N) → N
corresponds in this picture exactly to the projection g/q→ g/p. The contact
distribution H ⊂ TP(T ∗N) is given by G ×Q ((q−1 ⊕ · · · ⊕ q2)/q). Since
q−1 ⊕ · · · ⊕ q2 is exactly the annihilator of q2 with respect to the Killing
form, we conclude that for a point ` ∈ P(T ∗N) (i.e. ` is a line in T ∗π(`)M),

we have H` = {ξ : `(Tπ·ξ) = 0}, so we exactly get the canonical contact
structure on P(T ∗N). Since qR−1 = q ∩ p, the subbundle HR consists of
those tangent vectors, which project to zero, so this is exactly the vertical
subbundle in TP(T ∗N).

Any connection ∇ in the projective class induces a linear connection on
T ∗M , which gives rise to a vertical projection from TT ∗M onto the ver-
tical subbundle. This vertical projection is characterized by the fact that
the covariant derivative of a one form ϕ is the nontrivial component of the
composition of the vertical projection with the tangent map Tϕ. Factoring
to the projectivization we see, that any linear connection on TN gives rise
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to a vertical projection on TP(T ∗N). For projectively equivalent connec-

tions ∇ and ∇̂, one easily computes that on the level of one–forms one gets
∇̂ξϕ = ∇ξϕ − Υ(ξ)ϕ − ϕ(ξ)Υ. Passing from TϕT

∗N to T[ϕ]P(T ∗N) means
exactly factoring by the line generated by ϕ in the vertical subspace, and the
subbundle H is characterized by ξ ∈ H[ϕ] iff ϕ(ξ) = 0, which shows that the
restriction of the vertical projection to H ⊂ TP(T ∗N) depends only on the
projective class. One verifies directly that this construction really describes
the bundle HL. ¤

Note that the subbundle HL ⊂ H which is complementary to the vertical
subbundle, is very similar to a connection on the fiber bundle π : P(T ∗N)→
N . The difference to a true connection is that the vertical projection is
only defined on the subbundle H ⊂ TP(T ∗N). Thus, HL defines a partial
connection on P(T ∗N).

4.2. Harmonic curvature. To proceed further, we have to describe the
harmonic curvature both for projective structures and for Lagrangian con-
tact structures. The structure of this curvature is essentially different for
n = 2 and n ≥ 3. We discuss the case n ≥ 3 in detail and make some
remarks on the case n = 2 below.

We have to compute the second cohomologies H2(p−, g) and H2(q−, g),
and this is a simple exercise in applying Kostant’s version of the Bott–
Borel–Weil theorem, see [15]. Since we are dealing with the split real form
sl(n + 1,R) of sl(n + 1,C) here, the real cohomologies look exactly as the
complex cohomologies. Using the Dynkin–diagram notation from chapter 3
of [4], i.e. the numbers over the nodes indicate the coefficient of the cor-
responding fundamental weight in the highest weight of the dual represen-
tation, and the algorithms from section 8.5 of [4] one gets H2(p−, g) =

× • •−4 1 2
respectively . . .× • • •−4 1 1 0 1

for the projective case. This is imme-
diately seen to be exactly the irreducible component of highest weight in
Λ2(p−1)∗ ⊗L(p−1, p−1). Following the description in 2.2 one shows that the
harmonic curvature is represented by trace free part of the curvature of any
connection in the projective class.

For the Lagrangian contact structures, the situation is a little more com-
plicated, since there are three irreducible components in the curvature. One
obtains the following picture:

. . .× • • ×−4 1 1 0 1 torsion TR : Λ2HR → HL

. . .× • • ×1 0 1 1 −4 torsion TL : Λ2HL → HR

. . .× • • ×−3 2 0 2 −3 curvature ρ : HL ×HR → L(HL, HL)

The first column contains the representations for n ≥ 4, and the second
column contains the corresponding geometric object. For n = 3, the repre-
sentations are slightly different, but the geometric objects remain the same.
The representations are computed as before and the geometric objects are
determined by identifying them with components in Λ2(g/q, g) and passing
to the corresponding bundles. The torsions TL and TR are easy to interpret
geometrically. Since HL is isotropic, the bracket of two sections of HL is a
section of H and thus can be projected to HR. Similarly as in Proposition
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3.4 of [8] one shows that the resulting tensor field coincides with T L up to
a nonzero multiple. In particular, TL is exactly the obstruction to integra-
bility of the subbundle HL ⊂ TM . The interpretation of TR is completely
analogous. To compute the remaining harmonic curvature component ρ, one
has to choose a Weyl–structure and compute the appropriate harmonic part
of its curvature.

Since q−1 ∩ p = qR−1, the distribution corresponding to p/q ⊂ g/q is

exactly HR. Integrability of this subbundle is equivalent to vanishing of
TR. Moreover, Theorem 3.3 implies that local leaf spaces carry an induced
projective structure (an hence the original structure is locally isomorphic to
a correspondence space) if and only also ρ vanishes identically. In particular,
for a correspondence space the torsion T L is a complete obstruction against
local flatness, and we obtain:

Theorem. The projective Weyl curvature of a projective structure [∇] on
a smooth manifold N of dimension n ≥ 3 is exactly the obstruction to inte-
grability of the bundle HL on P(T ∗N), i.e. to flatness of the induced partial
connection on P(T ∗N)→ N .

Having a twistor correspondence in the classical sense would mean that
one starts with a projective manifold (N, [∇]), forms the correspondence
space CN and then a twistor space with respect to the parabolic p̃ ⊃ q,
which is the stabilizer of the line spanned by the last vector in the standard
basis of Rn+1. The corresponding distribution is HL, so the theorem shows
that this is possible only in the locally projectively flat case, in which one
recovers projective duality.

4.3. Let us next look at a Lagrangian contact structure (M,HL ⊕ HR)
which admits a twistor space but not a projective structure on this twistor
space. So assume that HR is integrable and let ψ : U → N be a local
leaf space, see 2.6. For any x ∈ U , we have the subspace Hx ⊂ TxU , and
by construction the image of this subspace is a hyperplane in Tψ(x)N . The

annihilator of this hyperplane is a line in T ∗xN , and thus a point ψ̃(x) ∈
P(T ∗N). Clearly, this defines a smooth mapping ψ̃ : U → P(T ∗N) such

that π ◦ ψ̃ = ψ, where π : P(T ∗N) → N is the projection. To understand

ψ̃, it is better to view P(T ∗N) as the space Grn(TN) of hyperplanes in the

tangent space of N . By construction, the kernel of Txψ̃ has to be contained
in ker(Txψ) = HR

x . For ξ ∈ HR
x the image Txψ̃·ξ is contained in the vertical

subspace Vψ̃(x)Grn(TN). This is the tangent space to the fiber at ψ̃(x), so

it can be identified with the space L(ψ̃(x), Tψ(x)N/ψ̃(x)) of linear maps. Via

Txψ, this space is isomorphic to L(Hx/H
R
x , TxM/Hx). Going through the

identifications one sees that Txψ̃·ξ(x)(η) = L(ξ(x), η) for all η ∈ Hx, so non

degeneracy of L implies that Txψ̃ is injective.
Since M and P(T ∗N) have the same dimension, we conclude that, pos-

sibly shrinking U , that ψ̃ is a diffeomorphism from U onto an open subset
V of P(T ∗N). Moreover, from the construction it is obvious that this is a
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contact diffeomorphism, and the integrable Lagrangian subbundle HR is ex-
actly mapped to the vertical subbundle of P(T ∗N). Notice that the comple-
mentary Lagrangian subbundle HL was not used at all in the construction.
Hence we obtain the following strengthening of the Darboux theorem:

Theorem. Let (M,H) be a contact manifold of dimension 2n + 1, and let
HR ⊂ H be an integrable Lagrangian subbundle. Then locally M is contact
diffeomorphic to the projectivized tangent bundle of Rn+1 in such a way that
HR is mapped to the vertical subbundle.

4.4. We now know that a Lagrangian contact manifold (M,HL ⊕ HR)
which has the property that TR is identically zero is locally contact diffeo-
morphic to an open subset of the projectivized tangent bundle of its twistor
space in such a way that HR is mapped to the vertical subbundle. On such
an open subset the image of HL defines a complement to the vertical sub-
bundle in the contact subbundle, so we can view this as a locally defined
partial connection.

As we have observed, any linear connection ∇ on TN gives rise to such
a partial connection (even globally defined), and moreover, this partial con-
nection depends only on the projective class of ∇. By Theorem 3.3, a locally
defined partial connection comes from a linear connection on TN if and only
if the curvature ρ ∈ Γ((HL)∗ ⊗ (HR)∗ ⊗ L(HL, HL)) of the corresponding
Lagrangian contact structure is identically zero, so we get:

Theorem. Let N be a smooth manifold of dimension n ≥ 3 and let U ⊂
P(T ∗N) be an open subset. Let H be the restriction of the contact subbundle
to U and let HL ⊂ H be a Lagrangian subbundle, which is complementary
to the vertical subbundle HR. Then HL is obtained from a linear connection
on TN as described in the end of 4.1 if and only if the curvature ρ of the
Lagrangian contact structure (U,HL ⊕HR) vanishes identically.

4.5. The case n = 2. In this case, the structure of the harmonic curvature
is completely different. Rather than having two torsions and one curvature,
one has two curvatures in this case. The Lagrangian contact structures in
this case admit a natural interpretation as path geometries, so this can also
be viewed as a special case of the structures discussed in 4.7. Also projective
structures in two dimensions behave differently than in general. For dimen-
sional reasons the tracefree part of the curvature of any linear connection in
two dimensions vanishes identically. The complete obstruction to local pro-
jective flatness is a tensor analogous to the Cotton–York tensor in conformal
geometry. Passing to the correspondence space, this corresponds exactly to
one of the two curvatures. Since the bundles HL and HR have rank one,
they are always integrable. In particular, in this special dimension, one can
obtain a twistor correspondence in the classical sens in non–flat situations.
This looks particularly nice in the picture of path geometries, viewed as en-
coding second order ODE’s, compare with 4.7. In this picture, the twistor
space is the space of all solutions of the equation. The holomorphic version
of this correspondence was used in [13] to study Schlesinger’s equation.

Elliptic partially integrable almost CR manifolds
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4.6. This is an almost complex version of the situation discussed in 4.5
above. We consider G = PSL(3,C) as a real Lie group, the Borel subgroup
Q ⊂ G (i.e. Q is the stabilizer of the standard flag C ⊂ C2 ⊂ C3) and
the stabilizer P of the complex line C ⊂ C3. This case is a bit involved
and will be taken up in detail elsewhere. Here we only give a brief out-
line. From their definition, real parabolic geometries of type (G,Q) are six
dimensional smooth manifolds endowed with an almost complex structure
and two complementary complex line bundles H+, H− ⊂ TM , such that,
with H = H+ ⊕ H−, the tensorial map L : H ⊗ H → TM/H induced by
the Lie bracket is complex bilinear and non–degenerate. Building on earlier
work in [21] it has been shown in [8] that flipping the almost complex struc-
ture on the subbundle H+ leads to an equivalence of categories between
the category of regular normal parabolic geometries of type (G,Q) and the
category of elliptic partially integrable almost CR manifolds of CR dimen-
sion and codimension two. Since we are dealing with the underlying real Lie
algebra of a complex Lie algebra, the structure of torsions and curvatures is
rather complicated. In the notation of [8] there are the following irreducible
components of the harmonic curvature:

S± (0, 2) TM/HM ×H±M → TM/HM almost complex structure
N± (1, 1) H+M ×H−M → H±M almost CR structure
T± (1, 1) Λ2H±M → H∓M integrability of H±M
ρ± (2, 0) TM/HM ×H± → (H±)∗

The second column contains the (p, q)–types of the components, while the
last column indicates the structure whose integrability is obstructed by the
component. The first three lines correspond to the components of torsion
type, while the two components in the last line are curvatures. From this
table and Theorem 3.4 we immediately conclude that complex regular nor-
mal parabolic geometries of type (G,Q) are characterized among the real
ones by vanishing of S±, N±, and T±, which is easily seen to be equiva-
lent to torsion freeness. For such a complex parabolic geometry the almost
CR structure is automatically integrable (since N± vanishes) and real ana-
lytic, which implies that torsion free elliptic CR manifolds are always locally
embeddable, see [8].

On the other hand, it turns out that normal parabolic geometries of type
(G,P ) are an almost complex analog of two dimensional projective struc-
tures. Given an almost complex manifold (N , J) we call two linear connec-

tions ∇ and ∇̂ projectively equivalent if there exists a smooth (1, 0)–form

Υ on N such that ∇̂ξη = ∇ξη + Υ(ξ)η + Υ(η)ξ. Note that does not imply
projective equivalence in the real sense, since complex multiples of ξ and
η are involved. One easily shows projectively equivalent connections have
the same torsion and if ∇J = 0 for some connection ∇, then the same is
true for any projectively equivalent connection. Now we define a compatible
projective structure on (N , J) to be a projective class [∇] of connections
such that ∇J = 0 and the torsion is of type (0, 2). This is the best possi-
ble normalization of the torsion and it implies that the torsion is given by
−1/4 times the Nijenhuis tensor of J . Similar to the case of classical projec-
tive structures one proves that normal parabolic geometries of type (G,P )
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are exactly compatible projective structures on almost complex manifolds
(N , J) of real dimension four.

The harmonic curvature of these compatible projective structures con-
sists of three irreducible components, one in each of the types (0, 2), (1, 1),
and (2, 0). The (0, 2)–part is a multiple of the Nijenhuis tensor of J , the
(1, 1)–part is essentially the obstruction against the projective class locally
containing holomorphic connections, while the (2, 0)–part is exactly the com-
plex analog of the projective curvature in two dimensions.

Compatible projective structures are by far simpler in nature than par-
tially integrable almost CR structures. In particular, they exist on any al-
most complex manifold (N , J) and the set of all such structures is very easy
to describe. Hence in this case already the correspondence space construction
leads to a very interesting result:

Theorem. Let (N , J) be an almost complex manifold of real dimension
four. Then any choice of a compatible projective structure [∇] on N endows
the space M := PC(TN ) of complex lines in the tangent spaces of N with
an elliptic CR structure of CR dimension and codimension 2.

For this CR structure, the components T−, N±, S− and ρ− of the har-
monic curvature vanish identically, while the three remaining components
S+, T+, and ρ+ correspond directly to the three components of the harmonic
curvature of (N , J, [∇]) of the respective (p, q)–type. The CR automorphism
group of this structure coincides with the group of projective automorphisms
of (N , J, [∇]).

On the other hand, for a general regular normal parabolic geometry of
type (G,P ), one can use the tools developed in this paper to give a twistorial
interpretation of the components of the harmonic curvature. The subbundle
in TM corresponding to p ⊃ q is the bundle H−. Here there are three steps:

existence of a local leaf space N T− = 0
almost complex structure J on N N+ = 0, S− = 0
compatible projective structure on (N , J) N− = 0, ρ− = 0

In the second step, one asks whether the almost complex structure on M
descends to a local leaf space N , and verifying that this is equivalent to the
vanishing of N+ and S− needs a bit of extra work. If this is the case, then M
is locally diffeomorphic to the complex projectivization of TN . Under this
condition, the geometry on M can then be described locally as an almost
complex version of a path geometry, or equivalently as a partial connection
on PC(TN ). The last step directly follows from Theorem 3.3.

Let us finally mention that in this case there is the possibility to form a
twistor correspondence in the classical sense. Given a compatible projective
structure (N , J, [∇]) one can form the correspondence space M , and the
harmonic curvature is encoded in S+, T+, and ρ+. If the component cor-
responding to T+ vanishes, then the bundle H+ is integrable, and one can
form a local leaf space Z. If one wants this leaf space to carry an induced
almost complex structure, then also the component corresponding to S+ has
to vanish, and one is in the holomorphic situation as discussed in [13].
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Almost Grassmannian structures

This example, which we only outline briefly, contains the twistor theory
for paraconformal manifolds of [3] as well as twistor theory for conformal
four manifolds in split signature case. On the other hand, via the notion of
path geometries, there is a relation to the geometric theory of systems of
second order ODE’s, see [12].

4.7. For n ≥ 2 we consider G = PSL(n + 2,R) and the parabolic sub-

groups P and P̂ of G defined as the stabilizer of a point respectively a line
containing that point in RP n+1. Then also Q := P ∩ P̂ is a parabolic sub-
group of G. From 4.1 we know that normal parabolic geometries of type
(G,P ) are classical projective structures on n + 1–dimensional manifolds.

On the other hand, normal parabolic geometries of type (G, P̂ ) are exactly
almost Grassmannian (also called paraconformal) structures, see [3]. Essen-

tially they are defined as smooth manifolds N̂ of dimension 2n together with
an isomorphism TN̂ ∼= E∗ ⊗ F , where E and F are auxiliary bundles on N̂
of rank 2 and n, respectively. In the special case n = 2, one obtains exactly
four dimensional split signature conformal manifolds. It should also be noted
that for a different real form, one obtains almost quaternionic structures.

We have described the |1|–grading corresponding to p ⊂ g = sl(n+ 2,R)
in 4.1. For p̂, one also obtains a |1|–grading, which has the same form,
except that the blocks have size 2 and n rather than 1 and n + 1. For
q = p ∩ p̂, one obtains a |2|–grading on g, with q±2 = p± ∩ p̂± of dimension
n, and q±1 = qL±1 ⊕ qR±1. Here qL±1 = q±1 ∩ p̂± is one–dimensional while

qR±1 = q±1 ∩ p± has dimension n.
Using the main result of [7], one shows that regular normal parabolic

geometries of type (G,Q) are 2n+1–dimensional manifolds M equipped with
complementary subbundles HL, HR ⊂ TM of rank 1 and n, respectively,
which have the property that the bracket of two sections of HR is a section
of H := HL ⊕HR and the tensorial map L : H ×H → TM/H induced by
the Lie bracket is non–degenerate. Note that these assumptions in particular
imply that HR ∼= L(HL, TM/H).

From 4.1 we know that the harmonic curvature for projective structures is
the Weyl curvature, i.e. the tracefree part of the curvature of any connection
in the projective class. The harmonic curvatures for almost Grassmannian
structures are also well known. There are always two irreducible component,
but there is an important difference between the cases n = 2 and n ≥ 3.
For n = 2 both of the two components are curvatures, and they correspond
to the self dual and the anti self dual part of the Weyl curvature for four
dimensional conformal structures. On the other hand, for n ≥ 3, one of
the two components is a torsion, while the other one is a curvature. The
torsion is exactly the obstruction to the existence of a torsion free connection
preserving the almost Grassmannian structure, i.e. to the structure being
Grassmannian.

It turns out that the harmonic curvature for geometries of type (G,Q)
always has three irreducible components and the highest weights of the cor-
responding representations are exactly the restrictions to q0 = p0 ∩ p̂0 of
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the highest weights of the representations corresponding to the three cur-
vature components discussed above. The component corresponding to the
projective Weyl curvature is realized by a torsion T : HL × TM/H → HR,
while the component corresponding to the curvature on the almost Grass-
mannian side is realized by a curvature ρ : HR × TM/H → L(HR, HR).
For n = 2 the second curvature on the Grassmannian side is realized by a
torsion τ : Λ2HR → HL, while for n ≥ 3 the torsion τ corresponding to the
torsion on the Grassmannian side has the form τ : Λ2HR → TM/H. Hence
for n ≥ 3 the torsion τ is homogeneous of degree zero, so it has to vanish for
regular normal parabolic geometries. In particular, correspondence spaces
of almost Grassmannian structures with nontrivial torsion are examples of
parabolic geometries of type (G,Q) which are normal but not regular.

Similarly as in 4.1 one verifies that for a projective manifold (N, [∇]) of di-
mension n+1 the correspondence space for q ⊂ p is the projectivized tangent
bundle P(TN). The bundle HR is the vertical subbundle of P(TN) → N
and H is the tautological bundle, whose fiber at a point ` consists of all
tangent vectors whose projection to TN lie in the line `. The line bundle
HL ⊂ H which is complementary to HR is constructed from the horizon-
tal lifts of the connections in the projective class as in 4.1. For an almost
Grassmannian manifold N̂ , the correspondence space for q ⊂ p̂ is the pro-
jectivization of the auxiliary rank two bundle E, HL is the vertical bundle,
and HR is constructed from the almost Grassmannian structure.

For n = 2, Theorem 3.3 implies that integrability of HR is equivalent to
vanishing of τ . For n ≥ 3 one shows using Lemma 3.2 of [8] that HR is
integrable for any regular normal parabolic geometry of type (G,Q). If this
is satisfied and N is a local leaf space, then similarly as in 4.3 one shows
that M is locally diffeomorphic to P(TN) and this diffeomorphism maps the
subbundles HR ⊂ H ⊂ TM to the vertical respectively the tautological sub-
bundle of TP(TN) as described above. The subbundle HL is then mapped
to a line subbundle in TP(TN) which is complementary to the vertical sub-
bundle in the tautological subbundle and contains the complete information
about the local geometry on M . Conversely, the non–integrability properties
of the tautological subbundle in TP(TN) imply that such a complementary
line bundle always gives rise to a regular normal parabolic geometry of type
(G,Q). These complementary line bundles are exactly the path–geometries
as defined for example in [12] (via differential systems), and using Theorem
3.3 we obtain:

Theorem. (1) Any path geometry on a smooth manifold N of dimension
n + 1 gives rise to a regular normal parabolic geometry of type (G,Q). If
n = 2 then the torsion τ of this geometry vanishes identically. Conversely,
if n ≥ 3 or τ = 0 any such parabolic geometry on a manifold M locally
admits a twistor space N corresponding to P ⊃ Q, and is locally isomorphic
to a path geometry on this twistor space.
(2) The path geometry in (1) comes from a projective structure on N if and
only if ρ vanishes identically, and then T corresponds to the projective Weyl
curvature.
(3) For any regular normal parabolic geometry of type (G,Q) on M , there

exists a local twistor space N̂ corresponding to P̂ ⊃ Q. The structure on M
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descends to a Grassmannian (respectively anti self dual conformal) structure

on N̂ if and only if T vanishes identically.

Via the correspondence between path geometries and systems of second
order ODE’s, part (2) describes when such a system can be written as the
geodesic equation for some connection. The definition of torsion free path
geometries in [12] is easily seen to be equivalent to vanishing of the torsion T .
Parts (1) and (2) imply that a projective structure leading to a torsion free
path geometry is locally flat, which is Theorem 1 of [12]. Part (3) implies
that for torsion free equations the structure descends to a Grassmannian
(respectively anti self dual conformal) structure on N̂ (which is constructed

in [12] via a Segre structure). Hence the curvature descends to N̂ , which
generically leads to explicit solutions for equations corresponding to torsion
free path geometries.

Applying part (1) to the correspondence space of an almost Grassman-
nian (respectively split signature conformal) shows that the conditions for
existence of a twistor space are vanishing torsion respectively anti self du-
ality. This recovers the standard twistor theory for these structures, see [3]
for the Grassmannian case. From (2) we conclude that a local geometric
structure on the twistor space is only available in the locally flat case.
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