Mathematical Finance 2

Exercise sheet 6

1. Let $B_{1}(t)$ und $B_{2}(t)$ be correlated Brownian motions with

$$
d B_{1}(t) d B_{2}(t)=\varrho(t) d t,
$$

where $\varrho(t)$ is a process with values in $]-1,1\left[\right.$. Define processes W_{1} und W_{2} so that

$$
\begin{aligned}
& B_{1}(t)=W_{1}(t), \\
& B_{2}(t)=\int_{0}^{t} \varrho(s) d W_{1}(s)+\int_{0}^{t} \sqrt{1-\varrho^{2}(s)} d W_{2}(s) .
\end{aligned}
$$

Show that W_{1} and W_{2} are independent Brownian motions.
2. Solve Exercise 4.15 in Shreve's book.
3. (A discrete analog of Lévy's characterization of Brownian motion.) Let $\left(M_{n}\right)_{n=0}^{\infty}$ be a discrete-time martingale with quadratic variation

$$
\sum_{k=0}^{n-1}\left(M_{k+1}-M_{k}\right)^{2}=n .
$$

Suppose further that $M_{n}=\sum_{k=0}^{n} X_{k}$, where $\left(X_{k}\right)$ is a sequence of independent random variables. Show that M is a Bernoulli process.

Website : http ://www.mat.univie.ac.at/~finance_hp/exercisesSS13_MF.html

