Mathematical Finance 2

Exercise sheet 8

1. For a European call option expiring at time T with strike price K the BlackScholes price at time t, if the time- t stock price is x, is given by

$$
\begin{equation*}
c(t, x)=x N\left(d_{1}(T-t, x)\right)-K e^{-r(T-t)} N\left(d_{2}(T-t, x)\right), \tag{1}
\end{equation*}
$$

where

$$
d_{1}(\tau, x)=\frac{\ln \left(\frac{x}{K}\right)+\left(r+\frac{\sigma^{2}}{2}\right) \tau}{\sigma \sqrt{\tau}}, \quad d_{2}(\tau, x)=d_{1}(\tau, x)-\sigma \sqrt{\tau}
$$

and N is the standard Gaussian distribution function. Moreover, in the sequel $n(y)$ denotes the standard Gaussian probability density $n(y)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{y^{2}}{2}}$.
a) Verify

$$
K e^{-r(T-t)} n\left(d_{2}(T-t, x)\right)=x n\left(d_{1}(T-t, x)\right) .
$$

b) Show that

$$
\partial_{x} c(t, x)=N\left(d_{1}(T-t, x)\right) .
$$

This is the so-called delta of the option.
c) Show that

$$
\partial_{x x} c(t, x)=\frac{n\left(d_{1}(T-t, x)\right)}{x \sigma \sqrt{T-t}}
$$

which is the so-called gamma of the option.
d) Show that

$$
\partial_{t} c(t, x)=-r K e^{-r(T-t)} N\left(d_{2}(T-t, x)\right)-\frac{x \sigma}{2 \sqrt{T-t}} n\left(d_{1}(T-t, x)\right)
$$

which is the so-called theta of the option.
e) Use these formulas to show that $c(t, x)$ satisfies the Black-Scholes partial differential equation:

$$
\partial_{t} c(t, x)+r x \partial_{x} c(t, x)+\frac{1}{2} \sigma^{2} x^{2} \partial_{x x} c(t, x)=r c(t, x), \quad 0 \leq t<T, \quad x>0 .
$$

2. Consider the Black-Scholes model and let $c(t, x)$ denote the Black-Scholes price at time t of a European call option with maturity T and strike K, when the time- t stock price is x. Prove the following representation of the Black-Scholes formula

$$
c(t, x)=(x-K)^{+}+x \int_{0}^{a} n\left(\frac{\ln (x / K)}{y}+\frac{y}{2}\right) d y
$$

where $a=\sigma \sqrt{T-t}$ and $n(y)$ denotes the standard normal density.
3. Consider the Black-Scholes model and let $c(t, x)$ denote the Black-Scholes price at time t of a European call option with maturity T and strike K, when the time- t stock price equals x. Define the elasticity, i.e., the relative change of the option's price as the stock prices moves by

$$
\eta_{t}^{c}:=\frac{\partial_{x} c\left(t, S_{t}\right) S_{t}}{c\left(t, S_{t}\right)}
$$

Show that $\eta_{t}^{c}>1$. Moreover, show that, if the stock price changes, the absolute change in the option price is smaller than the absolute change in the stock price.

Website: http://www.mat.univie.ac.at/~finance_hp/exercisesSS13_MF.html

