Universität Wien SS 2013 Fakultät für Mathematik Christa Cuchiero

Mathematical Finance 2

Exercise sheet 9/10

1. Let T > 0 and W be a Brownian motion on $(\Omega, \mathcal{F}, (\mathcal{F})_{t \in [0,T]}, \mathbb{P})$. Consider the following process

$$X_t = \mu t + \sigma W_t, \quad t \in [0, T],$$

where $\mu \in \mathbb{R}$ and $\sigma > 0$. Construct an equivalent probability measure \mathbb{Q} such that X is a \mathbb{Q} -martingale.

2. Let T > 0, $\mu \in \mathbb{R}$ and let W be a Brownian motion on $(\Omega, \mathcal{F}, (\mathcal{F})_{t \in [0,T]}, \mathbb{P})$. Define a probability measure \mathbb{Q} by

$$\frac{d\mathbb{Q}}{d\mathbb{P}} = e^{\mu W_T - \frac{1}{2}\mu^2 T}$$

and \widetilde{W} by $\widetilde{W}_t = W_t - \mu t$. Prove Girsanov's theorem, i.e., show that \widetilde{W} is a \mathbb{Q} Brownian motion, by using the moment generating function.

3. (General Bayes formula) Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and $\mathcal{G} \subset \mathcal{F}$ a sub- σ -algebra. Let X and Z be \mathbb{R} -valued random variables, where Z is supposed to be nonnegative and $\mathbb{E}[Z] = 1$. Define a probability measure \mathbb{Q} via $\frac{d\mathbb{Q}}{d\mathbb{P}} = Z$. Show that X is \mathbb{Q} -integrable if and only if XZ is \mathbb{P} -integrable and

$$\mathbb{E}_{\mathbb{Q}}[X|\mathcal{G}] = \frac{\mathbb{E}_{\mathbb{P}}[XZ|\mathcal{G}]}{\mathbb{E}_{\mathbb{P}}[Z|\mathcal{G}]}.$$

- 4. Let X be a stochastic process on $(\Omega, \mathcal{F}, (\mathcal{F})_{t>0}, \mathbb{P})$ and $\mathbb{Q} \sim \mathbb{P}$ an equivalent probability measure. Define $Z_t = \mathbb{E}\left[\frac{d\mathbb{Q}}{d\mathbb{P}}|\mathcal{F}_t\right]$. Prove XZ is a \mathbb{P} -martingale if and only if X is a \mathbb{Q} -martingale.
- 5. Solve Exercise 5.3 in Shreve's book.
- 6. Solve Exercise 5.5 in Shreve's book.