Optimal Liquidity Provision in Limit Order Markets

Johannes Muhle-Karbe

ETH Zürich and Swiss Finance Institute

Joint work with Christoph Kühn

Vienna, August 30, 2013

Introduction Outline

Introduction

Model

Main Results

Adverse Selection and Price Impact

Summary

Introduction

Basic Problem

Various motives for trades on financial markets:

- Rebalancing of mutual funds.
- Hedging of derivative positions.
- Liquidation due to margin calls.
- <u>►</u> ...
- ► Endogenous motive to trade ~→ pay trading costs for consuming liquidity.
- Resulting optimization problems widely studied in Mathematical Finance and Financial Economics.
- But who are the counterparties for these trades? Who provides liquidity and how?

Introduction Specialist Markets

Who provides liquidity? Classical setting:

- Monopolistic (or oligopolistic) *specialists*.
- Obliged to match incoming order flow. Compensated by earning the spread between their bid and ask prices.
- Optimization problem: set spread to maximize profits from matching all incoming orders.
- ► Tradeoff: earning spread vs. inventory risk due to price moves
 - Garman (1976). Amihud & Mendelson (1980). Ho & Stoll (1981). Avallaneda & Stoikov (2008). Gueant, Lehalle, & Fernandez-Tapia (2013).
- Separate literature on adverse selection/information risk (e.g., Glosten & Milgrom (1985)).

Introduction Limit Order Markets

Who provides liquidity? As stock markets have become automated:

- Monopolistic market makers replaced by electronic limit order books on many trading venues.
- Anybody can post buy and sell orders. Purchases and sales are matched automatically.
- Liquidity provision as an algorithmic trading strategy for hedge funds.
- For small liquidity providers: order book given exogenously. Cannot choose the spread.
- But: not obliged to match all orders. Can choose how much liquidity to provide.
- This is the setting we study.

Introduction Results in a Nutshell

- Optimal policy characterized by upper and lower boundaries for the investor's position:
 - If a sell order of another market participant allows to buy cheaply, trade to upper boundary.
 - Likewise, jump to lower boundary when the opportunity for a profitable sale arises.
- Between these profitable trades, manage inventory risk by keeping position between boundaries with market orders.
- Kühn and Stroh (2010):
 - Log investor, only holds long positions.
 - Market with constant spread, order flow, and prices following geometric Brownian motion.
 - Boundaries determined by free boundary problem.

Introduction

Results in a Nutshell ct'd

Here: general model. Explicit asymptotic formulas.

- For tractability:
 - Limiting regime of small spreads and frequent orders by other market participants.
 - Mid price follows a martingale.
- Results:
 - Simple robust formulas for leading-order optimal trading boundaries and their performance.
 - ► Valid for general dynamics of mid price, spread, and order flow.
 - Preferences of the liquidity provider can be arbitrary, too.
 - Extension that incorporates price impact due to, e.g., adverse selection.

Model

Limit Order Markets

Two types of orders:

- Market Orders:
 - Executed immediately.
 - ▶ But purchases cost higher exogenous ask price $(1 + \varepsilon_t)S_t$. Sales only earn lower bid price $(1 - \varepsilon_t)S_t$.
- Limit Orders:
 - Execution price can be specified freely.
 - But only executed once a matching order of another trader arrives.
- Dealing with arbitrary limit orders is very hard.
- But: for *small* liquidity providers, only orders close to the current best bid-ask prices make sense.
 - Moving into the book delays execution.
 - Narrowing the spread reduces profits.

Model

Limit Order Markets ct'd

Our model (cf. Kühn & Stroh (2010), Guilbaud & Pham (2013)):

- Can always trade with market orders at the "bad' side of the bid-ask spread [(1 − ε_t)S_t, (1 + ε_t)S_t)].
- ▶ When buy or sell orders of other traders arrive at the jump times of counting processes N¹, N², limit orders in the book are executed at the "good" side of the spread.
- Liquidity provider is small. Orders of any size are executed.
- Limit orders can be placed, updated, or deleted for free.
- Reduces primitives of the model to:
 - Mid price S_t .
 - ► Spread ε_t.
 - Arrival rates α_t^1, α_t^2 of incoming buy and sell orders.

Model

Limit Order Markets ct'd

- Mid price S_t is a martingale: $dS_t/S_t = \sigma_t dW_t$
 - Disentangles liquidity provision and directional investment.
 - Leads to long and short positions even in the limit for small spreads.
- Small spreads and frequent incoming orders:
 - Spread $\varepsilon_t = \varepsilon \mathcal{E}_t$ for Itô process \mathcal{E}_t and small parameter ε .
 - Arrival rates $\alpha_t^i = \varepsilon^{-\vartheta} \lambda_t^i$ for Itô processes λ_t^i and $\vartheta \in (0, 1)$.
 - ϑ ∈ (0, 1) ensures "continuity" for ε → 0. Continuous trading and no market-making profits in the frictionless limit.
- Regularity assumptions on σ_t , \mathcal{E}_t , λ_t^i :
 - Continuous semimartingales.
 - Bounded and bounded away from zero.
 - Drift and diffusion parts absolutely continuous with bounded rate.

Model Preferences

- Arbitrary utility function $U : \mathbb{R} \to \mathbb{R}$:
 - Strictly increasing, strictly concave, C^2 .
 - ► Absolute risk aversion ARA = -U''/U bounded and bounded away from zero.
 - Marginal utility U' bounded by an exponential.
- Investor starts with x₀ in cash, maximizes expected utility from terminal liquidation wealth:

$$E[U(X_T)] \rightarrow \max!$$

- Admissibility of a *family* $(X^{\varepsilon})_{\varepsilon>0}$ of wealth processes:
 - Bounded risky position, in line with "risk budgets" in practice.
 - ▶ Converges to zero uniformly for $\varepsilon \rightarrow 0$. In line with small inventories of high-frequency traders.

Main Results Optimal Policy

Define position limits

$$\overline{\beta}_t = \frac{2\varepsilon_t \alpha_t^2}{\text{ARA}(x_0)\sigma_t^2}, \quad \underline{\beta}_t = -\frac{2\varepsilon_t \alpha_t^1}{\text{ARA}(x_0)\sigma_t^2}$$

► Keep risky position between <u>β</u>, <u>β</u> by market orders, trade to boundaries when limit orders are executed:

$$d\beta_{t+}^{\varepsilon} = \beta_t^{\varepsilon} \sigma_t dW_t + (\overline{\beta}_t - \beta_t^{\varepsilon}) dN_t^1 + (\underline{\beta} - \beta_t^{\varepsilon}) dN_t^2 + d\Psi_t, \quad \beta_0^{\varepsilon} = 0$$

Ψ is minimal finite variation process that ensures $β^ε ∈ [β, \overline{β}]$. ► This strategy optimal at the leading order $ε^{2(1-ϑ)}$ for small ε.

Main Results Optimal Policy ct'd

The position limits

$$\overline{\beta}_t = \frac{2\varepsilon_t \alpha_t^2}{\text{ARA}(x_0)\sigma_t^2}, \quad \underline{\beta}_t = -\frac{2\varepsilon_t \alpha_t^1}{\text{ARA}(x_0)\sigma_t^2}$$

are:

- Myopic. Only local dynamics matter. Like for liquidity takers facing proportional transaction costs.
- Inversely proportional to risk aversion and variance.
- Proportional to spread earned per trade, and trading rates.
- Like classical Merton proportion μ/ARAσ². Drift rate μ replaced by rates at which revenues accumulate by limit orders.

Main Results Welfare

 Performance of above strategy can also be quantified. Certainty equivalent:

$$x_0 + \frac{\operatorname{ARA}(x_0)}{2} E\left[\int_0^T (\overline{\beta}_t^2 \mathbf{1}_{A_t^1} + \underline{\beta}_t^2 \mathbf{1}_{A_t^2}) \sigma_t^2 dt\right]$$

 $\omega \in A_t^1$ if the investor's last trade before time t was a purchase and $\omega \in A_t^2$ if it was a sale.

- Certainty equivalent of order O(ε^{2(1−ϑ)}). Dominates all families of competitors up to terms of order o(ε^{2(1−ϑ)}).
- Average of future squared target positions. Scaled by risk aversion.

Main Results Welfare ct'd

For a symmetric order flow $\alpha_t^1 = \alpha_t^2$:

Certainty equivalent:

$$x_0 + rac{\operatorname{ARA}(x_0)}{2} E\left[\int_0^T \left(rac{\overline{eta}_t}{S_t}
ight)^2 d\langle S
angle_t
ight]$$

- Squared trading boundaries in numbers of shares.
- Averaged with respect to business time $d\langle S \rangle_t$.
- Physical probability coincides with frictionless dual pricing measure here.
- Like for liquidity takers with proportional transaction costs.

Main Results Welfare ct'd

If all model parameters $(\sigma, \varepsilon, \alpha^1, \alpha^2)$ are constant:

Explicit formula for certainty equivalent:

$$x_0 + \frac{(2\varepsilon\alpha^1)(2\varepsilon\alpha^2)}{2\mathrm{ARA}(x_0)\sigma^2}T.$$

- Liquidity provision equivalent to an annuity:
 - Inversely proportional to risk aversion and variance.
 - Proportional to the rate at which revenues are earned from the spread.
- For a symmetric order flow $\alpha_t^1 = \alpha_t^2 = \alpha$:
 - Like classical squared Sharpe ratio $\mu^2/2ARA\sigma^2$.
 - Drift μ again replaced by $2\varepsilon\alpha$.

Adverse Selection and Price Impact

Motivation

So far:

- Incoming orders do not affect bid-ask prices.
- Justified if these are small and uninformed. Small noise traders.

But:

- Larger trades eat into order book:
 - Purchases increase prices.
 - Sales decrease them.
- Adverse selection of counterparties with superior information:
 - Prices increase after insider purchases.
 - Decrease after they sell.

In both cases:

Price impact systematically works against liquidity provider.

Adverse Selection and Price Impact Extension of the Model

- Prices rise after exogenous purchases, drop after sales.
- Captured by simple reduced form model:

$$dS_t/S_{t-} = \sigma_t \, dW_t - \kappa \varepsilon_t \, dN_t^1 + \kappa \varepsilon_t \, dN_t^2$$

- ► Limit orders executed at S_{t-}. Adverse price move immediately *after* execution.
- $\kappa \in [0, 1]$ measures (relative) price impact.
- $\kappa = 0$: baseline model without price impact.
- κ ≈ 1: model à là Madhavan et al. (1997). Market makers do not earn the spread but only small exogenous compensation.

Adverse Selection and Price Impact Results

- Model remains tractable.
- Target positions of a similar form:

$$\overline{\beta}_t = \frac{2\varepsilon_t ((1 - \frac{\kappa}{2})\alpha_t^2 - \frac{\kappa}{2}\alpha_t^1)}{\operatorname{ARA}(x_0)\sigma_t^2}, \quad \underline{\beta}_t = -\frac{2\varepsilon_t ((1 - \frac{\kappa}{2})\alpha_t^1 - \frac{\kappa}{2}\alpha_t^2)}{\operatorname{ARA}(x_0)\sigma_t^2},$$

Liquidity provision reduced by adverse price impact. Inventory management changed as well.

• For a symmetric order flow $(\alpha_t^1 = \alpha_t^2 = \alpha)$:

$$\overline{\beta}_t = \frac{2\varepsilon_t (1-\kappa)\alpha_t}{\operatorname{ARA}(x_0)\sigma_t^2}, \quad \underline{\beta}_t = -\frac{2\varepsilon_t (1-\kappa)\alpha_t}{\operatorname{ARA}(x_0)\sigma_t^2}$$

Liquidity provision simply reduced by factor $1 - \kappa$.

► Formula for certainty equivalent remains valid.

Summary

- Small liquidity provider trading in a limit order market.
- General dynamics for mid-price, spread, and order flow. Arbitrary preferences.
- Explicit formulas for almost optimal trading boundaries, associated welfare.
- Extension of the model to account for adverse selection/price impact.
- For more information (and proofs):
 - Kühn, C. and Muhle-Karbe, J. Optimal liquidity provision in limit order markets. (Hopefully) available soon.

