Manuel Friedrich

Faculty of Mathematics,
University of Vienna
Oskar-Morgenstern-Platz 1,
1090 Wien, Austria

E-Mail: manuel.friedrich@univie.ac.at
Phone: +43 1 4277 50667
Room: 4.130


Research interests

  • Calculus of Variations
  • Multiscale Methods
  • Elasticity Theory and Fracture Mechanics

Short vita


  • A Korn-type inequality in SBD for functions with small jump sets. Math. Models Methods Appl. Sci. (M3AS), in press. [Preprint]

  • On a decomposition of regular domains into John domains with uniform constants. ESAIM Control Optim. Calc. Var., in press. [Preprint]

  • A derivation of linearized Griffith energies from nonlinear models. Arch. Ration. Mech. Anal., in press. [Preprint]

  • (with F. Solombrino) Quasistatic crack growth in linearized elasticity. Ann. Inst. H. Poincaré Anal. Non Linéaire, in press. [Preprint]

  • (with P. Piovano, U. Stefanelli) The geometry of C60: A rigorous approach via Molecular Mechanics. SIAM J. Appl. Math. 76 (2016) pp. 2009-2029. [Preprint]

  • (with B. Schmidt) On a discrete-to-continuum convergence result for a two dimensional brittle material in the small displacement regime. Netw. Heterog. Media 10 (2015) pp. 321-342. [Preprint]

  • (with B. Schmidt) An analysis of crystal cleavage in the passage from atomistic models to continuum theory. Arch. Ration. Mech. Anal. 217 (2015) pp. 263-308. [Preprint]

  • (with B. Schmidt) An atomistic-to-continuum analysis of crystal cleavage in a two-dimensional model problem. J. Nonlin. Sci. 24 (2014) pp. 145-183. [Preprint]

  • (with E. Mainini, P. Piovano, U. Stefanelli) Characterization of optimal carbon nanotubes under stretching and validation of the Cauchy-Born rule. Preprint 2017. [Preprint]

  • (with M. Kruzik) On the passage from nonlinear to linearized viscoelasticity. Preprint 2017. [Preprint]

  • A piecewise Korn inequality in SBD and applications to embedding and density results. Preprint 2016. [Preprint]

  • (with B. Schmidt) A quantitative geometric rigidity result in SBD. Preprint 2015. [Preprint]

  • A Korn-Poincaré-type inequality for special functions of bounded deformation. Preprint 2015. [Preprint]


  • WS 14/15: Tutorübung Analysis 3, Prof. B. Schmidt (U Augsburg)
  • SS 14: Tutorübung Analysis 2, Prof. B. Schmidt (U Augsburg)
  • SS 13: Assistent Partielle Differentialgleichungen, Prof. B. Schmidt (U Augsburg)
  • WS 12/13: Assistent Variationsrechnung, Prof. B. Schmidt (U Augsburg)
  • SS 12: Tutorübung Funktionalanalysis, Prof. B. Schmidt (U Augsburg)
  • SS 11: Tutorübung Funktionentheorie, Prof. F. Bornemann (TU München)
  • SS 11: Tutorübung Mathematische Modellbildung, Dr. J. Giannoulis (TU München)
  • WS 10/11: Tutorübung Maß- und Integrationstheorie, Prof. R. Lasser (TU München)
  • WS 10/11: Tutorübung Vektoranalysis, Prof. B. Schmidt (TU München)
  • SS 10: Tutorübung Analysis 2, Prof. R. Lasser (TU München)
  • WS 09/10: Tutorübung Analysis 1, Prof. R. Lasser (TU München)