Gruppentheorie - <u>Blatt 6</u>

12.30-13.15, Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock http://www.mat.univie.ac.at/~gagt/GT2016/gruppentheorie2016.html

Martin Finn-Sell martin.finn-sell@univie.ac.at

Satz. (Hall) Sei G eine auflösbare Gruppe mit |G| = ab, wo ggt(a,b) = 1. Dann besitzt G eine Untergruppe der Ordnung a und je zwei solche Untergruppen sind konjugiert in G.

- 1. (Frattini Argument) Sei F eine endliche Gruppe, H eine normale Untergruppe von F und P eine Sylow-p-Untergruppe von H. Zeige, dass $F = N_F(P)H$.
- 2. Sei H eine minimale normale Untergruppe von G. Zeige, dass:
 - a) $H^{(1)} = \{1\} \text{ oder } H^{(1)} = H;$
 - b) $H^{(1)} = \{1\}$, sodass H abelsch ist;
 - c) $H = \mathbb{Z}_{\mathfrak{p}}^k$.
- 3. Sei H eine normale Untergruppe von G mit |H| = a'b', wo $a' \mid a, b' \mid b$ und b' < b. Sei G/H besitzt eine Untergruppe der Ordnung a/a'. Zeige, dass es eine Untergruppe von G der Ordnung a gibt.
- 4. $H \triangleleft G$ mit $b \nmid |H|$. Dann besitzt G eine Untergruppe der Ordnung α .
- 5. Sei $|G| = ap^m$, mit $p \nmid a$. Sei $H \triangleleft G$ eine p-Sylow-Untergruppe, die einzelne minimale normale Untergruppe ist.
 - a) Sei K/H eine minimale normale Untergruppe von G/H. Zeige, dass $|K|=p^mq^n$, für ein Primzahl $q\neq p$;
 - b) Sei Q eine q-Sylow-Untergruppe von K. Zeige, dass K = HQ.
 - c) Zeige, dass $G = KN_G(Q)$;
 - d) Zeige, dass $|N_G(Q)| = \alpha |H \cap N_K(Q)|$;
 - $e) \ \ Zeige, dass \ H \cap N_K(Q) < Z(K);$
 - f) Zeige, dass $Z(K) = \{1\};$
 - g) Zeige, dass $|N_G(Q)| = \alpha$.
- 6. Zeige, dass G besitzt eine Untergruppe der Ordnung $\mathsf{a}.$