Geometric and Asymptotic Group Theory I

Damian Osajda damian.osajda@univie.ac.at

http://www.mat.univie.ac.at/~dosaj/GGTWien/Course.html Dienstag, 11:00–12:00, Raum C2.07 UZA 4

Blatt 1 Free groups

An *action* of a group G on a set X is a homomorphism $G \to \text{Sym}(X)$.

(1) Prove the following Ping-pong Lemma.

Let G be a group acting on a set X. Suppose there exist disjoint nonempty subsets $A^+, A^-, B^+, B^- \subset X$, and two elements a, b of G with the following properties:

a) $A^+ \cup A^- \cup B^+ \cup B^- \subsetneq X$; b) $a(X - A^-) \subseteq A^+, a^{-1}(X - A^+) \subseteq A^-$; b) $b(X - B^-) \subseteq B^+, b^{-1}(X - B^+) \subseteq B^-$.

Then $\langle a, b \rangle \leq G$ is a free subgroup generated by a and b.

- (2) Let Γ be a graph with the vertex set V and the set of directed edges E. A loop based at $v \in V$ is an edge path starting and ending in v. We say that two loops p_1 and p_2 are equivalent, denoted $p_1 \sim p_2$, if one can obtain p_2 from p_1 by a finite sequence of inserting/removing of subpaths of the form ee^{-1} , where $e, e^{-1} \in E$ and e^{-1} is the edge with the same endpoints as e and with the opposite orientation. Define a product $[p_1] \cdot [p_2]$ of two \sim -equivalence classes of loops p_1 and p_2 based at $v \in V$ as $[p_1] \cdot [p_2] = [p_1 \cdot p_2]$, where $p_1 \cdot p_2$ is the concatenation of the paths p_1 and p_2 .
 - (a) Show that the set of equivalence classes of loops based at a given vertex v, equipped with the product defined above forms a group. This group is called the *fundamental group of* Γ with the basepoint v and is denoted by $\pi_1(\Gamma, v)$.
 - (b) Prove that $\pi_1(\Gamma, v)$ is a free group. What is its rank?
 - (c) Show that if Γ is connected, then $\pi_1(\Gamma, v) \cong \pi_1(\Gamma, v')$, for any two vertices v and v'.
- (3) Using the previous exercise show that for every $n \ge 1$ the free group F_n is a subgroup of F_2 .

Hint: Show that a *covering* (i.e. a surjective map that is a local isomorphism) of graphs induces a monomorphism of their fundamental groups.