Geometric and Asymptotic Group Theory II

Damian Osajda

damian.osajda@univie.ac.at http://www.mat.univie.ac.at/~dosaj/GGTWien/Course.html Dienstag, 11:00–12:00, Raum C2.07 UZA 4

Blatt 2

Residual finiteness of free groups

- (1) Show that \mathbb{Z}^n is residually finite.
- (2) Combinatorial proof. Let $\mathbb{F}_2 = \langle a, b \rangle$. Let $w(a, b) = x_{i_n}^{\epsilon_n} x_{i_{n-1}}^{\epsilon_{n-1}} \cdots x_{i_1}^{\epsilon_1}$ be a reduced word in a^{\pm}, b^{\pm} , with $x_j \in \{a, b\}$ and $\epsilon_j = \pm 1$.
 - (a) For k = 1, ..., n, construct permutations σ_{i_k} in S_{n+1} such that the following conditions are satisfied.

$$\sigma_{i_k}(k) = k+1$$
 if $\epsilon_k = +1$, or

$$\sigma_{i_k}(k+1) = k \text{ if } \epsilon_k = -1.$$

- (b) Define a map $f: \mathbb{F}_2 \to S_{n+1}$ such that the image of w is nontrivial.
- (c) Conclude that \mathbb{F}_2 is residually finite.
- (3) * Topological proof. Consider a 2-rose Γ with labels a, b—i.e. a graph with one vertex and two oriented edges (loops) labelled by a, b. Then $\pi_1(\Gamma) = \mathbb{F}_2$.
 - (a) For a given reduced word w(a, b) build a path p of (directed) edges labelled by w and consider the obvious (labelled) immersion $i: p \to \Gamma$.
 - (b) Complete the immersion i to a finite covering of the labelled graph Γ .
 - (c) Observe that a loop corresponding to p in Γ does not lift to a loop.
 - (d) Conclude that \mathbb{F}_2 is residually finite
- (4) ** Probabilistic-topological proof. Let Γ be a finite graph. Consider its double covering $p: \widetilde{\Gamma} \to \Gamma$. It means in particular the following. For each vertex $v \in \Gamma$ there are two vertices $\widetilde{v}_1, \widetilde{v}_2 \in \widetilde{\Gamma}$ with $p(\widetilde{v}_1) = p(\widetilde{v}_2) = v$, and if $\{\widetilde{v}, \widetilde{w}\}$ is an edge in $\widetilde{\Gamma}$ then $\{p(\widetilde{v}), p(\widetilde{w})\}$ is an edge in Γ .
 - (a) Observe that $g := \operatorname{girth}(\Gamma) \leq \operatorname{girth}(\widetilde{\Gamma})$.
 - (b) Let Z be a random variable counting the number of cycles (i.e. polygonal loops) of length g in a double covering of Γ . Show that EZ (the expected value of Z) equals the number of g-cycles in Γ .
 - (c) Conclude that there is a double covering with fewer g-cycles.
 - (d) Show that there exists a (not necessarily double) covering $\widetilde{\Gamma}$ with

$\operatorname{girth}(\widetilde{\Gamma}) > \operatorname{girth}(\Gamma).$

- (e) Conclude that free groups are residually finite.
- (5) *** Coxeter groups. Show how the residual finiteness of \mathbb{F}_n follows from Problem (3) on Blatt 1.