Geometric and Asymptotic Group Theory II

Damian Osajda damian.osajda@univie.ac.at http://www.mat.univie.ac.at/~dosaj/GGTWien/Course.html Dienstag, 11:00–12:00, Raum D1.07 UZA 4

Blatt 4 Mineyev's proof of Hanna Neumann Conjecture (as simplified by Warren Dicks)

Hanna Neumann Conjecture. Let H, N be finitely generated subgroups of a free group F. Then $\overline{rk}(H \cap N) \leq \overline{rk}(H) \cdot \overline{rk}(N)$, where $\overline{rk}(K) = \max\{0, rk(K) - 1\}$.

Free group is orderable

- (1) (Magnus Embedding.) Show that the embedding $F(a, b) \to \mathbb{Z}[[t, u]]^*$ given by $a \mapsto 1 + t, b \mapsto 1 + u$ is a monomorphism.
- (2) Define a left-invariant linear order \preccurlyeq on F = F(a, b) induced by a lexicographic order on $\mathbb{Z}[[t, u]]$.

Bridges and Islands

- (3) Define a left invariant order \preccurlyeq on the set $E\Gamma$ of edges of the Cayley graph $\Gamma = Cay(F, \{a, b\})$ of F.
- (4) For a finitely generated subgroup $G \leq F$, let T(G) be a minimal G-invariant subtree of Γ . Show that T(G) is unique and that $T(G) = \bigcup_{g \in G \setminus \{1\}} Axis(g)$, where Axis(g) consists of vertices with the minimal displacement wrt g.

An edge $e \in E\Gamma$ is called a *G*-bridge if there is a biinfinite geodesic γ in T(G) such that e is the \preccurlyeq -largest edge in γ . The set of *G*-bridges in T(G) is denoted by B(G). Connected components of $T(G) \setminus B(G)$ are called *G*-islands.

- (5) Show that for every G-bridge e and for every $g \in G$, the edge ge is again a G-bridge.
- (6) Show that for every G-island T and for every $g \in G$, the set gT is again a G-island.
- (7) Show that if T, T' are G-islands then either T = T' or $T \cap T' = \emptyset$.

Island Theorem

Let Y = Y(G) be the tree obtained from T(G) by contracting *G*-islands to points, i.e. $VY = \{T_0 \mid T_0 \text{ is a } G\text{-island}\}$ and EY = B(G). Let T_0 be a *G*-island with nontrivial stabilizer $G_0 \leq G$.

- (8) Show that G acts on Y without edge inversions and with trivial edgestabilizers.
- (9) Let $g \in G_0$, and let e be the \preccurlyeq -largest edge in a segment $[g^{-1}v, gv] \subseteq Axis(g)$, for some vertex v. What is the \preccurlyeq -largest edge in a given (infinite) subray of Axis(g)?
- (10) Let $g, h \in G_0$ be two elements with disjoint axes, and let p be the geodesic connecting Axis(g) with Axis(h). Find the \preccurlyeq -largest edge in a (biinfinite) geodesic in $Axis(g) \cup p \cup Axis(h)$.
- (11) (Island Theorem.) Show that G_0 is cyclic.

Bridge Theorem

Let $\mathbb{A} = G \setminus Y$ be the quotient graph of groups. Let I(G) be the set of G-islands with trivial stabilizers.

- (12) Show that:
 - (a) the underlying graph A of \mathbb{A} is finite;
 - (b) edge groups in \mathbb{A} are trivial;
 - (c) vertex groups in \mathbb{A} are trivial or cyclic;
 - (d) $|EA| = |G \setminus B(G)|$.
- (13) Show that the fundamental group $\pi_1(\mathbb{A})$ of the graph of groups \mathbb{A} is $G = \pi_1(A) * F_m$, where *m* is the number of vertices in \mathbb{A} with cyclic vertex groups.
- (14) Prove that $I(G) = \emptyset$:
 - Assume that $I(G) \neq \emptyset$. Let $Stab_G(T_0) = \{1\}$.
 - (a) Assume T_0 is finite. Consider the \preccurlyeq -smallest bridge adjacent to T_0 . Conclude that its existence leads to a contradiction.
 - (b) Assume T_0 is infinite. Consider the projection of T_0 to the finite graph $G \setminus T(G)$. Show that there exists $g \in G$ with $gT_0 \cap T_0 \neq \emptyset$, and that this leads to a contradiction.
- (15) (Bridge Theorem.) Show that $\overline{rk}(G) = |EA| |VA| + m = |G \setminus B(G)|$.

Final step

(16) Using a theorem by Howson (saying that $H \cap N$ is finitely generated), define a (diagonal) map

 $j \colon (H \cap N) \setminus B(H \cap N) \to (H \setminus B(H)) \times (N \setminus B(N)).$

- (17) Show that j is injective.
- (18) Prove the Hanna Neumann Conjecture!