Geometric and Asymptotic Group Theory II

Damian Osajda damian.osajda@univie.ac.at http://www.mat.univie.ac.at/~dosaj/GGTWien/Course.html Dienstag, 11:00–12:00, Raum D1.07 UZA 4

Blatt 6 Banach-Tarski Paradox

Banach-Tarski Paradox. The unit ball in \mathbb{R}^3 can be split up into a finite number of pieces and then reassembled to obtain two copies of the unit ball.

Paradoxical sets

A set X acted upon a group G is G-paradoxical if there are pairwise disjoint subsets of X: $A_1, \ldots, A_n, B_1, \ldots, B_n$, and elements of G: $g_1, \ldots, g_n, h_1, \ldots, h_m$ such that $X = \bigcup_{i=1}^n g_i A_i = \bigcup_{j=1}^m h_j B_j$. A group G is paradoxical if it is Gparadoxical with respect to its action on itself by left translations.

- (1) Show that if a group G is paradoxical and acts freely on a set X, then X is G-paradoxical.
- (2) Show that the free group F_2 is paradoxical.

Free subgroups of SO(3)

- (3) Let A be the rotation through $\arccos\left(\frac{1}{3}\right)$ about the z-axis and B be the rotation through the same angle about the x-axis. Show that A and B generate a free subgroup of SO(3).
- (4) (Hausdorff Paradox.) Prove that there is a countable subset D of S² such that S² \ D is SO(3)-paradoxical. Hint: Omit axes.

Banach-Tarski Paradox

- (5) Show that S^2 is SO(3)-paradoxical.
- (6) Prove the Banach-Tarski Paradox

Relations to amenability

(7) Let X be G-paradoxical. Show that there is no finitely additive probabilistic G-invariant measure on X.