Geometric and Asymptotic Group Theory

Damian Osajda

damian.osajda @univie.ac.at

 $http://www.mat.univie.ac.at/{\sim}dosaj/GGTWien/Course.html$

Dienstag, 11:00–12:00, Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock

Blatt 3

Residual finiteness

- (1) Show that for a group G the following conditions are equivalent a group satisfying them is *residually finite*.
 - (a) For every element $g \neq 1_G$ in G there exists a homomorphism $\varphi \colon G \to F$ into some finite group F, such that $\varphi(g) \neq 1_F$.
 - (b) For every element $g \neq 1_G$ in G, there exists a finite index subgroup $K \leq G$ with $g \notin K$.
 - (c) For every finite set A of nontrivial elements in G, there exists a homomorphism $\varphi: G \to F$ into some finite group F, such that $\varphi(g) \neq 1_F$, for every $g \in A$.
 - (d) The intersection of all (normal) subgroups of G of finite index is trivial.
 - (e) Let $G = \pi_1(X, x_0)$. For every homotopically non-trivial loop γ in (X, x_0) there is a finite covering $p: \widetilde{X} \to X$ such that γ does not lift up to a loop in \widetilde{X} .
- (2) Show that \mathbb{Z} and \mathbb{Z}^2 are residually finite.
- (3) Show that every finitely generated residually finite group is Hopfian.
- (4) Show that the group $(\mathbb{Q}, +)$ is Hopfian, and $(\mathbb{R}, +)$ is not.
- (5) Show that $\operatorname{Aut}(\mathbb{F}_{\mathbb{N}})$ contains a simple subgroup.