Representation Theory of Groups - Blatt 7

11:30-12:15, Seminarraum 9, Oskar-Morgenstern-Platz 1, 2.Stock http://www.mat.univie.ac.at/~gagt/rep_theory2016

Goulnara Arzhantseva goulnara.arzhantseva@univie.ac.at Martin Finn-Sell martin.finn-sell@univie.ac.at

On this exercise sheet, we will describe the *Gelfand-Naimark-Segal construction* in the context of group representations. The following generalises the notion of positive matrix into bounded operators on Hilbert space:

Definition. A function $f: G \to \mathbb{C}$ is *positive definite* if for every finite subset $F \subset G$ the matrix:

$$(f(g^{-1}h))_{g,h\in F}\in M_F(\mathbb{C})$$

is positive.

Theorem. Let $f: G \to \mathbb{C}$ be a positive definite function. Then there is a Hilbert space \mathcal{H} , a representation $\pi: G \to \mathfrak{B}(\mathcal{H})$ and a vector $v \in \mathcal{H}$ such that $f(s) = \langle \pi(s)v, v \rangle$.

(Note, such representations are called *cyclic* by operator algebraists).

Question 1. Let $\phi, \psi \in C_c(G; \mathbb{C})$, the algebra of compactly supported functions from G to \mathbb{C} .

a) Show that the form:

$$\langle \varphi, \psi \rangle_f = \sum_{g,h \in G} f(g^{-1}h) \varphi(g) \overline{\psi(h)}.$$

is a positive semidefinite bilinear form on $C_c(G;\mathbb{C})$. Construct a Hilbert space \mathcal{H}_f from this data.

- b) Let $\lambda^f: G \to \mathfrak{B}(\mathcal{H}_f)$ be the continuous extension of the left regular representation λ of G on $C_c(G;\mathbb{C})$ by convolution. Show that λ^f defines a unitary representation of G on \mathcal{H}_f .
- c) Find a suitable vector $v \in C_c(G; \mathbb{C})$ such that:

$$\langle \lambda^f(g)\nu,\nu\rangle_f=f(g)$$

for every $g \in G$. (Hint: To find ν , consider what happens with a basis for $C_c(G;\mathbb{C})$ as a vector space).