
SPECTRAL DEFORMATIONS OF JACOBI OPERATORS

GERALD TESCHL

Abstract. We extend recent work concerning isospectral deformations for

one-dimensional Schrödinger operators to the case of Jacobi operators. We

provide a complete spectral characterization of a new method that constructs
isospectral deformations of a given Jacobi operator (Hu)(n) = a(n)u(n + 1) +

a(n − 1)u(n − 1) − b(n)u(n). Our technique is connected to Dirichlet data,

that is, the spectrum of the operator H∞n0
on `2(−∞, n0) ⊕ `2(n0,∞) with

a Dirichlet boundary condition at n0. The transformation moves a single

eigenvalue of H∞n0
and perhaps flips which side of n0 the eigenvalue lives. On

the remainder of the spectrum the transformation is realized by a unitary
operator.

1. Introduction

Spectral deformations of Jacobi operators have proven useful in various appli-
cations such as inverse spectral theory and construction of solutions for the Toda
and Kac van Moerbeke hierarchy [3], [8], [11], [15]. In [10] a powerful new spectral
deformation method was introduced for Schrödinger operators. The aim of the
present paper is to develop an analogous tool for Jacobi operators.

One approach to spectral deformations is to factor a given Jacobi operator

(1.1) (Hu)(n) = a(n)u(n+ 1) + a(n− 1)u(n− 1)− b(n)u(n),

u ∈ D(H) ⊆ `2(Z), into a product of first order difference operators

(1.2) H = A∗σAσ + λ, σ ∈ [−1, 1].

Interchanging the order of A∗σ and Aσ produces a second operator Hσ = AσA
∗
σ +λ

whose spectral properties are closely related to those of H. In fact, depending on
the parameter σ, one gets operators which are either isospectral to H or have the
additional eigenvalue λ [4], [8] (see also [11]).

Clearly, the special form of (1.2) implies that H − λ ≥ 0 and hence this single
commutation method can only be applied to insert eigenvalues below the spectrum
of H. However, ignoring this fact and performing two (suitable) commutation steps
produces meaningful operators Hγ , γ > 0 (all intermediate operators are ill-defined
unless λ is below the spectrum of H). The operators Hγ are isospectral to H except
for the additional eigenvalue λ (for details see [8]).

The idea of our new method is to perform two single commutation steps as before
(with possibly ill-defined intermediate operators), but now using different choices
for the parameter λ in the first respectively second step. The investigation of the
resulting transformed operator will be the task of this paper.
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In order to further explain these ideas we need to introduce additional notation.
The Dirichlet operator H∞n0

is obtained by restricting H to the subset of sequences
u ∈ `2(Z) which satisfy u(n0) = 0 (see (2.7) below). It can be viewed as a rank one
resolvent perturbation (at infinite coupling) of H implying that in each spectral
gap (E0, E1) of H there can be at most one eigenvalue µ0 of H∞n0

. However, note
that special care has to be taken since the resolvents of H and H∞n0

live in different
Hilbert spaces (cf. [6], [7] Appendix, or [13] for details). Since H∞n0

decomposes into
a direct sum H∞n0

= H∞−,n0
⊕ H∞+,n0

(with respect to the decomposition `2(Z) =
`2(−∞, n0)⊕ `2(n0,∞)) there is a sign σ0 associated with each µ0 such that µ0 ∈
σ(H∞σ0,n0

) (σ(.) denoting the spectrum of an operator).
Let (E0, E1) be a spectral gap of H, µ0 ∈ σ(H∞σ0,n0

)∩ (E0, E1) and pick (µ, σ) ∈
(E0, E1)×{±}. Then our transformation will send H to an operator H(µ,σ) in such
a way that H,H(µ,σ) are unitarily equivalent and the Dirichlet datum (µ0, σ0) will
be shifted to (µ, σ), whereas all other Dirichlet eigenvalues remain unchanged. We
will hence refer to this transformation as the Dirichlet deformation method.

As anticipated, this transformation is realized by two single commutations; us-
ing uσ0(µ0, .), u−σ(µ, .) in the first, second factorization of H, respectively. Here
u±(z, .), z ∈ C\σ(H) denote weak (i.e., formal) solutions of Hu = zu being square
summable near ±∞, respectively. By [8] the operator H(µ,σ) is associated with the
sequences

a(µ,σ)(n) = a(n)

√
W(µ,σ)(n− 1)W(µ,σ)(n+ 1)

W(µ,σ)(n)2
,(1.3)

b(µ,σ)(n) = b(n)− ∂∗ a(n)uσ0(µ0, n)u−σ(µ, n+ 1)
W(µ,σ)(n)

,(1.4)

where

(1.5) W(µ,σ)(n) =
Wn(uσ0(µ0), u−σ(µ))

µ− µ0
,

Wn(., ..) denotes the (modified) Wronskian and (∂∗f)(n) = f(n)−f(n−1). Clearly,
H(µ,σ) is only well-defined if W(µ,σ)(n + 1)W(µ,σ)(n) > 0; but this is ensured by
[14], Theorem 4.6.

In the special case, where a, b are periodic (cf. [12]), these ideas have been used in
[8] to give the discrete analogue of the FIT-formula derived in [5] for the isospectral
torus of periodic Schrödinger operators.

2. Preliminary definitions

Throughout this paper we denote by `(I) = `(M,N), I = {n ∈ Z|M < n < N},
M,N ∈ Z ∪ {±∞} the set of complex-valued sequences {u(n)}n∈I and by `p(I),
1 ≤ p ≤ ∞ the sequences u ∈ `(I) such that |u|p is summable over I. The scalar
product in the Hilbert space `2(I) will be denoted by

(2.1) 〈u, v〉 =
∑
n∈I

u(n)v(n), u, v ∈ `2(I).

We will be concerned with operators on `2(Z) associated with the difference
expression

(2.2) (τf)(n) = a(n)f(n+ 1) + a(n− 1)f(n− 1) + b(n)f(n),
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where a, b ∈ `(Z) satisfy

Hypothesis H.2.1. Suppose

(2.3) a(n) ∈ R\{0}, b(n) ∈ R, n ∈ Z.

If τ is limit point (l.p.) at both ±∞ (cf., e.g., [1], [2]), then τ gives rise to a
unique self-adjoint operator H when defined maximally. Otherwise, we need to fix
a boundary condition at each endpoint where τ is limit circle (l.c.) (cf., e.g., [1],
[2]). Throughout this paper we denote by u±(z, .), z ∈ C, nontrivial solutions of
τu = zu which satisfy the boundary condition at ±∞ (if any) with u±(z, .) ∈ `2±(Z),
respectively. Here `2±(Z) denotes the sequences in `(Z) being `2 near ±∞. The
solution u±(z, .) might not exist for z ∈ R (cf. [14], Lemma A.1), but if it exists it
is unique up to a constant multiple.

Picking a fixed z0 ∈ C\R we can characterize H by

(2.4)
H : D(H) → `2(Z)

f 7→ τf
,

where the domain of H is explicitly given by

(2.5) D(H) = {f ∈ `2(Z)| τf ∈ `2(Z), limn→+∞Wn(u+(z0), f) = 0,
limn→−∞Wn(u−(z0), f) = 0}

and

(2.6) Wn(f, g) = a(n)
(
f(n)g(n+ 1)− f(n+ 1)g(n)

)
denotes the (modified) Wronskian. The boundary condition at ±∞ imposes no
additional restriction on f if τ is l.p. at ±∞ and can hence be omitted in this case.

Next, denote by Pn0 the orthogonal projection onto the one-dimensional subspace
spanned by δn0 in `2(Z), where δn0(n) is 1 for n = n0 and 0 else. The Dirichlet
operator is now defined by

(2.7) H∞n0
= (1l− Pn0)H(1l− Pn0)

in the Hilbert space (1l − Pn0)`2(Z) = {f ∈ `2(Z)|〈δn0 , f〉 = 0}. Clearly, H∞n0

decomposes into a direct sum H∞n0
= H∞−,n0

⊕ H∞+,n0
with respect to the decom-

position `2(Z) = `2(−∞, n0) ⊕ `2(n0,∞) and we have σess(H) = σess(H∞n0
) =

σess(H∞−,n0
) ∪ σess(H∞+,n0

).
Without restriction we will only consider the case n0 = 0 and abbreviate H∞±,0 =

H± to simplify notation. This enables us to formulate our basic hypothesis.

Hypothesis H. 2.2. (i). Let (E0, E1) be a spectral gap of H, that is, (E0, E1) ∩
σ(H) = {E0, E1}.
(ii). Suppose µ0 ∈ σd(Hσ0) ∩ [E0, E1].
(iii). Let (µ, σ) ∈ [E0, E1]× {±} and µ ∈ (E0, E1) or µ ∈ σd(H).

Here σd(H) denotes the discrete spectrum (i.e., σd(H) = σd(H)\σess(H)).

Remark 2.3. Clearly, if µ0 is an eigenvalue of two of the operators H,H−, H+,
then it is also one of the third. Hence if µ0 ∈ σd(Hσ0)\σd(H−σ0) then µ0 ∈ (E0, E1)
and if µ0 ∈ σd(Hσ0)∩σd(H−σ0) then µ0 ∈ {E0, E1}. (The choice of σ0 in the latter
case is irrelevant). Condition (ii) thus says that µ0 = E0,1 is only allowed if E0,1

is a discrete eigenvalue of H. Similar in (iii) for µ.
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Our next objective is to define the operator H(µ,σ) of the Introduction. Since
H(µ0,σ0) = H, we will assume (µ, σ) 6= (µ0, σ0) without restriction.

Due to our assumption (H.2.2) we can find solutions uσ0(µ0, .), u−σ(µ, .) (cf.
[14], Lemma A.1) and define

(2.8) W(µ,σ)(n) =


Wn(uσ0 (µ0),u−σ(µ))

µ−µ0
, µ 6= µ0

n∑
m=σ0∞

uσ0(µ0,m)2, (µ, σ) = (µ0,−σ0)
,

where
∑n
m=+∞ = −

∑∞
m=n+1. The motivation for the case (µ, σ) = (µ0,−σ0)

follows from (assuming u−σ(µ,m) holomorphic w.r.t. µ)

lim
µ→µ0

Wn(uσ0(µ0), uσ0(µ))
µ− µ0

= lim
µ→µ0

n∑
m=σ0∞

uσ0(µ0,m)uσ0(µ,m)

=
n∑

m=σ0∞
uσ0(µ0,m)2.(2.9)

From the proof of [14], Theorem 4.6 we infer

Lemma 2.4. Suppose (H.2.2), then

(2.10) W(µ,σ)(n+ 1)W(µ,σ)(n) > 0, n ∈ Z.

Thus the sequences

a(µ,σ)(n) = a(n)

√
W(µ,σ)(n− 1)W(µ,σ)(n+ 1)

W(µ,σ)(n)2
,(2.11)

b(µ,σ)(n) = b(n)− ∂∗ a(n)uσ0(µ0, n)u−σ(µ, n+ 1)
W(µ,σ)(n)

(2.12)

are both well-defined and we can consider the associated difference expression

(2.13) (τ(µ,σ)u)(n) = a(µ,σ)(n)u(n+ 1) + a(µ,σ)(n− 1)u(n− 1) + b(µ,σ)(n)u(n).

The next lemma collects some basic properties which follow either from [8], Section 3
(choosing N = 2) or can be verified directly.

Lemma 2.5. Let

(2.14) (A(µ,σ)u)(z, n) =
W(µ,σ)(n)u(z, n)− 1

z−µ0
u−σ(µ, n)Wn(uσ0(µ0), u(z))√

W(µ,σ)(n− 1)W(µ,σ)(n)
,

where u(z) solves τu = zu for z ∈ C\{µ0}. Then we have

(2.15) τ(µ,σ)(A(µ,σ)u)(z, n) = z(A(µ,σ)u)(z, n)

and

(2.16) |(A(µ,σ)u)(z, n)|2 = |u(z, n)|2 +
1

|z − µ|2
u−σ(µ, n)
uσ0(µ0, n)

∂∗
|Wn(uσ0(µ0), u(z))|2

W(µ,σ)(n)
.

Moreover, the sequences

uµ0(n) =
u−σ(µ, n)√

W(µ,σ)(n− 1)W(µ,σ)(n)
,(2.17)

uµ(n) =
uσ0(µ0, n)√

W(µ,σ)(n− 1)W(µ,σ)(n)
(2.18)
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satisfy τ(µ,σ)u = µ0u, τ(µ,σ)u = µu respectively. Note also

(2.19) uσ0(µ0, 0) = uµ(0) = 0

and

(2.20) uµ0(n)uµ(n) = ∂∗
1

W(µ,σ)(n)
.

In addition, let u(z), û(z) satisfy τu = zu, then

W(µ,σ),n(uµ0 , A(µ,σ)u(z)) =
Wn(u−σ(µ), u(z))

W(µ,σ)(n)
,(2.21)

W(µ,σ),n(uµ, A(µ,σ)u(z)) =
z − µ
z − µ0

Wn(uσ0(µ0), u(z))
W(µ,σ)(n)

,(2.22)

W(µ,σ),n(A(µ,σ)u(z), A(µ,σ)û(ẑ)) =
z − µ
z − µ0

Wn(u(z), û(ẑ))

+
z − ẑ

(z − µ0)(ẑ − µ0)
Wn(uσ(µ), u(z))Wn(u−σ0(µ0), û(ẑ))

W(µ,σ)(n)
,(2.23)

where

(2.24) W(µ,σ),n(u, v) = a(µ,σ)(n)
(
u(n)v(n+ 1)− u(n+ 1)v(n)

)
.

Having these preliminaries out of the way, we will now define operators asso-
ciated with τ(µ,σ) by introducing suitable boundary conditions (since τ(µ,σ) is not
necessarily l.p. at ±∞). We single out the following three situations, which are the
only ones where the spectra of H and H(µ,σ) are closely related.

Let ω ∈ {±} and

(2.25) BCω(f) =

{
lim

n→ω∞
Wn(uω, f) = 0 if τ(µ,σ) is l.c. at ω∞

0 if τ(µ,σ) is l.p. at ω∞
,

where uω is chosen according to one of the following cases:

Case I: τ is l.p. at ω∞. Choose uω = uµ or uω = uµ0 .
Case II: τ is l.c. at ω∞.

(i). If ω = σ = σ0 choose uω = uµ.
(ii). If −ω = σ = σ0 choose uω = uµ0 .
(iii). If σ = −σ0 and µ ∈ σd(H) choose uω = uµ0 .
(iv). If σ = −σ0 and µ0 ∈ σd(H) choose uω = uµ.

(Note that in Case II (iii) and (iv) are the same if (µ, σ) = (µ0,−σ0).)
Using this boundary conditions we define

(2.26)
H(µ,σ) : D(H(µ,σ)) → `2(Z)

f 7→ τ(µ,σ)f
,

where the domain of H(µ,σ) is explicitly given by

(2.27) D(H(µ,σ)) = {f ∈ `2(Z)|τ(µ,σ)f ∈ `2(Z), BC−(f) = BC+(f) = 0}.

As always, there is no boundary condition at ω∞ in (2.27) if τ(µ,σ) is l.p. at ω∞, ω ∈
{±}. Furthermore, H(µ,σ),± denote the corresponding Dirichlet half-line operators
with respect to the base point n0 = 0.
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3. Half-line operators

In this section we will give a complete spectral characterization of the half-
line operators H(µ,σ),±. In addition, this will provide all necessary results for the
investigation of H(µ,σ).

To begin with we compute the Weyl m̃-functions

(3.1) m̃±(z) = ∓ u±(z, 1)
a(0)u±(z, 0)

.

We recall that m̃±(z) are equivalently given by

(3.2) m̃±(z) =
±1
a(0)

lim
n→±∞

Wn(c(z), f)
Wn(s(z), f)

,

where c(z, n), s(z, n) form a fundamental system for τ (i.e., (τ − z)c(z) = (τ −
z)s(z) = 0, s(z, 0) = c(z, 1) = 0, and s(z, 1) = c(z, 0) = 1) and f is arbitrary if τ
is l.p. at ±∞ respectively solves (τ − λ)f = 0, λ ∈ R, and satisfies the boundary
condition at ±∞ if τ is l.c. at ±∞ (cf. [8], Appendix B).

Theorem 3.1. Let m̃±(z), m̃(µ,σ),±(z) denote the Weyl m̃-functions of H, H(µ,σ)

respectively. Then we have

(3.3) m̃(µ,σ),±(z) =
1

1 + γ(µ,σ)

(z − µ0

z − µ
m̃±(z)∓

γ(µ,σ)

z − µ

)
,

where

(3.4) γ(µ,σ) =


−σ(µ− µ0)m̃−σ(µ), µ 6= µ0

− σ0uσ0 (µ0,σ01)
2P

n∈σ0N
uσ0 (µ0,n)2 , (µ, σ) = (µ0,−σ0) .

Proof. We first note that

c(µ,σ)(z, n) =
z − µ0

z − µ
(A(µ,σ)c)(z, n)−

γ(µ,σ)

z − µ
a(0)(A(µ,σ)s)(z, n),(3.5)

s(µ,σ)(z, n) =
√

1 + γ(µ,σ)(A(µ,σ)s)(z, n)(3.6)

constructed from the fundamental system c(z, n), s(z, n) for τ form a fundamental
system for τ(µ,σ) corresponding to the same initial conditions. Furthermore, note

(3.7)
W(µ,σ)(1)
W(µ,σ)(0)

= 1 + γ(µ,σ),
W(µ,σ)(0)
W(µ,σ)(−1)

= 1.

Now the result follows upon evaluating

(3.8) m̃(µ,σ),±(z) =
±1

a(µ,σ)(0)
lim

n→±∞

W(µ,σ),n(c(µ,σ)(z), uω)
W(µ,σ),n(s(µ,σ)(z), uω)

.

Using (2.21) one obtains for uω = uµ(n), uµ0(n), vω = uσ0(µ0, n), uσ0(µ0, n) respec-
tively (according to Case I or II above)

(3.9) m̃(µ,σ),±(z) =
1

1 + γ(µ,σ)

(z − µ0

z − µ
±1
a(0)

lim
n→±∞

Wn(c(z), vω)
Wn(s(z), vω)

∓
γ(µ,σ)

z − µ

)
the claim follows. �

Observe that even if there seems to be some freedom in the choice of the boundary
condition BCω at first sight, Theorem 3.1 shows that different choices give rise to
the same operator H(µ,σ) (since m̃(µ,σ),±(z) determine H(µ,σ) uniquely). This fact
will be used in the proof of Lemma 4.7. As a second consequence we note
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Corollary 3.2. The sequences

(3.10) u(µ,σ),±(z, n) = (A(µ,σ)u±)(z, n), z ∈ C\{µ, µ0},
are square summable near ±∞ and satisfy the boundary condition of H(µ,σ),± at
±∞ (if any). Moreover, the same is true for

u(µ,σ),−σ(µ, n) = W(µ,σ)(n)uµ0(n)− uµ(n)
n∑

m=−σ∞
u−σ(µ,m)2,(3.11)

u(µ,σ),σ0(µ0, n) = W(µ,σ)(n)uµ(n)− uµ0(n)
n∑

m=σ0∞
uσ0(µ0,m)2,(3.12)

and

u(µ,σ),σ(µ, n) = uµ(n), µ 6∈ σd(H),(3.13)
u(µ,σ),−σ0(µ0, n) = uµ0(n), µ0 6∈ σd(H).(3.14)

If µ or µ0 ∈ σd(H) one has to replace the last formulas by

u(µ,σ),σ(µ, n) = W(µ,σ)(n)uµ0(n)− uµ(n)
n∑

m=σ∞
u−σ(µ,m)2,(3.15)

u(µ,σ),−σ0(µ0, n) = W(µ,σ)(n)uµ(n)− uµ0(n)
n∑

m=−σ0∞
uσ0(µ0,m)2,(3.16)

respectively.

Proof. Follows immediately form

(3.17) u(µ,σ),±(z, n) =
c±(z)

1 + γ(µ,σ)

z − µ0

z − µ

(c(µ,σ)(z, n)
a(µ,σ)(0)

∓ m̃(µ,σ),±(z)s(µ,σ)(z, n)
)

if

(3.18) u±(z, n) = c±(z)
(c(z, n)
a(0)

∓ m̃±(z)s(z, n)
)
.

If z = µ, µ0 one can assume u±(z) holomorphic with respect to z near µ, µ0 ([14],
Theorem A.1) and consider limits (compare [14], Theorem A.3). �

Next we are interested in the pole structure of m̃(µ,σ),±(z) near z = µ, µ0. A
straightforward investigation of (3.3) (invoking the Herglotz property of m̃(µ,σ),±(z))
shows

Corollary 3.3. We have

(3.19) m̃(µ,σ),ω(z) =
{
− γµ
z−µ +O(z − µ)0, ω = σ

O(z − µ)0, ω = −σ , ω ∈ {±},

where

(3.20) γµ =

{
(µ− µ0)(m̃+(µ) + m̃−(µ)), µ 6= µ0
u−(µ,−1)2P−1

n=−∞ u−(µ,n)2
+ u+(µ,1)2P+∞

n=1 u+(µ,n)2
, (µ, σ) = (µ0,−σ0) ≥ 0.

Moreover, γµ = 0 if µ ∈ σd(H)\{µ0} and γµ > 0 else. If µ 6= µ0, then

(3.21) m̃(µ,σ),±(z) = O(z − µ0)0

and note γµ = a(0)−2(µ− µ0)G(µ, 0, 0)−1.
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Using the previous corollary plus weak convergence of π−1Im(m̃±(λ+ iε))dλ to
the corresponding spectral measure dρ̃±(λ) as ε ↓ 0 implies

Lemma 3.4. Let dρ̃±(λ) and dρ̃(µ,σ),±(λ) be the respective spectral measures of
m̃±(z) and m̃(µ,σ),±(z). Then we have

(3.22) dρ̃(µ,σ),±(λ) =
1

1 + γ(µ,σ)

(λ− µ0

λ− µ
dρ̃±(λ) +

{
γµ dΘ(λ− µ), σ = ±
0, σ = ∓

})
,

where γ(µ,σ), γµ are defined in (3.4), (3.20) and dΘ is the unit point measure con-
centrated at 0.

Let P±(µ0), P(µ,σ),±(µ) denote the orthogonal projections onto the subspaces
spanned by uσ0(µ0, .), uµ(.) in `2(±N) respectively. Then the above results clearly
imply

Theorem 3.5. The operators (1l−P±(µ0))H± and (1l−P(µ,σ),±(µ))H(µ,σ),± are uni-
tarily equivalent. Moreover, we have µ 6∈ σ(H(µ,σ),−σ) and µ0 6∈ σ(H(µ,σ),±)\{µ}.

If µ 6∈ σd(H) or (µ, σ) = (µ0,−σ0), then µ ∈ σ(H(µ,σ),σ) and thus

(3.23) σ(H(µ,σ),±) =
(
σ(H±)\{µ0}

)
∪
{
{µ}, σ = ±
∅, σ = ∓ .

Otherwise, that is, if µ ∈ σd(H)\{µ0}, then µ 6∈ σ(H(µ,σ),σ) and thus

(3.24) σ(H(µ,σ),±) = σ(H±)\{µ0}.

In essence, Theorem 3.5 says that, as long as µ 6∈ σd(H)\{µ0}, the Dirichlet
datum (µ0, σ0) is rendered into (µ, σ), whereas everything else remains unchanged.
If µ ∈ σd(H)\{µ0}, that is, if we are trying to move µ0 to an eigenvalue, then µ0 is
removed. This latter case reflects the fact that we cannot move µ0 to an eigenvalue
E without moving the Dirichlet eigenvalue on the other side of E to E at the same
time.

We end this section with a few additions.

Remark 3.6. (i). For f ∈ `(N) set

(A(µ,σ),+f)(n) =

√
W(µ,σ)(n)

W(µ,σ)(n− 1)
f(n)

− u−σ0,(µ,σ)(µ0, n)
n∑
j=1

uσ0(µ0, j)f(j),(3.25)

(A−1
(µ,σ),+f)(n) =

√
W(µ,σ)(n− 1)
W(µ,σ)(n)

f(n)

− u−σ(µ, n)
n∑
j=1

uσ,(µ,σ)(µ, j)f(j).(3.26)

Then we have A(µ,σ),+A
−1
(µ,σ),+ = A−1

(µ,σ),+A(µ,σ),+ = 1l`(N) and

(3.27) τ(µ,σ),+ = A(µ,σ),+τ+A
−1
(µ,σ),+.
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Similarly, for f ∈ `(−N) set

(A(µ,σ),−f)(n) =

√
W(µ,σ)(n)

W(µ,σ)(n− 1)
f(n)

− u−σ0,(µ,σ)(µ0, n)
1∑

j=n+1

uσ0(µ0, j)f(j),(3.28)

(A−1
(µ,σ),−f)(n) =

√
W(µ,σ)(n− 1)
W(µ,σ)(n)

f(n)

− u−σ(µ, n)
1∑

j=n+1

uσ,(µ,σ)(µ, j)f(j).(3.29)

Then we have A(µ,σ),−A
−1
(µ,σ),− = A−1

(µ,σ),−A(µ,σ),− = 1l`(−N) and

(3.30) τ(µ,σ),− = A(µ,σ),−τ−A
−1
(µ,σ),−.

(ii). Note that the case (µ, σ) = (µ0,−σ0) corresponds to the double commutation
method with γ = ∞ (cf. [8], Section 4). Furthermore, the operators A(µ,σ),± are
unitary when restricted to proper subspaces of `2(±N) in this case.
(iii). Due to the factor z−µ0

z−µ in front of m̃(µ,σ),±(z), all norming constants (i.e.,
the negative residues at each pole of m̃(µ,σ),±(z)) are altered.
(iv). Clearly our transformation preserves reflectionless properties.

4. Full-line operators

Having the results of the previous section at our disposal we can now easily
deduce all spectral properties of the operator H(µ,σ). We recall the Weyl M -matrix

M(z) =
(
〈δj , (H − z)−1δk〉

)
0≤j,k≤1

− 1
2a(n)

(
0 1
1 0

)
=

1
m̃+(z) + m̃−(z)

(
− 1
a(0)2

m̃+(z)−m̃−(z)
2a(0)

m̃+(z)−m̃−(z)
2a(0) m̃+(z)m̃−(z)

)
,(4.1)

associated with H. Then Theorem 3.1 yields

Theorem 4.1. Given H,H(µ,σ) the respective Weyl M -matrices M(z),M(µ,σ)(z)
are related by

M(µ,σ),0,0(z) =
1

(1 + γ(µ,σ))2
z − µ
z − µ0

M0,0(z),(4.2)

M(µ,σ),0,1(z) =
1

1 + γ(µ,σ)

(
M0,1(z) +

γ(µ,σ)

z − µ0
a(0)M0,0(z)

)
,(4.3)

M(µ,σ),1,1(z) =
z − µ0

z − µ
M1,1(z)− 2

γ(µ,σ)

z − µ0
a(0)M0,1(z)

+
γ2
(µ,σ)

(z − µ0)(z − µ)
a(0)2M0,0(z).(4.4)

Moreover, M(µ,σ),j,k(z,m, n), j, k ∈ {0, 1} are holomorphic near z = µ, µ0.

Given the connection between M(z) and M(µ,σ)(z) we can compute the corre-
sponding Herglotz matrix measure of M(µ,σ)(z) as in Lemma 3.4.
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Lemma 4.2. The matrix measures dρ, dρ(µ,σ) corresponding to M(z),M(µ,σ)(z)
are related by

dρ(µ,σ),0,0(λ) =
1

(1 + γ(µ,σ))2
λ− µ
λ− µ0

dρ0,0(λ),(4.5)

dρ(µ,σ),0,1(λ) =
1

1 + γ(µ,σ)

(
dρ0,1(λ) +

γ(µ,σ)

λ− µ0
a(0)dρ0,0(λ)

)
,(4.6)

dρ(µ,σ),1,1(λ) =
λ− µ0

λ− µ
dρ1,1(λ)− 2

γ(µ,σ)

λ− µ0
a(0)dρ0,1(λ)

+
γ2
(µ,σ)

(λ− µ0)(λ− µ)
a(0)2dρ0,0(λ).(4.7)

Equivalently

dρ(µ,σ)(λ) =
1

(z − µ)(z − µ0)
×(

z−µ
1+γ(µ,σ)

0
a(0)γ(µ,σ) z − µ0

)
dρ(λ)

(
z−µ

1+γ(µ,σ)
a(0)γ(µ,σ)

0 z − µ0

)
.(4.8)

This finally leads to our main theorem

Theorem 4.3. Let H,H(µ,σ) be defined as in (2.4), (2.26) respectively. Denote
by P (µ0), P (µ) the orthogonal projections corresponding to the spaces spanned by
uσ0(µ0, .), u−σ(µ, .) in `2(Z) respectively. Then (1l − P (µ0) − P (µ))H and H(µ,σ)

are unitarily equivalent. In particular, H and H(µ,σ) are unitarily equivalent if
µ, µ0 6∈ σd(H).

Remark 4.4. By inspection, Dirichlet deformations produce the commuting dia-
gram

(µ1, σ1)

(µ0, σ0) (µ2, σ2)
�
�
��� @

@
@@R

-

for (µj , σj), 0 ≤ j ≤ 2 according to (H.2.2).

Remark 4.5. We have seen in Theorem 3.5 that the Dirichlet deformation method
cannot create a situation where a discrete eigenvalue E0 of H is rendered into a
Dirichlet eigenvalue (i.e., moving µ0 to the eigenvalue E0). However, one can
use the following three-step procedure to generate a prescribed degeneracy at an
eigenvalue E0 of H:

(i). Use the Dirichlet deformation method to move µ to a discrete eigenvalue
E0 of H. (This removes both the discrete eigenvalue E0 of H and the (Dirichlet)
eigenvalue µ of H− ⊕H+).

(ii) As a consequence of step (i), there is now another eigenvalue µ̃ of H−⊕H+ in
the resulting larger spectral gap of H. Move µ̃ to E0 using the Dirichlet deformation
method.

(iii) Use the double commutation method to insert an eigenvalue of H at E0.
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Finally, use the double commutation method at the beginning of this remark to
change σ0 into any allowed value.

Theorem 4.4 of [8] then shows that the resulting operator is unitarily equivalent
to the original operator H, and Theorem 5.4 of [8] then proves that the remaining
Dirichlet eigenvalues remain invariant.

Next, we provide two limit point results. The first, although trivial from a
technical point of view, nevertheless will apply in a great variety of situations.

Lemma 4.6. Given H,H(µ,σ), let ω ∈ {±} and suppose that one of the following
conditions (1)–(2) holds.

(1). σess(Hω) 6= ∅.
(2). σ(Hω) = σd(Hω) = {Eω,n}n∈N with

∑
n∈N(1 + E2

ω,n)−1 =∞.

Then, both τ and τ(µ,σ) are l.p. at ω∞.

Proof. A simple consequence of the fact that τ l.c. at ω∞ implies that the resolvent
of Hω is Hilbert–Schmidt. �

Our second limit point result is more tailored toward the Dirichlet deformation
method .

Lemma 4.7. Assume that µ0, µ ∈ (E0, E1) and σ = σ0. Then τ(µ,σ) is in the limit
point (resp., l.c.) case at ω∞ if and only if τ is l.p (resp., l.c.) at ω∞, ω ∈ {±}.

Proof. It suffices to consider µ 6= µ̃ . Assume that τ is l.p at ω∞ and suppose the
contrary for τ(µ,σ), that is, suppose τ(µ,σ) is l.c. at ω∞. The fact that both choices
uω = uµ and uω = uµ0 in (2.25) yield equivalent boundary condition (since they
yield the same operator) implies

(4.9) lim
n→ω∞

Wn(uµ0 , uµ) = 0.

In other words, uµ0 , uµ both satisfy the boundary conditionBCω(uµ0) = BCω(uµ) =
0 at ω∞. If −ω = σ0 we infer that µ ∈ σ(H(µ,σ)) = σ(H) since BC−ω(uµ) = 0 by
Corollary 3.2. But this contradicts µ ∈ (E0, E1). Similarly, if ω = σ0 we infer that
µ0 ∈ σ(H(µ,σ)) = σ(H) since BC−ω(uµ0) = 0 by Corollary 3.2. But this contradicts
µ0 ∈ (E0, E1). By symmetry in τ and τ(µ,σ), the proof is complete. �

Remark 4.8. If σ = −σ0 then the Dirichlet deformation method does not nec-
essarily preserve the l.p. property. By Remark 4.4 it suffices to consider the case
µ = µ0. Take an operator H being l.c. at σ0∞ and such that σess(H−σ0) 6= ∅.
Then τ(µ, σ) is l.p. at σ∞ since uµ 6∈ `2(σN) (by (2.20)) and l.p. at −σ∞ since
σess(H(µ,σ),−σ0) 6= ∅.

Finally, we briefly comment on how to iterate Dirichlet deformation method (see
[8], Section 3). Suppose

(4.10) (E0,j , E1,j), (µ0,j , σ0,j), (µj , σj) ∈ [E0,j , E1,j ]× {±}
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satisfy (H.2.2) for each j = 1, . . . , N , N ∈ N. Then the Dirichlet deformation result
after N steps, denoted by H(µ1,σ1),...,(µN ,σN ), is associated with the sequences

a(µ1,σ1),...,(µN ,σN )(n) =
√
a(n−N)a(n+N)

×
√
Cn−N (U1,...,N )Cn−N+2(U1,...,N )

Cn−N+1(U1,...,N )
,(4.11)

b(µ1,σ1),...,(µN ,σN )(n) = b(n)− ∂∗ a(n)
Dn−N+1(U1,...,N )
Cn−N+1(U1,...,N )

,

where (U1,...,N ) = (uσ0,1(µ0,1), uσ1(µ1), . . . , uσ0,N (µ0,N ), uσN (µN )) and Cn, Dn are
given by

Cn(u1, . . . , uN ) = det{ui(n+ j − 1)}1≤i,j≤N ,(4.12)

Dn(u1, . . . , uN ) = det
{
ui(n+ j − 1), j < N
ui(n+N), j = N

}
1≤i,j≤N

.(4.13)
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