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Abstract. We investigate closed, symmetric L2(Rn)-realizations H of Schrö-

dinger-type operators (−∆ + V ) �C∞
0 (Rn\Σ) whose potential coefficient V has

a countable number of well-separated singularities on compact sets Σj , j ∈ J ,

of n-dimensional Lebesgue measure zero, with J ⊆ N an index set and Σ =⋃
j∈J Σj . We show that the defect, def(H), of H can be computed in terms

of the individual defects, def(Hj), of closed, symmetric L2(Rn)-realizations
of (−∆ + Vj) �C∞

0 (Rn\Σj) with potential coefficient Vj localized around the

singularity Σj , j ∈ J , where V =
∑

j∈J Vj . In particular, we prove

def(H) =
∑
j∈J

def(Hj),

including the possibility that one, and hence both sides equal ∞. We first

develop an abstract approach to the question of decoupling of deficiency indices
and then apply it to the concrete case of Schrödinger-type operators in L2(Rn).

Moreover, we also show how operator (and form) bounds for V relative
to H0 = −∆ �H2(Rn) can be estimated in terms of the operator (and form)

bounds of Vj , j ∈ J , relative to H0. Again, we first prove an abstract result

and then show its applicability to Schrödinger-type operators in L2(Rn).

Extensions to second-order (locally uniformly) elliptic differential operators
on Rn with a possibly strongly singular potential coefficient are treated as well.
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1. Introduction

The main theme of this paper is centered around the question of (essential)
self-adjointness of Schrödinger-type operators H in L2(Rn). Specifically, we are
interested in the case where the potential V has a (potentially infinite) number of
well-separated singularities, and we want to know how each of these singularities
contributes to the deficiency index of the full operator H. We were inspired to
work on this question, in particular, by the paper of Felli, Marchini, and Terracini
[20], who consider the question of essential self-adjointness of a specific Schrödinger
operator with so-called multipolar inverse-square potentials. Unlike in their work,
we consider a more general set-up, and proceed by using more abstract localization
techniques. More precisely, we consider general compact subsets Σj ⊂ Rn of n-
dimensional Lebesgue measure zero as the singularities of potentials Vj , j ∈ J (J ⊆
N a suitable index set), respectively, and prove the localization of deficiency indices
solely under the additional requirement that the singular sets Σj be uniformly
separated by some distance ε > 0. In particular, one can then directly conclude
that if every Schrödinger operator Hj in L2(Rn) with localized potential Vj around
the singularity Σj is essentially self-adjoint, then so is the full Schrödinger operator
H associated with the singularity set

⋃
j∈J Σj .

While we will discuss in Section 5 several applications of our results, one easily
presentable consequence is the following fact:

Theorem 1.1. Let J ⊆ N be an index set, and {xj}j∈J ⊂ Rn be a set of points
such that

inf
j,j′∈J
j 6=j′

|xj − xj′ | > 0. (1.1)

Fix δ > 0, and consider the multipolar inverse-square potential function:

V (x) = V0(x) +
∑
j∈J

Vj(|x− xj |)χBn(xj ;δ)(x) for all x ∈ Rn\{xj}j∈J , (1.2)

where Bn(xj ; δ) denotes the (open) ball in Rn centered at xj of radius δ, V0 ∈
L∞(Rn), and Vj satisfies

Vj(r) =
cj
r2

+ Ṽj(r), cj ∈ R, rṼj(r) ∈ L1((0, δ)) ∩ L∞loc((0, δ]), j ∈ J. (1.3)

Then the Schrödinger operator

H = −∆ + V, dom(H) = C∞0 (Rn\{xj}j∈J) (1.4)

is essentially self-adjoint if and only if

cj > 1−
(
n− 2

2

)2

= −n(n− 4)

4
for every j ∈ J. (1.5)

In fact, in the above theorem one could replace each Vj(|x − xj |) by arbitrary
potentials (not necessarily radial) which are locally bounded away from xj such
that

Hj = −∆ + VjχBn(xj ;δ), dom(Hj) = C∞0 (Rn\{xj}), j ∈ J, (1.6)

is essentially self-adjoint in L2(Rn). For example, one still gets essential self-
adjointness of Hj if we require Vj(x) > −n(n − 4)/(4|x − xj |2), x ∈ Rn\{xj},
and hence essential self-adjointness of H if the latter inequality holds for all j ∈ J .
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The only reason for our specific choice (1.3) is that in this case the essential self-
adjointness issue is well-understood (cf. [67, Theorem X.30]). Indeed, another nat-
ural choice is a dipole potential of the type,

Vj(x) =
(x− xj) · dj
|x− xj |3

, x ∈ Rn\{xj}, (1.7)

for fixed dj ∈ Rn (cf. [21], [22], [26]), or a van der Waals-type potential of the form,

Vj(x) =
Aj

|x− xj |m
− Bj
|x− xj |6

, x ∈ Rn\{xj}, (1.8)

for fixed Aj ∈ (0,∞), Bj ∈ R (although, physics requires Bj ∈ (0,∞)), and
m > 10, with m = 12 giving rise to a Lennard–Jones-type potential (cf., e.g.,
[47, pp. 53–59], [54, Sect. 3.2]). Moreover, the exceptional one-point sets {xj} in
such examples can be generalized to compact subsets, Σj ⊂ Rn, of n-dimensional
Lebesgue measure zero, uniformly separated by a positive distance. We also note
that our hypotheses on the discrete set J are sufficiently general to describe periodic
structures (crystals), half-crystals, an infinite graphene sheet, etc.

More generally, and far beyond Theorem 1.1, we shall derive results to the effect
that the defect of operators H of the form (1.4) can actually be expressed as the
sum over the individual defects of the operators Hj of the form (1.6),

def(H) =
∑
j∈J

def(Hj), (1.9)

including the possibility that one, and hence both sides of (1.9) equal ∞. Here

def(A) =
[
n+(A) + n−(A)

)
]/2, (1.10)

with n±(A) the standard deficiency indices of the symmetric operator A in a Hilbert
space H (cf. Definition 2.4 for more details). In particular, for A bounded from
below, or A commuting with a conjugation (cf. Definition 2.7), def(A) = n±(A).
In fact, this extension of the case of deficiency indices zero to general deficiency
indices is one of our principal results. For further details we refer to Sections 4 and
5. At this point, however, we decided to focus on how Theorem 1.1 generalizes and
compares to Theorem 8.4 of [20], which is a special case of our result:

• In contrast to our result, [20, Theorem 8.4] considers the special case Ṽj = 0
for every j ∈ J .
• Most significantly, we are able to completely eliminate their conditions (see

(19) in [20, Lemma 3.5]) that: ∑
j∈J
|xj |−(n−2) <∞ (1.11)

and that there exists a constant C ∈ (0,∞) such that∑
j∈J\{j′}

|xj − xj′ |−(n−2) 6 C, j′ ∈ J. (1.12)

(Note that we have slightly reformulated the assumptions from [20] in order to fit
our notation, as well as the fact that our index set J is not necessarily equal to N.)
In particular (as observed in [20, Remark 3.7]), if we wish to place the singularities
{xj}j∈J on a lattice Zd×0 ⊆ Rn, d 6 n, the two conditions (1.11) and (1.12) above
only allow for d < n− 2. By contrast, our Theorem 1.1 poses no restrictions on the
dimension d of the lattice.
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• In [20], conditions (1.11) and (1.12) are used in a technical result, yielding
the existence of a certain radius δ > 0, which will be their radius of localization
around each singularity (what the authors call shattering of reticular singularities).
This specific radius ensures that the potential V , defined as in (1.2), but with

cj = −λ > −
(
n−2

2

)2
for all j ∈ J , satisfies a certain minimization condition

(see [20, Lemma 3.5]). This then allows the authors to prove their result (see [20,
Theorem 8.4]). Since we do not need to impose the two restrictions (1.11), (1.12) on
the locations of our singularities, we are free to choose the radius δ > 0 arbitrarily.
• Finally, we note that we prove our result with distinct coupling constants

cj ∈ R in each singular potential Vj , and show that in order to guarantee essential
self-adjointness of H, all of these coupling constants must satisfy the well-known
condition (1.5).

The role played by the radius δ > 0 in our Theorem 1.1 is different from that
played in [20, Theorem 8.4]. In our case, the localization by the characteristic
function χBn(xj ;δ) takes place only in order to ensure that the sum defining the
potential V in (1.2) is finite at every x ∈ Rn\{xj}j∈J . In [20, Theorem 8.4], this
is achieved by requiring δ < 1/2, and without loss of generality we could have
also required that δ < ε0/2, with ε0 = infj 6=j′∈J

∣∣xj − xj′
∣∣ > 0; in both cases,

these conditions would imply that the local potentials cjχBn(xj ;δ)(x)/|x−xj |2 have
relatively disjoint supports. However, we know from [4, Cor. 2] that the deficiency
indices (and hence the property of being essentially self-adjoint) of a Schrödinger
operator remain invariant under the addition of relatively bounded potentials with
relative bound less than one. This in fact allows one to consider any potentials
Vj with singularity at xj , as long as their sum V =

∑
j∈J Vj is finite at every

x ∈ Rn\{xj}j∈J . The statement of Theorem 1.1 is only an example of such a
phenomenon, and its proof (carried out at the end of Section 5) illustrates the
general method.

While reference [20] by Felli, Marchini, and Terracini is closest in spirit to our
work, and motivated ours, there are many related papers on this subject which we
briefly turn to next. This subject has a long history, especially in connection with
essential self-adjointness of Schrödinger and Dirac-type operators, that is, in the
special case of vanishing deficiency indices. Indeed, the literature devoted to essen-
tial self-adjointness of Schrödinger and Dirac-type operators with possibly strongly
singular potential coefficients is enormous and no exhaustive list of references can
possibly be included here. Instead, we refer to a few representative and classical
items and the references cited therein, such as, [3], [5]–[8], [11], [13], [15], [16], [18],
[23], [24], [27], [29]–[42], [44], [45], [48]–[51], [58], [61]–[63], [67, Ch. X], [69], [71],
[73, Ch. 9], [74], [76]–[81], [83]–[85], [87]. The case of multi-center singularities and
the associated decoupling of deficiency indices in the sense of relation (1.9) also
have a longer history and go back to sources such as [3], [4], [5], [9], [26], [39], [40],
[48], [60], [62]. For more recent activities in connection with boundedness from be-
low and essential self-adjointness of Schrödinger-type operators with multi-center
singularities we refer to [10], [12], [20], [21], [22].

Next, we turn to the organization of this paper. In Section 2 we briefly present
the functional analytic background of our work; this is very well-known material,
but we include it for clarity of notation, and for ease of reference. Section 3 presents
an abstract form of several results of Morgan [60], which deal with the question of
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localization of relative form and operator boundedness for infinite sums of opera-
tors. We note that the form results in Section 3 apply to the strong |x−xj |−2-type
singularities discussed in Theorem 1.1 and yield relative (form) boundedness (cf.
the comments surrounding (3.14)–(3.19)). To prove the equivalence in Theorem
1.1, we first tackle the full problem of decoupling of deficiency indices for infinite
sums of operators in Section 4 from an abstract point of view. The main tech-
nical and abstract result of our paper, Theorem 4.2, is presented and proved in
this section. We emphasize that the hypotheses of Theorem 4.2 can be checked in
practice in a fairly straightforward manner as shown in Section 5, where we apply
our general decoupling result to both Schrödinger and second-order elliptic differen-
tial operators with potential coefficients that can exhibit countably infinitely many
(uniformly separated) singularities. The main result of this section is Theorem 5.8,
which shows that deficiency indices localize around singularities under extremely
general conditions, see Hypothesis 5.2. More concrete examples, as well as the proof
of Theorem 1.1, follow then as a simple consequence. We extend this localization
result to more general second-order elliptic operators in Theorem 5.11. We close our
paper with an appendix containing some background on the notion of support for
arbitrary functions on arbitrary subsets in Rn. This is needed in our case in order
to deal with the fact that our localization results in Section 5 permit “arbitrarily
bad” compact singularity sets Σj , j ∈ J .

Finally, we briefly summarize some of the notation used in this paper: Through-
out, we denote by H a separable complex Hilbert space, by ‖ · ‖H the norm in H,
by (·, ·)H the scalar product in H (linear in the second argument), and by IH the
identity operator in H.

Next, if T is a linear operator mapping (a subspace of) a Hilbert space into
another, then dom(T ) and ker(T ) denote the domain and kernel (i.e., null space)
of T . The closure of a closable operator S is denoted by S.

The Banach space of bounded linear operators on the separable complex Hilbert
space H is denoted by B(H).

The symbol u denotes the direct sum in the sense of Banach spaces (to be
distinguished from the orthogonal direct sum ⊕ in H).

If J ⊆ N denotes an index set, we denote by #(J) the cardinality of J . We also
employ the notation N0 = N ∪ {0}.

We employ the usual multi-index notation for partial derivatives of functions
on Rn, that is, ∂α = ∂α1

x1
· · · ∂αn

xn
, α = (α1, . . . , αn) ∈ Nn0 , |α| = α1 + · · · + αn,

etc. Similarly, we will employ the notation ∂k = ∂/∂xk
, 1 6 k 6 n. The symbol

Bn(x; r) ⊂ Rn represents the open ball of center x ∈ Rn and radius r > 0.
For Ω ⊆ Rn open, C∞0 (Ω) denotes the set of C∞-functions with compact support

contained in Ω, D(Ω) represents the corresponding space of test functions obtained
via an inductive limit procedure, and D′(Ω) denotes the corresponding space of
distributions (i.e., continuous linear functionals on D(Ω)).

For simplicity, if the underlying Lebesgue measure dnx is understood, we ab-
breviate Lp(Rn) := Lp(Rn; dnx) and Lploc(Rn) := Lploc(Rn; dnx). Similarly, given a
locally integrable weight 0 < w ∈ L1

loc(Rn), we will employ the notation Lpw(Rn) :=
Lp(Rn;wdnx), p > 1. For Ω ⊆ Rn open, standard L2-based Sobolev spaces are
denoted as usually by Hk(Ω), and analogously for their local versions, Hk

loc(Ω),
k ∈ N.
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The closure of a set M ⊂ Rn will be denoted by M , M̊ denotes the interior of
M , and the symbol χM is used for the characteristic function of the set M ⊂ Rn.

2. Functional Analytic Background

We start with a bit of background (cf., e.g., [1, Ch. 8], [19, Part III], [43,
Sect. V.3], [67, Sect. X.1], [75, Part VI], [82, Ch. 2], [86, Sect. 5.4, Ch. 8] for
details).

Let A be a densely defined operator in H, then A is called symmetric if A ⊆ A∗.
Thus, A∗ is also densely defined, rendering A closable with A = (A∗)∗. In addition,
A is self-adjoint if A = A∗, and essentially self-adjoint if A is self-adjoint.

Theorem 2.1 (Basic criterion for self-adjointness). Suppose A is symmetric in H.
Then the following statements (i)–(iii) are equivalent:

(i) A is self-adjoint.

(ii) A is closed and ker(A∗ ± iI) = {0}.
(iii) ran (A± iI) = H.

Theorem 2.2. Suppose A is symmetric and closed in H. Then the following
assertions hold:

(i) dim (ker(A∗ − zI)) is independent of z ∈ C+ = {z ∈ C | =(z) > 0}.
(ii) dim (ker(A∗ − zI)) is independent of z ∈ C− = {z ∈ C | =(z) < 0}.
(iii) σ(A) is one of the following:

(iii1) C+ = {z ∈ C | =(z) > 0}. (if dim (ker(A∗+iI)) > 0, dim (ker(A∗−iI)) = 0).

(iii2) C− = {z ∈ C | =(z) 6 0}. (if dim (ker(A∗−iI)) > 0, dim (ker(A∗+iI)) = 0).

(iii3) C. (if dim (ker(A∗ ± iI)) > 0).

(iii4) a subset of R (if dim ker(A∗ ± iI)) = 0).

(iv) A = A∗ if and only if (iii4) holds (i.e., if and only if σ(A) ⊆ R.).

(v) A = A∗ if and only if dim (ker(A∗ − zI)) = 0 for all z ∈ C+ ∪ C−.

Corollary 2.3. Suppose A is symmetric and closed in H and bounded from below,
that is, there exists c ∈ R such that

(f,Af)H > c‖f‖2H, f ∈ dom(A). (2.1)

Then dim (ker(A∗ − zI)) is independent of z ∈ C\[c,∞).

Definition 2.4 (Deficiency indices). Suppose A is symmetric in H. Define the
deficiency subspaces of A (resp., A) by

H±(A) = ker(A∗ ∓ iI) = (ran (A± iI))⊥

= H±(A) (since A ⊆ A ⊆ A∗ = (A)∗).
(2.2)

Then,

n±(A) = dim (H±(A)) = dim (ker(A∗ ∓ iI))

= dim
(
(ran (A± iI)⊥

)
= n±

(
A
) (2.3)

are called the deficiency indices of A (resp., A) and one introduces

def(A) =
[
n+(A) + n−(A)

)
]/2. (2.4)



DECOUPLING OF DEFICIENCY INDICES 7

One recalls that for a symmetric and closed operator A one has von Neumann’s
first formula

dom(A∗) = dom(A)uH+(A)uH−(A). (2.5)

In particular,

dom(A∗) =
{
f + f+ + f− | f ∈ dom(A), f± ∈ H±(A)

}
,

A∗(f + f+ + f−) = Af + if+ − if−, f ∈ dom(A), f± ∈ H±(A).
(2.6)

If A is symmetric, A ⊆ A∗, and B ⊇ A is a symmetric extension of A, then

A ⊆ B ⊆ B∗ ⊆ A∗. (2.7)

Theorem 2.5 (von Neumann). Suppose A is symmetric and closed in H. Then
the closed symmetric extensions of A are in one-to-one correspondence with the set
of partial isometries (in the usual inner product of H) of H+(A) into H−(A). Let
U : I(U)→ H−(A) with I(U) ⊆ H+(A) be such an isometry with initial space I(U),
with I(U) closed in H. Then the corresponding closed and symmetric extension AU
of A is given by

dom(AU ) =
{
f + f+ + Uf+ | f ∈ dom(A), f+ ∈ I(U)

}
,

AU (f + f+ + Uf+) = Af + if+ − iUf+, f ∈ dom(A), f+ ∈ H+(A).
(2.8)

If dim (I(U)) <∞, then

n±(AU ) = n±(A)− dim (I(U)). (2.9)

Corollary 2.6. Let A be closed and symmetric in H. Then the following assertions
hold:

(i) A is self-adjoint if and only if n+(A) = n−(A) = 0.

(ii) A has self-adjoint extensions if and only if n+(A) = n−(A). In such a scenario,
there is a one-to-one correspondence between self-adjoint extensions of A and uni-
tary maps from H+(A) onto H−(A). Therefore, if n±(A) = n < ∞, the family of
self-adjoint extensions of A is a real n2-parameter family.

(iii) If either n+(A) = 0, or n−(A) = 0, then A has no proper symmetric exten-
sions. (Such operators are called maximally symmetric.)

By Corollary 2.3, any symmetric operator A in H bounded from below has equal
deficiency indices and hence self-adjoint extensions.

Definition 2.7. An anti linear map C : H → H (i.e., C(c1f1 + c2f2) = c1Cf1 +
c2Cf2, cj ∈ C, fj ∈ H, j = 1, 2) is called a conjugation if it is norm preserving
(i.e., ‖Cf‖H = ‖f‖H, f ∈ H) and C2 = IH.

The prime example of a conjugation map is of course complex conjugation in

L2(Ω), that is, C :

{
L2(Ω)→ L2(Ω),

f 7→ Cf = f.

Theorem 2.8. Suppose A is symmetric in H and C is a conjugation in H with
C dom(A) ⊆ dom(A) and AC = CA. Then n+(A) = n−(A) and hence A has
self-adjoint extensions.
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3. On Relative Form and Operator Boundedness

To set the stage, we briefly recall the notion of relatively bounded and relatively
form bounded perturbations of a closed operator A in some complex separable
Hilbert space H:

Definition 3.1. (i) Suppose that A is a closed operator in H. A closable operator B
in H is called relatively bounded with respect to A (in short, B is called A-bounded ),
if

dom(A) ⊆ dom(B),

and for some constants a, b ∈ [0,∞), (3.1)

‖Bf‖H 6 a‖Af‖H + b‖f‖H, f ∈ dom(A).

(ii) Assume, in addition, that A is self-adjoint in H and bounded from below, that
is, A > cIH for some c ∈ R. Then a densely defined and closed operator B in
H is called relatively form bounded with respect to A (in short, B is called A-form
bounded ), if

dom
(
|A|1/2

)
⊆ dom

(
|B|1/2

)
. (3.2)

In particular, B is A-form bounded if and only if |B| is. Using the polar decom-
position of B (i.e., B = U |B|), one observes that B is A-bounded if and only if |B|
is A-bounded.

We also recall that in connection with relative boundedness, the first condition
in (3.1), dom(A) ⊆ dom(B), already implies the second condition, viz., there exist
numbers a, b ∈ [0,∞) such that ‖Bf‖H 6 a‖Af‖H + b‖f‖H, f ∈ dom(A), or
equivalently,

there exist numbers ã, b̃ ∈ [0,∞) such that

‖Bf‖2H 6 ã2‖Af‖2H + b̃2‖f‖2H, f ∈ dom(A).
(3.3)

We also note that if A is self-adjoint and bounded from below, the number α
defined by

α = lim
µ↑∞

∥∥B(A+ µIH)−1
∥∥
B(H)

= lim
µ↑∞

∥∥|B|(A+ µIH)−1
∥∥
B(H)

(3.4)

equals the greatest lower bound (i.e., the infimum) of the possible values for a in
(3.1) (resp., for ã in (3.3)). This number α is called the A-bound of B. Similarly,
we call

β = lim
µ↑∞

∥∥|B|1/2(|A|1/2 + µIH
)−1∥∥

B(H)
(3.5)

the A-form bound of B (resp., |B|). If α = 0 in (3.4) (resp., β = 0 in (3.5)) then B
is called infinitesimally bounded (resp., infinitesimally form bounded ) with respect
to A.

Our first result is an abstract version of Morgan [60, Theorem 2.1] (see also [14,
Proposition 3.3], [28], [46, Sect. 4]). Throughout this section, infinite sums are
understood in the weak operator topology and J ⊆ N denotes an index set.

Theorem 3.2. Suppose that T , W are self-adjoint operators in H such that

dom
(
|T |1/2

)
⊆ dom

(
|W |1/2

)
, (3.6)
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and let c, d ∈ (0,∞), e ∈ [0,∞). Moreover, suppose Φj ∈ B(H), j ∈ J , leave

dom
(
|T |1/2

)
invariant, that is,

Φj dom
(
|T |1/2

)
⊆ dom

(
|T |1/2

)
, j ∈ J, (3.7)

and satisfy the following conditions (i)–(iii):

(i)
∑
j∈J Φ∗jΦj 6 IH.

(ii)
∑
j∈J Φ∗j |W |Φj > c−1|W | on dom

(
|T |1/2

)
.

(iii)
∑
j∈J ‖|T |1/2Φjf‖2H 6 d‖|T |1/2f‖2H + e‖f‖2H, f ∈ dom

(
|T |1/2

)
.

Then,∥∥|W |1/2Φjf
∥∥2

H 6 a
∥∥|T |1/2Φjf

∥∥2

H + b‖Φjf‖2H, f ∈ dom(|T |1/2), j ∈ J, (3.8)

implies∥∥|W |1/2f∥∥2

H 6 a c d
∥∥|T |1/2f∥∥2

H + [a c e+ b c]‖f‖2H, f ∈ dom(|T |1/2). (3.9)

Proof. For f ∈ dom
(
|T |1/2

)
one computes∥∥|W |1/2f∥∥2

H 6 c
∑
j∈J

∥∥|W |1/2Φjf
∥∥2

H (by (ii))

6 c
∑
j∈J

[
a
∥∥|T |1/2Φjf

∥∥2

H + b‖Φjf‖2H
]

(by (3.8))

6 a c d
∥∥|T |1/2f∥∥2

H + (a c e+ b c)‖f‖2H (by (i) and (iii)), (3.10)

finishing the proof. �

Remark 3.3. The following condition (iii′), viz., for some ẽ ∈ (0,∞),

(iii′)
∑
j∈J

∥∥[|T |1/2,Φj ]f
∥∥2

H 6 ẽ‖f‖
2
H, f ∈ dom

(
|T |1/2

)
,

together with condition (i), implies condition (iii) with d = 1 + ε (ε > 0 arbitrarily

small) and e = (1+ε)ẽ
ε . (Here [ · , · ] denotes the commutator symbol.) To see this,

one uses the triangle inequality,∥∥[|T |1/2,Φj ]f
∥∥
H >

∥∥|T |1/2Φjf
∥∥
H −

∥∥Φj |T |1/2f
∥∥
H (3.11)

as well as the observation that, for any real numbers a and b,

1 + ε

ε
(a− b)2 > a2− (1 + ε)b2 if and only if

1

1 + ε
a2− 2ab+ (1 + ε)b2 > 0. (3.12)

While condition (iii′) might look slightly more natural in our context, the for-
mulation in condition (iii) is advantageous in cases where T has an explicit factor-
ization as T = A∗A, but a straightforward formula for |T |1/2 is not available, since
in such cases one can use the fact that∥∥|T |1/2f∥∥2

H =
∥∥Af∥∥2

H, f ∈ dom
(
|T |1/2

)
= dom(A). (3.13)

Finally, we note that condition (iii′) itself is implied by the fully localized con-
dition:

(iii′′)
∥∥[|T |1/2,Φj ]f

∥∥2

H 6 ẽ‖Φjf‖
2
H, f ∈ dom

(
|T |1/2

)
, j ∈ J . �

In particular, consider the concrete case of

T = −∆, dom(T ) = H2(Rn), (3.14)

in L2(Rn), and assume that W , the operator of multiplication with a real-valued
functionW (with a slight abuse of notation), is relatively form bounded with respect
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to T = −∆ (for sufficient conditions on W , see, e.g., [86, Theorems 10.17 (b),
10.18] with r = 1). Let {φj}j∈J , J ⊆ N, be a family of smooth, real-valued
functions defined on Rn in such a manner that for each x ∈ Rn, there exists an
open neighborhood Ux ⊂ Rn of x such that there exist only finitely many indices
k ∈ J with supp (φk) ∩ Ux 6= ∅ and φk|Ux

6= 0, as well as∑
j∈J

φj(x)2 = 1, x ∈ Rn (3.15)

(the sum over j ∈ J in (3.15) being finite). Finally, let Φj be the operator of
multiplication by the function φj , j ∈ J . Then one notes that for these choices,
hypothesis (i) holds with equality, and hypothesis (ii) with c = 1 follows from (i).
Moreover, item (iii) holds with d = 1 as long as

e =

∥∥∥∥∑
j∈J
|∇φj(·)|2

∥∥∥∥
L∞(Rn)

<∞. (3.16)

To verify this, one observes that ‖|T |1/2φf‖2L2(Rn) =
∫
Rn d

nx |∇(φ(x)f(x))|2 and

that the cross terms vanish since
∑
j∈J φj(x)(∇φj)(x) = 0, x ∈ Rn, by condition

(i). (We note again that the latter sum over j ∈ J contains only finitely many terms
in every bounded neighborhood of x ∈ Rn.) This is precisely [60, Theorem 2.1].
Strongly singular potentials that are covered by Theorem 3.2 are, for instance, of
the following form: Let J ⊆ N be an index set, and {xj}j∈J ⊂ Rn, n ∈ N, n > 3,
be a set of points such that

inf
j,j′∈J
j 6=j′

|xj − xj′ | > 0. (3.17)

In addition, let γj ∈ R, j ∈ J , γ, δ ∈ (0,∞) with

|γj | 6 γ < (n− 2)2/4, j ∈ J, (3.18)

and

W (x) =
∑
j∈J

γj
e−δ|x−xj |

|x− xj |2
, x ∈ Rn\{xj}j∈J . (3.19)

Then an application of Hardy’s inequality in Rn, n > 3, shows that W is form
bounded with respect to T in (3.14) with form bound strictly less than one (cf. [14,
p. 28–29]).

Similarly, one obtains the following operator perturbation analog of the form
perturbation result in Theorem 3.2.

Theorem 3.4. Suppose that T , W are symmetric in H such that

dom(T ) ⊆ dom(W ), (3.20)

and let c > 0, d > 0, e > 0. Moreover, suppose Φj ∈ B(H), j ∈ J , leave dom(T )
invariant, that is,

Φj dom(T ) ⊆ dom(T ), j ∈ J, (3.21)

and satisfy the following conditions (i)–(iii):

(i)
∑
j∈J Φ∗jΦj 6 IH.

(ii)
∑
j∈J Φ∗jW

2Φj > c−1W 2 on dom(T ).

(iii)
∑
j∈J ‖TΦjf‖2H 6 d‖Tf‖2H + e‖f‖2H, f ∈ dom(T ).
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(Here infinite sums are understood in the weak operator topology.) Then,

‖WΦjf‖2H 6 a‖TΦjf‖2H + b‖Φjf‖2H, f ∈ dom(T ), j ∈ J, (3.22)

implies

‖Wf‖2H 6 a c d‖Tf‖2H + [a c e+ b c]‖f‖2H, f ∈ dom(T ). (3.23)

Proof. For f ∈ dom(T ) one computes

‖Wf‖2H 6 c
∑
j∈J
‖WΦjf‖2H (by (ii)) (3.24)

6 c
∑
j∈J

[
a‖TΦjf‖2H + b‖Φjf‖2H

]
(by (3.22)) (3.25)

6 a c d‖Tf‖2H + (a c e+ b c)‖f‖2H (by (i) and (iii)), (3.26)

concluding the proof. �

Again one notes that item (iii) holds with d = 1 + ε, ε > 0, and e > 0 if∑
j∈J
‖[T,Φj ]f‖2H 6

ε2

4 + 2ε
‖Tf‖2H +

εe

2 + ε
‖f‖2H, f ∈ dom(T ). (3.27)

As an immediate consequence of [4, Corollary 2] one obtains the following result.

Corollary 3.5. In addition to the assumptions of Theorem 3.4, suppose that T is
closed, and that a c d < 1. Then

n±(T +W ) = n±(T ). (3.28)

In particular, in the case of T = −∆ in L2(Rn) as in (3.14) and W the op-
erator of multiplication with a real-valued function W (again, abusing notation)
bounded with respect to T = −∆ (for sufficient conditions on W , see, e.g., [86,
Theorems 10.17 (b), 10.18] with r = 2), and Φj the operator of multiplication by a
smooth function φj , item (ii) with c = 1 follows from (i) in case one has equality
on the support of W in item (i). Moreover,

[T,Φj ]f = (−∆φj)f − 2(∇φj) · (∇f), f ∈ dom(T ), (3.29)

implying ∑
j∈J
‖[T,Φj ]f‖2L2(Rn) 6 α‖f‖

2
L2(Rn) + β‖∇f‖2L2(Rn)n ,

α = 2

∥∥∥∥∑
j∈J

(∆φj)
2

∥∥∥∥
L∞(Rn)

, β = 4

∥∥∥∥∑
j∈J

(∇φj)2

∥∥∥∥
L∞(Rn)

.
(3.30)

Finally, the elementary inequality,

‖∇f‖L2(Rn)n 6 ε‖∆f‖L2(Rn) + (2ε)−1‖f‖L2(Rn), f ∈ H2(Rn), ε > 0, (3.31)

shows that (3.27) holds if α, β ∈ [0,∞).
Next, introducing the space of uniformly locally Lp-functions by

Lploc unif(R
n) :=

{
f ∈ Lploc(Rn)

∣∣ sup
x∈Rn

‖fχBn(x;1)‖Lp(Rn) <∞
}
, p ∈ [1,∞),

(3.32)
one can derive a quick proof of [68, Theorem XIII.96]:
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Corollary 3.6. Let V ∈ Lploc unif(Rn) be real-valued with p = 2 for n = 1, 2, 3 and
p > n/2 for n > 4. Then V is infinitesimally bounded (and hence infinitesimally
form bounded ) with respect to H0 = −∆, dom(H0) = H2(Rn), in L2(Rn).

Proof. Let φ be a nonnegative smooth function which equals 1 in Bn(0; 1/2) and
vanishes outside Bn(0; 1). Let xj , j ∈ J , be the points of a periodic lattice such that∑
j∈J φ(x − xj)2 > 1/2, x ∈ Rn. Set φj(x) = φ(x − xj)

[∑
j′∈J φ(x − xj′)2

]−1/2
,

x ∈ Rn, j ∈ J , such that
∑
j∈J φj(x)2 = 1, x ∈ Rn. Then items (i)–(iii) hold with

c = 1, d = 1 + ε as pointed out above. Moreover, by [67, Theorem X.15 and X.20],
for any ε > 0, one can find a corresponding b(ε) > 0, such that

‖V φjf‖2L2(Rn) 6 ε‖H0φjf‖2L2(Rn) + b(ε)‖φjf‖2L2(Rn), f ∈ H2(Rn), j ∈ J, (3.33)

proving Corollary 3.6. �

For a form version of Corollary 3.6 we refer to the comments surrounding equa-
tion (2.10) in Morgan [60, p. 112].

It is well-known that for n = 1, V ∈ L2
loc unif(Rn) is equivalent to V being

relatively bounded with respect to H0, which in turn is, in fact, equivalent to V
being infinitesimally bounded with respect to H0, see, [72, Theorem 2.7.1]. (See also
[25] for more results and literature on the one-dimensional case.) For necessary and
sufficient conditions on form boundedness (resp., infinitesimal form boundedness)
of V relative to H0 in the multi-dimensional case we refer to [56, Theorem 4.2]
(resp., [57, Theorem III]), see also [55, Sects. 2.5, 11.4].

4. Decoupling of Deficiency Indices. An Abstract Approach

Next we turn to a general scheme of determining deficiency indices particu-
larly suited for dealing with Schrödinger-type operators with potentials that exhibit
strong singularities at (possibly, countably many) uniformly separated points (or
compact sets of n-dimensional Lebesgue measure zero) to be explored in Section 5.

Hypothesis 4.1. Let J ⊆ N be an index set and let T , Tj, j ∈ J be closed

symmetric operators in H. Suppose there exist Φj ∈ B(H) and Φ̃j ∈ B(H), j ∈ J ,
such that

Φ =
∑
j∈J

Φj ∈ B(H), (4.1)

with convergence in the strong operator topology, and

Φ̃jΦj = Φj , j ∈ J, Φ̃jΦk = 0, j, k ∈ J, j 6= k, (4.2)

g ∈ dom(T ∗j ) implies Φjg ∈ dom(T ∗), j ∈ J, (4.3)

g ∈ dom(T ∗) implies Φjg ∈ dom(T ∗j ), j ∈ J, (4.4)

g ∈ dom(Tj) implies Φ̃jg ∈ dom(T ), j ∈ J, (4.5)

g ∈ dom(T ) implies Φ̃jg ∈ dom(Tj), j ∈ J, (4.6)

g ∈ dom(T ∗j ) implies (IH − Φj)g ∈ dom(Tj), j ∈ J, (4.7)

g ∈ dom(T ∗) implies

(
IH −

∑
j∈J

Φj

)
g ∈ dom(T ), (4.8)
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g ∈ dom(T ∗) implies s-lim
N→∞

T ∗
( ∑

j∈J
|j|6N

Φjg

)
= T ∗

(∑
j∈J

Φjg

)
. (4.9)

(Condition (4.9) is redundant if #(J) <∞.)

Next, we recall the notion of linear independence with respect to a linear subspace
of H: Let D ⊆ H be a linear subspace of H. Then the vectors fk ∈ H, 1 6 k 6 N ,
N ∈ N, are called linearly independent (modD), if

N∑
k=1

ckfk ∈ D for some coefficients ck ∈ C, 1 6 k 6 N,

implies ck = 0, 1 6 k 6 N.

(4.10)

In addition, with D and E linear subspaces of H with D ⊆ E , the quotient subspace
E/D consists of equivalence classes [f ] such that g ∈ [f ] if and only if (f − g) ∈ D,
in particular, f = g (modD) is equivalent to (f − g) ∈ D. Moreover, the dimension
of E (modD), denoted by dimD(E), equals n ∈ N, if there are n, but not more than
n, linearly independent vectors in E , such that no linear combination (except, the
trivial one) belongs to D. If no such finite n ∈ N exists, one defines dimD(E) =∞.
Consequently, if A is symmetric and closed, then (2.5) implies

dimdom(A)(dom(A∗)) = n+(A) + n−(A) = 2 def(A). (4.11)

The following result computes the defect of T in terms of those of Tj , j ∈ J .

Theorem 4.2. Assume Hypothesis 4.1. Then

def (T ) =
∑
j∈J

def(Tj), (4.12)

including the possibility that one, and hence both sides of (4.12) equal ∞.

Proof. We start with the special case where∑
j∈J

def(Tj) <∞, (4.13)

that is, for at most finitely many k ∈ J , 0 < def(Tk) = Nk for some Nk ∈ N. In
this context we abbreviate

K = {k ∈ J | def(Tk) > 0} ⊆ J, K finite. (4.14)

For each k ∈ K, let

fk,` ∈ dom(T ∗k ), 1 6 ` 6 2 def(Tk), (4.15)

be a maximal set of vectors in dom(T ∗k ), linearly independent (mod dom(Tk)). Then
(4.3) yields

Φkfk,` ∈ dom(T ∗), 1 6 ` 6 2 def(Tk), k ∈ K. (4.16)

Next, let βk,` ∈ C, 1 6 ` 6 2 def(Tk), k ∈ K, be constants such that

∑
k∈K

2 def(Tk)∑
`=1

βk,`Φkfk,` ∈ dom(T ). (4.17)
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(Here and in what follows, note that (4.13) and the fact that K is finite imply that
every sum as above has finitely many terms.) Applying (4.6) and subsequently
(4.2) then yields that for every k ∈ K,

dom(Tk) 3 Φ̃k

( ∑
k′∈K

2 def(T ′
k)∑

`=1

βk′,`Φk′fk′,`

)
=

2 def(Tk)∑
`=1

βk,`Φkfk,`. (4.18)

On the other hand, from (4.7) and the fact that fk,` ∈ dom(T ∗k ), one finds that for
every k ∈ K,

(IH − Φk)

2 def(Tk)∑
`=1

βk,`fk,` ∈ dom(Tk). (4.19)

Combining (4.18) and (4.19) one concludes

2 def(Tk)∑
`=1

βk,`fk,` ∈ dom(Tk), k ∈ K, (4.20)

and hence

βk,` = 0, 1 6 ` 6 2 def(Tk), k ∈ K, (4.21)

since for every k ∈ K, fk,` ∈ dom(T ∗k ), 1 6 ` 6 2 def(Tk), were chosen linearly
independent (mod dom(Tk)). Consequently,

Φkfk,` ∈ dom(T ∗), 1 6 ` 6 2 def(Tk), k ∈ K, (4.22)

are linearly independent (mod dom(T )), implying

2 def(T ) = dimdom(T )(dom(T ∗)) > 2
∑
k∈K

def(Tk) = 2
∑
j∈J

def(Tj). (4.23)

Now suppose (by contradiction) that equality does not hold in (4.22), that is,

def(T ) >
∑
k∈K

def(Tk) =
∑
j∈J

def(Tj). (4.24)

Since all the Φkfk,l, 1 6 ` 6 2 def(Tk), k ∈ K, are linearly independent in dom(T ∗)
(mod dom(T )), assumption (4.24) implies that there exists f ∈ dom(T ∗) such that

f,Φkfk,`, 1 6 ` 6 2 def(Tk), k ∈ K, (4.25)

are still linearly independent (mod dom(T )). One notes once again that by (4.7),
(IH − Φk)fk,` ∈ dom(Tk), 1 6 ` 6 2 def(Tk), k ∈ K, and hence one can write,

fk,` = Φkfk,` + gk,`, gk,` ∈ dom(Tk), 1 6 ` 6 2 def(Tk), k ∈ K. (4.26)

Applying (4.4), one concludes that Φjf ∈ dom(T ∗j ), j ∈ J .
If j ∈ K, then there exist coefficients ck,` ∈ C, 1 6 ` 6 2 def(Tk), k ∈ K, and an

element g̃j ∈ dom(Tj), such that

Φjf =

2 def(Tj)∑
`=1

cj,`fj,` + g̃j =

2 def(Tj)∑
`=1

cj,`Φjfj,` + gj , (4.27)

where in the second identity we have used (4.26), and we have set

gj =

(
2 def(Tj)∑
`=1

cj,`gj,` + g̃j

)
∈ dom(Tj). (4.28)
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Hypothesis (4.2) then implies that Φ̃jΦjf = Φjf , which translates into

2 def(Tj)∑
`=1

cj,`Φ̃jΦjfj,` + Φ̃jgj =

2 def(Tj)∑
`=1

cj,`Φjfj,` + gj , (4.29)

and hence, using (4.2) again on the terms under the sum,

Φ̃jgj = gj , j ∈ K. (4.30)

If j ∈ J\K, we simply set

gj = Φjf ∈ dom(T ∗j ) = dom(Tj), (4.31)

since in this case def(Tj) = 0. Another straightforward application of (4.2) then
yields the rest of the cases (with j ∈ J\K) since

Φ̃jgj = gj , j ∈ J. (4.32)

By (4.5) one obtains that
gj ∈ dom(T ), j ∈ J. (4.33)

Next, by (4.8), one concludes that
(
IH −

∑
j∈J Φj

)
f ∈ dom(T ) and hence f =∑

j∈J Φjf (mod dom(T )) implies that there exists g0 ∈ dom(T ) such that

f =
∑
j∈J

Φjf + g0 =
∑
k∈K

(
2 def(Tk)∑
`=1

ck,`Φkfk,`

)
+
∑
j∈J

gj + g0. (4.34)

If #(J) <∞, then (4.33) implies that
∑
j∈J gj ∈ dom(T ), which in turn implies

that f and Φkfk,`, 1 6 ` 6 2 def(Tk), k ∈ K, are linearly dependent (mod dom(T )),
contradicting (4.25).

If #(J) = ∞, (4.9) implies that T ∗
(∑

j∈J Φjf
)

is well-defined, and hence so

is T ∗
(∑

j∈J Ψj

)
. Since the partial sums are in dom(T ), so is their limit, as T is

closed. Consequently, (4.12) also holds in this case.

Finally, we consider the case where∑
j∈J

def(Tj) =∞. (4.35)

In this case, for any N ∈ N there exists then a finite subset KN ⊂ J , such that for
each k ∈ KN there exists an integer Nk ∈ N with Nk 6 def(Tk) and∑

k∈KN

Nk > N. (4.36)

(The integer Nk is only needed in the situation where the corresponding def(Tk) =
∞.) For each k ∈ KN , let

fk,` ∈ dom(T ∗k ), 1 6 ` 6 Nk, (4.37)

be linearly independent (mod dom(Tk)). Then, following verbatim the first part
of our proof above, one concludes again that Φkfk,` ∈ dom(T ∗), 1 6 ` 6 2Nk,
k ∈ KN , are linearly independent (mod dom(T )). Consequently, and by the choice
of KN ⊂ J ,

2 def(T ) >
∑
k∈KN

2Nk > 2N. (4.38)

Since N ∈ N was arbitrary, def(T ) =∞, completing the proof of (4.12). �
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Remark 4.3. (i) It might be surprising at first sight that our conditions (4.2)–(4.9)
(i.e., the full hypotheses of Theorem 4.2) only involve operator domains, and do not
require any further information on the operators themselves. Note however that
this is consistent with our point of view on the deficiency index (see (4.11)), and
that, as will be shown explicitly in Section 5, the conditions in Hypothesis 4.1 can
all be realized very naturally due to locality properties of Schrödinger-type opera-
tors and second-order elliptic operators (with, possibly, strongly singular potential
coefficients). Furthermore, while we focus exclusively on the case of second-order
elliptic partial differential operators in Section 5, the case of first-order Dirac-type
operators can be discussed along analogous lines (cf. [3], [39], [40]). In fact, the
first-order case is technically quite a bit simpler than the second-order situation
discussed in this paper as the analog of the term −2(∇φj) · (∇f), see, for instance,
(5.27), and hence all the difficulties surrounding it, does not occur in the context
of first-order partial differential operators.

(ii) As will be illustrated in Section 5 in a fairly straightforward manner, Hypothesis
4.1 is sufficiently flexible to permit a total decoupling of singularities, with respect
to their contribution to the total defect def(T ) of T , as long as the singularities in
partial differential operators are separated by a strictly positive distance.

(iii) The abstract approach developed in this section was inspired by the concrete
case of Dirac-type operators treated in [3], [30], [39], [40] (see also [9]). �

5. Applications to Schrödinger-Type and Second-Order Elliptic
Partial Differential Operators and Decoupling of Singularities

In this section we apply the abstract approach developed in Theorem 4.2 to the
concrete case of Schrödinger operators and second-order elliptic partial differential
operators, each possibly containing a strongly singular potential term. Our results
illustrate the concept of decoupling of singularities with respect to deficiency index
computations whenever the singularities are separated by a fixed minimal positive
distance.

We start with the following auxiliary result. (It is surely well-known – the case
of Lipschitz functions is covered by [59, Theorem 4.12] – but we provide its proof
for the convenience of the reader.)

Lemma 5.1. Assume F0, F1 ⊂ Rn are such that dist (F0, F1) > ε for some ε > 0.
Then there exists a function φ ∈ C∞(Rn) satisfying

0 6 φ 6 1 on Rn, φ
∣∣
F0

= 0, φ
∣∣
F1

= 1, and

‖∂αφ‖L∞(Rn) 6 cn,α ε
−|α| for each multi-index α ∈ Nn0 ,

(5.1)

where the constant cn,α ∈ (0,∞) depends only on n and α.

Proof. We start by introducing

F̃1 = {x ∈ Rn | dist (x, F1) 6 ε/4}. (5.2)

Consider a function

0 6 θ ∈ C∞0 (Rn), supp (θ) ⊆ Bn(0; 1),

∫
Rn

dnx θ(x) = 1, (5.3)
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then define φ via

φ(x) =
(ε

4

)−n ∫
F̃1

dny θ(4(x− y)/ε), x ∈ Rn. (5.4)

Obviously, φ ∈ C∞(Rn) and for each x ∈ Rn one has

0 6 φ(x) 6
(ε

4

)−n ∫
Rn

dny θ(4(x− y)/ε) =

∫
Rn

dny θ(y) = 1. (5.5)

One observes that if x ∈ F0, then for each y ∈ F̃1 one necessarily has |x− y| > ε/4.
Since by construction supp (θ) ⊆ Bn(0; 1), this forces θ(4(x − y)/ε) = 0. One
therefore obtains φ(x) = 0 for each x ∈ F0, and hence, φ

∣∣
F0

= 0. Similarly, if

x ∈ F1, then necessarily

supp
(
θ(4(x− ·)/ε)

)
⊂ Bn(x; ε/4) ⊂ F̃1. (5.6)

Consequently, for each x ∈ F1 one has

φ(x) =
(ε

4

)−n ∫
Rn

dny θ(4(x− y)/ε) =

∫
Rn

dny θ(y) = 1, (5.7)

and hence, φ
∣∣
F1

= 1.

Finally, for every multi-index α one estimates

|(∂αφ)(x)| =
(ε

4

)−n−|α| ∣∣∣∣ ∫
F̃1

dny (∂αθ)(4(x− y)/ε)

∣∣∣∣
6
(ε

4

)−n−|α| ∫
|x−y|6ε/4

dny |(∂αθ)(4(x− y)/ε)|

6 ‖∂αθ‖L∞(Rn)

(ε
4

)−n−|α| ∫
|y|6ε/4

dny

= cn,α ε
−|α|, x ∈ Rn, (5.8)

for some finite constant cn,α > 0 depending only on n and α. �

To set up the type of Schrödinger operators we are interested in, we next collect
the following set of assumptions.

Hypothesis 5.2. Let J ⊆ N be an index set and n ∈ N, n > 2.

(i) Consider compact sets Σj ⊂ Rn of n-dimensional Lebesgue measure zero, j ∈ J .

(ii) Consider Vj ∈ L2
loc(Rn\Σj) real-valued and with bounded support, j ∈ J .

(iii) Suppose there exists ε > 0 such that

dist ({supp (Vj) ∪ Σj}, {supp (Vj′) ∪ Σj′}) > ε, j, j′ ∈ J, j 6= j′. (5.9)

Granted Hypothesis 5.2, we introduce

Σ =
⋃
j∈J

Σj , (5.10)

Aj = supp (Vj) ∪ Σj , j ∈ J, A =
⋃
j∈J

Aj =
⋃
j∈J

supp (Vj) ∪ Σ, (5.11)

V (x) =
∑
j∈J

Vj(x) for a.e. x ∈ Rn\Σ. (5.12)
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One notes that Aj are compact sets and, as a consequence of the uniform sepa-
ration of sets, properly stated in (5.9), that Σ and A are closed subsets of Rn. In
addition, Σ is of n-dimensional Lebesgue measure zero, V is real-valued, and, due
to the uniform separation of the Aj ’s, V ∈ L2

loc(Rn\Σ).
Next, we introduce the symmetric Schrödinger operators in L2(Rn),

Ḣjf = (−∆f) + Vjf, f ∈ dom(Ḣj) = C∞0 (Rn\Σj), j ∈ J, (5.13)

Ḣf = (−∆f) + V f, f ∈ dom(Ḣ) = C∞0 (Rn\Σ), (5.14)

whose closures in L2(Rn) are denoted by Hj , j ∈ J , and H, respectively, and whose
adjoints are then given by (cf., e.g., [43], [70, Sect. 2.1])

H∗j f = (−∆f) + Vjf in D(Rn\Σj)′,
f ∈ dom(H∗j ) =

{
g ∈ L2(Rn)

∣∣ [−(∆g) + Vjg] ∈ L2(Rn)
}
, j ∈ J,

(5.15)

H∗f = (−∆f) + V f in D(Rn\Σ)′,

f ∈ dom(H∗) =
{
g ∈ L2(Rn)

∣∣ [−(∆g) + V g] ∈ L2(Rn)
}
.

(5.16)

Next we will show that the abstract Theorem 4.2 applies to H and Hj , j ∈ J ,
by proving a series of results that verify each item in Hypothesis 4.1; in fact, we
will typically prove slightly stronger results. Moreover, note that by Theorem 2.8
(with C the standard complex conjugation of complex-valued functions) one has
def(H) = n+(H) = n−(H) as well as def(Hj) = n+(Hj) = n−(Hj), j ∈ J .

We start with the following auxiliary result.

Lemma 5.3. Assume Hypothesis 5.2. There exist real-valued φj , φ̃j ∈ C∞0 (Rn),
j ∈ J , such that the following conditions (i)–(v) hold:

(i) ∂αφj ∈ L∞(Rn), 0 6 |α| 6 2, φj
∣∣
Aj

= 1, j ∈ J .

(ii) supp (φj) ∩ supp (φj′) = ∅, j, j′ ∈ J , j 6= j′.

(iii) For some 0 < δ < ε/2, dist (supp (1− φj), Aj) > δ, j ∈ J .

(iv) ∂αφ̃j ∈ L∞(Rn), 0 6 |α| 6 2, φ̃j
∣∣
supp (φj)

= 1, j ∈ J .

(v) supp
(
φ̃j
)
∩ supp

(
φ̃j′
)

= ∅, j, j′ ∈ J , j 6= j′.

Proof. Fix j ∈ J and define Uj,η =
⋃
a∈Aj

Bn(a; η), η > 0. Then Uj,ε/4 is an open

neighborhood of Aj and

Ej,ε/4 = Uj,ε/4, Fj,ε/4 = Rn\Uj,ε/2, j ∈ J, (5.17)

are closed and disjoint. By Lemma 5.1 one can find φj ∈ C∞(Rn) such that

φj
∣∣
Ej,ε/4

= 1, φj
∣∣
Fj,ε/2

= 0, ∂αφj ∈ L∞(Rn), 0 6 |α| 6 2. (5.18)

It is now clear that one can choose δ = ε/4. This shows the existence of φj ∈
C∞0 (Rn), j ∈ J , satisfying properties (i)–(iii); the existence of φ̃j ∈ C∞0 (Rn),
j ∈ J , satisfying items (iv)–(v) follows analogously. �

In the following we identify Φj and Φ̃j with the operator of multiplication by

the bounded, real-valued functions φj and φ̃j , j ∈ J , defined on all of L2(Rn),
respectively.

For simplicity, we focus on the case n ∈ N, n > 2, throughout this section. The
case n = 1 is obviously analogous (and by far simpler).
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The next result verifies the analogs of conditions (4.3) and (4.4) (in fact, it proves
additional facts).

Lemma 5.4. Assume Hypothesis 5.2. Then for all j ∈ J , the following conditions
(i)–(ii) hold:

(i) f ∈ dom(H∗j ) implies φjf ∈ dom(H∗j ) ∩ dom(H∗).

(ii) f ∈ dom(H∗) implies φjf ∈ dom(H∗) ∩ dom(H∗j ).

In both cases,

H∗j (φjf) = H∗(φjf), j ∈ J. (5.19)

All statements also hold with φj replaced by φ̃j.

Proof. (1) Let f ∈ dom(H∗j ) and ψj ∈ C∞0 (Rn\Aj), j ∈ J . Then H∗j f = [(−∆f) +

Vjf ] ∈ L2(Rn) implies

ψj(H
∗
j f) = ψj(−∆f) ∈ L2(Rn), (5.20)

which together with the fact that ψj ∈ C∞0 (Rn\Aj) is arbitrary, implies that

∆f ∈ L2
loc(Rn\Aj). (5.21)

Thus (cf., e.g., [43, Theorem 1]) also

∇f ∈ L2
loc(Rn\Aj)n, (5.22)

and hence

f ∈ H2
loc(Rn\Aj), (5.23)

which in turn implies

dom(H∗j ) ⊆ H2
loc(Rn\Aj). (5.24)

(2) Let f ∈ dom(H∗) and ψ ∈ C∞0 (Rn\A). Then by precisely the same arguments
one concludes that ψ(H∗f) = ψ(−∆f) ∈ L2(Rn), and

∇f ∈ L2
loc(Rn\A)n, ∆f ∈ L2

loc(Rn\A), (5.25)

and hence

dom(H∗) ⊆ H2
loc(Rn\A). (5.26)

(3) Let f ∈ dom(H∗j ), then

(−∆ + Vj)(φjf) = (−∆ + V )(φjf)

= φj(−∆ + Vj)f − 2(∇φj) · (∇f)− (∆φj)f.
(5.27)

Since

φj , |∇φj |, (∆φj) ∈ L∞(Rn), ∇φj ∈ C∞0 (Rn\A)n, (5.28)

in fact,

∇φj
∣∣
Ej,ε/8

= 0, ∇φj
∣∣
Fj,ε/4

= 0, (5.29)

with Ej,ε/8 ⊃ Aj , and ∇f ∈ L2
loc(Rn\Aj)n by item (1), one concludes that

(∇φj) · (∇f) = 0 in a neighborhood of Aj (in fact, of A). (5.30)

Thus,

(∇φj) · (∇f) ∈ L2(Rn), (5.31)

and hence

(−∆ + Vj)(φjf) = (−∆ + V )(φjf) ∈ L2(Rn) (5.32)
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proving item (i).
(4) Let f ∈ dom(H∗) be arbitrary. Then reasoning precisely along the lines in item
(3) one obtains

(−∆ + V )(φjf) = (−∆ + Vj)(φjf)

= φj(−∆ + V )f − 2(∇φj) · (∇f)− (∆φj)f, j ∈ J.
(5.33)

Since ∇f ∈ L2
loc(Rn\A)n, (5.29) with Ej,ε/8 ⊃ Aj once more yields (∇φj)·(∇f) = 0

in a neighborhood of A and hence

(∇φj) · (∇f) ∈ L2(Rn), j ∈ J. (5.34)

Thus,
(−∆ + V )(φjf) = (−∆ + Vj)(φjf) ∈ L2(Rn) (5.35)

proving item (ii). Equations (5.32) and (5.35) also prove (5.19). �

The following result verifies the analogs of conditions (4.5) and (4.6) (again,
additional facts are derived).

Lemma 5.5. Assume Hypothesis 5.2. Then for all j ∈ J , the following conditions
(i)–(ii) hold:

(i) f ∈ dom(Hj) implies φjf ∈ dom(Hj) ∩ dom(H).

(ii) f ∈ dom(H) implies φjf ∈ dom(H) ∩ dom(Hj).

In both cases,
Hj(φjf) = H(φjf), j ∈ J. (5.36)

All statements also hold with φj replaced by φ̃j.

Proof. (1) Let f ∈ dom(Hj). Since Hj = Ḣj , there exists a sequence {fm}m∈N ⊂
C∞0 (Rn\Σj) such that s-limm→∞ fm = f and s-limm→∞ Ḣjfm = Hjf . Conse-
quently, φjfm ∈ C∞0 (Rn\Σj), s-limm→∞ φjfm = φjf , and

Ḣj(φjfm) = (−∆ + Vj)(φjfm) = (−∆ + V )(φjfm) = Ḣ(φjfm)

= φj(−∆ + Vj)fm − 2(∇φj) · (∇fm)− (∆φj)fm.
(5.37)

Clearly,

s-lim
m→∞

φj(−∆ + Vj)fm = s-lim
m→∞

φjḢjfm = φjHjf, s-lim
m→∞

(∆φj)fm = (∆φj)f.

(5.38)
Next, let ψ ∈ C∞0 (Rn\A) be real-valued. Then f ∈ H2

loc(Rn\Aj) (cf. (5.24)) implies
that ∫

Rn

dnxψ(x)2|∇(fm(x)− f(x))|2

= −2

∫
Rn

dnx [fm(x)− f(x)]ψ(x)(∇ψ)(x) · (∇(fm − f))(x)

−
∫
Rn

dnx [fm(x)− f(x)]ψ(x)2(∆(fm − f))(x), (5.39)

and hence,

‖ψ|∇(fm − f)|‖2L2(Rn)

6 2‖∇ψ‖L∞(Rn)‖fm − f‖L2(Rn)‖ψ|∇(fm − f)|‖L2(Rn)

+ ‖fm − f‖L2(Rn)

∥∥ψ2[∆(fm − f)]
∥∥
L2(Rn)

. (5.40)



DECOUPLING OF DEFICIENCY INDICES 21

Since ψ ∈ C∞0 (Rn\A), one concludes that ψ2[∆(fm − f)] = ψ2[Hj(fm − f)] and
hence limm→∞

∥∥ψ2[∆(fm − f)]
∥∥
L2(Rn;dnx)

= 0. Inequality (5.40) is of the type

A2
m 6 cm|Am|+ dm, with lim

m→∞
cm = lim

m→∞
dm = 0. (5.41)

Consequently, the real sequence {Am}m∈N is bounded, that is, for some C > 0,
|Am| 6 C, and thus, actually,

lim
m→∞

Am = 0. (5.42)

Employing (5.41), (5.42) in (5.40) then yields

lim
m→∞

‖ψ|∇(fm − f)|‖L2(Rn) = 0, (5.43)

and choosing ψ = (∂kφj), 1 6 k 6 n, implies

lim
m→∞

‖(∇φj) · (∇(fm − f))‖L2(Rn)) = 0. (5.44)

Combining (5.37), (5.38), and (5.44), yields

s-lim
m→∞

Ḣj(φjfm) = s-lim
m→∞

Ḣ(φjfm) = φjHjf − 2(∇φj) · (∇f)− (∆φj)f, (5.45)

and since Hj and H are closed operators, one concludes φjf ∈ dom(Hj)∩ dom(H)
and Hj(φjf) = H(φjf), proving item (i).
(2) Interchanging Hj and H, Σj and Σ, Aj and A, noticing that j ∈ J was arbitrary
in part (1), yields item (ii) along precisely the same steps. �

The next result verifies the analogs of conditions (4.7) and (4.8).

Lemma 5.6. Assume Hypothesis 5.2. Then the following conditions (i)–(ii) hold:

(i) f ∈ dom(H∗j ) implies (1− φj)f ∈ dom(Hj), j ∈ J .

(ii) f ∈ dom(H∗) implies
(
1−

∑
j∈J φj

)
f ∈ dom(H).

Proof. (1) Let f ∈ dom(H∗j ) be arbitrary. Then (1 − φj)f ∈ dom(H∗j ) by Lemma

5.4 (i). Hence, (1 − φj)f ∈ L2(Rn) and H∗j [(1 − φj)f ] = −∆[(1 − φj)f ] ∈ L2(Rn),
implying

∇[(1− φj)f ] ∈ L2(Rn)n, (5.46)

and hence

(1− φj)f ∈ H2(Rn). (5.47)

(To verify the claims (5.46) and (5.47) it suffices to employ the standard Fourier
transform F in L2(Rn), and denoting û = Fu, one concludes that

(
1 + |ξ|2

)
û ∈

L2(Rn; dnξ) implies |ξ| û ∈ L2(Rn; dnξ), ξ` ξm û ∈ L2(Rn; dnξ), 1 6 `,m 6 n.)
Next, we recall that for Ωk ⊆ Rn open, k = 1, 2, with Ω1 ⊂ Ω2, f ∈ Hm,2(Ω2)

implies that f
∣∣
Ω1
∈ Hm,2(Ω1), m ∈ N ∪ {0} (see, e.g., [68, p. 253–254]). Hence,

using the fact that dist (supp (1− φj), Aj) > ε/8, one concludes that

(1− φj)f ∈ H2(Rn) implies (1− φj)f
∣∣
Rn\Aj

∈ H2(Rn\Aj), (5.48)

and an application of [17, Theorem V.3.4] yields

ηm(1− φj)f ∈ H2
0 (Rn\Aj), (5.49)

where

ηm ∈ C∞0 (Rn), 0 6 ηm 6 1, ηm(x) = 1, |x| 6 m, m ∈ N, (5.50)
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is a suitable cutoff function. Having established (5.49), one concludes the existence
of a sequence {gm}m∈N ∈ C∞0 (Rn\Aj) such that gm −→

m→∞
(1−φj)f in H2(Rn\Aj)-

norm. Consequently, s-limm→∞ gm = (1− φj)f and

s-lim
m→∞

Ḣjgm = s-lim
m→∞

(−∆gm) = −∆[(1− φj)f ] = H∗j [(1− φj)f ] ∈ L2(Rn), (5.51)

implying

Hj [(1− φj)f ] = H∗j [(1− φj)f ] ∈ L2(Rn), (5.52)

since Hj = Ḣj is a closed operator. This proves item (i).

(2) Replacing H∗j by H∗, Ḣj by Ḣ, Aj by A, (1−φj) by
(
1−
∑
j∈J φj

)
, and noticing

that j ∈ J was arbitrary in step (1), one can now follow the strategy of proof above
line by line to arrive at a proof of item (ii). �

For variants of Lemmas 5.4–5.6 (with somewhat different proofs) we refer to [9],
[11], [17, Sects. VII.2, VII.3], [52], [64], and [66]. These results clearly demonstrate
the local nature of the operators Hj , H

∗
j , j ∈ J , H, and H∗ (cf. also [2, Sect. 2.5],

[65, Sects. 6.4, 10.2]).
Finally, we now prove that also condition (4.9) holds in the present context of

Schrödinger operators.

Lemma 5.7. Assume Hypothesis 5.2. If f ∈ dom(H∗), then

s-lim
N→∞

H∗
( ∑

j∈J
|j|6N

φjf

)
= H∗

(∑
j∈J

φjf

)
. (5.53)

Proof. Given f ∈ dom(H∗), it suffices to write

H∗
( ∑

j∈J
|j|6N

φjf

)
=

( ∑
j∈J
|j|6N

φj

)
H∗f − 2

∑
j∈J
|j|6N

(∇φj) · (∇f)−
( ∑

j∈J
|j|6N

(∆φj)

)
f,

(5.54)

noticing that ∇φj ∈ C∞0 (Rn\A)n, ∇f ∈ L2
loc(Rn\A)n, and supp (φj)∩ supp (φk) =

∅ for j, k ∈ J , j 6= k, and hence,

s-lim
N→∞

∑
j∈J
|j|6N

φj =
∑
j∈J

φj , s-lim
N→∞

∑
j∈J
|j|6N

(∂kφj) =
∑
j∈J

(∂kφj), 1 6 k 6 n,

s-lim
N→∞

∑
j∈J
|j|6N

(∆φj) =
∑
j∈J

(∆φj),
(5.55)

concluding the proof. �

Combining Lemmas 5.3–5.7 then shows that all items in Hypothesis 4.1 are
satisfied and hence Theorem 4.2 yields the following result for Schrödinger operators
with a possibly strongly singular potential:

Theorem 5.8. Assume Hypothesis 5.2. Then

def (H) =
∑
j∈J

def(Hj), (5.56)

including the possibility that one, and hence both sides of (5.56) equal ∞.
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Remark 5.9. The statement of Theorem 5.8 remains valid if one adds L∞ potentials
to the singular potentials V and/or Vj , j ∈ J . Indeed, this follows directly from
the stability of the deficiency indices under perturbations (see, for example, [4]).
This will be particularly relevant in the discussion on Example 5.12. �

Next, we extend Theorem 5.8 to more general second-order elliptic partial dif-
ferential operators in L2

w(Rn) with possibly strongly singular potential coefficients
as follows. For simplicity, we will again focus on the case n ∈ N, n > 2, only.

Hypothesis 5.10. Let n ∈ N, n > 2. In addition to Hypothesis 5.2, assume the
following conditions on the coefficients w, ak,`, bk, 1 6 k, ` 6 n, and Vj, j ∈ J .

(i) w ∈ L∞loc(Rn), w > 0 a.e. on Rn, and w−1 ∈ L∞loc(Rn).

(ii) ak,` = a`,k ∈ C2(Rn) are real-valued, 1 6 k, ` 6 n and a = {aj,k}16j,k6n
satisfies the local uniform ellipticity condition,∑

16k,`6n

ak,`(x)ξkξ` > λ(x)‖ξ‖2Rn x, ξ ∈ Rn, (5.57)

where λ > 0 and continuous on Rn.

(iii) bk ∈ C1(Rn) are real-valued, 1 6 k 6 n.

(iv) For fixed ε0 > 0 and αj ∈ [ε0, 1], Vj ∈ Qαj ,loc(Rn), j ∈ J .

(v) Suppose the maximally defined operator in L2
w(Rn) generated by the differential

expression

L0(a, b) :=
1

w(x)

∑
16k,`6n

Dkak,`(x)D`, Dk = i∂k + bk(x), 1 6 k 6 n, x ∈ Rn,

(5.58)
is self-adjoint, and essentially self-adjoint on C∞0 (Rn), more precisely, assume that

Ḣ0(a, b)f = L0(a, b)f, f ∈ dom(Ḣ0(a, b)) = C∞0 (Rn), (5.59)

is essentially self-adjoint in L2
w(Rn), and its closure, denoted by H0(a, b),

H0(a, b)f = Ḣ0(a, b)f = L0(a, b)f,

f ∈ dom(H0(a, b)) =
{
g ∈ L2

w(Rn)
∣∣ g ∈ H2

loc(Rn); L0(a, b)g ∈ L2
w(Rn)

}
,

(5.60)

is self-adjoint in L2
w(Rn).

In this context, the local Stummel space Qα,loc(Rn), α ∈ (0, 1] is defined by

Qα,loc(Rn) :=



L2
loc(Rn), n = 2, 3,{
W ∈ L2

loc(Rn)
∣∣∣ for all K ∈ Rn compact, there exists

CW,K > 0 such that for all x ∈ K,∫
K∩Bn(x;1)

dny |x− y|4−n−α|W (y)|2 6 CW,f
}
, n > 4.

(5.61)
Since the principal target in this paper are strongly singular (electric) poten-

tials Vj , j ∈ J , V , we introduced Hypothesis 5.10 (v) for the second-order part
− 1
w

∑
16k,`6nDkaj,kD`. For a variety of sufficient conditions on ak,`, bk, 1 6

k, ` 6 n, for Hypothesis 5.10 (v) to hold, we refer, for instance, to [80].
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Given Hypotheses 5.2 and 5.10, we now introduce in analogy to (5.13), (5.14),
the following symmetric operators in L2

w(Rn),

Ḣj(a, b)f = L0(a, b)f + (Vj + V0,j)f, f ∈ dom(Ḣj(a, b)) = C∞0 (Rn\Σj), j ∈ J,
(5.62)

Ḣ(a, b)f = L0(a, b)f + (V + V0)f, f ∈ dom(Ḣ(a, b)) = C∞0 (Rn\Σ), (5.63)

whose closures in L2
w(Rn) are denoted by Hj(a, b), j ∈ J , and H(a, b), respectively.

Their adjoints are then given by (cf. [80])

Hj(a, b)
∗f = L0(a, b)f + (Vj + V0,j)f in D(Rn\Σj)′,

f ∈ dom(Hj(a, b)
∗) =

{
g ∈ L2

w(Rn)
∣∣ g ∈ H2

locRn\Σj); (5.64)

[L0(a, b)g + (Vj + V0,j)g] ∈ L2
w(Rn)

}
, j ∈ J,

H(a, b)∗f = L0(a, b)f + (V + V0)f in D(Rn\Σ)′,

f ∈ dom(H(a, b)∗) =
{
g ∈ L2

w(Rn)
∣∣ g ∈ H2

locRn\Σ); (5.65)

[L0(a, b)g + (V + V0)g] ∈ L2
w(Rn)

}
.

Repeatedly employing product identities of the type

L0(a, b)(ψf) = ψL0(a, b)f +
2i

w

∑
16k,`6n

(∂kψ)ak,`(D`f) (5.66)

− 1

w

∑
16k,`6n

(∂kak,`∂`ψ)f, f, ψ ∈ C2(Rn),

and closely following the arguments leading to Theorem 5.8, the analog of the latter
now reads as follows:

Theorem 5.11. Assume Hypothesis 5.10. Then

def (H(a, b)) =
∑
j∈J

def(Hj(a, b)), (5.67)

including the possibility that one, and hence both sides of (5.67) equal ∞.

Proof. It suffices to sketch the necessary modifications in the proofs of Lemmas
5.4–5.7, replacing Hj by Hj(a, b), j ∈ J , and H by H(a, b), respectively.

Lemma 5.4: Due to the fact g ∈ H2
loc(Rn\Σj), j ∈ J , respectively, g ∈ H2

loc(Rn\Σ),
items (1) and (2) are clear from the outset. The analog of identity (5.27) now reads

1

w

( ∑
16k,`6n

Dkaj,kD` + Vj

)
(φjf) =

1

w

( ∑
16k,`6n

Dkaj,kD` + V

)
(φjf)

= φj
1

w

( ∑
16k,`6n

Dkaj,kD` + Vj

)
f +

2i

w

∑
16k,`6n

(∂kφj)ak,`(D`f) (5.68)

− 1

w

∑
16k,`6n

(∂kak,`∂`φj)f, f ∈ dom(Hj(a, b)
∗), j ∈ J,

and the rest of item (3) proceeds along the same lines. Item (4) follows in the same
manner.

Lemma 5.5: One can follow the arguments in (5.36)–(5.45) line by line, replacing the
term (∇φj) · (∇fm − f) by −iw

∑
16k,`6n(∂kφj)ak,`D`(fm − f), once more choosing
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ψ = (∂kφj), and observing that (∂kφj) ∈ C∞0 (Rn\A) (which neutralizes the effect
of bk ∈ C1(Rn) in Dk), 1 6 k 6 n.

Lemma 5.6: Once more employing the fact that g ∈ H2
loc(Rn\Σj), j ∈ J (resp,

g ∈ H2
loc(Rn\Σ)), one again obtains the crucial inclusion (5.49), and then concludes

the argument along the lines of (5.50)–(5.52), substituting 1
w

∑
16k,`6nDkak,`(x)D`

for −∆ in (5.51).

Lemma 5.7: Replacing identity (5.54) by

H(a)∗
( ∑

j∈J
|j|6N

φjf

)
=

( ∑
j∈J
|j|6N

φj

)
H(a)∗f +

2i

w

∑
j∈J
|j|6N

∑
16k,`6n

(∂kφj)ak,`(D`f)

− 1

w

∑
j∈J
|j|6N

∑
16k,`6n

(∂kak,`∂`φj)f, f ∈ dom(H(a)∗), (5.69)

one proceeds along the lines leading up to (5.55), replacing the latter by

s-lim
N→∞

∑
j∈J
|j|6N

φj =
∑
j∈J

φj , s-lim
N→∞

1

w

∑
j∈J
|j|6N

(∂kφj) =
1

w

∑
j∈J

(∂kφj), 1 6 k 6 n,

s-lim
N→∞

1

w

∑
j∈J
|j|6N

∑
16k,`6n

(∂kak,`∂`φj) =
1

w

∑
j∈J

∑
16k,`6n

(∂kak,`∂`φj),

(5.70)

completing the proof. �

We conclude this section illustrating the scope of Theorems 5.8 and 5.11 in con-
nection with Schrödinger-type operators H as well as second-order elliptic partial
differential operators H(a):

Example 5.12. Let J ⊆ N be an index set.

(i) Assume that the set of points {xj}j∈J ⊂ Rn satisfies

inf
j,j′∈J
j 6=j′

|xj − xj′ | > 0. (5.71)

Then concrete examples of potential coefficients V with strong point-like singulari-
ties in H and H(a, b) are, for instance, given by

V (x) :=
∑
j∈J

Vj(x) =
∑
j∈J

cj

(
x− xj
|x− xj |

)
|x− xj |−αjχBn(xj ;ε/4)(x),

x ∈ Rn\{xj}j∈J ,
(5.72)

where

αj > 0, cj ∈ L∞(Sn−1) real-valued, j ∈ J. (5.73)

In this case,

Σj = {xj}, j ∈ J, Σ =
⋃
j∈J

Σj = {xj}j∈J , (5.74)

and the potential Vj comprises the jth term on the right-hand side of (5.72).
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(ii) As an example with strong shell-like singularities in H and H(a, b) we mention,
for instance,

V (x) ≡
∑
j∈J

Vj(x) =
∑
j∈J

βj ||x− xj | − rj |−γjχBn(xj ;δj)(x),

x ∈ Rn
∖ ⋃
j∈J
{x ∈ Rn | |x− xj | = rj},

(5.75)

where

0 < rj < δj < ε/2, βj ∈ R, γj > 0, j ∈ J, (5.76)

{x ∈ Rn | |x− xj | 6 rj} ∩ {x ∈ Rn | |x− xj′ | 6 rj′} = ∅, j 6= j′, j, j′ ∈ J

(e.g., for some η ∈ (0, 1/4), rj 6 εη, j ∈ J ). In this case,

Σj = {x ∈ Rn | |x− xj | = rj}, j ∈ J,

Σ =
⋃
j∈J

Σj =
⋃
j∈J
{x ∈ Rn | |x− xj | = rj}, (5.77)

and Vj comprises the jth term on the right-hand side of (5.75).

These examples clearly illustrate the notion of decoupling of singularities when
computing deficiency indices as long as all singularities are separated by a minimal
positive distance.

As a concrete example, we conclude this section with the proof of Theorem 1.1 :

Proof of Theorem 1.1. Let δ > 0 be arbitrary, and note that, for each j ∈ J , one
can write,

Vj(|x− xj |)χBn(xj ;δ)(x) = Vloc,j(x) + V0,j(x), (5.78)

with

Vloc,j(x) = Vj(|x− xj |)χBn(xj ;ε/2)(x),

V0,j(x) = Vj(|x− xj |)χBn(xj ;δ)\Bn(xj ;ε/2)(x), x ∈ Rn\{xj}. (5.79)

Since the supports of the functions V0,j form a locally finite family of sets, and the
functions V0,j are bounded uniformly in both x ∈ Rn and j ∈ J , one concludes that
their sum is well-defined and bounded,

Ṽ0 = V0 +
∑
j∈J

V0,j ∈ L∞(Rn). (5.80)

Thus the potential function V from (1.2) can be written as

V = Ṽ0 +
∑
j∈J

Vloc,j , (5.81)

and so, by the main result in [4],

def(H) = def(Hloc), (5.82)

with the “localized” operator Hloc being

Hloc = −∆ +
∑
j∈J

Vloc,j , dom(Hloc) = C∞0 (Rn\{xj}j∈J). (5.83)
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At this point one can apply Theorem 5.8 since Hypothesis 5.2 is satisfied with
Σj = {xj} for each j ∈ J , and the singular potentials Vloc,j as defined in (5.79).
Thus, one concludes that

def(Hloc) =
∑
j∈J

def(Hloc,j), (5.84)

with

Hloc,j = −∆ + Vloc,j , dom(Hloc,j) = C∞0 (Rn\{xj}). (5.85)

Finally, we note again that for each j ∈ J , one has def(Hloc,j) = 0 if and only if
(1.5) holds. Indeed, since Hloc,j commutes with rotations one can use separation
of variables in spherical coordinates and def(Hloc,j) = 0 if and only if this holds for
each angular momentum operator, which in turn holds if and only if

(n− 1)(n− 3)

4
+ cj >

3

4
(5.86)

by [53, Theorem 2.4]. Thus,

def(H) =
∑
j∈J

def(Hj), (5.87)

finishing the proof of Theorem 1.1. �

As explained in the Introduction, it was this example and the expectation that
uniformly separated singularities of the potential (cf. (5.71)) decouple in the context
of deficiency index computations that motivated our interest in this circle of ideas.

Appendix A. The Support of an Arbitrary Function Defined in an
Arbitrary Subset of Rn

In this appendix we provide a discussion of the notion of support for arbitrary
functions on arbitrary subsets of Rn.

Definition A.1. Given an arbitrary set E ⊆ Rn and an arbitrary function f :
E → C ∪ {∞}, define the support of f as the set

supp (f) :=
{
x ∈ E | there is no r > 0 so that f = 0 a.e. in Bn(x, r) ∩ E

}
, (A.1)

where “a.e.” is interpreted with respect to the n-dimensional Lebesgue measure in
Rn.

In addition, given an arbitrary set E ⊆ Rn introduce

E+ := {x ∈ Rn | there is no r > 0 so that Bn(x, r) ∩ E is contained

in a set of n-dimensional Lebesgue measure zero},
(A.2)

and observe that

E̊ ⊆ E+ ⊆ E, (A.3)

E+ = E if E is open. (A.4)

Throughout, if A ⊆ Rn is measurable, we denote by |A| its n-dimensional
Lebesgue measure.
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Lemma A.2. For an arbitrary set E ⊆ Rn and two arbitrary functions f, g : E →
C ∪ {∞}, the following properties hold:

E+ is a closed subset of Rn and |E\E+| = 0, (A.5)

for each F ⊆ E the function χF : E → C satisfies supp (χF ) = F+ ∩ E, (A.6)

supp (f) is a relatively closed subset of E+ ∩ E (hence of E ), (A.7)

f = 0 a.e. in E\ supp (f), (A.8)

supp (f) ⊆ F if F relatively closed subset of E and f = 0 a.e on E\F , (A.9)

supp
(
f
∣∣
F

)
⊆ F+ ∩ F ∩ supp (f) for each F ⊆ E, (A.10)

supp (f) = supp (g) if f = g a.e. on E, (A.11)

supp (fg) ⊆ supp (f) ∩ supp (g), (A.12)

supp (f + g) ⊆ supp (f) ∪ supp (g). (A.13)

In addition, if the set E ⊆ Rn is open and the function f : E → C is continuous,
then supp (f) may be described as the relative closure in E of the set {x ∈ E | f(x) 6=
0}, which is precisely the standard notion of support in this context.

Furthermore, if E ⊆ Rn is open and if f ∈ L1
loc(E) then one has supp (uf ) =

supp (f), where uf is the distribution canonically associated with the locally inte-
grable function f in the open set E.

Proof. By (A.2) and the fact that the Lebesgue measure is complete, it follows that
for each point x ∈ Rn\E+ there exists some number rx > 0 such that |Bn(x, rx) ∩
E| = 0. We claim that for the family {rx}x∈Rn\E+ as above, one has

Rn\E+ =
⋃

x∈Rn\E+

Bn(x, rx). (A.14)

The left-to-right inclusion is obvious. To justify the opposite one, one notes that
if y belongs to the right-hand side of (A.14), then y ∈ Rn and there exists some
x ∈ Rn such that |Bn(x, rx) ∩ E| = 0 and y ∈ Bn(x, rx). Consequently, choosing
r := rx − |x − y| > 0 forces Bn(y, r) ⊆ Bn(x, rx), hence |Bn(y, r) ∩ E| = 0. This
shows that y /∈ E+, concluding the proof of (A.14). In turn, (A.14) implies that
Rn\E+ is open, thus E+ is a closed subset of Rn. This takes care of the first claim
in (A.5).

Next, one observes that since Rn is a strongly Lindelöf space (as a second-
countable topological space), the union in the right-hand side of (A.14) may be
refined to a countable one. Thus, one can find a sequence of points {xj}j∈N ⊂
Rn\E+ along with a sequence of numbers {rj}j∈N ⊂ (0,∞) such that

|Bn(xj , rj) ∩ E| = 0 for each j ∈ N, (A.15)

and E\E+ = E ∩
( ⋃
j∈N

Bn(xj , rj)

)
. (A.16)

As such, the last claim in (A.5) readily follows from (A.15)–(A.16).
As far as (A.6) is concerned, pick some F ⊆ E. Then x ∈ E\ supp (χF ) if and

only if x ∈ E and there exists r > 0 such that χF = 0 a.e. on Bn(x, r) ∩ E. Since
χF = 1 on Bn(x, r) ∩ F ⊆ Bn(x, r) ∩ E, the latter condition is further equivalent
to |Bn(x, r) ∩ F | = 0, which ultimately is equivalent to x /∈ F+. This reasoning
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shows that E\ supp (χF ) = E\F+, so by passing to complements (relative to E,
and keeping in mind that supp (χF ) ⊆ E) one obtains supp (χF ) = E\(E\F+) =
E ∩ F+, concluding the proof of (A.6).

Next, we note that by design,

supp (f) ⊆ E+ ∩ E. (A.17)

Also, for each x ∈ (E+∩E)\ supp (f) there exists a number rx > 0 such that f = 0
a.e. in Bn(x, rx) ∩ E, and we claim that

(E+ ∩ E)\ supp (f) = (E+ ∩ E) ∩
( ⋃
x∈(E+∩E)\ supp (f)

Bn(x, rx)

)
. (A.18)

Indeed, the left-to-right inclusion is tautological, so we focus on the opposite one.
In this regard, if y belongs to the right-hand side of (A.18), then y ∈ E+ ∩ E
and there exist a point x ∈ E+ ∩ E such that f = 0 a.e. in Bn(x, rx) ∩ E and
y ∈ Bn(x, rx). Then, if r := rx − |x − y| > 0, it follows that Bn(y, r) ⊆ Bn(x, rx),
hence f = 0 a.e. in Bn(y, r) ∩ E. This shows that y /∈ supp (f), finishing the proof
of (A.18). In turn, from (A.17) and (A.18) (and (A.5)) one deduces that (A.7)
holds.

As before, based on the fact that Rn is a strongly Lindelöf space, one can find
a sequence of points {xj}j∈N ⊂ (E+ ∩ E)\ supp (f) and a sequence of numbers
{rj}j∈N ⊂ (0,∞) such that

f = 0 a.e. in Bn(xj , rj) ∩ E for each j ∈ N, (A.19)

and

(E+ ∩ E)\ supp (f) = (E+ ∩ E) ∩
( ⋃
j∈N

Bn(xj , rj)

)
. (A.20)

Thus, (A.8) readily follows from (A.19)–(A.20) and (A.5).
Next, assume that F is a relatively closed subset of E with the property that

f = 0 a.e. on E\F , and pick an arbitrary point x ∈ E\F . Given that E\F
is relatively open in E, it follows that there exists a number r > 0 such that
Bn(x, r) ∩ E ⊆ E\F . This implies f = 0 a.e. on Bn(x, r) ∩ E which, in turn,
implies x /∈ supp (f). Thus, supp (f) ⊆ F , establishing (A.9). Finally, (A.10) is
readily implied by (A.7) and (A.1), while properties (A.11)–(A.13) are seen directly
from (A.1).

Suppose now that E ⊆ Rn is open. Then (A.1) yields

E\ supp (f) = {x ∈ E | there exists r > 0 so that Bn(x, r) ⊆ E
and f = 0 a.e. in Bn(x, r)}.

(A.21)

In particular, if f ∈ L1
loc(E), from (A.21) one obtains E\ supp (f) = E\ supp (uf ),

where uf is the distribution canonically associated with the function f in the open
set E. If in addition f is continuous, then (A.21) further becomes

E\ supp (f) = {x ∈ E | there exists r > 0 so that Bn(x, r) ⊆ E
and f = 0 in Bn(x, r)}

= E\{x ∈ E | f(x) 6= 0}, (A.22)

as was to be shown. �
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