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On the Initial Value Problem of the Toda and Kac-van
Moerbeke Hierarchies

Gerald Teschl

Abstract. We provide a brief review of the initial value problem associated

with the Toda and Kac-van Moerbeke hierarchies. We give a simple proof

for the basic (global) existence and uniqueness theorem and provide some
additional details for the inverse scattering transform. In addition, we also

show how to obtain solutions of the Kac-van Moerbeke hierarchy from solutions

of the Toda hierarchy via a Miura type transform.

1. Introduction

In 1967 Gardner et al. ([10]) presented a method for solving the Korteweg-
de Vries equation which is presently known as inverse scattering transform (IST).
Since then, this method has been extended to numerous other completely integrable
equations. It consists of three steps. One, find the scattering data of the initial
conditions. Two, find the time evolution of scattering data. Three, reconstruct the
potential from the (time dependent) scattering data. At first sight this procedure
looks relatively simple, but, after a closer look, it turns out that it is highly non-
trivial to give a complete and rigorous mathematical justification. In fact, since
one has to assume existence of a solution in the outset, there are two additional
steps necessary to make the method complete from a mathematical point of view.
Firstly, one has to show that the time dependent scattering data give rise to a po-
tential. Secondly, one needs to show that this potential is indeed a solution of the
completely integrable system under consideration. These last two steps are often
ignored in the literature.

Our first aim is to review the IST for the case of the Toda hierarchy and to
show that the situation is much simpler here since we have a global existence and
uniqueness theorem at our disposal. Moreover, since rigorous results on scattering
theory for Jacobi operators are very rare, we will have a closer look at the actual
reconstruction and we will provide a detailed investigation of the Gel’fand-Levitan-
Marchenko equations containing some new results. Finally, we will review the
connection between the Toda and Kac-van Moerbeke hierarchy and show how to
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obtain solutions of the Kac-van Moerbeke hierarchy from solutions of the Toda
hierarchy via a Miura type transform.

2. The Toda hierarchy

In this section we introduce the Toda hierarchy using the standard Lax formal-
ism ([12]). We first review some basic facts from [6].

We will only consider bounded solutions and hence require

Hypothesis H.2.1. Suppose a(t), b(t) satisfy

(2.1) a(t) ∈ `∞(Z,R), b(t) ∈ `∞(Z,R), a(n, t) 6= 0 (n, t) ∈ Z× R,

and let t 7→ (a(t), b(t)) be differentiable in the Banach space `∞(Z)⊕ `∞(Z).

Associated with a(t), b(t) is a Jacobi operator

(2.2)
H(t) : `2(Z) → `2(Z)

f 7→ a(n, t)f(n+ 1) + a(n− 1, t)f(n− 1) + b(n, t)f(n) ,

where `2(Z) denotes the Hilbert space of square summable (complex-valued) se-
quences over Z. The scalar product in `2(Z) is denoted by 〈f, g〉 =

∑
n∈Z f(n)g(n)

and δn will be the canonical basis.
Moreover, choose constants c0 = 1, cj , 1 ≤ j ≤ r, cr+1 = 0, set

gj(n, t) =
j∑
`=0

cj−`〈δn, H(t)`δn〉,

hj(n, t) = 2a(n, t)
j∑
`=0

cj−`〈δn+1, H(t)`δn〉+ cj+1(2.3)

and consider the Lax operator

(2.4) P2r+2(t) = −H(t)r+1 +
r∑
j=0

(2a(t)gj(t)S+ − hj(t))H(t)r−j + gr+1(t),

where S±f(n) = f(n± 1). Restricting to the two-dimensional nullspace Ker(τ(t)−
z), z ∈ C, of τ(t)− z, we have the following representation of P2r+2(t),

(2.5) P2r+2(t)
∣∣∣
Ker(τ(t)−z)

= 2a(t)Gr(z, t)S+ −Hr+1(z, t),

where Gr(z, n, t) and Hr+1(z, n, t) are monic polynomials in z of the type

Gr(z, n, t) =
r∑
j=0

zjgr−j(n, t),

Hr+1(z, n, t) = zr+1 +
r∑
j=0

zjhr−j(n, t)− gr+1(n, t).(2.6)

A straightforward computation shows that the Lax equation

(2.7)
d

dt
H(t)− [P2r+2(t), H(t)] = 0, t ∈ R,
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is equivalent to

TLr(a(t), b(t))1 = ȧ(t)− a(t)
(
g+
r+1(t)− gr+1(t)

)
= 0,(2.8)

TLr(a(t), b(t))2 = ḃ(t)−
(
hr+1(t)− h−r+1(t)

)
= 0,(2.9)

where the dot denotes a derivative with respect to t and f±(n) = f(n±1). Varying
r ∈ N0 yields the Toda hierarchy (TL hierarchy)

(2.10) TLr(a, b) = (TLr(a, b)1,TLr(a, b)2) = 0, r ∈ N0.

The Lax equation implies the well-known isospectrality theorem.

Theorem 2.2. Let a(t), b(t) satisfy TLr(a, b) = 0 and (H.2.1). Then the Lax
equation (2.7) implies the existence of a unitary propagator Ur(t, s) for P2r+2(t)
such that

(2.11) H(t) = Ur(t, s)H(s)Ur(t, s)−1, (t, s) ∈ R2.

Thus all operators H(t), t ∈ R, are unitarily equivalent.
In addition, if ψ(s) ∈ `2(Z) solves H(s)ψ(s) = zψ(s), then the function

(2.12) ψ(t) = Ur(t, s)ψ(s),

fulfills

(2.13) H(t)ψ(t) = zψ(t),
d

dt
ψ(t) = P2r+2(t)ψ(t).

In addition, we will need the basic existence and uniqueness theorem for the
Toda hierarchy ([17], Theorem 2.2, see also [8], Proposition 1).

Theorem 2.3. Suppose (a0, b0) ∈ M = `∞(Z) ⊕ `∞(Z). Then there exists a
unique integral curve t 7→ (a(t), b(t)) in C∞(R,M) of the Toda equations, that is,
TLr(a(t), b(t)) = 0, such that (a(0), b(0)) = (a0, b0).

Proof. The Toda equation gives rise to a vector field Xr on the Banach space
`∞(Z)⊕ `∞(Z), that is,

(2.14)
d

dt
(a(t), b(t)) = Xr(a(t), b(t)) ⇔ TLr(a(t), b(t)) = 0.

Since this vector field has a simple polynomial dependence in a and b it is clearly
smooth. Hence, by standard theory, solutions for the initial value problem exist
locally and are unique (cf., e.g. [1], Theorem 4.1.5). In addition, since the Toda flow
is isospectral, we have ‖a(t)‖∞ + ‖b(t)‖∞ ≤ 2‖H(t)‖ = 2‖H(0)‖ (at least locally).
Thus any integral curve (a(t), b(t)) is bounded on finite t-intervals implying global
existence (see e.g., Proposition 4.1.22 of [1]). �

3. Inverse scattering transform

Now we want to review the inverse scattering method for solving the initial
value problem of the Toda hierarchy.

As a preparation, we first consider the trivial solution of the Toda equations,

(3.1) a0(n, t) = a0 =
1
2
, b0(n, t) = b0 = 0.

The sequences

(3.2) ψ±(z, n, t) = k±n exp
(±αr(k)t

2

)
, z =

k + k−1

2
,
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where

(3.3) αr(k) = 2
(
kG0,r(z)−H0,r+1(z)

)
= (k − k−1)G0,r(z)

satisfy

H0(t)ψ±(z, n, t) = zψ±(z, n, t),
d

dt
ψ±(z, n, t) = P0,2r+2(t)ψ±(z, n, t)

= 2a0G0,r(z)ψ±(z, n+ 1, t)−H0,r+1(z)ψ±(z, n, t)(3.4)

(we omit n, t in the arguments of G0,r, H0,r+1 since these quantities do not depend
on n, t). Note αr(k) = −αr(k−1). Explicitly we have

α0(k) = k − k−1,

α1(k) =
k2 − k−2

2
+ c1(k − k−1),

etc. .(3.5)

Now we turn to scattering theory for H(t) (cf. [7], [11], [19]). That is, we
will assume that H(t) looks asymptotically like H0 (the operator associated with
a0 = 1/2 and b0 = 0). More precisely, we will require a(n, t) > 0 and

(3.6)
∑
n∈Z
|n|(|1− 2a(n)|+ |b(n)|) <∞.

This implies

(3.7) σess(H) = σac(H) = [−1, 1], σp(H) = {λj}Nj=1 ⊆ R\[−1, 1],

where N ∈ N is finite, and the existence of the so called Jost solutions f±(k, n, t),

(3.8)
(
τ − k + k−1

2

)
f±(k, n, t) = 0, lim

n→±∞
k∓nf±(k, n, t) = 1, |k| ≤ 1.

See (e.g.) [15] where a more general result for periodic rather than constant back-
ground operator H0 is proven.

Transmission T (k, t) and reflection R±(k, t) coefficients are then defined via

(3.9) T (k, t)f∓(k, n, t) = f±(k−1, n, t) +R±(k, t)f±(k, n, t), |k| = 1,

and the norming constants γ±,j(t) corresponding to λj ∈ σp(H) are given by

(3.10) γ±,j(t)−1 =
∑
n∈Z
|f±(kj , n, t)|2, kj = λj −

√
λ2
j − 1 ∈ (−1, 0) ∪ (0, 1).

Clearly we are interested how the scattering data vary with respect to t. But first
we ensure that it suffices to check (3.6) for the initial condition.

Lemma 3.1. Suppose a(n, t), b(n, t) is a solution of the Toda system satisfying
(3.6) for one t0 ∈ R, then (3.6) holds for all t ∈ R.

For a proof see [17], Lemma 3.1 (for the semi-infinite Toda chain (r = 0) see
also [8], Proposition 4).

Theorem 3.2. Suppose a(n, t), b(n, t) is a solution of the Toda system satis-
fying (3.6) for one (and hence for all) t0 ∈ R. The functions

(3.11) exp(±αr(k)t)f±(k, n, t)
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satisfy (2.13) weakly (i.e., they are not in `2(Z)) with z = (k + k−1)/2. Here
f±(k, n, t) are the Jost solutions and αr(k) is defined in (3.3). In addition, we have

T (k, t) = T (k, 0),
R±(k, t) = R±(k, 0) exp(±αr(k)t),
γ±,`(t) = γ±,`(0) exp(∓2αr(k`)t), 1 ≤ ` ≤ N.(3.12)

Proof. As in the proof of [15], Theorem 5.1, one shows that f±(k, n, t) is
continuously differentiable with respect to t and that limn→±∞ k∓nḟ±(k, n, t)→ 0.
Now let (k + k−1)/2 ∈ ρ(H(t)), then Lemmas 4.1 and 4.2 of [16] imply that the
solution of (2.13) with initial condition f±(k, n, 0) is of the form C±(t)f±(k, n, t).
Inserting this into (2.13), multiplying with k∓n and evaluating as n → ±∞ yields
C±(t) = exp(±αr(k)t). The general result for all |k| < 1 now follows from continu-
ity. This immediately implies the formulas for T (k, t), R±(k, t). Finally, let k = k`,
then we have

(3.13) exp(±αr(k`)t)f±(k`, n, t) = Ur(t, 0)f±(k`, n, 0),

which implies

(3.14)
d

dt

exp(∓2αr(k`)t)
γ±,`(t)

=
d

dt
‖Ur(t, 0)f±(k`, ., 0)‖ = 0

and concludes the proof. �

Thus the scattering data of H(t) can be expressed in terms of those for H(0).
Now we need to know how to reconstruct H(t) from its scattering data. We drop
the dependence on t for notational convenience.

Expanding f+(k, n) with respect to k we obtain

(3.15) f+(k, n) =
kn

A+(n)

(
1 +

∞∑
j=1

K+,j(n)kj
)
, |k| ≤ 1,

where

(3.16) A+(n) =
∞∏
m=n

2a(m), K+,1(n) = −
∞∑

m=n+1

2b(m), etc. .

Integrating (3.9) (for the upper sign) around the unit circle we obtain the Gel’fand-
Levitan-Marchenko equation

(3.17) (1l + F+
n )K+(n) = A+(n)2δ0,

where

(3.18) F+
n f(j) =

∞∑
m=0

F+(2n+m+ j)f(m), f ∈ `2(N0),

is the Gel’fand-Levitan-Marchenko operator. Here

(3.19) F+(n) = F̃+(n) +
N∑
`=1

γ+,`k
n
`

and

(3.20) F̃+(n) =
1

2πi

∫
|k|=1

R+(k)kn
dk

k
∈ `2(Z,R)
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are the Fourier coefficients of R+(k−1). The following theorem collects some prop-
erties of the operator F+

n .

Theorem 3.3. Fix n ∈ Z and consider F+
n : `2(N0) → `2(N0). Then F+

n is a
self-adjoint trace class operator satisfying

(3.21) 1l + F+
n ≥ εn > 0, lim

n→∞
εn = 1.

The trace of F+
n is given by

(3.22) tr(F+
n ) =

∞∑
j=0

F+(2n+ 2j) +
N∑
`=1

γ+,`
k2n
`

1− k`
.

Proof. Let f ∈ `2(N0) and abbreviate f̂(k) =
∑∞
j=0 f(j)kj . Setting f(j) = 0

for j < 0 we obtain

(3.23)
∞∑
j=0

f(j)F+
n f(j) =

1
2πi

∫
|k|=1

R+(k)k2n|f̂(k)|2 dk
k

+
N∑
`=1

γ+,`k
2n
` |f̂(k`)|2

from the convolution formula. Since R+(k) = R+(k) the integral over the imaginary
part vanishes and the real part can be replaced by

Re(R+(k)k2n) =
1
2
(
|1 +R+(k)k2n|2 − 1− |R+(k)k2n|2

)
=

1
2
(
|1 +R+(k)k2n|2 + |T (k)|2

)
− 1(3.24)

(remember |T (k)|2 + |R+(k)k2n|2 = 1). This eventually yields the identity
∞∑
j=0

f(j)(1l + F+
n )f(j) =

N∑
`=1

γ+,`k
2n
` |f̂(k`)|2

+
1

4πi

∫
|k|=1

(
|1 +R+(k)k2n|2 + |T (k)|2

)
|f̂(k)|2 dk

k
,(3.25)

which establishes 1l+F+
n ≥ 0. In addition, by virtue of |1+R+(k)k2n|2+|T (k)|2 > 0

(a.e.), −1 is no eigenvalue and thus 1l + F+
n ≥ εn for some εn > 0. That εn → 1

follows from ‖F+
n ‖ → 0.

To see that F+
n is trace class we use the splitting F+

n = F̃+
n +

∑N
`=1 F̃+,`

n

according to (3.19). The operators F̃+,`
n are positive and trace class. The operator

F̃+
n is given by multiplication with k2nR+(k) in Fourier space and hence is trace

class since |R+(k)| ≤ 1 is integrable. �

Now we are able to explicitly invert the process of scattering theory. Clearly,
if the scattering data (and thus F+

n ) are given, we can use the Gel’fand-Levitan-
Marchenko equation (3.17) to reconstruct a(n), b(n) from F+

n

a(n)2 =
1
4
〈δ0, (1l + F+

n )−1δ0〉
〈δ0, (1l + F+

n+1)−1δ0〉
,

b(n) =
1
2

( 〈δ1, (1l + F+
n )−1δ0〉

〈δ0, (1l + F+
n )−1δ0〉

−
〈δ1, (1l + F+

n−1)−1δ0〉
〈δ0, (1l + F+

n−1)−1δ0〉

)
.(3.26)

In other words, the scattering data of H(t) uniquely determine a(t), b(t). Since
F+
n is trace class, we can use Kramer’s rule to express the above scalar products.
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If we delete the first row and first column in the matrix representation of 1l + F+
n

we obtain 1l + F+
n+1. If we delete the first row and second column in the matrix

representation of 1l +F+
n we obtain an operator 1l + G+

n . By Kramer’s rule we have

〈δ0, (1l + F+
n )−1δ0〉 =

det(1l + F+
n+1)

det(1l + F+
n )

,

〈δ1, (1l + F+
n )−1δ0〉 =

det(1l + G+
n )

det(1l + F+
n )
,(3.27)

where the determinants have to be interpreted as Fredholm determinants.
In summary, we have the following procedure:
(1) Compute the Jost solutions f±(k, n, 0) (e.g.) by iterating the correspond-

ing Volterra sum equation used to prove existence of the Jost solutions in
[15]. This gives the scattering data for H(0).

(2) Read off the scattering data of H(t) from Theorem 3.2.
(3) Compute the Fourier coefficients of R+(k, t) and use (3.27) to construct

a(n, t), b(n, t).
Since we have ensured existence of a solution in the outset (Theorem 2.3 and

Lemma 3.1), the sequences constructed by this procedure satisfy the Toda equa-
tions.

In the case r = 0 the inverse scattering procedure was first established by
Flaschka [9]. In addition, Flaschka also worked out the inverse procedure in the
reflection-less case (i.e., R±(k, t) = 0). His formulas clearly apply to the entire Toda
hierarchy upon using the t dependence of the norming constants given in (3.12).
In addition, these formulas are the same as the ones obtained using the double
commutation method (cf. [16]).

In the case of the semi-infinite Toda chain an alternative method based on the
moment problem is presented in [2], [3]. This method can also be generalized to
solve some semi-infinite non-isospectral flows related to the Toda system [4], [5].
By choosing a(n0, 0) = 0 for one fixed n0 ∈ Z (implying a(n0, t) = 0), the Toda
chain splits into two semi-infinite Toda chains. Hence the results presented here
apply to the semi-infinite Toda chain as well.

4. The Kac-van Moerbeke hierarchy and its relation to the Toda
hierarchy

In this section we review some basic properties of the Kac-van Moerbeke hier-
archy and its connection with the Toda hierarchy.

Suppose ρ(t) satisfies

Hypothesis H.4.1. Let

(4.1) ρ(t) ∈ `∞(Z,R), ρ(n, t) 6= 0, (n, t) ∈ Z× R

and let t 7→ ρ(t) be Fréchet differentiable in the Banach space `∞(Z).

Define the “even” and “odd” parts of ρ(t) by

(4.2) ρe(n, t) = ρ(2n, t), ρo(n, t) = ρ(2n+ 1, t), (n, t) ∈ Z× R,

and consider the bounded operators (in `2(Z))

(4.3) A(t) = ρo(t)S+ + ρe(t), A(t)∗ = ρ−o (t)S− + ρe(t).
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In addition, we set

(4.4) H1(t) = A(t)∗A(t), H2(t) = A(t)A(t)∗,

with

(4.5) Hk(t) = ak(t)S+ + a−k (t)S− + bk(t), k = 1, 2,

and

a1(t) = ρe(t)ρo(t), b1(t) = ρe(t)2 + ρ−o (t)2,
a2(t) = ρ+

e (t)ρo(t), b2(t) = ρe(t)2 + ρo(t)2.(4.6)

Now we define operators D(t), Q2r+2(t) (the Lax pair) in `2(Z,C2) as follows,

D(t) =
(

0 A(t)∗

A(t) 0

)
,

Q2r+2(t) =
(
P1,2r+2(t) 0

0 P2,2r+2(t)

)
,(4.7)

r ∈ N0. Here Pk,2r+2(t), k = 1, 2, are defined as in (2.4), that is,

Pk,2r+2(t) = −Hk(t)r+1 +
r∑
j=0

(2ak(t)gk,j(t)S+ − hk,j(t))Hk(t)j + gk,r+1,

Pk,2r+2(t)
∣∣∣
Ker(τk(t)−z)

= 2ak(t)Gk,r(z, t)S+ −Hk,r+1(z, t),(4.8)

where (gk,j(n, t))0≤j≤r, (hk,j(n, t))0≤j≤r+1, are defined as in (2.3), and the polyno-
mials Gk,r(z, n, t), Hk,r+1(z, n, t) are defined as in (2.6). Moreover, we choose the
same integration constants in P1,2r+2(t) and P2,2r+2(t) (i.e., c1,` = c2,` ≡ c`, 1 ≤
` ≤ r).

Analogous to equation (2.7) one obtains that

(4.9)
d

dt
D(t)− [Q2r+2(t), D(t)] = 0

is equivalent to

KMr(ρ) = (KMr(ρ)e, KMr(ρ)o)

=
(
ρ̇e − ρe(g2,r+1 − g1,r+1)
ρ̇o + ρo(g2,r+1 − g+

1,r+1)

)
= 0.(4.10)

As in the Toda context (2.10), varying r ∈ N0 yields the Kac-van Moerbeke hier-
archy (KM hierarchy) which we denote by

(4.11) KMr(ρ) = 0, r ∈ N0.

Again the Lax equation (4.9) implies ([16], Theorem 3.2)

Theorem 4.2. Let ρ satisfy (H.4.1) and KM(ρ) = 0. Then the Lax equation
(4.9) implies the existence of a unitary propagator Vr(t, s) such that we have

(4.12) D(t) = Vr(t, s)D(s)Vr(t, s)−1, (t, s) ∈ R2.

Thus all operators D(t), t ∈ R, are unitarily equivalent.

And as in Theorem 2.3 we infer ([16], Theorem 3.3)

Theorem 4.3. Suppose ρ0 ∈ `∞(Z). Then there exists a unique integral curve
t 7→ ρ(t) in C∞(R, `∞(Z)) of the Kac-van Moerbeke equations, that is, KMr(ρ) = 0,
such that ρ(0) = ρ0.
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As a simple consequence of Theorem 4.2 we have

(4.13)
d

dt
D(t)2 − [Q2r+2(t), D(t)2] = 0

and observing

(4.14) D(t)2 =
(
H1(t) 0

0 H2(t)

)
yields the implication

(4.15) KMr(ρ) = 0⇒ TLr(ak, bk) = 0, k = 1, 2.

That is, given a solution ρ of the KMr equation (4.11), one obtains two solutions,
(a1, b1) and (a2, b2), of the TLr equations (2.10) related to each other by the Miura-
type ([14]) transformations (4.6). Note that due to (H.4.1), (a1, b1) and (a2, b2)
both fulfill (H.2.1).

Since we already know how to solve the initial value problem for the Toda
equation, it would be nice if one could use this knowledge to solve the initial value
problem for the Kac-van Moerbeke equation. To do this we need to invert the above
transformation. This is our next goal.

Suppose ρ(n, t) is a solutions of the KMr equation and let

(4.16) a(n, t) = ρe(n, t)ρo(n, t), b(n, t) = ρe(n, t)2 + ρ−o (n, t)2 − λ

be a corresponding solution of the TLr equation. Here, λ ∈ R is arbitrary. Then
one can verify ([16], Theorem 3.4) that

u(λ, n, t) = exp
(∫ t

0

(−2a(0, x)
gr(0, x)ρe(0, x)

ρo(0, x)
− hr(0, x)

+ gr+1(0, x))dx
)


n−1∏
m=0

−ρe(m,t)
ρo(m,t) for n > 0

1 for n = 0
−1∏
m=n

ρo(m,t)
−ρe(m,t) for n < 0

(4.17)

is a solutions of (2.13) for z = λ. Conversely, let ρ(n, 0) be given such that a(n, 0),
b(n, 0) defined as in (4.16) satisfy (3.6). Solving the TLr equation with this initial
condition via the IST gives a(n, t), b(n, t). Moreover, since f±(k, n, 0) are linearly
independent, we can write u(λ, n, 0) = C−f−(k, n, 0) + C+f+(k, n, 0). Hence we
infer by Theorem 3.2 that

(4.18) u(λ, n, 0) = C− exp(−αr(k)t)f−(k, n, t) + C+ exp(αr(k)t)f+(k, n, t),

where f+(k, n, t) is given by (3.15) with

(4.19) K+,j(n, t) = A+(n, t)2〈δj , (1l + F+
n (t))−1δ0〉

and a similar expression for f−(k, n, t). Then ρ(n, t) defined by

(4.20) ρo(n, t) = −

√
−a(n, t)u(λ, n, t)

u(λ, n+ 1, t)
, ρe(n, t) =

√
−a(n, t)u(λ, n+ 1, t)

u(λ, n, t)

is the solution of the KMr equation corresponding to the initial condition ρ(n, 0).
For a more detailed investigation of the connection between the TLr and KMr

hierarchies we refer to [16] and the references therein.
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