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Abstract. We consider discrete one-dimensional Schrödinger operators whose

potentials decay asymptotically like an inverse square. In the super-critical
case, where there are infinitely many discrete eigenvalues, we compute precise

asymptotics of the number of eigenvalues below a given energy E as this energy

tends to the bottom of the essential spectrum.

1. Introduction

This paper is concerned with discrete one-dimensional Schrödinger operators in
`2(Z+), where Z+ = {1, 2, 3, . . . }. That is,

Hu(n) = −∆u(n) + V (n)u(n), ∆u(n) = u(n + 1)− 2u(n) + u(n− 1),

where we impose a Dirichlet boundary condition, u(0) = 0.
In the free case, V ≡ 0, the spectrum of H = −∆ is the interval [0, 4]. If

V (n) → 0 as n → ∞, then V is compact and hence zero is the bottom of the
essential spectrum of H. We are interested in the discrete spectrum of H below zero.
It consists of simple eigenvalues, so-called bound states, that can only accumulate
at zero. Thus, for E ≥ 0, we define

NE(H) = dim RanPH((−∞,−E]),

where PH is the family of spectral projections associated with H by the spectral
theorem.

It is well known that V (n) ∼ −n−2+ε produces finitely many discrete eigenvalues
if ε < 0 and infinitely many if ε > 0 and so inverse square decay is critical for
the existence of infinitely many discrete eigenvalues below the essential spectrum.
Furthermore, by the discrete analogue of Kneser’s theorem, the discrete spectrum
below zero of the operator H with potential V (n) = −cn−2 is finite when c ≤ 1

4

and infinite when c > 1
4 . Surprisingly, this discrete analog turns out much harder

to prove than the continuum result and it is not so well known. It was first shown
by Năıman [9] and later rediscovered in [2] (see also [8] for a more general result).

Our goal is to study the behavior of NE(H) as E ↓ 0 in the super-critical case
c > 1

4 . This question is natural since this case describes the borderline behavior at
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the transition between finitely and infinitely many bound states as pointed out in
the previous paragraph. In addition, we were also motivated by recent results on a
connection between singular spectrum embedded in the essential spectrum and the
discrete spectrum of a given Schrödinger operator.

Let us sketch this connection briefly. For operators of the form H = −∆ + V
on the whole line, that is, acting in `2(Z), it was shown by Killip and Simon
that the absence of bound states implies that the potential vanishes identically
[6]. In other words, σ(H) ⊆ [0, 4] implies V ≡ 0. Damanik et al. found a simple
variational proof of this statement that also allowed them to extend the result to
operators in `2(Z2) [1]. It does not hold in dimensions three or higher, nor on
the half-line, as shown in [1]. The counterexamples in `2(Zd), d ≥ 3, are given
by sparse non-decaying potentials, whereas a possible counterexample in `2(Z+) is
given by V (n) = (−1)n/n. Damanik and Killip then showed that, on the half-line,
the absence of bound states implies the absence of embedded singular spectrum. In
fact, absence of embedded singular spectrum follows already when there are finitely
many bound states [3]. This raised the natural question of what can be said when
there are infinitely many bound states. Is it true that sufficiently fast decay, for
example finiteness of the moments

Mγ =
∑
n≥1

(dist(En, [0, 4]))γ
,

implies the absence of embedded singular spectrum? Here, {En}n≥1 denote the dis-
crete eigenvalues of H outside the essential spectrum [0, 4]. Note that the Damanik-
Killip result can be phrased as follows: M0 < ∞ implies that σsing(H) ∩ [0, 4] = ∅.
Damanik et al. then found an example with 2 as an embedded eigenvalue (and
hence σsing(H) ∩ [0, 4] 6= ∅) and Mγ < ∞ for every γ > 0 [4]!1 This example has
the potential V (n) = (1 + ε)(−1)n/n for some small ε > 0. The core of the proof
consists of using methods developed in [1] and [2] to compare this sign-indefinite
potential with two sign-definite ones, both of the form −cjn

−2, for different con-
stants c1, c2 > 1/4. This clearly motivates a study of the bound state structure
of super-critical inverse square potentials. The estimates for their bound states
derived in [4] were sufficient to prove the result mentioned above, but it is desirable
to have a more complete understanding; in particular since in the continuous case
the bound state structure has been studied in detail earlier. Namely, Kirsch and
Simon considered operators of the form − d2

dx2 + V and carried out an investigation
of NE(H) for super-critical inverse square potentials [7] (see also Schmidt [10] for
extensions). They proved that the bound states approach the essential spectrum
geometrically. More precisely, they showed that

(1.1) lim
E↓0

NE(−∆ + V )
− ln(E)

=
1
2π

√
c− 1

4 ,

where V (x) = − c
1+x2 +W (x) and W is such that N0(−∆+γW ) < ∞ for all γ ∈ R.2

Let us also note that in the continuous case, a study of inverse square potentials

1It was later realized by Damanik and Remling that Mγ <∞ does indeed put some restrictions
on the embedded singular spectrum; see [5]. For example, if Mγ < ∞ for every γ > 0, then the

embedded singular spectrum is supported on a set of zero Hausdorff dimension.
2This is the half-line version of the Kirsch-Simon result. On the whole line, one has to multiply

the right-hand side of (1.1) by two; compare [6, Theorem 1].
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is further motivated by the fact that they arise in the partial wave analysis of
rotationally symmetric partial differential operators.

We will prove the discrete analogue of the Kirsch-Simon result in this paper,
that is, geometric approach of the bound states to the essential spectrum.

On the one hand, as explained above, this result is relevant to the investigations
and results described in the previous paragraph that led the authors of [4] to ask
if the Kirsch-Simon result has a discrete analogue; compare [4, Sect. 2]. On the
other hand, the proof of Kirsch and Simon uses some arguments that do not carry
over directly to the discrete case: They scale the spatial variable and use exact
solvability of the Euler differential equation. Spatial scaling is not possible in the
discrete case and, while there exists a discrete Euler equation, it is not symmetric.

Theorem 1. Suppose

V (n) = − c

n2
+ W (n), c >

1
4
,

where W is a decaying sequence such that N0(−∆ + γW ) < ∞ for all γ ∈ R. Then

(1.2) lim
E↓0

NE(−∆ + V )
− ln(E)

=
1
2π

√
c− 1

4 .

Remarks. (i) We say that a sequence W is decaying if W (n) → 0 as n →∞.
(ii) The hypothesis on W is satisfied, for example, if

∑
n>0 n|W (n)| < ∞. See [12,

Thm. 5.10].
(iii) An analogous result holds on the whole line. This follows quickly from the
half-line result since the whole-line case can be reduced to the half-line case by
Dirichlet decoupling.
(iv) For perturbations of the form V (n) = c

n2 + W (n), an analogous result holds
near the top of the essential spectrum.

2. Proof of Theorem 1

As a preparation we state the discrete analog of Proposition 5 from [7]. The
proof is analogous.

Lemma 2. Let V , W be decaying sequences. Then for every E > 0 and 0 < ε < 1
we have

NE (−∆ + V + W ) ≤ NE

(
−∆ + 1

1−εV
)

+ NE

(
−∆ + 1

εW
)
,

NE (−∆ + V + W ) ≥ NE (−∆ + (1− ε)V )−NE

(
−∆− 1−ε

ε W
)
.

Now we come to the proof of our main theorem. We start with

Vc(n) = − c

n2

and replace it by VE,c which is just Vc − E on {n : Vc(n) ≤ −E} and equal
to V otherwise. To investigate the asymptotics of NE(−∆ + VE,c) we split our
domain into two parts by cutting at

√
c
E . For the first part, we will compute

the asymptotics of NE directly. The remaining part does not contribute to NE .
Then we use Lemma 2 to show that NE has the same asymptotics for VE,c and
V = Vc + W .
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Lemma 3. We have

lim
E↓0

NE(−∆ + VE,c)
− ln(E)

=
1
2π

√
c− 1

4 .

Proof. We first decompose −∆ + VE,c into two parts by imposing an additional
Dirichlet boundary condition at b

√
c
E c. Since this constitutes a rank-one resolvent

perturbation it will not affect the limit. By the choice of our cut point, the part with
n > b

√
c
E c does not contribute and by oscillation theory (see e.g. [11] or [12, Ch. 4])

it suffices to count the number of sign flips of some solution of (−∆+VE,c)u = −Eu
on (1,

√
c
E ), that is, the number of sign flips of some solution of (−∆ + Vc)u = 0

on (1,
√

c
E ).

Unfortunately, (−∆ + Vc)u = 0 is not explicitly solvable, but

ũc(n) =
√

n exp
(

i
√

c− 1
4 ln(n)

)
solves (−∆ + Ṽc)ũ = 0 with the complex-valued potential

Ṽc(n) =
∆ũc(n)
ũc(n)

= − c

n2
+ O(

1
n3

).

Moreover, it is straightforward to check (cf. [12, Lemma 7.10], resp. [8]) that
−∆u + Vcu = 0 has a solution uc which asymptotically looks like ũc(n). Tak-
ing the real part of uc, we see that the number of sign flips behaves to leading order

like − 1
2π

√
c− 1

4 ln(E). �

Let us prove the upper bound in (1.2). By Lemma 2,

NE(−∆ + Vc + W ) = NE(−∆ + (Vc − χ(1−ε)E,c) + NE(χ(1−ε)E,c + W ))

≤ NE(−∆ + VE,c/(1−ε)) + NE(−∆ + 1
ε (χ(1−ε)E,c + W )),

where χE,c = Eχ
(0,
√

c/E)
and χΩ is the characteristic function of the set Ω. Using

NE(−∆ + 1
ε (χ(1−ε)E,c + W )) ≤ N0(−∆ + 1

εW ),

the assumption on W , and Lemma 3, we see that

lim sup
E↓0

NE(−∆ + Vc + W )
− ln(E)

≤ 1
2π

√
c

1−ε −
1
4

for every 0 < ε < 1, that is,

(2.1) lim sup
E↓0

NE(−∆ + Vc + W )
− ln(E)

≤ 1
2π

√
c− 1

4 .

It remains to show the lower bound in (1.2). By Lemma 2,

NE(−∆ + Vc + W ) = NE(−∆ + (Vc − χE/(1−ε),c) + NE(χE/(1−ε),c + W ))

≥ NE(−∆ + VE,(1−ε)c)−NE(−∆− 1−ε
ε (χE/(1−ε),c + W )).

Observe that it suffices to show that the second summand does not contribute to
the limit. Invoking Lemma 2 a second time we have

NE(−∆− 1−ε
ε (χE/(1−ε),c + W )) ≤ NE(−∆− 1

εχE/(1−ε),c) + NE(−∆− 1−ε
ε2 W ).

The second term is bounded for fixed ε as E ↓ 0 by assumption and it remains to
investigate the first one. As before we impose a Dirichlet boundary condition at
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b
√

c(1−ε)
E c and we need to count the sign flips of the solution of −∆u− E

ε(1−ε)u =

−Eu on (0,
√

c(1−ε)
E ). Since this equation is explicitly solvable we obtain

NE(−∆− 1
εχE/(1−ε),c) =

√
c(1− ε− 1

ε ) + O(E).

Hence

lim inf
E↓0

NE(−∆ + Vc + W )
− ln(E)

≥ 1
2π

√
(1− ε)c− 1

4

for every 0 < ε < 1 and thus,

(2.2) lim inf
E↓0

NE(−∆ + Vc + W )
− ln(E)

≥ 1
2π

√
c− 1

4 .

Combining (2.1) and (2.2), we obtain the assertion of the theorem. �
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