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Abstract. We investigate trace formulas for Jacobi operators which are trace
class perturbations of quasi-periodic finite-gap operators using Krein’s spec-
tral shift theory. In particular we establish the conserved quantities for the
solutions of the Toda hierarchy in this class.

1. Introduction

Scattering theory for Jacobi operators H with periodic (respectively more general)
background has attracted considerable interest recently. In [14] Volberg and Yu-
ditskii have exhaustively treated the case where H has a homogeneous spectrum
and is of Szegö class. In [2] Egorova and the authors have established direct and
inverse scattering theory for Jacobi operators which are short range perturbations
of quasi-periodic finite-gap operators. For further information and references we
refer to these articles and [12].

In the case of constant background it is well-known that the transmission
coefficient is the perturbation determinant in the sense of Krein [8], see e.g., [11]
or [12]. The purpose of the present paper is to establish this result for the case
of quasi-periodic finite-gap background, thereby establishing the connection with
Krein’s spectral shift theory. For related results see also [7], [10].

Moreover, scattering theory for Jacobi operators is not only interesting in its
own right, it also constitutes the main ingredient of the inverse scattering transform
for the Toda hierarchy (see, e.g., [5], [4], [12], or [13]). Since the transmission
coefficient is invariant when our Jacobi operator evolves in time with respect to
some equation of the Toda hierarchy, the corresponding trace formulas provide the
conserved quantities for the Toda hierarchy in this setting.
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2. Notation

We assume that the reader is familiar with quasi-periodic Jacobi operators. Hence
we only briefly recall some notation and refer to [2] and [12] for further information.

Let

(2.1) Hqf(n) = aq(n)f(n+ 1) + aq(n− 1)f(n− 1) + bq(n)f(n)

be a quasi-periodic Jacobi operator in `2(Z) associated with the Riemann surface
of the function

(2.2) R
1/2
2g+2(z), R2g+2(z) =

2g+1∏
j=0

(z − Ej), E0 < E1 < · · · < E2g+1,

g ∈ N. The spectrum of Hq is purely absolutely continuous and consists of g + 1
bands

(2.3) σ(Hq) =
g⋃
j=0

[E2j , E2j+1].

For every z ∈ C the Baker-Akhiezer functions ψq,±(z, n) are two (weak) solutions
of Hqψ = zψ, which are linearly independent away from the band-edges {Ej}2g+1

j=0 ,
since their Wronskian is given by

(2.4) Wq(ψq,−(z), ψq,+(z)) =
R

1/2
2g+2(z)∏g

j=1(z − µj)
.

Here µj are the Dirichlet eigenvalues at base point n0 = 0. We recall that ψq,±(z, n)
have the form

ψq,±(z, n) = θq,±(z, n)w(z)±n,

where θq,±(z, n) is quasi-periodic with respect to n and w(z) is the quasi-momentum.
In particular, |w(z)| < 1 for z ∈ C\σ(Hq) and |w(z)| = 1 for z ∈ σ(Hq).

3. Asymptotics of Jost solutions

After we have these preparations out of our way, we come to the study of short-
range perturbations H of Hq associated with sequences a, b satisfying a(n) →
aq(n) and b(n) → bq(n) as |n| → ∞. More precisely, we will make the following
assumption throughout this paper:

Let H be a perturbation of Hq such that

(3.1)
∑
n∈Z

(
|a(n)− aq(n)|+ |b(n)− bq(n)|

)
<∞,

that is, H −Hq is trace class.
We first establish existence of Jost solutions, that is, solutions of the per-

turbed operator which asymptotically look like the Baker-Akhiezer solutions.
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Theorem 3.1. Assume (3.1). For every z ∈ C\{Ej}2g+1
j=0 there exist (weak) solu-

tions ψ±(z, .) of Hψ = zψ satisfying

(3.2) lim
n→±∞

w(z)∓n (ψ±(z, n)− ψq,±(z, n)) = 0,

where ψq,±(z, .) are the Baker-Akhiezer functions. Moreover, ψ±(z, .) are contin-
uous (resp. holomorphic) with respect to z whenever ψq,±(z, .) are, and have the
following asymptotic behavior
(3.3)

ψ±(z, n) =
z∓n

A±(n)

( n−1∏
∗

j=0

aq(j)
)±1(

1 +
(
B±(n)±

n∑
∗

j=1

bq(j − 0
1 )
)1
z

+O(
1
z2

)
)
,

where

(3.4)

A+(n) =
∞∏
j=n

a(j)
aq(j)

, B+(n) =
∞∑

m=n+1

(bq(m)− b(m)),

A−(n) =
n−1∏
j=−∞

a(j)
aq(j)

, B−(n) =
n−1∑

m=−∞
(bq(m)− b(m)).

Note that since aq(n) are bounded away from zero, A±(n) are well-defined. Here

the star indicates that
n∑
∗

j=1

= −
0∑

j=n+1

for n < 0 and similarly for the product.

Proof. The proof can be done as in the periodic case (see e.g., [2], [6], [9] or [12],
Section 7.5). There a stronger decay assumption (i.e., first moments summable) is
made, which is however only needed at the band edges {Ej}2g+1

j=0 .

For later use we note the following immediate consequence

Corollary 3.2. Under the assumptions of the previous theorem we have

lim
n→±∞

w(z)∓n
(
ψ′±(z, n)∓ nw

′(z)
w(z)

ψ±(z, n)− ψ′q,±(z, n)± nw
′(z)
w(z)

ψq,±(z, n)
)

= 0,

where the prime denotes differentiation with respect to z.

Proof. Just differentiate (3.2) with respect to z, which is permissible by uniform
convergence on compact subsets of C\{Ej}2g+1

j=0 .

We remark that if we require our perturbation to satisfy the usual short range
assumption as in [2] (i.e., the first moments are summable), then we even have
w(z)∓n(ψ′±(z, n)− ψ′q,±(z, n))→ 0.
From Theorem 3.1 we obtain a complete characterization of the spectrum of H.
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Theorem 3.3. Assume (3.1). Then we have σess(H) = σ(Hq), the point spectrum
of H is confined to R\σ(Hq). Furthermore, the essential spectrum of H is purely
absolutely continuous except for possible eigenvalues at the band edges.

Proof. This is an immediate consequence of the fact that H − Hq is trace class
and boundedness of the Jost solutions inside the essential spectrum.

Our next result concerns the asymptotics of the Jost solutions at the other side.

Lemma 3.4. Assume (3.1). Then the Jost solutions ψ±(z, .), z ∈ C\σ(H), satisfy

(3.5) lim
n→∓∞

|w(z)∓n(ψ±(z, n)− α(z)ψq,±(z, n))| = 0,

where

(3.6) α(z) =
W (ψ−(z), ψ+(z))

Wq(ψq,−(z), ψq,+(z))
=

∏g
j=1(z − µj)

R
1/2
2g+2(z)

W (ψ−(z), ψ+(z)).

Proof. Since H −Hq is trace class, we have for the difference of the Green’s func-
tions

lim
n→±∞

G(z, n, n)−Gq(z, n, n) = lim
n→±∞

〈δn, ((H − z)−1 − (Hq − z)−1)δn〉 = 0

and using

Gq(z, n, n) =
ψq,−(z, n)ψq,+(z, n)
Wq(ψq,−(z), ψq,+(z))

, G(z, n, n) =
ψ−(z, n)ψ+(z, n)
W (ψ−(z), ψ+(z))

we obtain
lim

n→−∞
ψq,−(z, n)(ψ+(z, n)− α(z)ψq,+(z, n)) = 0,

which is the claimed result.

Note that α(z) is just the inverse of the transmission coefficient (see, e.g., [2] or
[12], Section 7.5). It is holomorphic in C\σ(Hq) with simple zeros at the discrete
eigenvalues of H and has the following asymptotic behavior

(3.7) α(z) =
1
A

(
1 +

B

z
+O(z−2)

)
, A = A−(0)A+(0), B = B−(1) +B+(0),

with A±(n), B±(n) from (3.4).

4. Connections with Krein’s spectral shift theory and trace
formulas

To establish the connection with Krein’s spectral shift theory we next show:

Lemma 4.1. We have

(4.1)
d

dz
α(z) = −α(z)

∑
n∈Z

(
G(z, n, n)−Gq(z, n, n)

)
, z ∈ C\σ(H),

where G(z,m, n) and Gq(z,m, n) are the Green’s functions of H and Hq, respec-
tively.
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Proof. Green’s formula ([12], eq. (2.29)) implies

(4.2) Wn(ψ+(z), ψ′−(z))−Wm−1(ψ+(z), ψ′−(z)) =
n∑

j=m

ψ+(z, j)ψ−(z, j),

hence the derivative of the Wronskian can be written as
d

dz
W (ψ−(z), ψ+(z)) = Wn(ψ′−(z), ψ+(z)) +Wn(ψ−(z), ψ′+(z))

= Wm(ψ′−(z), ψ+(z)) +Wn(ψ−(z), ψ′+(z))−
n∑

j=m+1

ψ+(z, j)ψ−(z, j).

Using Corollary 3.2 and Lemma 3.4 we have

Wm(ψ′−(z), ψ+(z)) = Wm(ψ′− +m
w′

w
ψ−, ψ+)−

w′

w

(
mW (ψ−, ψ+)− a(m)ψ−(m+ 1)ψ+(m)

)
→ αWq,m(ψ′q,− +m

w′

w
ψq,−, ψq,+)−

α
w′

w

(
mWq(ψq,−, ψq,+)− aq(m)ψq,−(m+ 1)ψq,+(m)

)
= α(z)Wm(ψ′q,−(z), ψq,+(z))

as m→ −∞. Similarly we obtain

Wn(ψ−(z), ψ′+(z))→ α(z)Wn(ψq,−(z), ψ′q,+(z))

as n→∞ and again using (4.2) we have

Wm(ψ′q,−(z), ψq,+(z)) = Wn(ψ′q,−(z), ψq,+(z)) +
n∑

j=m+1

ψq,+(z, j)ψq,−(z, j).

Collecting terms we arrive at

W ′(ψ−(z), ψ+(z)) =−
∑
j∈Z

(
ψ+(z, j)ψ−(z, j)− α(z)ψq,+(z, j)ψq,−(z, j)

)
+ α(z)W ′q(ψq,−(z)ψq,+(z)).

Now we compute
d

dz
α(z) =

d

dz

(W
Wq

)
=
( 1
Wq

)′
W +

1
Wq

W ′

= −
W ′q
W 2
q

W +
1
Wq

(
−
∑
j∈Z

(
ψ+ψ− − αψq,+ψq,−

)
+ αW ′q

)
= − 1

Wq

∑
j∈Z

(
ψ+ψ− − αψq,+ψq,−

)
,

which finishes the proof.
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As an immediate consequence, we can identify α(z) as Krein’s perturbation deter-
minant ([8]) of the pair H, Hq.

Theorem 4.2. The function Aα(z) is Krein’s perturbation determinant:

(4.3) α(z) =
1
A

det
(
1l + (H(t)−Hq(t))(Hq(t)− z)−1

)
, A =

∏
j∈Z

a(j)
aq(j)

.

By [8], Theorem 1, α(z) has the following representation

(4.4) α(z) =
1
A

exp
(∫

R

ξα(λ)dλ
λ− z

)
,

where

(4.5) ξα(λ) =
1
π

lim
ε↓0

argα(λ+ iε)

is the spectral shift function.
Hence

(4.6) τj = tr(Hj − (Hq)j) = j

∫
R
λj−1ξα(λ)dλ,

where τj/j are the expansion coefficients of lnα(z) around z =∞:

lnα(z) = − lnA−
∞∑
j=1

τj
j zj

.

They are related to the expansion αj coefficients of

α(z) =
1
A

∞∑
j=0

αj
zj
, α0 = 1,

via

(4.7) τ1 = −α1, τj = −jαj −
j−1∑
k=1

αj−kτk.

5. Conserved quantities of the Toda hierarchy

Finally we turn to solutions of the Toda hierarchy TLr (see, e.g., [1], [4], [12], or
[13]). Let (aq(t), bq(t)) be a quasi-periodic finite-gap solution of some equation in
the Toda hierarchy, TLr(aq(t), bq(t)) = 0, and let (a(t), b(t)) be another solution,
TLr(a(t), b(t)) = 0, such that (3.1) holds for one (hence any) t.

Since the transmission coefficient T (z, t) = T (z, 0) ≡ T (z) is conserved (see
[3] – formally this follows from unitary invariance of the determinant), so is α(z) =
T (z)−1.
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Theorem 5.1. The quantities

(5.1) A =
∞∏

j=−∞

a(j, t)
aq(j, t)

and τj = tr(Hj(t)−Hq(t)j), that is,

τ1 =
∑
n∈Z

b(n, t)− bq(n, t)

τ2 =
∑
n∈Z

2(a(n, t)2 − aq(n, t)2) + (b(n, t)2 − bq(n, t)2)

...

are conserved quantities for the Toda hierarchy.
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