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SCHRÖDINGER OPERATORS AND APPLICATIONS TO

QUANTUM SCATTERING

ALEKSEY KOSTENKO AND GERALD TESCHL

Dedicated with great pleasure to Israel Samoilovich Kac on the occasion of his 85th birthday.

Abstract. We find the high energy asymptotics for the singular Weyl–Titchmarsh

m-functions and the associated spectral measures of perturbed spherical Schrö-
dinger operators (also known as Bessel operators). We apply this result to

establish an improved local Borg–Marchenko theorem for Bessel operators as

well as uniqueness theorems for the radial quantum scattering problem with
nontrivial angular momentum.

1. Introduction

In this paper we will investigate perturbed spherical Schrödinger operators (also
known as Bessel operators)

(1.1) τ = − d2

dx2
+
l(l + 1)

x2
+ q(x), l ≥ −1

2
, x ∈ R+ := (0,+∞),

where the potential q is real-valued satisfying

(1.2) q ∈ L1
loc(R+),

{
x q(x) ∈ L1(0, 1), l > − 1

2 ,

x(1− log(x))q(x) ∈ L1(0, 1), l = − 1
2 .

Note that we explicitly allow non-integer values of l such that we also cover the
case of arbitrary space dimension n ≥ 2, where l(l + 1) has to be replaced by
l(l + n − 2) + (n − 1)(n − 3)/4 [42, Sect. 17.F], or the case of scattering of waves
and particles in conical domains [5]. Due to its physical importance this equation
has obtained much attention in the past and we refer for example to [1], [2], [20],
[30], [35], [40], [42] and the references therein.

Of course one of the most interesting applications is the scattering problem in
R3 with a spherically symmetric potential. Originating in the seminal work of
Heisenberg, the question if the potential q is determined by the scattering phase
for one fixed value of the angular moment l has a venerable history. In the simplest
case l = 0 this question is completely understood by now and we refer, e.g, to
the monographs [4], [13], or [37]. However, for general l this question remained
open to the best of our knowledge. As one of our main results we will show that,
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in combination with the eigenvalues and norming constants, the scattering phase
determines the potential uniquely.

Our approach will use singular Weyl–Titchmarsh–Kodaira theory as one basic
ingredient. This approach was first used by Kodaira [28] in connection with radial
scattering theory as already mentioned above. This original work contained some
gaps first pointed out by Kac [23] who proposed an alternate approach based on
Krein’s method of directing functionals. However, these results did not get much
attention until recently when Gesztesy and Zinchenko [19] took it up again and
triggered a large amount of results [10], [11], [14], [15], [16], [30], [31], [32], [33].

Let us outline the content of our paper. We will first establish the high energy
asymptotics of the singular Weyl function and the spectral measure associated with
operators of the type (1.1) (see Theorem 2.1). As one expects, the leading term
in the asymptotic behavior is given by the (known) unperturbed Weyl function.
However, while the form of this result suggests it can be proven by a straightforward
perturbation argument, this is not the case. In fact, the definition of the Weyl
function depends on a basis of entire (with respect to the spectral parameter z)
solutions φ(z, x) and θ(z, x) of the underlying differential equation. But while the
regular solution φ(z, x) can be obtained using the usual iteration scheme, this fails
for the singular solution θ(z, x) (unless additional stringent assumptions on q(x) are
made — see also Remark 3.3). This is precisely the fact originally overlooked by
Kodaira [28] and first pointed out by Kac [23] (who conjectured that such a solution
will not exist at all in general – see his footnote on p. 206). Moreover, there have also
been some additional incorrect constructions and we refer to [31], [33] for further
details. Consequently, the usual strategy for proving high energy asymptotics of the
Weyl function are not available in this situation. Hence we use an entirely different
approach based on two main ingredients: The one-term asymptotic formula for the
m-function (Theorem A.2) and the commutation methods for Bessel operators [32].
The proof will be given in Section 3, where we will use a Liouville type transform
to establish a connection between the perturbed Bessel operators and the Krein

string operators − d2

r(ξ)dξ2 .

In the remaining sections we will then demonstrate the usefulness of our main
result. In Section 4, we apply Theorem 2.1 to derive an improved local Borg–
Marchenko result for Bessel operators (including some applications to inverse spec-
tral uniqueness results). In the final section, we will apply our finding to the
quantum mechanical scattering problem. More precisely, using the connection be-
tween the Jost function [22] and the singular m-function and then applying our
local Borg–Marchenko result (Theorem 4.1), we are able to establish uniqueness
in terms of both the absolute value of the Jost function and the phase shift (see
Theorems 5.1 and 5.3). Let us also mention that basic properties of the Jost func-
tion in the case of general l were first formulated in [28]. Asymptotics for the Jost
solutions and the Jost functions are well-known and were investigated by several
authors [6], [18], [17]. Moreover, a scattering approach between the unperturbed
operators for l = 0 and l ∈ [− 1

2 ,
1
2 ) was recently introduced in [2].

Finally, necessary results on the asymptotic behavior of m-functions of regular
Sturm–Liouville problems are collected in Appendix A. In Appendix B, we provide
some estimates and analytical properties of the solutions of τy = z y.
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2. Asymptotics of the Weyl function

Let (0, b) ⊆ R+ be some open interval. We will use τ to describe the formal
differential expression and H to describe the self-adjoint operator acting in L2(0, b)
and given by τ together with the usual boundary condition at x = 0:

(2.1) lim
x→0

xl((l + 1)f(x)− xf ′(x)) = 0, l ∈ [−1

2
,

1

2
).

We are mainly interested in the case where τ is limit point at b, but if it is not, we
simply choose another boundary condition there.

Next, notice that our assumption (1.2) implies that the equation

(2.2) τy = zy

has a system of solutions φ(z, x) and θ(z, x) which is real entire with respect to z
such that

(2.3) φ(z, x) = xl+1φ̃(z, x), θ(z, x) =

{
x−l

2l+1 θ̃(z, x), l > − 1
2 ,

−x1/2 log(x)θ̃(z, x), l = − 1
2 ,
,

where φ̃, θ̃ ∈ W 1,1[0, 1] and φ̃(0) = θ̃(0) = 1. For a detailed construction of these
solutions we refer to, e.g., [33]. The singular Weyl function m : C\R→ C is defined
such that

(2.4) ψ(z, x) = θ(z, x) +m(z)φ(z, x), λ ∈ C \ R,
either belongs to L2(c, b) for some (and hence for all) c ∈ (0, b) if H is limit point
at b, or satisfies the boundary condition at x = b if H is limit circle at b. Note
that, while the first solution φ(z, x) is unique under this normalization, the second

solution θ(z, x) is not, since for any real entire f(z) the new solution θ̃(z, x) =
θ(z, x) − f(z)φ(z, x) also satisfies (2.3). Note that the corresponding singular m-
function m̃ is given by

(2.5) m̃(z) = m(z) + f(z)

in this case. Moreover, it was shown in [30], [33] that the singular m-function (2.4)
admits the following integral representation

(2.6) m(z) = g(z) + (1 + z2)κl
∫
R

( 1

λ− z
− λ

1 + λ2

) dρ(λ)

(1 + λ2)κl
, z /∈ R.

Here κl := b l2 + 3
4c, the function g is real entire, and ρ : R→ R is a nondecreasing

function satisfying

(2.7) ρ(λ) =
ρ(λ+) + ρ(λ−)

2
, ρ(0) = 0,

∫
R

dρ(λ)

(1 + λ2)κl+1
<∞.

The operator H is unitarily equivalent to multiplication by the independent vari-
able in L2(R, dρ) and thus ρ is called the spectral function and dρ is the spectral
measure. Moreover, m can be identified as a Q function, in the sense of Krein, in
the framework of super-singular perturbations. This is explained in detail in [33]
(see also [8], [34] and [7] and references therein). We also remark that the value of
κl is best possible (see again [33] and also [34], where the case q(x) = a

x , a ∈ R,
was treated).

In the special case l = 0 the function m is the classical m-function and Marchenko
[36] proved that in any nonreal sector in C+ the m-function satisfies

(2.8) m(z) = −
√
−z(1 + o(1)), |z| → +∞,
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where the branch cut of the root is taken along the negative real axis. The estimate
for the remainder term was later improved by Krein, Levitan, and Marchenko (see,
e.g., [37], [41]). By now there is a vast literature on high energy asymptotics
for m-functions of general Sturm–Liouville operators and it seems the first results
were obtained by M.G. Krein and I.S. Kac [24, 25, 26], Hille [21], Everitt [12]
and Kasahara [27]. The most complete results on one-term asymptotics for the
m-functions were obtained by Bennewitz [3] (cf. also our Appendix A).

In the present paper we are interested in the asymptotic behavior of the singular
m-function (2.4) of perturbed Bessel operators. Our main result is the following
extension of Marchenko’s asymptotic formula (2.8).

Theorem 2.1. Suppose

(2.9) H = − d2

dx2
+
l(l + 1)

x2
+ q(x),

where q satisfies (1.2). Let m(·) be the singular m-function (2.4). Then there is a
real entire function g such that in any nonreal sector,

(2.10) m(z)− g(z) = ml(z)(1 + o(1)), |z| → +∞,

where

(2.11) ml(z) =


−C2

l

sin((l+ 1
2 )π)

(−z)l+ 1
2 , l + 1

2 ∈ R+ \ N0,

−C2
l

π zl+
1
2 log(−z), l + 1

2 ∈ N0,
Cl =

√
π

Γ(l + 3
2 )2l+1

.

Moreover, the spectral function satisfies

(2.12) ρ(λ) = ρl(λ)(1 + o(1)), λ→ +∞,

where

(2.13) ρl(λ) =
C2
l

π(l + 3
2 )
χ[0,∞)(λ)λl+

3
2 , l ≥ −1

2
.

Remark 2.2. We can always choose a singular solution θ(z, x) to be a Frobenius
type solution (for a definition and basic properties we refer to [33]). Note that in
this case the function g(.) in (2.6) and hence in (2.10) becomes a real polynomial
of order no greater than 2κl + 1 (see [33, Thm. 4.5]).

3. Proof of Theorem 2.1

First, let us note that it suffices to prove Theorem 2.1 in the case when b is a
regular endpoint. In fact, by [30, Lem. 7.1], we know

(3.1) m(z) = − θ(z, c)
φ(z, c)

+O(
1√

−zφ2(z, c)
),

as |z| → +∞ in any nonreal sector. Hence the asymptotic behavior of m depends
only on the behavior of q near 0 and is independent of the behavior of q outside a
neighborhood of 0 as well as of a possible boundary condition at b.

Therefore, without loss of generality we set b = 1 and assume that q ∈ L1(c, 1)
for some c ∈ (0, 1). We divide the proof into three steps. First we establish a
connection with the Krein string operator in the case l ∈ [− 1

2 ,
1
2 ). Second we use

this to prove our main result in this case. Third we extend this result to all l using
commutation methods.
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3.1. Connection with the Krein string operator. In this section we restrict
our considerations to the case when x = 0 is in the limit circle case, that is l ∈
[− 1

2 ,
1
2 ). It is well-known that under this assumption the self-adjoint operator H

associated with τ is lower semibounded. We continue to use the same basis of
solutions φ(z, x) and θ(z, x) as in the previous section. However, instead of the
boundary condition (2.1) induced by φ we will now use the one induced by θ(λ0)
plus an arbitrary boundary condition at x = 1,

(3.2) lim
x→0

Wx(f, θ(λ0)) = 0, cos(β)f(1)− sin(β)f ′(1) = 0.

Here λ0 ∈ R and β ∈ [0, π) are fixed, and we can assume that θ(z, x) satisfies
W (θ(λ0), θ(z)) = 0 (cf. [31, App. A]). In this case θ(z, x) continues to satisfy (2.3).

The singular Weyl function is then defined such that

(3.3) ψ(z, x) = φ(z, x)− m̃(z)θ(z, x)

satisfies the boundary condition at x = 1. In this case m̃ becomes the classical
m-function (see, e.g., [31, App. A]) and hence it will be a Herglotz–Nevanlinna
function satisfying

(3.4) m̃(z) = Re(m̃(i)) +

∫
R

(
1

λ− z
− λ

1 + λ2

)
dρ(λ),

where the spectral measure ρ̃ satisfies
∫
R dρ̃(λ) =∞ and

∫
R
dρ̃(λ)
1+λ2 <∞.

Let r ∈ L1(0, a) be a positive function on (0, a) and consider the Krein string
operator

(3.5) L = − 1

r(ξ)

d2

dξ2

acting in the weighted Hilbert space L2
r(0, a) and subject to the boundary conditions

(3.6) y′(0) = cos(β̃)y(a)− sin(β̃)y′(a) = 0.

Let also c(z, ξ) and s(z, ξ) be the fundamental solutions of

(3.7) − y′′ = z r(ξ)y, ξ ∈ [0, a],

such that

(3.8) c(z, 0) = s′(z, 0) = 1, c′(z, 0) = s(z, 0) = 0.

Define the corresponding m-function M : C \ R→ C as follows:

(3.9) yβ(z, ξ) := s(z, ξ)−M(z)c(z, ξ) satisfies (3.6) at ξ = a.

The main aim of this section is to establish a connection between the operators
L and H and hence between the m-coefficients m̃ and M .

Without loss of generality we can assume that H ≥ ε1l with some ε > 0. Hence
the solution θ0(x) := θ(0, x) is positive on (0, 1]. Then (see, e.g., [26, §14]), we set

(3.10) ξ := ξ(x) =

∫ x

0

dt

θ20(t)
, a := ξ(1), r(ξ) := θ40(x),

and define the map U : L2(0, 1)→ L2
r(0, a) as follows:

(3.11) U : v(x)→ u(ξ) :=
1

θ0(x)
v(x).



6 A. KOSTENKO AND G. TESCHL

First of all, notice that r ∈ L1(0, a). Indeed, using (2.3), we get∫ a

0

r(ξ)dξ =

∫ 1

0

θ40(x)
dx

θ20(x)
=

∫ 1

0

θ20(x)dx <∞.

Hence the above definition is correct. Moreover, U is isometric:

‖Uv‖2L2
r

=

∫ a

0

|u(ξ)|2r(ξ)dξ =

∫ 1

0

∣∣∣ v(x)

θ0(x)

∣∣∣2θ40(x)
dx

θ20(x)
=

∫ 1

0

|v|2dx = ‖v‖2L2 .

Furthermore, it is not difficult to check that ỹ := Uy solves (3.7) if y is a solution
of (2.2). Indeed, this is immediate from the following representation of (2.2) (cf.
[26, §14])

−θ20(x)
d

dx

(
θ20(x)

d

dx

y

θ0(x)

)
= z θ40(x)

y

θ0(x)
.

Finally, let us show that c(z, ξ) = Uθ(z) and s(z, ξ) = Uφ(z). Notice that

(Uy)(0) = lim
x→0

y(z, x)

θ0(x)
=

{
(2l + 1) limx→0 x

ly(z, x), l ∈ (− 1
2 ,

1
2 ),

− limx→0
y(z,x)√
x log(x)

, l = − 1
2 ,

and

d

dξ
Uy
∣∣∣
ξ=0

= lim
x→0

θ20(x)
d

dx

y

θ0(x)
= lim
x→0

(
y′θ0 − yθ′0

)
= lim
x→0

Wx(y, θ0).

Hence, using the representation of φ and θ from [33, §3], we easily compute that

(Uφ)(0) = 0, (Uφ)′ξ(0) = 1,

and

(Uθ)(0) = 1, (Uθ)′ξ(0) = 0.

Since both Uφ and Uθ solve (3.7), we are done. Similarly one computes

(3.12) cos(β̃)(Uψ)(a)− sin(β̃)(Uψ)′(a) = 0, cot(β̃) = θ0(1)
(

cot(β) + 1
)
.

Thus we proved the following result.

Lemma 3.1. Let l ∈ [−1/2, 1/2) and suppose (1.2). Let also a, r(·), and the

unitary map U be defined by (3.10)–(3.11). If β and β̃ are connected by (3.12),
then the operators H and L are unitarily equivalent: H = U−1LU . Moreover, the
fundamental solutions (2.3) and (3.8) are connected by

c(z, ξ) =
(
Uφ(z)

)
(ξ), s(z, ξ) =

(
Uθ(z)

)
(ξ),

and the corresponding m-functions defined by (3.3) and (3.9) satisfy

(3.13) m̃(z) = M(z), z /∈ R.

Corollary 3.2. Let l ∈ [−1/2, 1/2) and let H(0,c) be a self-adjoint operator associ-
ated with (1.1) on (0, c) and subject to some separated boundary conditions at the
endpoints 0 and c. Then the eigenvalues λn(c) of H(0,c) satisfy

(3.14) lim
n→∞

n√
λn(c)

=
c

π
.
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Proof. Due to the interlacing properties of eigenvalues, it suffices to prove the claim
in the case of boundary conditions (3.2). By Lemma 3.1, the spectra of operators
H(0,c) and L(0,ξ(c)) coincide. However, by [26, §11.8], the eigenvalues λn(ξ) (=
λn(c)) of L satisfy

lim
n→∞

n√
λn(ξ)

=
1

π

∫ ξ(c)

0

√
r(t)dt =

1

π

∫ c

0

√
θ40(t)

dt

θ20(t)
=
c

π
.

�

Remark 3.3. (i) Using commutation methods (see, e.g., [32]), (3.14) can be ex-
tended to the case l ≥ −1/2. However, these asymptotics were already obtained in
[30] (see also [1]) together with a detailed estimate for the error term and hence
there is no need to further pursue this approach here.

(ii) Note that (3.14) indicates that the solutions φ(z, x) and θ(z, x) are entire
functions in z of order 1/2 and of finite type. Indeed, this has been shown in [31,
Lem. 8.4]).

Moreover, there is a standard iteration procedure to construct the solution c(z, x)
of (3.7) (see, e.g., [26, §2]) and then, by using the Liouville transform, we obtain the
solution θ(z, x). As already mentioned in the introduction, it is difficult to construct
θ(z, x) directly by iteration. Indeed, for the standard iteration scheme (see, e.g., [30,
Lem. 2.2] for a construction of φ(z, x)) to converge it is required that q must satisfy
an additional assumption at x = 0. For instance, q ∈ L1(0, ε) is required if l = 0.
Finally, it is difficult to use a perturbative approach to get a detailed asymptotic for
c(z, x) and hence for θ(z, x) since (3.7) needs to be considered as a perturbation of
−y′′ = zξαy and thus changes the coefficient containing the spectral parameter z.

3.2. Spectral asymptotics in the case l ∈ [−1/2, 1/2). Using the connection
between the m-functions established in Lemma 3.1, we are able to prove the fol-
lowing result:

Theorem 3.4. Let l ∈ [−1/2, 1/2), suppose q satisfies (1.2), and let H be given
by (1.1) together with the boundary condition (3.2). Then the corresponding m-
function (3.3) satisfies

(3.15) m̃(z) = − 1

ml(z)
(1 + o(1)) as |z| → ∞,

where ml is given by (2.11). The latter holds uniformly in any nonreal sector in
C+.

Proof. (i) The case l ∈ (−1/2, 1/2). By (2.3) and Lemma A.2 from [33], we get

ξ(x) = (2l + 1)x2l+1ξ̃(x), ξ̃ ∈W 1,1[0, 1], ξ̃(0) = 1.

Hence, ξ as a function of x has limit order 2l + 1 and by Lemma A.3, the inverse
x = x(ξ) of ξ(x) has the following asymptotic behavior:

x(ξ) =
( ξ

2l + 1

) 1
2l+1

(1 + o(1)) as ξ → 0.

Next, using [33, Lem. A.2], we obtain

R(ξ) =

∫ ξ

0

r(ξ)dξ =

∫ x

0

θ20(t)dt =
x1−2l

(2l + 1)2(1− 2l)
(1 + o(1)) =

ξα

Aα
(1 + o(1)),
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where

α =
1− 2l

1 + 2l
, Aα := (1− 2l)(1 + 2l)

2l+3
2l+1 .

Therefore, by Theorem A.2, the m-function (3.9) corresponding to the operator L
satisfies

M(z) = K 1
1+α

A
1

1+α
α (−z)−

1
1+α (1 + o(1)) as |z| → ∞; Kν =

ν1−νΓ(ν)

(1− ν)νΓ(1− ν)
.

The latter holds uniformly in any nonreal sector in C+. Further, noting that

1

1 + α
= l +

1

2
,

after straightforward calculations we get

(3.16) Kl+ 1
2
A
l+ 1

2
α = 22l(2l + 1)2

Γ(1/2 + l)

Γ(1/2− l)
=

sin(π(l + 1
2 ))

C2
l

and Lemma 3.1 completes the proof.
(ii) The case l = − 1

2 . By (2.3), θ0(x) =
√
x log(x)θ̃0(x), where θ̃0 ∈ W 1,1[0, 1]

and θ̃0(0) = 1. Hence by (3.10) we get

(3.17) ξ = G(x) :=

∫ x

0

dt

t log2(t)θ̃20(t)
, R(ξ) = P (x) :=

∫ x

0

t log2(t)θ̃20(t)dt.

Set

G0(x) :=

∫ x

0

dt

t log2(t)
=
−1

log(x)
, P0(x) :=

∫ x

0

t log2(t)dt =
x2

2
(log2(x)−log(x)+

1

2
).

Note that P , P0, G, and G0 are absolutely continuous and strictly increasing. Let
p, p0, g, and g0 be the corresponding inverses.

Firstly, since θ̃0 ∈W 1,1 and θ̃0(0) = 1, we observe that

(3.18) (G ◦ g0)(x) =

∫ g0(x)

0

dt

t log2(t)θ̃20(t)
=

∫ x

0

dt

(θ̃20 ◦ g0)(t)
∼ x, x→ 0.

Furthermore, by L’Hôpital’s rule, P ∼ P0 and G ∼ G0 as x→ 0. Moreover,

P0(x+ o(x))

P0(x)
= (1 + o(1))2

log2(x)− log(x)(1 + o(1)) + 1/2 + o(1)

log2(x)− log(x) + 1/2
∼ 1, x→ 0,

and hence

(3.19) P (x+ o(x)) ∼ P (x), x→ 0.

Noting that R(ξ) = (P ◦g)(ξ) and R0(ξ) = (P0 ◦g0)(ξ) and using (3.18) and (3.19),
we get

(3.20) lim
ξ→0

R(ξ)

R0(ξ)
= lim
ξ→0

(P ◦ g)(ξ)

(P0 ◦ g0)(ξ)
= lim
x→0

(P ◦ g ◦G0)(x)

P0(x)
= 1.

The function R0, given by

(3.21) R0(ξ) = (P0 ◦ g0)(ξ) =
2 + 2ξ + ξ2

4ξ2e2/ξ
∼ R̃0(ξ) :=

1

2ξ2e2/ξ
, ξ → 0,

has limit order∞ at 0 and hence, by (3.20), so has R. By Theorem A.2, the asymp-
totic behavior of m(z) as z → ∞ is determined by the function f = F−1, where
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F (ξ) := 1
ξR(ξ) . By Lemma A.3, the inverse function f = F−1 is asymptotically

equal to the inverse f̃0 of

F̃0(ξ) :=
1

ξR̃0(ξ)
= 2ξe2/ξ.

Note that the function F̃0(ξ) is a bijection from (0, 2) to (4e,∞) whose inverse is
given by

f̃0(x) = − 2

Wm(− 4
x )
,

whereWm is the second branch of the Lambert W-function [39, §4.13] which satisfies

(3.22) −Wm(− 1

x
) = log(x) + log(log(x)) +O

( log(log(x))

log(x)

)
, x→ +∞

Finally, applying Theorem A.2, we get

m(ρeiϕ) = f̃0(ρ)(1 + o(1)) =
2

log(ρ)
(1 + o(1)), ρ→∞.

Lemma 3.1 completes the proof. �

Observe that the m-functions (2.4) and (3.3) are connected by m(z) = −1/m̃(z).
Therefore, the asymptotic formula (3.15) proves Theorem 2.1 in the case l ∈
[−1/2, 1/2).

3.3. Spectral asymptotics in the case l ≥ 1
2 . Finally the general case can be

reduced to the previous one as in the proof of Corollary 3.11 from [32]. In fact,
given l = l0 + k with l0 ∈ [− 1

2 ,
1
2 ), k ∈ N, we can perform a single commutation

step to obtain an operator Ȟ associated with l − 1 and a new potential q̌ in the
same class. Now taking into account that φ̌(z, x) = (2l + 1)xl(1 + o(1)) does not
satisfy our normalization (2.3) [32, Thm. 3.7] implies m(z) = (2l + 1)2(z − λ)m̌(z)
and the claim follows by induction on k.

Remark 3.5. As pointed out in our introduction the solution θ(z, x) is only unique
up to a term f(z)φ(z, x). Following [33] we will call θ(z, x) a Frobenius solution if

(3.23) lim
x→0

x−(l+1) ∂
(nl+1)

∂z(nl+1)
θ(z, x) ≡ 0,

where nl := bl+ 1/2c. This will fix f(z) up to a polynomial of degree nl and ensure
that m(z) is in the generalized Nevalinna class N∞κl , where κl = b l2 + 3

4c (we refer
to [33] for further details).

It is easy to see that θ in Section 3.1 is a Frobenius solution. Moreover, the
property of a singular solution θ to be Frobenius is invariant under a single com-
mutation. Therefore, it follows from Remark 3.3 that a Frobenius solution θ is an
entire function in z of growth order 1/2 and of finite type.

4. Uniqueness results for the inverse spectral problem

As it was discussed in Remark 3.5, if we choose θ(z, x) to be a Frobenius solution,
then the m(z) is in the generalized Nevalinna class N∞κl . This fixes m(z) up to a
polynomial of degree nl and thus l can be read off from the asymptotics of m(z) in
this case.

This observation enables us to show the following improvement of Theorem 8.5
from [31].
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Theorem 4.1. Let H(lj , qj), j ∈ {1, 2}, be the operators defined in L2(0, bj) by
(1.1). Assume that qj satisfies (1.2), lj ∈ [− 1

2 ,∞), and 0 < bj ≤ +∞. Suppose mj

are defined via solutions θj(z, x), φj(z, x) which are entire functions in z of order
less than 1.

If for some c ∈ (0,min{b1, b2}) there is a real entire function g such that for
every ε > 0

(4.1) m1(z)−m2(z) = g(z) +O(e−2(c−ε)|Im(
√
z)|)

as z →∞ along some nonreal ray, then l1 = l2 and q1(x) = q2(x) for a.e. x ∈ (0, c).

Proof. Without loss of generality we can assume that θj are Frobenius solutions
such that the m-functions mj are generalized Nevanlinna functions belonging to

the class N∞κj , κj = b lj2 + 3
4c. Moreover, (4.1) implies that g is bounded by a

polynomial of degree at most n := max{κ1, κ2}+ 1 on two rays in C and hence, by
the Phragmén–Lindelöf theorem, g is a polynomial of degree at most n.

Therefore, without loss of generality we can absorb g(z) in the θj with the larger
lj and assume g(z) = 0. But then we can read off lj from the asymptotic behavior
of mj(z) implying l1 = l2. But this shows φ1(z, x) and φ2(z, x) have the same
asymptotic behavior and the result follows from [31, Thm. 8.5]. �

Corollary 4.2. Let Hj, j ∈ {1, 2}, satisfy the same assumptions as in Theorem
4.1. Let also the singular m-functions mj be defined via Frobenius solutions.

If for some c ∈ (0,min{b1, b2}) there is a real entire function g such that (4.1)
holds for every ε > 0 as z → ∞ along some nonreal ray, then l1 = l2 and q1(x) =
q2(x) for a.a. x ∈ (0, c).

Proof. It suffices to notice that according to Remark 3.5 Frobenius solutions are of
order 1/2 and then to apply Theorem 4.1. �

Since m(z) is determined by its spectral measure ρ(λ) up to an entire function
([31, Thm. 4.1]) we also obtain:

Corollary 4.3. Let Hj, j ∈ {1, 2}, satisfy the same assumptions as in Theorem 4.1.
Let also m1 and m2 be some singular m-functions and ρ1, ρ2 be the corresponding
spectral functions.

If there is a real entire function g such that

(4.2) m1(z) = m2(z) + g(z),

or equivalently ρ1 = ρ2, then l1 = l2, b1 = b2 and q1(x) = q2(x) for a.e. x ∈ (0, b1).

Proof. Without loss of generality we can assume that mj(z) are defined via Frobe-
nius solutions (this will only change g(z)). But then mj(z) are generalized Nevan-
linna functions and g(z) can be at most a polynomial. Moreover, we can even absorb
g(z) in the θj with the larger lj and assume g(z) = 0 without loss of generality.
Hence the result follows from the previous corollary. �

Using a different approach based on the theory of de Branges spaces, Corollary
4.3 was established by Eckhardt [10].

As another consequence we also obtain a generalization of item (ii) of Theorem
2.8 from [30].
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Corollary 4.4. Suppose H has purely discrete spectrum σ(H) = {λn}. Then the
eigenvalues λn together with the norming constants

(4.3) γ−1n =

∫ b

0

φ(λn, x)2dx

uniquely determine q and l.

Proof. This is immediate since in this case the spectrum is purely discrete and
the spectral measure is uniquely determined by its jumps together with the jump
heights ρ({λn}) = γn. �

5. Quantum scattering theory

In this section we want to look at the case where in addition to (1.2) the potential
has the form

(5.1) q(x) =
γ

x
+ q̃(x), q̃(x) ∈ L1(1,∞), γ ∈ R.

5.1. The Jost function. Recall that by Weidmann’s theorem ([41, Thm. 9.38]) the
spectrum of H is purely absolutely continuous on (0,∞) with an at most countable
number of eigenvalues λn ∈ (−∞, 0].

Then it is easy to show (cf. [28]) that for k 6= 0 there exists a unique so called
Jost solution of τf = zf satisfying the asymptotic normalization

(5.2) f(k, x) = eikx−
iγ
2k log(x)(1 + o(1))

as x→∞. Here k =
√
z with the branch cut along the positive real axis such that

0 ≤ arg(k) < 2π. The Jost solution is analytic in the upper half plane and can be
continuously extended to the real axis away from k = 0. We can extend it to the
lower half plane by setting f(k, x) = f(−k, x) = f(k∗, x)∗ for Im(k) < 0.

Its derivative satisfies

(5.3) f ′(k, x) =

(
ik − iγ

2kx

)
eikx−

iγ
2k log(x)(1 + o(1)).

For k ∈ R\{0} we obtain two solutions f(k, x) and f(−k, x) = f(k, x)∗ of the same
equation whose Wronskian is given by

(5.4) W (f(−k, .), f(k, .)) = 2ik.

The Jost function is defined as

(5.5) f(k) = W (f(k, .), φ(k2, .))

and we also set

(5.6) g(k) = W (f(k, .), θ(k2, .))

such that

(5.7) f(k, x) = f(k)θ(k2, x)− g(k)φ(k2, x) = f(k)ψ(k2, x).

In particular, the Weyl m-function (2.4) is given by

(5.8) m(k2) = − g(k)

f(k)
, k ∈ C+.

Note that both f(k) and g(k) are analytic in the upper half plane and f(k) has
simple zeros at iκn =

√
λn ∈ C+.
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Since f(k, x)∗ = f(−k, x) for k ∈ R \ {0}, we obtain f(k)∗ = f(−k), g(k)∗ =
g(−k). Moreover, (5.4) shows

(5.9) φ(k2, x) =
f(−k)

2ik
f(k, x)− f(k)

2ik
f(−k, x), k ∈ R \ {0},

and by (5.7) we get

(5.10) 2i Im(f(k)g(k)∗) = f(k)g(k)∗ − f(k)∗g(k) = W (f(−k, .), f(k, .)) = 2ik.

Hence

(5.11) Im(m(k2)) = −
Im
(
f(k)∗g(k)

)
|f(k)|2

=
k

|f(k)|2
, k ∈ R \ {0},

implying

(5.12) dρ(λ) = χ(0,∞)(λ)

√
λ

π|f(
√
λ)|2

dλ+
∑
n

γndθ(λ− λn),

where

(5.13) γn =

(∫ ∞
0

φ(λn, x)2dx

)−1
are the usual norming constants. Since −γn equals the residue of m(z) at λn we
obtain

(5.14) ḟ(iκn) = −2iκn
g(iκn)

γn
, f(iκn, x) = g(iκn)φ(λn, x).

By Theorem 2.1 and (5.12),

(5.15) |f(k)| = |k|
−l

Cl
(1 + o(1)), k →∞.

As an immediate consequence of Corollary 4.3 we obtain

Theorem 5.1. Suppose the potential q is locally integrable and satisfies (1.2) near
0 and (5.1) near ∞. Then the absolute value of the Jost function (5.5) on the real
line together with the norming constants (5.13) and the eigenvalues determines the
value of the angular momentum l and the potential q uniquely.

5.2. The phase shift. In this subsection, we assume that the potential q belongs
to the Marchenko class, i.e., in addition to (1.2), q also satisfies

(5.16)

∫ ∞
1

x|q̃(x)|dx <∞, q̃(x) =

{
q(x), l > − 1

2 ,

log(x)q(x), l = − 1
2 .

The Jost solution of τf = k2f is defined to satisfy the following asymptotic nor-
malization:

(5.17) f(k, x) = ei(kx−
lπ
2 )(1 + o(1))

as x→∞. Again k =
√
z with the branch cut along the positive real axis such that

0 ≤ arg(k) < π. By the previous considerations, the Jost solution is analytic in the
upper half plane and can be continuously extended to the real axis away from k = 0.
We can extend it to the lower half plane by setting f(k, x) = f(−k, x) = f(k∗, x)∗

for Im(k) < 0.
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The Jost function f(.) is defined by (5.5). Notice that f(−k) = f(k)∗ for k ∈
R\{0}. Set f(k) = |f(k)|e−iδ(k), k ∈ R\{0}. Note that δ(−k) = −δ(k) and hence,
by (5.9), we obtain

(5.18) φ(k2, x) =
|f(k)|
k

sin

(
kx− lπ

2
+ δ(k)

)
+ o(1), x→∞, 0 ≤ arg(k) < π.

The function δ : R→ R is called the phase shift and the scattering matrix is defined
by

(5.19) S(k) =
f(−k)

f(k)
= e2iδ(k), k ∈ R \ {0}.

Remark 5.2. In the case q(x) = 0 we have

φl(z, x) = z−
2l+1

4

Cl

√
πx
2 Jl+ 1

2
(
√
zx),(5.20)

fl(k, x) = i
√

πxk
2 H

(1)
l+1/2(kx).(5.21)

Therefore,

(5.22) fl(k) =
k−l

Cl
, 0 ≤ arg(k) < π,

and hence

(5.23) Sl(k) = 1, δl(k) = 0, k ∈ R \ {0}.

Next we are going to show that f(k) is uniquely determined by its phase δ(k).
Firstly, observe that the Jost solution (5.17) has the form

(5.24) f(k, x) = C−1l k−lψ̃(k, x), Im k ≥ 0,

where ψ̃ is given by (B.17). Therefore, by Lemma B.5, the function

(5.25) F (k) = Clk
lf(k)

is an analytic function in Im k > 0 satisfying (B.26). By (B.27) it extends contin-
uously to the boundary if l > − 1

2 and the same is true in the critical case l = − 1
2

except for a possible logarithmic singularity at 0.
Moreover, (B.25) implies

(5.26)

∫
R

δ(k)

1 + |k|
dk <∞.

Indeed, δ(.) is bounded on R and, by (B.26), near infinity it behaves like ImF .
Hence combining

Imψl(k
2, x) = φl(k

2, x)Imml(k
2) =

C2
l

π
k2l+1φl(k

2, x).

with (B.4), (B.25) and Fubini’s theorem, we obtain the claimed integrability∫ ∞
1

ImF (k)

k
dk ≤ C

∫ ∞
0

x|q(x)|
∫ ∞
1

(kx)2lx

(1 + kx)2l+2
dk dx ≤ C̃

∫ ∞
0

x|q̃(x)|dx.

Since q satisfies (1.2) and (5.16), the Bargmann bound (see, e.g., [4]) implies that
H only has a finite number N of negative eigenvalues {−κ2n}Nn=1 and, if l > 1

2 , a
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possible eigenvalue at 0. Using standard techniques (c.f. [38, §4]), it can be shown
that F (.) has simple zeros at iκn and at most a second order zero at 0. Therefore,

Im log

(
Cl
k−l

N∏
n=1

(
1 +

κ2n
k2

)−1
f(k)

)
is in the Hardy spaceH∞(C+) and (cf. [29]) we arrive at the following representation
of the Jost function

(5.27) f(k) =
k−l

Cl

N∏
n=1

(
1 +

κ2n
k2

)
exp

(
− 1

π

∫
R

δ(t)

t− k
dt

)
.

Now Theorem 5.1 immediately implies the following result.

Theorem 5.3. Suppose the potential q is locally integrable and satisfies (1.2) near
0 and (5.16) near ∞. Then the phase shift (5.18) together with the value of the
angular momentum l, the norming constants, and the eigenvalues determine the
potential q uniquely.

Appendix A. Asymptotic estimates for m-functions

In this appendix we collect some required results from [3]. Consider the Sturm–
Liouville differential expression

−y′′ + q(x)y = z r(x)y, x ∈ (0, b),

where q, r ∈ L1
loc(0, b) are real valued and r > 0 a.e. on (0, b). We assume that the

endpoint x = 0 is regular, i.e., q, r ∈ L1(0, c) for any c ∈ (0, b). Let m(·) be the
m-functions corresponding to the Neumann boundary condition at x = 0 such that

(A.1) s(z, x) +m(z)c(z, x)

is square integrable near b and satisfies a given boundary condition at b in the limit
circle case.

Define the following function

(A.2) R(x) :=

∫ x

0

r(t)dt

and note that R ∈W 1,1(0, c) is positive and strictly increasing on (0, b).

Definition A.1. We will say that R has limit order α ∈ [0,∞) at x = 0 if for
positive s

(A.3) lim
x→0

R(sx)

R(x)
= sα.

R has a limit order ∞ at x = 0 if the limit in (A.3) equals ∞ for all s > 1.

Define also the function f as the inverse of

F (x) =
1

xR(x)
.

Note that f(y) → 0 as y → +∞. The following result is a particular case of
Theorem 4.1 from [3] (see also [27, Thm. 2]).
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Theorem A.2 ([3, 27]). Assume that R has limit order α at x = 0. Then any
m-function corresponding to the Neumann condition at x = 0 satisfies

(A.4) m(µρ) =
Kν

(−µ)ν
f(ρ)(1 + o(1)) as ρ→∞,

where

(A.5) ν =
1

1 + α
, Kν =

ν1−νΓ(ν)

(1− ν)νΓ(1− ν)
.

The estimate holds uniformly for µ in any compact set of C+. Also, Kν = 1 for
ν ∈ {0, 1}.

Since it will in general not be possible to compute f explicitly, we will rely on
the following known fact which follows upon combining Theorem 1 and Theorem 3
from [9]:

Lemma A.3 ([9]). Let R0, R be two functions as in (A.2) and define correspond-
ing functions f0, f as above. Suppose R0 has a limit order α ∈ (0,+∞] and

limx→0
R(x)
R0(x)

= 1. Then limy→+∞
f(y)
f0(y)

= 1.

Remark A.4. Theorem A.2 was first established by I.S. Kac [25] and Y. Kasahara
[27] for the case α ∈ (0,∞). The current form of Theorem A.2 was found by C.
Bennewitz [3]. Moreover, the converse statement has been established independently
in [3] and [27].

Appendix B. Some estimates for the spherical Schrödinger equation

In this appendix we want to describe some properties of the solutions of the
spherical Schrödinger equation which are crucial for Section 5.

The first two lemmas contain estimates for the Green function

(B.1) Gl(z, x, y) = φl(z, x)θl(z, y)− φl(z, y)θl(z, x)

and the regular solution φ(z, x) (see, e.g., [30, Lems. 2.2, A.1, A.2]). Here

(B.2) φl(z, x) = C−1l z−
2l+1

4

√
πx

2
Jl+ 1

2
(
√
zx),

and
(B.3)

θl(z, x) = −Clz
2l+1

4

√
πx

2

{
−1

sin((l+ 1
2 )π)

J−l− 1
2
(
√
zx), l + 1

2 ∈ R+ \ N0,

Yl+ 1
2
(
√
zx)− 1

π log(z)Jl+ 1
2
(
√
zx), l + 1

2 ∈ N0,

where Jl+1/2 and Yl+1/2 are the usual Bessel and Neumann functions (see [39,

Chap. 10]). We will abbreviate k =
√
z, 0 ≤ arg(z) < 2π.

Lemma B.1 ([30]). For l > − 1
2 the following estimates hold:

(B.4) |φl(k2, x)| ≤ C
(

x

1 + |k|x

)l+1

e|Im k|x,

(B.5) |Gl(k2, x, y)| ≤ C
(

x

1 + |k|x

)l+1(
1 + |k|y

y

)l
e|Im k|(x−y), y ≤ x,
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and

(B.6)

∣∣∣∣ ∂∂xGl(k2, x, y)

∣∣∣∣ ≤ C ( x

1 + |k|x

)l(
1 + |k|y

y

)l
e|Im k|(x−y), y ≤ x.

For the case l = − 1
2 formula (B.4) remains valid and one has to replace (B.5) and

(B.6) by

|G− 1
2
(k2, x, y)| ≤ C

(
x

1 + |k|x
· y

1 + |k|y

) 1
2

e|Im k|(x−y)(1− log(
|k|y

1 + |k|y
)
)
, y ≤ x,

(B.7)

∣∣∣∣ ∂∂xG− 1
2
(k2, x, y)

∣∣∣∣ ≤ C (y + |k|xy
x+ |k|xy

) 1
2

e|Im k|(x−y)(1− log(
|k|y

1 + |k|y
)
)
, y ≤ x.

(B.8)

Lemma B.2 ([30]). Assume (1.2) and set q̃(x) = q(x) if l > −1/2 and q̃(x) =
(1− log( x

1+x ))q(x) if l = −1/2. Then φ(z, x) satisfies the integral equation

(B.9) φ(z, x) = φl(z, x) +

∫ x

0

Gl(z, x, y)q(y)φ(z, y)dy.

Moreover, φ is entire in z for every x > 0 and satisfies the estimate

(B.10) |φ(k2, x)− φl(k2, x)| ≤ C
(

x

1 + |k|x

)l+1

e|Im k|x
∫ x

0

yq̃(y)

1 + |k|y
dy.

The derivative is given by

(B.11) φ′(z, x) = φ′l(z, x) +

∫ x

0

∂

∂x
Gl(z, x, y)q(y)φ(z, y)dy

and satisfies the estimate

(B.12) |φ′(k2, x)− φ′l(k2, x)| ≤ C
(

x

1 + |k|x

)l
e|Im k|x

∫ x

0

yq̃(y)

1 + |k|y
dy.

Next we need some estimates for the Weyl solution ψ(z, x). We begin with some
basic properties of the unperturbed Bessel equation.

Lemma B.3. Let ψl(z, x) be the Weyl solution of the unperturbed Bessel equation,

ψl(z, x) = θl(z, x) +ml(z, x)φl(z, x) = iCl(i
√
−z)l+ 1

2

√
πx

2
H

(1)

l+ 1
2

(i
√
−zx)

= iClk
l+ 1

2

√
πx

2
H

(1)

l+ 1
2

(kx)(B.13)

where ml is given by (2.11) and H
(1)

l+ 1
2

is the Hankel function of the first kind.

If l > −1/2, then ψl(k
2, x) is analytic in Im k > 0, continuous in Im k ≥ 0 and

(B.14) |ψl(k2, x)| ≤ C
(

x

1 + |k|x

)−l
e−|Im k|x.

If l = −1/2, then ψ− 1
2
(k2, x) is analytic in Im k > 0, continuous in C+ \{0} and

(B.15) |ψ− 1
2
(k2, x)| ≤ C

(
x

1 + |k|x

) 1
2
(

1− log
( |k|x

1 + |k|x

))
e−|Im k|x.
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Moreover,

(B.16)
√
kψ− 1

2
(k2, x) ∼ −

√
kx log(kx), kx→ 0.

Using the standard technique (see, e.g., [4, Chap. I.5]), one can prove the follow-
ing

Lemma B.4. Assume (5.16). Then there is a solution ψ̃(z, x) satisfying the inte-
gral equation

(B.17) ψ̃(z, x) = ψl(z, x)−
∫ ∞
x

Gl(z, x, y)q(y)ψ̃(z, y)dy.

Moreover, if l > −1/2, then ψ̃(k2, x) is analytic in Im k > 0, continuous in
Im k ≥ 0 and it satisfies the estimate

(B.18) |ψ̃(k2, x)− ψl(k2, x)| ≤ C
(

x

1 + |k|x

)−l
e−|Im k| x

∫ ∞
x

yq(y)

1 + |k|y
dy.

If l = −1/2, then ψ̃(k2, x) is analytic in Im k > 0, continuous in C+ \ {0} and
(B.19)

|ψ̃(k2, x)−ψ− 1
2
(k2, x)| ≤ C

(
x

1 + |k|x

) 1
2
(

1− log
( |k|x

1 + |k|x

))
e−|Im k| x

∫ ∞
x

yq̃(y)

1 + |k|y
dy.

Moreover,

(B.20) |
√
kψ̃(k2, x)| = O

(
−
√
|k|x log(|k|x)

)
, |k|x→ 0.

The derivative is given by

(B.21) ψ̃′(z, x) = ψ′l(z, x)−
∫ ∞
x

∂

∂x
Gl(z, x, y)q(y)ψ̃(z, y)dy

and satisfies the estimate

(B.22) |ψ̃′(k2, x)− ψ′l(k2, x)| ≤ C
(

x

1 + |k|x

)−l−1
e−|Im k| x

∫ ∞
x

yq(y)

1 + |k|y
dy.

if l > −1/2 and
(B.23)

|ψ̃′(k2, x)−ψ′− 1
2
(k2, x)| ≤ C

(
x

1 + |k|x

)− 1
2
(

1− log
( |k|x

1 + |k|x

))
e−|Im k| x

∫ ∞
x

yq̃(y)

1 + |k|y
dy.

if l = −1/2.

Finally, consider the following function

(B.24) F (k) := W (ψ̃(k2, .), φ(k2, .)), Im k ≥ 0, k 6= 0.

Lemma B.5. Assume (1.2) and (5.16). Then the function F admits the following
integral representation

(B.25) F (k) = 1+

∫ ∞
0

ψl(k
2, x)φ(k2, x)q(x)dx = 1+

∫ ∞
0

ψ̃(k2, x)φl(k
2, x)q(x)dx.

Moreover, F is analytic in C+ and

(B.26) F (k) = 1 + o(1)

as |k| → ∞ in Im k ≥ 0.
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If l > −1/2, then F is continuous and bounded on Im k ≥ 0. In the case l = −1/2

(B.27) F (k) = c log(−k2) + F̃ (k), k ∈ R \ {0}

where c ∈ R and F̃ is bounded continuous, and also

(B.28) |F (k)| = O(log(k)) as k → 0 in Im k ≥ 0.

Proof. To prove the integral representations (B.25), we need to replace φ and ψ in
(B.24) by (B.9) and (B.17), respectively, use the asymptotic estimates for φ, ψ and
Gl, and then take the limits x→ +∞ and x→ 0.

To prove the second claim, we observe that by (B.4) and (B.14)

|ψl(k2, x)φ(k2, x)| ≤ C x

1 + |k|x
, l > −1

2
,(B.29)

|ψ− 1
2
(k2, x)φ(k2, x)| ≤ C x

1 + |k|x

(
1− log

( |k|x
1 + |k|x

))
, l = −1

2
,(B.30)

which immediately implies (B.26).
Moreover, if l > −1/2, then (B.29) shows that in this case F is analytic in C+

and continuous in C+. If l = −1/2, then (B.30) implies analyticity in C+ and also
the estimate (B.28). Finally, notice that

F (k) = 1 +

∫ +∞

0

θl(k
2, x)φ(k2, x)q(x)dx+ml(k

2)

∫ +∞

0

φl(k
2, x)φ(k2, x)q(x)dx

and the integrals converge for k ∈ R. This implies (B.27). �

Remark B.6. By choosing q to be a characteristic function in (B.25), one sees
that c in (B.27) is nonzero in general.

Acknowledgments. We thank Fritz Gesztesy and Mark Malamud for several
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