
INVERSE SCATTERING TRANSFORM FOR THE TODA
HIERARCHY

GERALD TESCHL

Abstract. We provide a rigorous treatment of the inverse scattering trans-

form for the entire Toda hierarchy. In addition, we revisit the connection be-
tween trace formulas and conserved quantities from the viewpoint of Krein’s

spectral shift theory.

1. Introduction

In 1967 Gardner et al. ([10]) presented a method for solving the Korteweg-de
Vries equation which is presently known as inverse scattering transform (IST).
Their method is based on the connection between the Korteweg-de Vries and the
one-dimensional Schrödinger equation. This connection becomes most transparent
using an approach due to Lax [14] which rewrites completely integrable nonlinear
evolution equations as linear evolution equations for linear operators, viz.

(1.1)
d

dt
H(t) = [P (t), H(t)],

where [P,H] = PH−HP denotes the usual commutator. Under suitable conditions,
(1.1) will imply existence of a unitary propagator U(s, t) for H(t), that is,

(1.2) H(t) = U(t, s)H(s)U(s, t), U(t, s)∗ = U(t, s)−1 = U(s, t).

In particular, this implies that the operators H(t), t ∈ R are unitarily equivalent
and that the spectrum σ(H(t)) is independent of t. Now the general idea is to
find suitable spectral data for H(t) which uniquely determine H(t). Then equation
(1.1) can be used to derive linear evolution equations which are easier to solve.

As shown in [10], a suitable set of spectral data for H(t) are the scattering data
whose time evolution is explicitly solvable. Clearly this only gives a necessary form
of solutions since existence has been assumed in the outset. It turns out that the
remaining step, to verify that the constructed ”solutions” are indeed solutions, is
much harder to prove than the method itself. In fact, looking at [15], Section 4.2
(where a rigorous proof is indicated on 3 pages), shows that this remaining problem
is in fact nontrivial and, in the case of the Korteweg-de Vries equation, imposes
additional restrictions on the scattering data.

The goal of the present paper is to establish this step for the Toda equations
and, at the same time, treat the entire Toda hierarchy. This is possible since,
on the contrary to the Korteweg-de Vries equation, existence and uniqueness of
solutions of the Toda equations can be easily proved (see Theorem 2.2 below).
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Hence it (essentially) remains to verify that solutions whose initial conditions decay
sufficiently fast at ±∞ decay sufficiently fast for all t ∈ R.

2. The Toda hierarchy

In this section we introduce the Toda hierarchy using the standard Lax formalism
([14]). We first review some basic facts from [6].

We will only consider bounded solutions and hence require

Hypothesis H.2.1. Suppose a(t), b(t) satisfy

(2.1) a(t) ∈ `∞(Z,R), b(t) ∈ `∞(Z,R), a(n, t) 6= 0 (n, t) ∈ Z× R,

and let t 7→ (a(t), b(t)) be differentiable in the Banach space `∞(Z)⊕ `∞(Z).

Associated with a(t), b(t) is a Jacobi operator

(2.2)
H(t) : `2(Z) → `2(Z)

f 7→ τ(t)f ,

where

(2.3) τ(t)f(n) = a(n, t)f(n+ 1) + a(n− 1, t)f(n− 1) + b(n, t)f(n)

and `2(Z) denotes the Hilbert space of square summable (complex-valued) sequences
over Z. Moreover, choose constants c0 = 1, cj , 1 ≤ j ≤ r, cr+1 = 0, set

gj(n, t) =
j∑
`=0

cj−`〈δn, H(t)`δn〉,

hj(n, t) = 2a(n, t)
j∑
`=0

cj−`〈δn+1, H(t)`δn〉+ cj+1(2.4)

and consider the Lax operator

(2.5) P2r+2(t) = −H(t)r+1 +
r∑
j=0

(2a(t)gj(t)S+ − hj(t))H(t)r−j + gr+1(t),

where S±f(n) = f(n± 1). Restricting to the two-dimensional nullspace Ker(τ(t)−
z), z ∈ C of τ(t)− z, we have the following representation of P2r+2(t)

(2.6) P2r+2(t)
∣∣∣
Ker(τ(t)−z)

= 2a(t)Gr(z, t)S+ −Hr+1(z, t),

where Gr(z, n, t) and Hr+1(z, n, t) are monic polynomials in z of the type

Gr(z, n, t) =
r∑
j=0

zjgr−j(n, t),

Hr+1(z, n, t) = zr+1 +
r∑
j=0

zjhr−j(n, t)− gr+1(n, t).(2.7)

A straightforward computation shows that the Lax equation

(2.8)
d

dt
H(t)− [P2r+2(t), H(t)] = 0, t ∈ R



INVERSE SCATTERING TRANSFORM FOR THE TODA HIERARCHY 3

is equivalent to

TLr(a(t), b(t))1 = ȧ(t)− a(t)
(
g+
r+1(t)− gr+1(t)

)
= 0,

TLr(a(t), b(t))2 = ḃ(t)−
(
hr+1(t)− h−r+1(t)

)
= 0,(2.9)

where the dot denotes a derivative with respect to t and f±(n) = f(n±1). Varying
r ∈ N0 yields the Toda hierarchy (TL hierarchy)

(2.10) TLr(a, b) = (TLr(a, b)1,TLr(a, b)2) = 0, r ∈ N0.

In addition, we will need the basic existence and uniqueness theorem for the Toda
hierarchy. Even tough it is of fundamental importance, it seems to be missing in
the literature (see [8], Proposition 1, where a proof, based on QR decompositions,
for the semi-infinite case is given). Hence we include the proof for convenience of
the reader.

Theorem 2.2. Suppose (a0, b0) ∈ M = `∞(Z) ⊕ `∞(Z). Then there exists a
unique integral curve t 7→ (a(t), b(t)) in C∞(R,M) of the Toda equations, that is,
TLr(a(t), b(t)) = 0, such that (a(0), b(0)) = (a0, b0).

Proof. The Toda equation gives rise to a vector field Xr on the Banach space
`∞(Z)⊕ `∞(Z), that is,

(2.11)
d

dt
(a(t), b(t)) = Xr(a(t), b(t)) ⇔ TLr(a(t), b(t)) = 0.

Since this vector field has a simple polynomial dependence in a and b it is clearly
smooth. Hence by standard theory solutions for the initial value problem exist
locally and are unique (cf., e.g. [1], Theorem 4.1.5). In addition, since the Toda flow
is isospectral we have ‖a(t)‖∞ + ‖b(t)‖∞ ≤ 2‖H(t)‖ = 2‖H(0)‖ (at least locally).
Thus any integral curve (a(t), b(t)) is bounded on finite t-intervals implying global
existence (see e.g., Proposition 4.1.22 of [1]). �

3. Inverse scattering transform

We start with the trivial solution of the Toda equations

(3.1) a0(n, t) = a0 =
1
2
, b0(n, t) = b0 = 0,

The sequences

(3.2) ψ±(z, n, t) = k±n exp
(±αr(k)t

2

)
, z =

k + k−1

2
,

where

(3.3) αr(k) = 2
(
kG0,r(z)−H0,r+1(z)

)
= (k − k−1)G0,r(z)

satisfy

H0(t)ψ±(z, n, t) = zψ±(z, n, t),
d

dt
ψ±(z, n, t) = P0,2r+2(t)ψ±(z, n, t)

= 2a0G0,r(z)ψ±(z, n+ 1, t)−H0,r+1(z)ψ±(z, n, t)(3.4)



4 GERALD TESCHL

(we omit n, t in the arguments of G0,r, H0,r+1 since these quantities do not depend
on n, t). Note αr(k) = −αr(k−1). Explicitly we have

α0(k) = k − k−1,

α1(k) =
k2 − k−2

2
+ c1(k − k−1),

etc. .(3.5)

Now we turn to the general case (cf. [8], Proposition 1 for the special case r = 0).

Lemma 3.1. Suppose a(n, t), b(n, t) is a solution of the Toda system satisfying
(3.6) for one t0 ∈ R, then (3.6) holds for all t ∈ R, that is,

(3.6)
∑
n∈Z
|n|(|1− 2a(n, t)|+ |b(n, t)|) <∞.

Proof. Without loss of generality we choose t0 = 0. Shifting a → a − 1
2 we can

consider the norm

(3.7) ‖(a, b)‖∗ =
∑
n∈Z

(1 + |n|)(|1− 2a(n)|+ |b(n)|)

which remains finite at least locally (since there is a corresponding local solution).
Next, we note that by (2.4) we have the estimate∑

n∈Z
(1 + |n|)|gr(n, t)− g0,r| ≤ Cr(‖H/(0)‖)‖(a(t), b(t))‖∗,(3.8) ∑

n∈Z
(1 + |n|)|hr(n, t)− h0,r| ≤ Cr(‖H(0)‖)‖(a(t), b(t))‖∗,(3.9)

where Cr(‖H(0)‖) is some positive constant. It suffices to consider the case where
cj = 0, 1 ≤ j ≤ r. In this case we infer from equations (3.15) and (3.25) of [16]
that gj(n, t), hj(n, t), j ∈ N0 can be computed from g0(n, t) = 1, h0(n, t) = 0 and

gj+1(n, t) =
hj(n, t) + hj(n− 1, t)

2
+ b(n, t)gj(n, t),(3.10)

hj+1(n, t) = 2a(n, t)2

j∑
`=0

gj−`(n, t)g`(n+ 1, t)

− 1
2

j∑
`=0

hj−`(n, t)h`(n, t).(3.11)

The claim now follows by induction (note that we have gi(n, t)gj(m, t)− g0,ig0,j =
(gi(n, t)− g0,i)gj(m, t)− g0,i(gj(m, t)− g0,j)). Hence we infer from (2.9)

|a(n, t)− 1
2
| ≤ |a(n, 0)− 1

2
|+ ‖H(0)‖

∫ t

0

|gr+1(n, s)− g0,r+1|

+ |gr+1(n+ 1, s)− g0,r+1|ds,(3.12)

|b(n, t)| ≤ |b(n, 0)|+
∫ t

0

|hr+1(n, s)− h0,r+1|

+ |hr+1(n− 1, s)− h0,r+1|ds(3.13)
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and thus

(3.14) ‖(a(t), b(t))‖∗ ≤ ‖(a(0), b(0))‖∗ + C̃

∫ t

0

‖(a(s), b(s))‖∗ds,

where C̃ = 2(1 + ‖H(0)‖)Cr+1(‖H(0)‖). The rest follows from Gronwall’s inequal-
ity. �

Now we turn to scattering theory for H (cf. [7], [12], [19]) and assume a(n, t) > 0
and (3.6). This implies

(3.15) σ(H) = [−1, 1], σp(H) = {λj}Nj=1 ⊆ R\[−1, 1],

where N ∈ N is finite, and the existence of the so called Jost solutions f±(k, n),

(3.16)
(
τ − k + k−1

2

)
f±(k, n, t) = 0, lim

n→±∞
k∓nf±(k, n, t) = 1, |k| ≤ 1.

Transmission T (k, t) and reflection R±(k, t) coefficients are then defined via

(3.17) T (k, t)f∓(k, n, t) = f±(k−1, n, t) +R±(k, t)f±(k, n, t), |k| = 1,

and the norming constants γ±,j(t) corresponding to λj ∈ σp(H) are given by

(3.18) γ±,j(t)−1 =
∑
n∈Z
|f±(kj , n, t)|2, kj = λj−

√
λ2
j − 1 ∈ (−1, 0)∪(0, 1), j ∈ J.

Clearly we are interested how the scattering data vary with respect to t.

Theorem 3.2. Suppose a(n, t), b(n, t) is a solution of the Toda system satisfying
(3.6) for one (and hence for all) t0 ∈ R. The functions

(3.19) exp(±αr(k)t)f±(k, n, t)

satisfy

(3.20) H(t)u = zu,
d

dt
u = P2r+2(t)u

(weakly) with z = (k + k−1)/2. Here f±(k, n, t) are the Jost solutions and αr,±(k)
is defined in (3.3). In addition, we have

T (k, t) = T (k, 0),(3.21)
R±(k, t) = R±(k, 0) exp(±αr(k)t),(3.22)
γ±,`(t) = γ±,`(0) exp(∓2αr(k`)t), 1 ≤ ` ≤ N(3.23)

Proof. As in the proof of [18], Theorem 5.1 one shows that f±(k, n, t) is continuously
differentiable with respect to t and that limn→±∞ k∓nḟ±(k, n, t) → 0 (use the
estimates (3.8) and (3.9)). Now let (k + k−1)/2 ∈ ρ(H(t)), then Lemmas 4.1 and
4.2 of [17] implies that the solution of (3.20) with initial condition f±(k, n, 0) is
of the form C±(t)f±(k, n, t). Inserting this into (3.20), multiplying with k∓n and
evaluating as n → ±∞ yields C±(t) = exp(±αr(k)t). The general result for all
|k| < 1 now follows from continuity. This immediately implies the formulas for
T (k, t), R±(k, t). Finally, let k = k`, then we have

(3.24) exp(±αr(k`)t)f±(k`, n, t) = U(t, 0)f±(k`, n, 0),

(where U(t, s) is the unitary propagator of P2r+2) which implies

(3.25)
d

dt

exp(∓2αr(k`)t)
γ±,`(t)

=
d

dt
‖U(t, 0)f±(k`, ., 0)‖ = 0
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and concludes the proof. �

Thus the scattering data of H(t) can be expressed in terms of those for H(0)
and a(n, t), b(n, t) can be computed from a(n, 0), b(n, 0) using the Gel’fand–Levitan–
Marchenko equations ([12], Theorem 3). Since we have ensured the existence of a
solution in the outset (Theorem 2.2 and Lemma 3.1) the sequences constructed by
this procedure satisfy the Toda equations.

In the case r = 0 the inverse scattering procedure was first worked out by
Flaschka [9]. In addition, Flaschka also worked out the inverse procedure in the
reflection-less case (i.e., R±(k, t) = 0). His formulas clearly apply to the entire Toda
hierarchy upon using the t dependence of the norming constants given in (3.23).
In addition, these formulas are the same as the ones obtained using the double
commutation method (cf. [17]).

In the case of the semi-infinite Toda chain an alternative method based on the
moment problem is available in [2], [3]. This method can also be generalized to
solve some semi-infinite nonisospectral flows related to the Toda system [4], [5]. In
addition, for semi-infinite Toda chain (r = 0) the analog of Lemma 3.1 is proven in
[8], Proposition 4.

Finally, we briefly comment on conserved quantities (see [9], [11], [19]). Set
α(k) = T (k)−1. Then α(k) is holomorphic inside the unit circle with simple poles
at kj , 1 ≤ j ≤ N and we obtain by virtue of the Poisson–Jensen formula (for
|k| < 1)

(3.26) α(k) =
( N∏
j=1

k − kj
|kj |(k − k−1

j )

)
exp

(
1

4π

∫ π

−π
ln(1− |R±(eiϕ, t)|2)

eiϕ + k

eiϕ − k
dϕ

)
,

In particular, α(k) has the expansion

(3.27) α(k) =
1
A

∞∑
m=0

Kmk
m, A =

∏
n∈Z

2a(n, t)

and the coefficients K0 = 1, K1 = −2
∑
n∈Z b(n), . . . are conserved quantities.

Moreover, one computes

(3.28)
d

dk
α(k) =

−1
k

∑
n∈Z

(
f+(k, n, t)f−(k, n, t)− α(k)

)
.

Rephrasing this equation as (H(t)−H0 is clearly trace class)

− d

dz
ln ∆(z) =

∑
j∈Z

(
G(z, n, n, t)−G0(z, n, n)

)
= tr

(
(H(t)− z)−1 − (H0 − z)−1

)
,(3.29)

identifies ∆(z) = Aα(k(z)) as the perturbation determinant of the pair H(t), H0

in the sense of Krein [13]. Here G(z, n, n, t), G0(z, n, n) denotes the Green function
of H(t), H0, respectively. By [13], Theorem 1 this implies

(3.30) ∆(z) = exp
(∫

R

ξ∆(λ)dλ
λ− z

)
,

where

(3.31) ξ∆(λ) =
1
π

lim
ε↓0

Im ln ∆(λ+ iε)
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is of compact support (in the above formula ln ∆(z) is the branch which is holo-
morphic for z > ‖H‖ and satisfies ln ∆(∞) = 0). Moreover,

(3.32) tr
(
H(t)` − (H0)`

)
= `

∫
R
λ`−1ξα(λ)dλ.

Comparing coefficients in the asymptotic expansions of (3.26) and (3.27) gives a
rigorous justification of the well-known formula ([19], equation (3.7.31))

(3.33) K̃m =
−1
π

∫ π

0

ln(1− |R±(eiϕ, t)|2) cos(meiϕ)dϕ+
N∑
j=1

kmj − k
−m
j

m

under the assumption (3.6). Here K̃m = Km−
∑m−1
j=1

j
mK̃m−jKj are the expansion

coefficients of lnα(k). Moreover, expanding lnα(k(z)) one can express the traces
tr(H(t)` − (H0)`) in terms of the coefficients Km, for instance,

tr
(
H(t)− (H0)

)
= −1

2
K1,

tr
(
H(t)2 − (H0)2

)
= − 1

16
(2K2 +K2

1 ),

etc. .(3.34)
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