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Preface

About

When you publish a textbook on such a classical subject the first ques-
tion you will be faced with is: Why the heck another book? Well, everything
started when I was supposed to give the basic course on Ordinary Differen-
tial Equations in Summer 2000 (which at that time met 5 hours per week).
While there were many good books on the subject available, none of them
quite fitted my needs. I wanted a concise but rigorous introduction with full
proofs also covering classical topics such as Sturm–Liouville boundary value
problems, differential equations in the complex domain as well as modern
aspects of the qualitative theory of differential equations. The course was
continued with a second part on Dynamical Systems and Chaos in Winter
2000/01 and the notes were extended accordingly. Since then the manuscript
has been rewritten and improved several times according to the feedback I
got from students over the years when I redid the course. Moreover, since I
had the notes on my homepage from the very beginning, this triggered a sig-
nificant amount of feedback as well. Beginning from students who reported
typos, incorrectly phrased exercises, etc. over colleagues who reported errors
in proofs and made suggestions for improvements, to editors who approached
me about publishing the notes. Last but not least, this also resulted in a
chinese translation. Moreover, if you google for the manuscript, you can see
that it is used at several places worldwide, linked as a reference at various
sites including Wikipedia. Finally, Google Scholar will tell you that it is
even cited in several publications. Hence I decided that it is time to turn it
into a real book.

xi
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xii Preface

Content

Its main aim is to give a self contained introduction to the field of or-
dinary differential equations with emphasis on the dynamical systems point
of view while still keeping an eye on classical tools as pointed out before.

The first part is what I typically cover in the introductory course for
bachelor students. Of course it is typically not possible to cover everything
and one has to skip some of the more advanced sections. Moreover, it might
also be necessary to add some material from the first chapter of the second
part to meet curricular requirements.

The second part is a natural continuation beginning with planar exam-
ples (culminating in the generalized Poincaré–Bendixon theorem), continu-
ing with the fact that things get much more complicated in three and more
dimensions, and ending with the stable manifold and the Hartman–Grobman
theorem.

The third and last part gives a brief introduction to chaos focusing on
two selected topics: Interval maps with the logistic map as the prime ex-
ample plus the identification of homoclinic orbits as a source for chaos and
the Melnikov method for perturbations of periodic orbits and for finding
homoclinic orbits.

Prerequisites

It only requires some basic knowledge from calculus, complex functions,
and linear algebra which should be covered in the usual courses. In addition,
I have tried to show how a computer system, Mathematica, can help with
the investigation of differential equations. However, the course is not tied
to Mathematica and any similar program can be used as well.

Updates

The AMS is hosting a web page for this book at

http://www.ams.org/bookpages/gsm-XXX/

where updates, corrections, and other material may be found, including a
link to material on my own web site:

http://www.mat.univie.ac.at/~gerald/ftp/book-ode/

There you can also find an accompanying Mathematica notebook with the
code from the text plus some additional material. Please do not put a
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copy of this file on your personal webpage but link to the page
above.
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Chapter 1

Introduction

1.1. Newton’s equations

Let us begin with an example from physics. In classical mechanics a particle
is described by a point in space whose location is given by a function

x : R → R
3. (1.1)

rx(t) ✲
v(t)

.

.................................

...............................

.............................

.............................

..............................

...............................

...............................

................................
.................................

.................................. . .................................. .................................
................................

...............................

..............................

.............................

.............................

............................

............................

..............................

The derivative of this function with respect to time is the velocity of the
particle

v = ẋ : R → R
3 (1.2)

and the derivative of the velocity is the acceleration

a = v̇ : R → R
3. (1.3)

In such a model the particle is usually moving in an external force field

F : R
3 → R

3 (1.4)

which exerts a force F (x) on the particle at x. Then Newton’s second
law of motion states that, at each point x in space, the force acting on
the particle must be equal to the acceleration times the mass m (a positive

3
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4 1. Introduction

constant) of the particle, that is,

mẍ(t) = F (x(t)), for all t ∈ R. (1.5)

Such a relation between a function x(t) and its derivatives is called a dif-
ferential equation. Equation (1.5) is of second order since the highest
derivative is of second degree. More precisely, we have a system of differen-
tial equations since there is one for each coordinate direction.

In our case x is called the dependent and t is called the independent
variable. It is also possible to increase the number of dependent variables
by adding v to the dependent variables and considering (x, v) ∈ R

6. The
advantage is, that we now have a first-order system

ẋ(t) = v(t)

v̇(t) =
1

m
F (x(t)). (1.6)

This form is often better suited for theoretical investigations.

For given force F one wants to find solutions, that is functions x(t) that
satisfy (1.5) (respectively (1.6)). To be more specific, let us look at the
motion of a stone falling towards the earth. In the vicinity of the surface
of the earth, the gravitational force acting on the stone is approximately
constant and given by

F (x) = −mg





0
0
1



 . (1.7)

Here g is a positive constant and the x3 direction is assumed to be normal
to the surface. Hence our system of differential equations reads

mẍ1 = 0,

m ẍ2 = 0,

m ẍ3 = −mg. (1.8)

The first equation can be integrated with respect to t twice, resulting in
x1(t) = C1 + C2t, where C1, C2 are the integration constants. Computing
the values of x1, ẋ1 at t = 0 shows C1 = x1(0), C2 = v1(0), respectively.
Proceeding analogously with the remaining two equations we end up with

x(t) = x(0) + v(0) t − g

2





0
0
1



 t2. (1.9)

Hence the entire fate (past and future) of our particle is uniquely determined
by specifying the initial location x(0) together with the initial velocity v(0).
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1.1. Newton’s equations 5

From this example you might get the impression, that solutions of differ-
ential equations can always be found by straightforward integration. How-
ever, this is not the case in general. The reason why it worked here is that
the force is independent of x. If we refine our model and take the real
gravitational force

F (x) = −γ mM
x

|x|3 , γ,M > 0, (1.10)

our differential equation reads

mẍ1 = − γ mM x1
(x21 + x22 + x23)

3/2
,

m ẍ2 = − γ mM x2
(x21 + x22 + x23)

3/2
,

m ẍ3 = − γ mM x3

(x21 + x22 + x23)
3/2

(1.11)

and it is no longer clear how to solve it. Moreover, it is even unclear whether
solutions exist at all! (We will return to this problem in Section 8.5.)

Problem 1.1. Consider the case of a stone dropped from the height h.
Denote by r the distance of the stone from the surface. The initial condition
reads r(0) = h, ṙ(0) = 0. The equation of motion reads

r̈ = − γM

(R+ r)2
(exact model)

respectively

r̈ = −g (approximate model),

where g = γM/R2 and R, M are the radius, mass of the earth, respectively.

(i) Transform both equations into a first-order system.

(ii) Compute the solution to the approximate system corresponding to
the given initial condition. Compute the time it takes for the stone
to hit the surface (r = 0).

(iii) Assume that the exact equation also has a unique solution corre-
sponding to the given initial condition. What can you say about
the time it takes for the stone to hit the surface in comparison
to the approximate model? Will it be longer or shorter? Estimate
the difference between the solutions in the exact and in the approx-
imate case. (Hints: You should not compute the solution to the
exact equation! Look at the minimum, maximum of the force.)

(iv) Grab your physics book from high school and give numerical values
for the case h = 10m.

Author's preliminary version made available with permission of the publisher, the American Mathematical Society



6 1. Introduction

Problem 1.2. Consider again the exact model from the previous problem
and write

r̈ = − γMε2

(1 + εr)2
, ε =

1

R
.

It can be shown that the solution r(t) = r(t, ε) to the above initial conditions
is C∞ (with respect to both t and ε). Show that

r(t) = h− g(1 − 2
h

R
)
t2

2
+O(

1

R4
), g =

γM

R2
.

(Hint: Insert r(t, ε) = r0(t) + r1(t)ε + r2(t)ε
2 + r3(t)ε

3 + O(ε4) into the
differential equation and collect powers of ε. Then solve the corresponding
differential equations for r0(t), r1(t), . . . and note that the initial conditions
follow from r(0, ε) = h respectively ṙ(0, ε) = 0. A rigorous justification for
this procedure will be given in Section 2.5.)

1.2. Classification of differential equations

Let U ⊆ R
m, V ⊆ R

n and k ∈ N0. Then Ck(U, V ) denotes the set of
functions U → V having continuous derivatives up to order k. In addition,
we will abbreviate C(U, V ) = C0(U, V ), C∞(U, V ) =

⋂

k∈NC
k(U, V ), and

Ck(U) = Ck(U,R).

A classical ordinary differential equation (ODE) is a functional re-
lation of the form

F (t, x, x(1), . . . , x(k)) = 0 (1.12)

for the unknown function x ∈ Ck(J), J ⊆ R, and its derivatives

x(j)(t) =
djx(t)

dtj
, j ∈ N0. (1.13)

Here F ∈ C(U) with U an open subset of R
k+2. One frequently calls t

the independent and x the dependent variable. The highest derivative
appearing in F is called the order of the differential equation. A solution
of the ODE (1.12) is a function φ ∈ Ck(I), where I ⊆ J is an interval, such
that

F (t, φ(t), φ(1)(t), . . . , φ(k)(t)) = 0, for all t ∈ I. (1.14)

This implicitly implies (t, φ(t), φ(1)(t), . . . , φ(k)(t)) ∈ U for all t ∈ I.
Unfortunately there is not too much one can say about general differen-

tial equations in the above form (1.12). Hence we will assume that one can
solve F for the highest derivative, resulting in a differential equation of the
form

x(k) = f(t, x, x(1), . . . , x(k−1)). (1.15)

By the implicit function theorem this can be done at least locally near some
point (t, y) ∈ U if the partial derivative with respect to the highest derivative

Author's preliminary version made available with permission of the publisher, the American Mathematical Society



1.2. Classification of differential equations 7

does not vanish at that point, ∂F
∂yk

(t, y) 6= 0. This is the type of differential

equations we will consider from now on.

We have seen in the previous section that the case of real-valued func-
tions is not enough and we should admit the case x : R → R

n. This leads
us to systems of ordinary differential equations

x
(k)
1 = f1(t, x, x

(1), . . . , x(k−1)),

...

x(k)n = fn(t, x, x
(1), . . . , x(k−1)). (1.16)

Such a system is said to be linear, if it is of the form

x
(k)
i = gi(t) +

n∑

l=1

k−1∑

j=0

fi,j,l(t)x
(j)
l . (1.17)

It is called homogeneous, if gi(t) ≡ 0.

Moreover, any system can always be reduced to a first-order system by
changing to the new set of dependent variables y = (x, x(1), . . . , x(k−1)).
This yields the new first-order system

ẏ1 = y2,

...

ẏk−1 = yk,

ẏk = f(t, y). (1.18)

We can even add t to the dependent variables z = (t, y), making the right-
hand side independent of t

ż1 = 1,

ż2 = z3,

...

żk = zk+1,

żk+1 = f(z). (1.19)

Such a system, where f does not depend on t, is called autonomous. In
particular, it suffices to consider the case of autonomous first-order systems
which we will frequently do.

Of course, we could also look at the case t ∈ R
m implying that we

have to deal with partial derivatives. We then enter the realm of partial
differential equations (PDE). However, we will not pursue this case here.

Author's preliminary version made available with permission of the publisher, the American Mathematical Society



8 1. Introduction

Finally, note that we could admit complex values for the dependent
variables. It will make no difference in the sequel whether we use real or
complex dependent variables. However, we will state most results only for
the real case and leave the obvious changes to the reader. On the other
hand, the case where the independent variable t is complex requires more
than obvious modifications and will be considered in Chapter 4.

Problem 1.3. Classify the following differential equations. Is the equation
linear, autonomous? What is its order?

(i) y′(x) + y(x) = 0.

(ii) d2

dt2u(t) = t sin(u(t)).

(iii) y(t)2 + 2y(t) = 0.

(iv) ∂2

∂x2
u(x, y) + ∂2

∂y2
u(x, y) = 0.

(v) ẋ = −y, ẏ = x.

Problem 1.4. Which of the following differential equations for y(x) are
linear?

(i) y′ = sin(x)y + cos(y).

(ii) y′ = sin(y)x+ cos(x).

(iii) y′ = sin(x)y + cos(x).

Problem 1.5. Find the most general form of a second-order linear equation.

Problem 1.6. Transform the following differential equations into first-order
systems.

(i) ẍ+ t sin(ẋ) = x.

(ii) ẍ = −y, ÿ = x.

The last system is linear. Is the corresponding first-order system also linear?
Is this always the case?

Problem 1.7. Transform the following differential equations into autonomous
first-order systems.

(i) ẍ+ t sin(ẋ) = x.

(ii) ẍ = − cos(t)x.

The last equation is linear. Is the corresponding autonomous system also
linear?

Problem 1.8. Let x(k) = f(x, x(1), . . . , x(k−1)) be an autonomous equation
(or system). Show that if φ(t) is a solution, then so is φ(t− t0).

Author's preliminary version made available with permission of the publisher, the American Mathematical Society



1.3. First order autonomous equations 9

1.3. First order autonomous equations

Let us look at the simplest (nontrivial) case of a first-order autonomous
equation and let us try to find the solution starting at a certain point x0 at
time t = 0:

ẋ = f(x), x(0) = x0, f ∈ C(R). (1.20)

We could of course also ask for the solution starting at x0 at time t0. How-
ever, once we have a solution φ(t) with φ(0) = x0, the solution ψ(t) with
ψ(t0) = x0 is given by a simple shift ψ(t) = φ(t− t0) (this holds in fact for
any autonomous equation – compare Problem 1.8).

This equation can be solved using a small ruse. If f(x0) 6= 0, we can
divide both sides by f(x) and integrate both sides with respect to t:

∫ t

0

ẋ(s)ds

f(x(s))
= t. (1.21)

Abbreviating F (x) =
∫ x
x0

dy
f(y) we see that every solution x(t) of (1.20) must

satisfy F (x(t)) = t. Since F (x) is strictly monotone near x0, it can be
inverted and we obtain a unique solution

φ(t) = F−1(t), φ(0) = F−1(0) = x0, (1.22)

of our initial value problem. Here F−1(t) is the inverse map of F (t).

Now let us look at the maximal interval where φ is defined by this
procedure. If f(x0) > 0 (the case f(x0) < 0 follows analogously), then f
remains positive in some interval (x1, x2) around x0 by continuity. Define

T+ = lim
x↑x2

F (x) ∈ (0,∞], respectively T− = lim
x↓x1

F (x) ∈ [−∞, 0). (1.23)

Then φ ∈ C1((T−, T+)) and

lim
t↑T+

φ(t) = x2, respectively lim
t↓T−

φ(t) = x1. (1.24)

In particular, φ is defined for all t > 0 if and only if

T+ =

∫ x2

x0

dy

f(y)
= +∞, (1.25)

that is, if 1/f(x) is not integrable near x2. Similarly, φ is defined for all
t < 0 if and only if 1/f(x) is not integrable near x1.

If T+ < ∞ there are two possible cases: Either x2 = ∞ or x2 < ∞. In
the first case the solution φ diverges to +∞ and there is no way to extend
it beyond T+ in a continuous way. In the second case the solution φ reaches
the point x2 at the finite time T+ and we could extend it as follows: If
f(x2) > 0 then x2 was not chosen maximal and we can increase it which
provides the required extension. Otherwise, if f(x2) = 0, we can extend φ
by setting φ(t) = x2 for t ≥ T+. However, in the latter case this might not
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10 1. Introduction

be the only possible extension as we will see in the examples below. Clearly,
similar arguments apply for t < 0.

Now let us look at some examples.

Example. If f(x) = x, x0 > 0, we have (x1, x2) = (0,∞) and

F (x) = log(
x

x0
). (1.26)

Hence T± = ±∞ and

φ(t) = x0e
t. (1.27)

Thus the solution is globally defined for all t ∈ R. Note that this is in fact
a solution for all x0 ∈ R. ⋄

Example. Let f(x) = x2, x0 > 0. We have (x1, x2) = (0,∞) and

F (x) =
1

x0
− 1

x
. (1.28)

Hence T+ = 1/x0, T− = −∞ and

φ(t) =
x0

1− x0t
. (1.29)

✲

✻φ(t) = 1
1−t

t. ............................................. ............................................. ....................... .............................................
.....................................................................

........................
........................

........................
..............
...........
..............
............
...........
.........
........
.............

...........

.........

.....................

..................

...............

......................

..........................

.............................

.................................

....................................

In particular, the solution is no longer defined for all t ∈ R. Moreover, since
limt↑1/x0 φ(t) = ∞, there is no way we can possibly extend this solution for
t ≥ T+. ⋄

Now what is so special about the zeros of f(x)? Clearly, if f(x0) = 0,
there is a trivial solution

φ(t) = x0 (1.30)

to the initial condition x(0) = x0. But is this the only one? If we have
∣
∣
∣
∣

∫ x0+ε

x0

dy

f(y)

∣
∣
∣
∣
<∞, (1.31)

then there is another solution

ϕ(t) = F−1(t), F (x) =

∫ x

x0

dy

f(y)
, (1.32)

with ϕ(0) = x0 which is different from φ(t)!
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1.3. First order autonomous equations 11

Example. Consider f(x) =
√

|x|, x0 > 0. Then (x1, x2) = (0,∞),

F (x) = 2(
√
x−√

x0). (1.33)

and

ϕ(t) = (
√
x0 +

t

2
)2, −2

√
x0 < t <∞. (1.34)

So for x0 = 0 there are several solutions which can be obtained by patching
the trivial solution φ(t) = 0 with the above solution as follows

φ̃(t) =







− (t−t0)2
4 , t ≤ t0,

0, t0 ≤ t ≤ t1,
(t−t1)2

4 , t1 ≤ t.

(1.35)

The solution φ̃ for t0 = 0 and t1 = 1 is depicted below:

✲

✻̃φ(t)

t

.
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..................
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................. ......... ......... ............ ............... .......................................... .......................................... ............... ............ ......... .........

.................
.................

................

..................

...................

......................

.........................

...........................

..............................

⋄

As a conclusion of the previous examples we have:

• Solutions might only exist locally in t, even for perfectly nice f .

• Solutions might not be unique. Note however, that f(x) =
√

|x| is
not differentiable at the point x0 = 0 which causes the problems.

Note that the same ruse can be used to solve so-called separable equa-
tions

ẋ = f(x)g(t) (1.36)

(see Problem 1.11).

Problem 1.9. Solve the following differential equations:

(i) ẋ = x3.

(ii) ẋ = x(1− x).

(iii) ẋ = x(1− x)− c.

Problem 1.10. Show that the solution of (1.20) is unique if f ∈ C1(R).

Problem 1.11 (Separable equations). Show that the equation (f, g ∈ C1)

ẋ = f(x)g(t), x(t0) = x0,
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12 1. Introduction

locally has a unique solution if f(x0) 6= 0. Give an implicit formula for the
solution.

Problem 1.12. Solve the following differential equations:

(i) ẋ = sin(t)x.

(ii) ẋ = g(t) tan(x).

(iii) ẋ = sin(t)ex.

Sketch the solutions. For which initial conditions (if any) are the solutions
bounded?

Problem 1.13. Investigate uniqueness of the differential equation

ẋ =

{

−t
√

|x|, x ≥ 0,

t
√

|x|, x ≤ 0.

Show that the initial value problem x(0) = x0 has a unique global solution
for every x0 ∈ R. However, show that the global solutions still intersect!
(Hint: Note that if x(t) is a solution so is −x(t) and x(−t), so it suffices to
consider x0 ≥ 0 and t ≥ 0.)

Problem 1.14. Charging a capacitor is described by the differential equation

RQ̇(t) +
1

C
Q(t) = V0,

where Q(t) is the charge at the capacitor, C is its capacitance, V0 is the
voltage of the battery, and R is the resistance of the wire.

Compute Q(t) assuming the capacitor is uncharged at t = 0. What
charge do you get as t→ ∞?

Problem 1.15 (Growth of bacteria). A certain species of bacteria grows
according to

Ṅ(t) = κN(t), N(0) = N0,

where N(t) is the amount of bacteria at time t, κ > 0 is the growth rate,
and N0 is the initial amount. If there is only space for Nmax bacteria, this
has to be modified according to

Ṅ(t) = κ(1 − N(t)

Nmax
)N(t), N(0) = N0.

Solve both equations, assuming 0 < N0 < Nmax and discuss the solutions.
What is the behavior of N(t) as t→ ∞?

Problem 1.16 (Optimal harvest). Take the same setting as in the previous
problem. Now suppose that you harvest bacteria at a certain rate H > 0.
Then the situation is modeled by

Ṅ(t) = κ(1− N(t)

Nmax
)N(t)−H, N(0) = N0.
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1.4. Finding explicit solutions 13

Rescale by

x(τ) =
N(t)

Nmax
, τ = κt

and show that the equation transforms into

ẋ(τ) = (1− x(τ))x(τ) − h, h =
H

κNmax
.

Visualize the region where f(x, h) = (1 − x)x− h, (x, h) ∈ U = (0, 1) ×
(0,∞), is positive respectively negative. For given (x0, h) ∈ U , what is the
behavior of the solution as t→ ∞? How is it connected to the regions plotted
above? What is the maximal harvest rate you would suggest?

Problem 1.17 (Parachutist). Consider the free fall with air resistance mod-
eled by

ẍ = ηẋ2 − g, η > 0.

Solve this equation (Hint: Introduce the velocity v = ẋ as new independent
variable). Is there a limit to the speed the object can attain? If yes, find it.
Consider the case of a parachutist. Suppose the chute is opened at a certain
time t0 > 0. Model this situation by assuming η = η1 for 0 < t < t0 and
η = η2 > η1 for t > t0 and match the solutions at t0. What does the solution
look like?

1.4. Finding explicit solutions

We have seen in the previous section, that some differential equations can
be solved explicitly. Unfortunately, there is no general recipe for solving a
given differential equation. Moreover, finding explicit solutions is in general
impossible unless the equation is of a particular form. In this section I will
show you some classes of first-order equations which are explicitly solvable.

The general idea is to find a suitable change of variables which transforms
the given equation into a solvable form. In many cases the solvable equation
will be the

Linear equation:

The solution of the linear homogeneous equation

ẋ = a(t)x (1.37)

is given by

φ(t) = x0A(t, t0), A(t, s) = e
∫ t

s
a(s)ds, (1.38)

and the solution of the corresponding inhomogeneous equation

ẋ = a(t)x+ g(t), (1.39)
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14 1. Introduction

is given by

φ(t) = x0A(t, t0) +

∫ t

t0

A(t, s)g(s)ds. (1.40)

This can be verified by a straightforward computation.

Next we turn to the problem of transforming differential equations.
Given the point with coordinates (t, x), we may change to new coordinates
(s, y) given by

s = σ(t, x), y = η(t, x). (1.41)

Since we do not want to lose information, we require this transformation to
be a diffeomorphism (i.e., invertible with differentiable inverse).

A given function φ(t) will be transformed into a function ψ(s) which has
to be obtained by eliminating t from

s = σ(t, φ(t)), ψ = η(t, φ(t)). (1.42)

Unfortunately this will not always be possible (e.g., if we rotate the graph
of a function in R

2, the result might not be the graph of a function). To
avoid this problem we restrict our attention to the special case of fiber
preserving transformations

s = σ(t), y = η(t, x) (1.43)

(which map the fibers t = const to the fibers s = const). Denoting the
inverse transform by

t = τ(s), x = ξ(s, y), (1.44)

a straightforward application of the chain rule shows that φ(t) satisfies

ẋ = f(t, x) (1.45)

if and only if ψ(s) = η(τ(s), φ(τ(s))) satisfies

ẏ = τ̇

(
∂η

∂t
(τ, ξ) +

∂η

∂x
(τ, ξ) f(τ, ξ)

)

, (1.46)

where τ = τ(s) and ξ = ξ(s, y). Similarly, we could work out formulas for
higher order equations. However, these formulas are usually of little help for
practical computations and it is better to use the simpler (but ambiguous)
notation

dy

ds
=
dy(t(s), x(t(s)))

ds
=
∂y

∂t

dt

ds
+
∂y

∂x

dx

dt

dt

ds
. (1.47)

But now let us see how transformations can be used to solve differential
equations.

Homogeneous equation:
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1.4. Finding explicit solutions 15

A (nonlinear) differential equation is called homogeneous if it is of the
form

ẋ = f(
x

t
). (1.48)

This special form suggests the change of variables y = x
t (t 6= 0), which (by

(1.47)) transforms our equation into

ẏ =
∂y

∂t
+
∂y

∂x
ẋ = − x

t2
+

1

t
ẋ =

f(y)− y

t
. (1.49)

This equation is separable.

More generally, consider the differential equation

ẋ = f(
ax+ bt+ c

αx+ βt+ γ
). (1.50)

Two cases can occur. If aβ−αb = 0, our differential equation is of the form

ẋ = f̃(ax+ bt), (1.51)

which transforms into

ẏ = af̃(y) + b (1.52)

if we set y = ax+ bt. If aβ − αb 6= 0, we can use y = x− x0 and s = t− t0
which transforms (1.50) to the homogeneous equation

ẏ = f̂(
ay + bs

αy + βs
) (1.53)

if (x0, t0) is the unique solution of the linear system ax + bt + c = 0, αx +
βt+ γ = 0.

Bernoulli equation:

A differential equation is of Bernoulli type if it is of the form

ẋ = f(t)x+ g(t)xn, n 6= 0, 1. (1.54)

The transformation

y = x1−n (1.55)

gives the linear equation

ẏ = (1− n)f(t)y + (1− n)g(t). (1.56)

(Note: If n = 0 or n = 1 the equation is already linear and there is nothing
to do.)

Riccati equation:

A differential equation is of Riccati type if it is of the form

ẋ = f(t)x+ g(t)x2 + h(t). (1.57)
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16 1. Introduction

Solving this equation is only possible if a particular solution xp(t) is known.
Then the transformation

y =
1

x− xp(t)
(1.58)

yields the linear equation

ẏ = −(f(t) + 2xp(t)g(t))y − g(t). (1.59)

These are only a few of the most important equations which can be ex-
plicitly solved using some clever transformation. In fact, there are reference
books like the one by Kamke [24] or Zwillinger [48], where you can look
up a given equation and find out if it is known to be solvable explicitly. As
a rule of thumb one has that for a first-order equation there is a realistic
chance that it is explicitly solvable. But already for second-order equations,
explicitly solvable ones are rare.

Alternatively, we can also ask a symbolic computer program like Math-
ematica to solve differential equations for us. For example, to solve

ẋ = sin(t)x (1.60)

you would use the command

In[1]:= DSolve[x′[t] == x[t]Sin[t], x[t], t]

Out[1]= {{x[t] → e−Cos[t]C[1]}}
Here the constant C[1] introduced by Mathematica can be chosen arbitrarily
(e.g. to satisfy an initial condition). We can also solve the corresponding
initial value problem using

In[2]:= DSolve[{x′[t] == Sin[t]x[t], x[0] == 1}, x[t], t]
Out[2]= {{x[t] → e1−Cos[t]}}
and plot it using

In[3]:= Plot[x[t] /. %, {t, 0, 2π}]

Out[3]=

1 2 3 4 5 6

1

2

3

4

5

6

7

In some situations it is also useful to visualize the corresponding direc-
tional field. That is, to every point (t, x) we attach the vector (1, f(t, x)).
Then the solution curves will be tangent to this vector field in every point:
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1.4. Finding explicit solutions 17

In[4]:= VectorPlot[{1, Sin[t] x}, {t, 0, 2π}, {x, 0, 6}]

Out[4]=

0 1 2 3 4 5 6

0

1

2

3

4

5

6

So it almost looks like Mathematica can do everything for us and all we
have to do is type in the equation, press enter, and wait for the solution.
However, as always, life is not that easy. Since, as mentioned earlier, only
very few differential equations can be solved explicitly, the DSolve command
can only help us in very few cases. The other cases, that is those which
cannot be explicitly solved, will be the subject of the remainder of this
book!

Let me close this section with a warning. Solving one of our previous
examples using Mathematica produces

In[5]:= DSolve[{x′[t] ==
√

x[t], x[0] == 0}, x[t], t]

Out[5]= {{x[t] → t2

4
}}

However, our investigations of the previous section show that this is not the
only solution to the posed problem! Mathematica expects you to know that
there are other solutions and how to get them.

Moreover, if you try to solve the general initial value problem it gets
even worse:

In[6]:= DSolve[{x′[t] ==
√

x[t], x[0] == x0}, x[t], t] // Simplify

Out[6]= {{x[t] → 1

4
(t− 2

√
x0)

2}, {x[t] → 1

4
(t+ 2

√
x0)

2}}

The first ”solution” is no solution of our initial value problem at all! It
satisfies ẋ = −√

x.

Problem 1.18. Try to find solutions of the following differential equations:

(i) ẋ = 3x−2t
t .

(ii) ẋ = x−t+2
2x+t+1 + 5.
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18 1. Introduction

(iii) y′ = y2 − y
x − 1

x2
.

(iv) y′ = y
x − tan( yx).

Problem 1.19 (Euler equation). Transform the differential equation

t2ẍ+ 3tẋ+ x =
2

t

to the new coordinates y = x, s = log(t). (Hint: You are not asked to solve
it.)

Problem 1.20. Pick some differential equations from the previous prob-
lems and solve them using your favorite computer algebra system. Plot the
solutions.

Problem 1.21 (Exact equations). Consider the equation

F (x, y) = 0,

where F ∈ C2(R2,R). Suppose y(x) solves this equation. Show that y(x)
satisfies

p(x, y)y′ + q(x, y) = 0,

where

p(x, y) =
∂F (x, y)

∂y
and q(x, y) =

∂F (x, y)

∂x
.

Show that we have
∂p(x, y)

∂x
=
∂q(x, y)

∂y
.

Conversely, a first-order differential equation as above (with arbitrary co-
efficients p(x, y) and q(x, y)) satisfying this last condition is called exact.
Show that if the equation is exact, then there is a corresponding function F
as above. Find an explicit formula for F in terms of p and q. Is F uniquely
determined by p and q?

Show that

(4bxy + 3x+ 5)y′ + 3x2 + 8ax+ 2by2 + 3y = 0

is exact. Find F and find the solution.

Problem 1.22 (Integrating factor). Consider

p(x, y)y′ + q(x, y) = 0.

A function µ(x, y) is called integrating factor if

µ(x, y)p(x, y)y′ + µ(x, y)q(x, y) = 0

is exact.

Finding an integrating factor is in general as hard as solving the original
equation. However, in some cases making an ansatz for the form of µ works.
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1.4. Finding explicit solutions 19

Consider

xy′ + 3x− 2y = 0

and look for an integrating factor µ(x) depending only on x. Solve the equa-
tion.

Problem 1.23. Show that

ẋ = tn−1f(
x

tn
)

can be solved using the new variable y = x
tn .

Problem 1.24 (Focusing of waves). Suppose you have an incoming electro-
magnetic wave along the y-axis which should be focused on a receiver sitting
at the origin (0, 0). What is the optimal shape for the mirror?

(Hint: An incoming ray, hitting the mirror at (x, y) is given by

Rin(t) =

(
x
y

)

−
(
0
1

)

t, t ∈ (−∞, 0].

At (x, y) it is reflected and moves along

Rrfl(t) =

(
x
y

)

(1− t), t ∈ [0, 1].

The laws of physics require that the angle between the normal of the mirror
and the incoming respectively reflected ray must be equal. Considering the
scalar products of the vectors with the normal vector this yields

1
√

x2 + y2

(
−x
−y

)(
−y′
1

)

=

(
0
1

)(
−y′
1

)

,

which is the differential equation for y = y(x) you have to solve. I recom-
mend the substitution u = y

x .)

Problem 1.25 (Catenary). Solve the differential equation describing the
shape y(x) of a hanging chain suspended at two points:

y′′ = a
√

1 + (y′)2, a > 0.

Problem 1.26 (Nonlinear boundary value problem). Show that the nonlin-
ear boundary value problem

y′′(x) + y(x)2 = 0, y(0) = y(1) = 0,

has a unique nontrivial solution. Assume that the initial value problem
y(x0) = y0, y

′(x0) = y1 has a unique solution.

• Show that a nontrivial solution of the boundary value problem must
satisfy y′(0) = p0 > 0.

• If a solution satisfies y′(x0) = 0, then the solution is symmetric
with respect to this point: y(x) = y(x0 − x). (Hint: Uniqueness.)
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20 1. Introduction

• Solve the initial value problem y(0) = 0, y′(0) = p0 > 0 as follows:
Set y′ = p(y) and derive a first-order equation for p(y). Solve this
equation for p(y) and then solve the equation y′ = p(y). (Note that
this works for any equation of the type y′′ = f(y).)

• Does the solution found in the previous item attain y′(x0) = 0
at some x0? What value should x0 have for y(x) to solve our
boundary value problem?

• Can you find a value for p0 in terms of special functions?

1.5. Qualitative analysis of first-order equations

As already noted in the previous section, only very few ordinary differential
equations are explicitly solvable. Fortunately, in many situations a solution
is not needed and only some qualitative aspects of the solutions are of in-
terest. For example, does it stay within a certain region, what does it look
like for large t, etc.

Moreover, even in situations where an exact solution can be obtained,
a qualitative analysis can give a better overview of the behavior than the
formula for the solution. To get more specific, let us look at the first-order
autonomous initial value problem

ẋ = f(x), x(0) = x0, (1.61)

where f ∈ C(R) is such that solutions are unique (e.g. f ∈ C1(R)). We
already saw how to solve this equation in Section 1.3. However, for a given
f we might well shipwreck when computing the integral F (x) =

∫ x
x0

dy
f(y)

or when trying to solve F (x(t)) = t for x(t). On the other hand, to get a
qualitative understanding of the solution an explicit formula turns out to be
unessential.

Example. For example, consider the logistic growth model (Problem 1.16)

ẋ(t) = (1− x(t))x(t)− h, (1.62)

which can be solved by separation of variables. To get an overview we plot
the corresponding right-hand side f(x) = (1− x)x− h:

.
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1
2

q q
f(x)

x0
−h

✛✲ ✲ ✛

Since the sign of f(x) tells us in what direction the solution will move, all
we have to do is to discuss the sign of f(x)!
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1.5. Qualitative analysis of first-order equations 21

For 0 < h < 1
4 there are two zeros x1,2 = 1

2(1 ±
√
1− 4h). If we start

at one of these zeros, the solution will stay there for all t. If we start below
x1 the solution will decrease and converge to −∞. If we start above x1 the
solution will increase and converge to x2. If we start above x2 the solution
will decrease and again converge to x2.

h

x2(h)

x1(h) .
..................................

..............................

...........................

........................
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q

q
✻

❄

q
q❄
✻

❄
q
q❄
✻

❄
q
q❄
✻

❄

q❄
❄

❄ ❄

At h = 1
4 a bifurcation occurs: The two zeros coincide x1 = x2 but otherwise

the analysis from above still applies. For h > 1
4 there are no zeros and all

solutions decrease and converge to −∞. ⋄

So we get a complete picture just by discussing the sign of f(x)! More
generally, we have the following result (Problem 1.28).

Lemma 1.1. Consider the first-order autonomous initial value problem
(1.61), where f ∈ C(R) is such that solutions are unique.

(i) If f(x0) = 0, then x(t) = x0 for all t.

(ii) If f(x0) 6= 0, then x(t) converges to the first zero left (f(x0) < 0)
respectively right (f(x0) > 0) of x0. If there is no such zero the
solution converges to −∞, respectively ∞.

If our differential equation is not autonomous, the situation becomes a
bit more involved. As a prototypical example let us investigate the differen-
tial equation

ẋ = x2 − t2. (1.63)

It is of Riccati type and according to the previous section, it cannot be solved
unless a particular solution can be found. But there does not seem to be a
solution which can be easily guessed. (We will show later, in Problem 4.13,
that it is explicitly solvable in terms of special functions.)

So let us try to analyze this equation without knowing the solution.
Well, first of all we should make sure that solutions exist at all! Since we
will attack this in full generality in the next chapter, let me just state that
if f(t, x) ∈ C1(R2,R), then for every (t0, x0) ∈ R

2 there exists a unique
solution of the initial value problem

ẋ = f(t, x), x(t0) = x0 (1.64)

defined in a neighborhood of t0 (Theorem 2.2). As we already know from
Section 1.3, solutions might not exist for all t even though the differential
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22 1. Introduction

equation is defined for all (t, x) ∈ R
2. However, we will show that a solution

must converge to ±∞ if it does not exist for all t (Corollary 2.16).

In order to get some feeling of what we should expect, a good starting
point is a numerical investigation. Using the command

In[7]:= NDSolve[{x′[t] == x[t]2 − t2, x[0] == 1}, x[t], {t,−2, 2}]
NDSolve::ndsz: At t == 1.0374678967709798‘, step size is

effectively zero; singularity suspected.

Out[7]= {{x[t] → InterpolatingFunction[{{−2., 1.03747}}, <>][t]}}
we can compute a numerical solution on the interval (−2, 2). Numerically
solving an ordinary differential equation means computing a sequence of
points (tj, xj) which are hopefully close to the graph of the real solution (we
will briefly discuss numerical methods in Section 2.7). Instead of this list of
points, Mathematica returns an interpolation function which – as you might
have already guessed from the name – interpolates between these points and
hence can be used as any other function.

Note, that in our particular example, Mathematica complained about
the step size (i.e., the difference tj − tj−1) getting too small and stopped at
t = 1.037 . . . . Hence the result is only defined on the interval (−2, 1.03747)
even though we have requested the solution on (−2, 2). This indicates that
the solution only exists for finite time.

Combining the solutions for different initial conditions into one plot we
get the following picture:

-4 -2 2 4
t

-3

-2

-1

1

2

3

x

First of all we note the symmetry with respect to the transformation
(t, x) → (−t,−x). Hence it suffices to consider t ≥ 0. Moreover, observe
that different solutions never cross, which is a consequence of uniqueness.

According to our picture, there seem to be two cases. Either the solu-
tion escapes to +∞ in finite time or it converges to the line x = −t. But
is this really the correct behavior? There could be some numerical errors
accumulating. Maybe there are also solutions which converge to the line
x = t (we could have missed the corresponding initial conditions in our pic-
ture)? Moreover, we could have missed some important things by restricting

Author's preliminary version made available with permission of the publisher, the American Mathematical Society



1.5. Qualitative analysis of first-order equations 23

ourselves to the interval t ∈ (−2, 2)! So let us try to prove that our picture
is indeed correct and that we have not missed anything.

We begin by splitting the plane into regions according to the sign of
f(t, x) = x2 − t2. Since it suffices to consider t ≥ 0 there are only three
regions: I: x > t, II: −t < x < t, and III: x < −t. In region I and III the
solution is increasing, in region II it is decreasing.

✻

✲
t

x x = t

x = −t

I: ẋ > 0

II: ẋ < 0

III: ẋ > 0

✟✟✟✟✟✟✟✟✟

❍❍❍❍❍❍❍❍❍

Furthermore, on the line x = t each solution has a horizontal tangent and
hence solutions can only get from region I to II but not the other way round.
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Similarly, solutions can only get from III to II but not from II to III.

This already has important consequences for the solutions:

• For solutions starting in region I there are two cases; either the
solution stays in I for all time and hence must converge to +∞
(maybe in finite time) or it enters region II.

• A solution starting in region II (or entering region II) will stay
there for all time and hence must converge to −∞ (why can’t it
remain bounded?). Since it must stay above x = −t this cannot
happen in finite time.

• A solution starting in III will eventually hit x = −t and enter
region II.

Hence there are two remaining questions: Do the solutions in region I which
converge to +∞ reach +∞ in finite time, or are there also solutions which
converge to +∞, e.g., along the line x = t? Do the other solutions all
converge to the line x = −t as our numerical solutions indicate?

To answer these questions we need to generalize the idea from above
that a solution can only cross the line x = t from above and the line x = −t
from below.
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A differentiable function x+(t) satisfying

ẋ+(t) > f(t, x+(t)), t ∈ [t0, T ), (1.65)

is called a super solution (or upper solution) of our equation. Similarly,
a differentiable function x−(t) satisfying

ẋ−(t) < f(t, x−(t)), t ∈ [t0, T ), (1.66)

is called a sub solution (or lower solution).

Example. For example, x+(t) = t is a super solution and x−(t) = −t is a
sub solution of our equation for t ≥ 0. ⋄

Lemma 1.2. Let x+(t), x−(t) be super, sub solutions of the differential
equation ẋ = f(t, x) on [t0, T ), respectively. Then for every solution x(t) on
[t0, T ) we have

x(t) < x+(t), t ∈ (t0, T ), whenever x(t0) ≤ x+(t0), (1.67)

respectively

x−(t) < x(t), t ∈ (t0, T ), whenever x(t0) ≥ x−(t0). (1.68)

Proof. In fact, consider ∆(t) = x+(t)− x(t). Then we have ∆(t0) ≥ 0 and

∆̇(t) > 0 whenever ∆(t) = 0. Hence ∆(t) can cross 0 only from below.
Since we start with ∆(t0) ≥ 0, we have ∆(t) > 0 for t > t0 sufficiently
close to t0. In fact, if ∆(t0) > 0 this follows from continuity and otherwise,

if ∆(t0) = 0, this follows from ∆̇(t0) > 0. Now let t1 > t0 be the first
value with ∆(t1) = 0. Then ∆(t) > 0 for t ∈ (t0, t1), which contradicts

∆̇(t1) > 0. �

Similar results hold for t < t0. The details are left to the reader (Prob-
lem 1.29).

Now we are able to answer our remaining questions. Since we were
already successful by considering the curves given by f(t, x) = 0, let us look
at the isoclines f(t, x) = const.

Considering x2 − t2 = −2 the corresponding curve is

y+(t) = −
√

t2 − 2, t >
√
2,

which is easily seen to be a super solution

ẏ+(t) = − t√
t2 − 2

> −2 = f(t, y+(t))

for t > 2
√

2/3. Thus, as soon as a solution x(t) enters the region between
y+(t) and x−(t) it must stay there and hence converge to the line x = −t
since y+(t) does.
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1.5. Qualitative analysis of first-order equations 25

But will every solution in region II eventually end up between y+(t)
and x−(t)? The answer is yes: Since x(t) is decreasing in region II, every
solution will eventually be below −y+(t). Furthermore, every solution x(t)
starting at a point (t0, x0) below −y+(t) and above y+(t) satisfies ẋ(t) < −2
as long as it remains between −y+(t) and y+(t). Hence, by integrating this
inequality, x(t) − x0 < −2(t − t0), we see that x(t) stays below the line
x0 − 2(t− t0) as long as it remains between −y+(t) and y+(t). Hence every
solution which is in region II at some time will converge to the line x = −t.

Finally note that there is nothing special about −2, any value smaller
than −1 would have worked as well.

Now let us turn to the other question. This time we take an isocline
x2 − t2 = 2 to obtain a corresponding sub solution

y−(t) =
√

2 + t2, t > 0.

At first sight this does not seem to help much because the sub solution y−(t)
lies above the super solution x+(t). Hence solutions are able to leave the
region between y−(t) and x+(t) but cannot come back. However, let us look
at the solutions which stay inside at least for some finite time t ∈ [0, T ]. By
following the solutions with initial conditions (T, x+(T )) and (T, y−(T )) we
see that they hit the line t = 0 at some points a(T ) and b(T ), respectively.
See the picture below which shows two solutions entering the shaded region
between x+(t) and y−(t) at T = 0.5:

T=0.5 1

aHTL

bHTL
1

2

Since different solutions can never cross, the solutions which stay inside for
(at least) t ∈ [0, T ] are precisely those starting at t = 0 in the interval
[a(T ), b(T )]! Moreover, this also implies that a(T ) is strictly increasing and
b(T ) is strictly decreasing. Taking T → ∞ we see that all solutions starting
in the interval [a(∞), b(∞)] (which might be just one point) at t = 0, stay
inside for all t > 0. Furthermore, since x 7→ f(t, x) = x2 − t2 is increasing
in region I, we see that the distance between two solutions

x1(t)− x0(t) = x1(t0)− x0(t0) +

∫ t

t0

(

f(s, x1(s))− f(s, x0(s))
)

ds

must increase as well. If there were two such solutions, their distance would
consequently increase. But this is impossible, since the distance of x+(t)
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and y−(t) tends to zero. Thus there can be at most one solution x0(t)
which stays between x+(t) and y−(t) for all t > 0 (i.e., a(∞) = b(∞)). All
solutions below x0(t) will eventually enter region II and converge to −∞
along x = −t. All solutions above x0(t) will eventually be above y−(t) and
converge to +∞. It remains to show that this happens in finite time.

This is not surprising, since the x(t)2 term should dominate over the −t2
term and we already know that the solutions of ẋ = x2 diverge. So let us
try to make this precise: First of all

ẋ(t) = x(t)2 − t2 > 2

for every solution above y−(t) implies x(t) > x0 + 2(t − t0). Thus there is
an ε > 0 such that

x(t) >
t√
1− ε

.

This implies

ẋ(t) = x(t)2 − t2 > x(t)2 − (1− ε)x(t)2 = εx(t)2

and every solution x(t) is a super solution to a corresponding solution of

ẋ(t) = εx(t)2.

But we already know that the solutions of the last equation escape to +∞
in finite time and so the same must be true for our equation.

In summary, we have shown the following

• There is a unique solution x0(t) which converges to the line x = t.

• All solutions above x0(t) will eventually converge to +∞ in finite
time.

• All solutions below x0(t) converge to the line x = −t.
It is clear that similar considerations can be applied to any first-order

equation ẋ = f(t, x) and one usually can obtain a quite complete picture of
the solutions. However, it is important to point out that the reason for our
success was the fact that our equation lives in two dimensions (t, x) ∈ R

2.
If we consider higher order equations or systems of equations, we need more
dimensions. At first sight this seems only to imply that we can no longer plot
everything, but there is another more severe difference: In R

2 a curve splits
our space into two regions: one above and one below the curve. The only way
to get from one region to the other is by crossing the curve. In more than two
dimensions this is no longer true and this allows for much more complicated
behavior of solutions. In fact, equations in three (or more) dimensions will
often exhibit chaotic behavior which makes a simple description of solutions
impossible!
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1.5. Qualitative analysis of first-order equations 27

We end this section with a generalization of Lemma 1.2 which is often
useful. Indeed, you might wonder what happens if we allow equality in the
definition of a super solution (1.65). At first sight you might expect that this
should not do much harm and the conclusion of Lemma 1.2 should still hold
if we allow for equality there as well. However, if you apply this conclusion
to two solutions of the same equation it will automatically give you unique-
ness of solutions. Hence this generalization cannot be true without further
assumptions on f . One assumption which will do the trick (and which will
hence also guarantee uniqueness of solutions) is the following condition: We
will say that f is locally Lipschitz continuous in the second argument,
uniformly with respect to the first argument, if

L = sup
(t,x)6=(t,y)∈V

|f(t, x)− f(t, y)|
|x− y| (1.69)

is finite for every compact set V contained in the domain of f . We will
meet this condition again in Section 2.2 where we will also further discuss
it. For now notice that it will hold if f has a continuous partial derivative
with respect to x by the mean value theorem.

Theorem 1.3. Suppose f is locally Lipschitz continuous with respect to x
uniformly in t. Let x(t) and y(t) be two differentiable functions such that

x(t0) ≤ y(t0), ẋ(t)− f(t, x(t)) ≤ ẏ(t)− f(t, y(t)), t ∈ [t0, T ) (1.70)

Then we have x(t) ≤ y(t) for every t ∈ [t0, T ). Moreover, if x(t) < y(t) for
some t this remains true for all later times.

Proof. We argue by contradiction. Suppose the first claim were not true.
Then we could find some time t1 such that x(t1) = y(t1) and x(t) > y(t) for
t ∈ (t1, t1 + ε). Introduce ∆(t) = x(t)− y(t) and observe

∆̇(t) = ẋ(t)− ẏ(t) ≤ f(t, x(t))− f(t, y(t)) ≤ L∆(t), t ∈ [t1, t1 + ε),

where the first inequality follows from assumption and the second from

(1.69). But this implies that the function ∆̃(t) = ∆(t)e−Lt satisfies ˙̃∆(t) ≤ 0

and thus ∆̃(t) ≤ ∆̃(t1) = 0, that is, x(t) ≤ y(t) for t ∈ [t0, T ) contradicting
our assumption.

So the first part is true. To show the second part set ∆(t) = y(t)− x(t)
which is now nonnegative by the first part. Then, as in the previous case

one shows ˙̃∆(t) ≥ 0 where ∆̃(t) = ∆(t)eLt and the claim follows. �

A few consequences are worth while noting:

First of all, if x(t) and y(t) are two solutions with x(t0) ≤ y(t0), then
x(t) ≤ y(t) for all t ≥ t0 (for which both solutions are defined). In particular,
in the case x(t0) = y(t0) this shows uniqueness of solutions: x(t) = y(t).
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28 1. Introduction

Second, we can extend the notion of a super solution by requiring only
x+(t) ≥ f(t, x+(t)). Then x+(t0) ≥ x(t0) implies x+(t) ≥ x(t) for all t ≥ t0
and if strict inequality becomes true at some time it remains true for all
later times.

Problem 1.27. Let x be a solution of (1.61) which satisfies limt→∞ x(t) =
x1. Show that limt→∞ ẋ(t) = 0 and f(x1) = 0. (Hint: If you prove
limt→∞ ẋ(t) = 0 without using (1.61) your proof is wrong! Can you give
a counter example?)

Problem 1.28. Prove Lemma 1.1. (Hint: This can be done either by using
the analysis from Section 1.3 or by using the previous problem.)

Problem 1.29. Generalize the concept of sub and super solutions to the
interval (T, t0), where T < t0.

Problem 1.30. Discuss the equation ẋ = x2 − t2

1+t2
.

• Make a numerical analysis.

• Show that there is a unique solution which asymptotically approaches
the line x = 1.

• Show that all solutions below this solution approach the line x =
−1.

• Show that all solutions above go to ∞ in finite time.

Problem 1.31. Discuss the equation ẋ = x2 − t.

Problem 1.32. Generalize Theorem 1.3 to the interval (T, t0), where T <
t0.

1.6. Qualitative analysis of first-order periodic equations

Some of the most interesting examples are periodic ones, where f(t+1, x) =
f(t, x) (without loss we have assumed the period to be one). So let us
consider the logistic growth model with a time dependent harvesting term

ẋ(t) = (1− x(t))x(t) − h · (1− sin(2πt)), (1.71)

where h ≥ 0 is some positive constant. In fact, we could replace 1− sin(2πt)
by any nonnegative periodic function g(t) and the analysis below will still
hold.

The solutions corresponding to some initial conditions for h = 0.2 are
depicted below.
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1.6. Qualitative analysis of first-order periodic equations 29

It looks like all solutions starting above some value x1 converge to a pe-
riodic solution starting at some other value x2 > x1, while solutions starting
below x1 diverge to −∞.

The key idea is to look at the fate of an arbitrary initial value x after
one period. More precisely, let us denote the solution which starts at the
point x at time t = 0 by φ(t, x). Then we can introduce the Poincaré map
via

P (x) = φ(1, x). (1.72)

By construction, an initial condition x0 will correspond to a periodic solution
if and only if x0 is a fixed point of the Poincaré map, P (x0) = x0. In
fact, this follows from uniqueness of solutions of the initial value problem,
since φ(t + 1, x) again satisfies ẋ = f(t, x) if f(t + 1, x) = f(t, x). So
φ(t+ 1, x0) = φ(t, x0) if and only if equality holds at the initial time t = 0,
that is, φ(1, x0) = φ(0, x0) = x0.

We begin by trying to compute the derivative of P (x) as follows. Set

θ(t, x) =
∂

∂x
φ(t, x) (1.73)

and differentiate

φ̇(t, x) =
(
1− φ(t, x)

)
φ(t, x)− h ·

(
1− sin(2πt)

)
, (1.74)

with respect to x (we will justify this step in Theorem 2.10). Then we obtain

θ̇(t, x) =
(
1− 2φ(t, x)

)
θ(t, x) (1.75)

and assuming φ(t, x) is known we can use (1.38) to write down the solution

θ(t, x) = exp

(∫ t

0

(
1− 2φ(s, x)

)
ds

)

. (1.76)

Setting t = 1 we obtain

P ′(x) = θ(1, x) = exp

(

1− 2

∫ 1

0
φ(s, x)ds

)

. (1.77)

While it might look as if this formula is of little help since we do not know
φ(t, x), it at least tells us that that P ′(x) > 0, that is, P (x) is strictly
increasing. Note that this latter fact also follows since different solutions
cannot cross in the (t, x) plane by uniqueness (show this!).
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Moreover, differentiating this last expression once more we obtain

P ′′(x) = −2

(∫ 1

0
θ(s, x)ds

)

P ′(x) < 0 (1.78)

since θ(t, x) > 0 by (1.76). Thus P (x) is concave and there are at most two
intersections with the line x (why?). In other words, there are at most two
periodic solutions. Note that so far we did not need any information on the
harvesting term.

To see that all cases can occur, we will now consider the dependence
with respect to the parameter h. A numerically computed picture of the
Poincaré map for different values of h is shown below.

1

2
1

1

2

1
h=0.1

1

2
1

1

2

1
h=0.249

1

2
1

1

2

1
h=0.5

It seems to indicate that P (x) is decreasing as a function of h. To prove
this we proceed as before. Set

ψ(t, x) =
∂

∂h
φ(t, x) (1.79)

and differentiate the differential equation with respect to h (again this step
will be justified by Theorem 2.10) to obtain

ψ̇(t, x) =
(
1− 2φ(t, x)

)
ψ(t, x) +

(
1− sin(2πt)

)
. (1.80)

Hence, since ψ(0, x) = ∂
∂hφ(0, x) =

∂
∂hx = 0, equation (1.40) implies

ψ(t, x) = −
∫ t

0
exp

(∫ t

s

(
1− 2φ(r, x)

)
dr

)
(
1− sin(2πs)

)
ds < 0 (1.81)

and setting t = 1 we infer
∂

∂h
Ph(x) < 0, (1.82)

where we have added h as a subscript to emphasize the dependence on the
parameter h. Moreover, for h = 0 we have

P0(x) =
ex

1 + (e− 1)x
(1.83)

and there are two fixed points x1 = 0 and x2 = 1. As h increases these
points will approach each other and collide at some critical value hc. Above
this value there are no periodic solutions and all orbits converge to −∞ since
P (x) < x for all x ∈ R (show this).
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To complete our analysis suppose h < hc and denote by x1 < x2 the
two fixed points of P (x). Define the iterates of P (x) by P 0(x) = x and
Pn(x) = P (Pn−1(x)). We claim

lim
n→∞

Pn(x) =







x2, x > x1,

x1, x = x1,

−∞, x < x1.

(1.84)

For example, let x ∈ (x1, x2). Then, since P (x) is strictly increasing we have
x1 = P (x1) < P (x) < P (x2) = x2. Moreover, since P (x) is concave we have
x < P (x), which shows that Pn(x) is a strictly increasing sequence. Let x0 ∈
(x, x2] be its limit. Then P (x0) = P (limn→∞ Pn(x)) = limn→∞ Pn+1(x) =
x0 shows that x0 is a fixed point, that is, x0 = x2. The other cases can be
shown similar (Problem 1.33).

So for x < x1 the solution diverges to −∞ and for x > x1 we have

lim
n→∞

|φ(n, x)− x2| = 0, (1.85)

which implies (show this)

lim
t→∞

|φ(t, x)− φ(t, x2)| = 0. (1.86)

Similar considerations can be made for the case h = hc and h > hc.

Problem 1.33. Suppose P (x) is a continuous, monotone, and concave func-
tion with two fixed points x1 < x2. Show the remaining cases in (1.84).

Problem 1.34. Find limn→∞ Pn(x) in the case h = hc and h > hc.

Problem 1.35. Suppose f ∈ C2(R) and g ∈ C(R) is a nonnegative periodic
function g(t + 1) = g(t). Show that the above discussion still holds for the
equation

ẋ = f(x) + h · g(t)
if f ′′(x) < 0 and g(t) ≥ 0.

Problem 1.36. Suppose a ∈ R and g ∈ C(R) is a nonnegative periodic
function g(t + 1) = g(t). Find conditions on a, g such that the linear inho-
mogeneous equation

ẋ = ax+ g(t)

has a periodic solution. When is this solution unique? (Hint: (1.40).)
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Chapter 2

Initial value problems

Our main task in this section will be to prove the basic existence and unique-
ness result for ordinary differential equations. The key ingredient will be the
contraction principle (Banach fixed point theorem), which we will derive
first.

2.1. Fixed point theorems

Let X be a real vector space. A norm on X is a map ‖.‖ : X → [0,∞)
satisfying the following requirements:

(i) ‖0‖ = 0, ‖x‖ > 0 for x ∈ X\{0}.
(ii) ‖αx‖ = |α| ‖x‖ for α ∈ R and x ∈ X.

(iii) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for x, y ∈ X (triangle inequality).

From the triangle inequality we also get the inverse triangle inequality
(Problem 2.1)

|‖f‖ − ‖g‖| ≤ ‖f − g‖. (2.1)

The pair (X, ‖.‖) is called a normed vector space. Given a normed vector
space X, we say that a sequence of vectors fn converges to a vector f if
limn→∞ ‖fn − f‖ = 0. We will write fn → f or limn→∞ fn = f , as usual,
in this case. Moreover, a mapping F : X → Y between two normed spaces
is called continuous if fn → f implies F (fn) → F (f). In fact, it is not
hard to see that the norm, vector addition, and multiplication by scalars are
continuous (Problem 2.2).

In addition to the concept of convergence we also have the concept of
a Cauchy sequence and hence the concept of completeness: A normed

33
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34 2. Initial value problems

space is called complete if every Cauchy sequence has a limit. A complete
normed space is called a Banach space.

Example. Clearly R
n (or Cn) is a Banach space with the usual Euclidean

norm

|x| =

√
√
√
√

n∑

j=1

|xj |2. (2.2)

⋄

We will be mainly interested in the following example: Let I be a com-
pact interval and consider the continuous functions C(I) on this interval.
They form a vector space if all operations are defined pointwise. Moreover,
C(I) becomes a normed space if we define

‖x‖ = sup
t∈I

|x(t)|. (2.3)

I leave it as an exercise to check the three requirements from above. Now
what about convergence in this space? A sequence of functions xn(t) con-
verges to x(t) if and only if

lim
n→∞

‖xn − x‖ = lim
n→∞

sup
t∈I

|xn(t)− x(t)| = 0. (2.4)

That is, in the language of real analysis, xn converges uniformly to x. Now
let us look at the case where xn is only a Cauchy sequence. Then xn(t) is
clearly a Cauchy sequence of real numbers for any fixed t ∈ I. In particular,
by completeness of R, there is a limit x(t) for each t. Thus we get a limiting
function x(t). Moreover, letting m → ∞ in

|xn(t)− xm(t)| ≤ ε ∀n,m > Nε, t ∈ I (2.5)

we see

|xn(t)− x(t)| ≤ ε ∀n > Nε, t ∈ I, (2.6)

that is, xn(t) converges uniformly to x(t). However, up to this point we do
not know whether it is in our vector space C(I) or not, that is, whether
it is continuous or not. Fortunately, there is a well-known result from real
analysis which tells us that the uniform limit of continuous functions is again
continuous: Fix t ∈ I and ε > 0. To show that x is continuous we need
to find a δ such that |t − s| < δ implies |x(t) − x(s)| < ε. Pick n so that
‖xn−x‖ < ε/3 and δ so that |t− s| < δ implies |xn(t)−xn(s)| < ε/3. Then
|t− s| < δ implies

|x(t)−x(s)| ≤ |x(t)−xn(t)|+ |xn(t)−xn(s)|+ |xn(s)−x(s)| <
ε

3
+
ε

3
+
ε

3
= ε

as required. Hence x(t) ∈ C(I) and thus every Cauchy sequence in C(I)
converges. Or, in other words, C(I) is a Banach space.
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2.1. Fixed point theorems 35

You will certainly ask how all these considerations should help us with
our investigation of differential equations? Well, you will see in the next
section that it will allow us to give an easy and transparent proof of our
basic existence and uniqueness theorem based on the following result.

A fixed point of a mapping K : C ⊆ X → C is an element x ∈ C
such that K(x) = x. Moreover, K is called a contraction if there is a
contraction constant θ ∈ [0, 1) such that

‖K(x)−K(y)‖ ≤ θ‖x− y‖, x, y ∈ C. (2.7)

We also recall the notation Kn(x) = K(Kn−1(x)), K0(x) = x.

Theorem 2.1 (Contraction principle). Let C be a (nonempty) closed subset
of a Banach space X and let K : C → C be a contraction, then K has a
unique fixed point x ∈ C such that

‖Kn(x)− x‖ ≤ θn

1− θ
‖K(x)− x‖, x ∈ C. (2.8)

Proof. If x = K(x) and x̃ = K(x̃), then ‖x−x̃‖ = ‖K(x)−K(x̃)‖ ≤ θ‖x−x̃‖
shows that there can be at most one fixed point.

Concerning existence, fix x0 ∈ C and consider the sequence xn = Kn(x0).
We have

‖xn+1 − xn‖ ≤ θ‖xn − xn−1‖ ≤ · · · ≤ θn‖x1 − x0‖
and hence by the triangle inequality (for n > m)

‖xn − xm‖ ≤
n∑

j=m+1

‖xj − xj−1‖ ≤ θm
n−m−1∑

j=0

θj‖x1 − x0‖

= θm
1− θn−m

1− θ
‖x1 − x0‖ ≤ θm

1− θ
‖x1 − x0‖. (2.9)

Thus xn is Cauchy and tends to a limit x. Moreover,

‖K(x)− x‖ = lim
n→∞

‖xn+1 − xn‖ = 0

shows that x is a fixed point and the estimate (2.8) follows after taking the
limit n→ ∞ in (2.9). �

Question: Why is closedness of C important?

Problem 2.1. Show that |‖f‖ − ‖g‖| ≤ ‖f − g‖.

Problem 2.2. Let X be a Banach space. Show that the norm, vector ad-
dition, and multiplication by scalars are continuous. That is, if fn → f ,
gn → g, and αn → α, then ‖fn‖ → ‖f‖, fn + gn → f + g, and αnfn → αf .
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Problem 2.3. Show that the space C(I,Rn) together with the sup norm
(2.3) is a Banach space if I is a compact interval. Show that the same is
true for I = [0,∞) and I = R if one considers the vector space of bounded
continuous functions Cb(I,R

n).

Problem 2.4. Derive Newton’s method for finding the zeros of a twice con-
tinuously differentiable function f(x),

xn+1 = K(xn), K(x) = x− f(x)

f ′(x)
,

from the contraction principle by showing that if x is a zero with f ′(x) 6=
0, then there is a corresponding closed interval C around x such that the
assumptions of Theorem 2.1 are satisfied.

2.2. The basic existence and uniqueness result

Now we want to use the preparations from the previous section to show ex-
istence and uniqueness of solutions for the following initial value problem
(IVP)

ẋ = f(t, x), x(t0) = x0. (2.10)

We suppose f ∈ C(U,Rn), where U is an open subset of Rn+1 and (t0, x0) ∈
U .

First of all note that integrating both sides with respect to t shows that
(2.10) is equivalent to the following integral equation

x(t) = x0 +

∫ t

t0

f(s, x(s)) ds. (2.11)

At first sight this does not seem to help much. However, note that x0(t) = x0
is an approximating solution at least for small t. Plugging x0(t) into our
integral equation we get another approximating solution

x1(t) = x0 +

∫ t

t0

f(s, x0(s)) ds. (2.12)

Iterating this procedure we get a sequence of approximating solutions

xm(t) = Km(x0)(t), K(x)(t) = x0 +

∫ t

t0

f(s, x(s)) ds. (2.13)

Now this observation begs us to apply the contraction principle from the
previous section to the fixed point equation x = K(x), which is precisely
our integral equation (2.11).

We will set t0 = 0 for notational simplicity and consider only the case t ≥
0 to avoid excessive numbers of absolute values in the following estimates.

First of all we will need a Banach space. The obvious choice is X =
C([0, T ],Rn)for some suitable T > 0. Furthermore, we need a closed subset
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2.2. The basic existence and uniqueness result 37

C ⊆ X such that K : C → C. We will try a closed ball of radius δ around
the constant function x0.

Since U is open and (0, x0) ∈ U we can choose V = [0, T ]×Bδ(x0) ⊂ U ,
where Bδ(x0) = {x ∈ R

n| |x− x0| < δ}, and abbreviate

M = max
(t,x)∈V

|f(t, x)|, (2.14)

where the maximum exists by continuity of f and compactness of V . Then

|K(x)(t)− x0| ≤
∫ t

0
|f(s, x(s))|ds ≤ tM (2.15)

whenever the graph of x(t) lies within V , that is, {(t, x(t))|t ∈ [0, T ]} ⊂ V .
Hence, for t ≤ T0, where

T0 = min{T, δ
M

}, (2.16)

we have T0M ≤ δ and the graph of K(x) restricted to [0, T0] is again in V .
In the special case M = 0 one has to understand this as δ

M = ∞ such that
T0 = min{T,∞} = T . Moreover, note that since [0, T0] ⊆ [0, T ] the same

constant M will also bound |f | on V0 = [0, T0]×Bδ(x0) ⊆ V .

So if we choose X = C([0, T0],R
n) as our Banach space, with norm

‖x‖ = max0≤t≤T0 |x(t)|, and C = {x ∈ X | ‖x − x0‖ ≤ δ} as our closed
subset, then K : C → C and it remains to show that K is a contraction.

To show this, we need to estimate

|K(x)(t) −K(y)(t)| ≤
∫ t

0
|f(s, x(s))− f(s, y(s))|ds. (2.17)

Clearly, since f is continuous, we know that |f(s, x(s))− f(s, y(s))| is small
if |x(s) − y(s)| is. However, this is not good enough to estimate the inte-
gral above. For this we need the following stronger condition: Suppose f
is locally Lipschitz continuous in the second argument, uniformly with
respect to the first argument, that is, for every compact set V0 ⊂ U the
following number

L = sup
(t,x)6=(t,y)∈V0

|f(t, x)− f(t, y)|
|x− y| (2.18)

(which depends on V0) is finite. Then,
∫ t

0
|f(s, x(s))− f(s, y(s))|ds ≤ L

∫ t

0
|x(s)− y(s)|ds

≤ L t sup
0≤s≤t

|x(s)− y(s)| (2.19)

provided the graphs of both x(t) and y(t) lie in V0. In other words,

‖K(x)−K(y)‖ ≤ LT0‖x− y‖, x, y ∈ C. (2.20)
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Moreover, choosing T0 < L−1 we see that K is a contraction and existence
of a unique solution follows from the contraction principle:

Theorem 2.2 (Picard–Lindelöf). Suppose f ∈ C(U,Rn), where U is an
open subset of Rn+1, and (t0, x0) ∈ U . If f is locally Lipschitz continuous
in the second argument, uniformly with respect to the first, then there exists
a unique local solution x(t) ∈ C1(I) of the IVP (2.10), where I is some
interval around t0.

More specific, if V = [t0, t0 + T ] × Bδ(x0) ⊂ U and M denotes the
maximum of |f | on V . Then the solution exists at least for t ∈ [t0, t0 + T0]

and remains in Bδ(x0), where T0 = min{T, δM }. The analogous result holds
for the interval [t0 − T, t0].

Proof. We have already shown everything except for the fact that our proof
requires T0 < L−1 in addition to T0 ≤ T and T0 ≤ δ

M . That this condition
is indeed superfluous will be shown in the next section. �

The procedure to find the solution is called Picard iteration. Unfor-
tunately, it is not suitable for actually finding the solution since computing
the integrals in each iteration step will not be possible in general. Even for
numerical computations evaluating the integrals is often too time consum-
ing. However, if f(t, x) is analytic, the m’th Picard iterate xm(t) matches
the Taylor expansion of the solution x(t) around t0 up to order m and this
can be used for numerical computations (cf. Problem 4.4). In any event,
the important fact for us is that there exists a unique solution to the initial
value problem.

In many cases, f will be even differentiable. In particular, recall that
f ∈ C1(U,Rn) implies that f is locally Lipschitz continuous in the second
argument, uniformly with respect to the first, as required in Theorem 2.2
(see Problem 2.5 below).

Lemma 2.3. Suppose f ∈ Ck(U,Rn), k ≥ 1, where U is an open subset
of Rn+1, and (t0, x0) ∈ U . Then the local solution x of the IVP (2.10) is
Ck+1(I).

Proof. Let k = 1. Then x(t) ∈ C1 by the above theorem. Moreover,
using ẋ(t) = f(t, x(t)) ∈ C1 we infer x(t) ∈ C2. The rest follows from
induction. �

Problem 2.5. Show that f ∈ C1(Rm,Rn) is locally Lipschitz continuous.
In fact, show that

|f(y)− f(x)| ≤ sup
ε∈[0,1]

∥
∥
∥
∥

∂f(x+ ε(y − x))

∂x

∥
∥
∥
∥
|x− y|,
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where ∂f(x0)
∂x denotes the Jacobian matrix at x0 and ‖.‖ denotes the matrix

norm (cf. (3.8)). Conclude that a function f ∈ C1(U,Rn), U ⊆ R
n+1, is

locally Lipschitz continuous in the second argument, uniformly with respect
to the first, and thus satisfies the hypothesis of Theorem 2.2. (Hint: Start
with the case m = n = 1.)

Problem 2.6. Are the following functions Lipschitz continuous near 0? If
yes, find a Lipschitz constant for some interval containing 0.

(i) f(x) = 1
1−x2 .

(ii) f(x) = |x|1/2.
(iii) f(x) = x2 sin( 1x).

Problem 2.7. Apply the Picard iteration to the first-order linear equation

ẋ = x, x(0) = 1.

Problem 2.8. Apply the Picard iteration to the first-order equation

ẋ = 2t− 2
√

max(0, x), x(0) = 0.

Does it converge?

2.3. Some extensions

In this section we want to derive some further extensions of the Picard–
Lindelöf theorem. They are of a more technical nature and can be skipped
on first reading.

As a preparation we need a slight generalization of the contraction prin-
ciple. In fact, looking at its proof, observe that we can replace θn by any
other summable sequence θn (Problem 2.10).

Theorem 2.4 (Weissinger). Let C be a (nonempty) closed subset of a Ba-
nach space X. Suppose K : C → C satisfies

‖Kn(x)−Kn(y)‖ ≤ θn‖x− y‖, x, y ∈ C, (2.21)

with
∑∞

n=1 θn <∞. Then K has a unique fixed point x such that

‖Kn(x)− x‖ ≤





∞∑

j=n

θj



 ‖K(x)− x‖, x ∈ C. (2.22)

Our first objective is to give some concrete values for the existence time
T0. Using Weissinger’s theorem instead of the contraction principle, we can
avoid the restriction T0 < L−1:
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Theorem 2.5 (improved Picard–Lindelöf). Suppose f ∈ C(U,Rn), where U
is an open subset of Rn+1, and f is locally Lipschitz continuous in the second
argument. Choose (t0, x0) ∈ U and δ, T > 0 such that [t0, t0+T ]×Bδ(x0) ⊂
U . Set

M(t) =

∫ t

t0

sup
x∈Bδ(x0)

|f(s, x)|ds, (2.23)

L(t) = sup
x 6=y∈Bδ(x0)

|f(t, x)− f(t, y)|
|x− y| . (2.24)

Note that M(t) is nondecreasing and define T0 via

T0 = sup{0 < t ≤ T |M(t0 + t) ≤ δ}. (2.25)

Suppose

L1(T0) =

∫ t0+T0

t0

L(t)dt <∞. (2.26)

Then the unique local solution x(t) of the IVP (2.10) is given by

x = lim
m→∞

Km(x0) ∈ C1([t0, t0 + T0], Bδ(x0)), (2.27)

where Km(x0) is defined in (2.13), and satisfies the estimate

sup
t0≤t≤T0

|x(t)−Km(x0)(t)| ≤
L1(T0)

m

m!
eL1(T0)

∫ t0+T0

t0

|f(s, x0)|ds. (2.28)

An analogous result holds for t < t0.

Proof. Again we choose t0 = 0 for notational simplicity. Our aim is to
verify the assumptions of Theorem 2.4 choosing X = C([0, T0],R

n) with
norm ‖x‖ = max0≤t≤T0 |x(t)| and C = {x ∈ X | ‖x− x0‖ ≤ δ}.

First of all, if x ∈ C we have

|K(x)(t)− x0| ≤
∫ t

0
|f(s, x(s))|ds ≤M(t) ≤ δ, t ∈ [0, T0],

that is, K(x) ∈ C as well. In particular, this explains our choice for T0.

Next we claim

|Km(x)(t) −Km(y)(t)| ≤ L1(t)
m

m!
sup
0≤s≤t

|x(s)− y(s)|, (2.29)
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where L1(t) =
∫ t
0 L(s)ds. This follows by induction:

|Km+1(x)(t)−Km+1(y)(t)| ≤
∫ t

0
|f(s,Km(x)(s)) − f(s,Km(y)(s))|ds

≤
∫ t

0
L(s)|Km(x)(s)−Km(y)(s)|ds

≤
∫ t

0
L(s)

L1(s)
m

m!
sup
r≤s

|x(r)− y(r)|ds

≤ sup
r≤t

|x(r)− y(r)|
∫ t

0
L′
1(s)

L1(s)
m

m!
ds

=
L1(t)

m+1

(m+ 1)!
sup
r≤t

|x(r)− y(r)|.

Hence K satisfies the assumptions of Theorem 2.4 which finally yields

sup
0≤t≤T0

|x(t)−Km(x0)(t)| ≤
∞∑

j=m

(
L1(T0)

j

j!

)∫ T0

0
|f(s, x0)|ds.

�

Note that if we set

M = sup
(t,x)∈[t0,T ]×Bδ(x0)

|f(t, x)| (2.30)

then we can chose

T0 = min(T,
M

δ
). (2.31)

If f(t, x) is defined for all x ∈ R
n and we can find a global Lipschitz constant,

then we can say more about the interval where the solution exists:

Corollary 2.6. Suppose [t0, T ]×R
n ⊂ U and

∫ T

t0

L(t)dt <∞, L(t) = sup
x 6=y∈Rn

|f(t, x)− f(t, y)|
|x− y| , (2.32)

then x is defined for all t ∈ [t0, T ].

In particular, if U = R
n+1 and

∫ T
−T L(t)dt < ∞ for all T > 0, then x is

defined for all t ∈ R.

Proof. In this case we can simply choose our closed set C to be the entire
Banach space X = C([0, T ],Rn) (i.e., δ = ∞) and proceed as in the proof
of the previous theorem with T0 = T . �

Note that this corollary applies for example if the differential equation
is linear, that is, f(t, x) = A(t)x+ b(t), where A(t) is a matrix and b(t) is a
vector which both have continuous entries.
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Finally, let me remark that the requirement that f is continuous in
Theorem 2.2 is already more than we actually needed in its proof. In fact,
all one needs to require is that f is measurable with M(t) finite and L(t)
locally integrable (i.e.,

∫

I L(t)dt <∞ for any compact interval I).

However, then the solution of the integral equation is only absolutely
continuous and might fail to be continuously differentiable. In particular,
when going back from the integral to the differential equation, the differen-
tiation has to be understood in a generalized sense. I do not want to go into
further details here, but rather give you an example. Consider

ẋ = sgn(t)x, x(0) = 1. (2.33)

Then x(t) = exp(|t|) might be considered a solution even though it is not
differentiable at t = 0. This generalization is known as differential equa-
tions in the sense of Carathéodory.

Problem 2.9. Consider the initial value problem ẋ = x2, x(0) = x0 >
0. What is the maximal value for T0 (as a function of x0) according to
Theorem 2.2 respectively Theorem 2.5? What maximal value do you get
from the explicit solution? (Hint: Compute T0 as a function of δ and find
the optimal δ.)

Problem 2.10. Prove Theorem 2.4. Moreover, suppose K : C → C and
that Kn is a contraction. Show that the fixed point of Kn is also one of K
(Hint: Use uniqueness). Hence Theorem 2.4 (except for the estimate) can
also be considered as a special case of Theorem 2.1 since the assumption
implies that Kn is a contraction for n sufficiently large.

2.4. Dependence on the initial condition

Usually, in applications several data are only known approximately. If the
problem iswell-posed, one expects that small changes in the data will result
in small changes of the solution. This will be shown in our next theorem.
As a preparation we need Gronwall’s inequality.

Lemma 2.7 (Generalized Gronwall’s inequality). Suppose ψ(t) satisfies

ψ(t) ≤ α(t) +

∫ t

0
β(s)ψ(s)ds, t ∈ [0, T ], (2.34)

with α(t) ∈ R and β(t) ≥ 0. Then

ψ(t) ≤ α(t) +

∫ t

0
α(s)β(s) exp

(∫ t

s
β(r)dr

)

ds, t ∈ [0, T ]. (2.35)

Moreover, if in addition α(s) ≤ α(t) for s ≤ t, then

ψ(t) ≤ α(t) exp

(∫ t

0
β(s)ds

)

, t ∈ [0, T ]. (2.36)
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Proof. Abbreviate φ(t) = exp
(
−
∫ t
0 β(s)ds

)
. Then one computes

d

dt
φ(t)

∫ t

0
β(s)ψ(s)ds = β(t)φ(t)

(

ψ(t) −
∫ t

0
β(s)ψ(s)ds

)

≤ α(t)β(t)φ(t)

by our assumption (2.34). Integrating this inequality with respect to t and
dividing the resulting equation by φ(t) shows

∫ t

0
β(s)ψ(s)ds ≤

∫ t

0
α(s)β(s)

φ(s)

φ(t)
ds.

Adding α(t) on both sides and using again (2.34) finishes the proof of the
first claim. The second claim is left as an exercise (Problem 2.11). �

We will also frequently use the following simple consequence (Prob-
lem 2.12): If

ψ(t) ≤ α+

∫ t

0
(β ψ(s) + γ)ds, t ∈ [0, T ], (2.37)

for given constants α ∈ R, β ≥ 0, and γ ∈ R, then

ψ(t) ≤ α exp(βt) +
γ

β
(exp(βt)− 1), t ∈ [0, T ]. (2.38)

In the case β = 0 the right-hand side has to be replaced by its limit ψ(t) ≤
α+ γt. Of course this last inequality does not provide any new insights.

Now we can show that our IVP is well-posed.

Theorem 2.8. Suppose f, g ∈ C(U,Rn) and let f be locally Lipschitz con-
tinuous in the second argument, uniformly with respect to the first. If x(t)
and y(t) are respective solutions of the IVPs

ẋ = f(t, x)
x(t0) = x0

and
ẏ = g(t, y)
y(t0) = y0

, (2.39)

then

|x(t)− y(t)| ≤ |x0 − y0| eL|t−t0| +
M

L
(eL|t−t0| − 1), (2.40)

where

L = sup
(t,x)6=(t,y)∈V

|f(t, x)− f(t, y)|
|x− y| , M = sup

(t,x)∈V
|f(t, x)− g(t, x)|, (2.41)

with V ⊂ U some set containing the graphs of x(t) and y(t).

Proof. Without restriction we set t0 = 0. Then we have

|x(t)− y(t)| ≤ |x0 − y0|+
∫ t

0
|f(s, x(s))− g(s, y(s))|ds.
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Estimating the integrand shows

|f(s, x(s))− g(s, y(s))|
≤ |f(s, x(s))− f(s, y(s))|+ |f(s, y(s))− g(s, y(s))|
≤ L|x(s)− y(s)|+M.

Hence the claim follows from (2.38). �

In particular, denote the solution of the IVP (2.10) by

φ(t, t0, x0) (2.42)

to emphasize the dependence on the initial condition. Then our theorem, in
the special case f = g,

|φ(t, t0, x0)− φ(t, t0, y0)| ≤ |x0 − y0| eL|t−t0|, (2.43)

shows that φ depends continuously on the initial value. Of course this bound
blows up exponentially as t increases, but the linear equation ẋ = x in one
dimension shows that we cannot do better in general.

Moreover, we even have

Theorem 2.9. Suppose f ∈ C(U,Rn) is locally Lipschitz continuous in the
second argument, uniformly with respect to the first. Around each point
(t0, x0) ∈ U we can find a compact set I × B ⊂ U such that φ(t, s, x) ∈
C(I × I ×B,Rn). Moreover, φ(t, t0, x0) is Lipschitz continuous,

|φ(t, t0, x0)− φ(s, s0, y0)| ≤ |x0 − y0| eL|t−t0| + (|t− s|+ |t0 − s0|eL|t−s0|)M,
(2.44)

where

L = sup
(t,x)6=(t,y)∈V

|f(t, x)− f(t, y)|
|x− y| , M = max

(t,x)∈V
|f(t, x)|, (2.45)

with V ⊂ U some compact set containing I × φ(I × I ×B).

Proof. Using the same notation as in the proof of Theorem 2.2 we can
find a compact set V = [t0 − ε, t0 + ε] × Bδ(x0) such that φ(t, t0, x0) exists
for |t − t0| ≤ ε. But then it is straightforward to check that V1 = [t1 −
ε/2, t1 + ε/2] ×Bδ/2(x1) works to show that φ(t, t1, x1) exists for |t− t1| ≤
ε/2 whenever |t1 − t0| ≤ ε/2 and |x1 − x0| ≤ δ/2. Hence we can choose

I = [t0 − ε/2, t0 + ε/2] and B = Bδ/2(x0).
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To obtain the estimate observe

|φ(t, t0, x0)− φ(s, s0, y0)| ≤ |φ(t, t0, x0)− φ(t, t0, y0)|
+ |φ(t, t0, y0)− φ(t, s0, y0)|
+ |φ(t, s0, y0)− φ(s, s0, y0)|

≤ |x0 − y0| eL|t−t0|

+ |
∫ t

t0

f(r, φ(r, t0, y0))dr −
∫ t

s0

f(r, φ(r, s0, y0))dr|

+ |
∫ t

s
f(r, φ(r, s0, y0))dr|,

where we have used (2.43) for the first term. Moreover, the third term can
clearly be estimated by M |t − s|. To estimate the second term, abbreviate
∆(t) = φ(t, t0, y0)− φ(t, s0, y0) and use (assume t0 ≤ s0 ≤ t without loss of
generality)

∆(t) ≤
∣
∣
∣
∣

∫ s0

t0

f(r, φ(r, t0, y0))dr

∣
∣
∣
∣
+

∫ t

s0

|f(r, φ(r, t0, y0))− f(r, φ(r, s0, y0))|dr

≤ |t0 − s0|M + L

∫ t

s0

∆(r)dr.

Hence an application of Gronwall’s inequality finishes the proof. �

Note that in the case of an autonomous system we have φ(t, t0, x0) =
φ(t− t0, 0, x0) by Problem 1.8 and it suffices to consider φ(t, x0) = φ(t, 0, x0)
in such a situation.

However, in many cases the previous result is not good enough and we
need to be able to differentiate with respect to the initial condition. Hence
we will assume f ∈ Ck(U,Rn) for some k ≥ 1.

We first suppose that φ(t, t0, x) is differentiable with respect to x. Then

the same is true for φ̇(t, t0, x) by (2.10) combined with the chain rule and
differentiating (2.10) yields

∂2φ

∂x∂t
(t, t0, x) =

∂f

∂x
(t, φ(t, t0, x))

∂φ

∂x
(t, t0, x). (2.46)

Hence, if we further assume that we can interchange the partial derivatives
on the left-hand side,

∂2φ

∂x∂t
(t, t0, x) =

∂2φ

∂t∂x
(t, t0, x), (2.47)

we see that
∂φ

∂x
(t, t0, x) (2.48)
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necessarily satisfies the first variational equation

ẏ = A(t, x)y, A(t, x) =
∂f

∂x
(t, φ(t, t0, x)). (2.49)

Note that this equation is linear and the corresponding integral equation
reads

y(t) = I+

∫ t

t0

A(s, x)y(s)ds, (2.50)

where we have used φ(t0, t0, x) = x and hence ∂φ
∂x (t0, t0, x) = I. Applying

similar fixed point techniques as before, one can show that the first vari-
ational equation has a solution which is indeed the derivative of φ(t, t0, x)
with respect to x.

Theorem 2.10. Suppose f ∈ Ck(U,Rn), k ≥ 1. Around each point (t0, x0) ∈
U we can find an open set I×B ⊆ U such that φ(t, s, x) ∈ Ck(I×I×B,Rn).
Moreover, ∂

∂tφ(t, s, x) ∈ Ck(I × I ×B,Rn) and if Dk is a partial derivative
of order k, then Dkφ satisfies the higher order variational equation obtained
from

∂

∂t
Dkφ(t, s, x) = Dk

∂

∂t
φ(t, s, x) = Dkf(t, φ(t, s, x)) (2.51)

by applying the chain rule. In particular, this equation is linear in Dkφ and
it also follows that the corresponding higher order derivatives commute.

Proof. By adding t to the dependent variables it is no restriction to assume
that our equation is autonomous and consider φ(t, x) = φ(t, 0, x). Existence
of a set I × B ⊆ U such that φ(t, x0) is continuous has been established in
the previous theorem and it remains to investigate differentiability.

We start by showing the case k = 1. We have to prove that φ(t, x) is
differentiable at every given point x1 ∈ B. Without loss of generality we
will assume x1 = 0 for notational convenience. We will take I = (−T, T )
and B some open ball around x0 such that the closure of I × B still lies in
U .

Abbreviate φ(t) = φ(t, x1), A(t) = A(t, x1) and denote by ψ(t) the

solution of the first variational equation ψ̇(t) = A(t)ψ(t) corresponding to
the initial condition ψ(t0) = I. Set

θ(t, x) =
φ(t, x)− φ(t)− ψ(t)x

|x| ,

then ∂φ
∂x at x1 = 0 will exist (and be equal to ψ) if we can show limx→0 θ(t, x) =

0.

Our assumption f ∈ C1 implies

f(y) = f(x)+
∂f

∂x
(x) (y−x)+

(∫ 1

0

(∂f

∂x
(x+ t(y − x))− ∂f

∂x
(x)
)

dt

)

(y−x),

Author's preliminary version made available with permission of the publisher, the American Mathematical Society



2.4. Dependence on the initial condition 47

and thus

f(y)− f(x) =
∂f

∂x
(x) (y − x) + |y − x|R(y, x), (2.52)

where

|R(y, x)| ≤ max
t∈[0,1]

∥
∥
∥
∂f

∂x
(x+ t(y − x))− ∂f

∂x
(x)
∥
∥
∥.

Here ‖.‖ denotes the matrix norm (cf. Section 3.1). By uniform conti-

nuity of the partial derivatives ∂f
∂x in a neighborhood of x1 = 0 we infer

limy→x |R(y, x)| = 0 again uniformly in x in some neighborhood of 0.

Using (2.52) we see

θ̇(t, x) =
1

|x|(f(φ(t, x)) − f(φ(t))−A(t)ψ(t)x)

= A(t)θ(t, x) +
|φ(t, x) − φ(t)|

|x| R(φ(t, x), φ(t)).

Now integrate and take absolute values (note θ(0, x) = 0 and recall (2.43))
to obtain

|θ(t, x)| ≤ R̃(x) +

∫ t

0
‖A(s)‖|θ(s, x)|ds,

where

R̃(x) = eLT
∫ T

0
|R(φ(s, x), φ(s))|ds.

Then Gronwall’s inequality implies |θ(t, x)| ≤ R̃(x) exp(
∫ T
0 ‖A(s)‖ds). Since

limy→x |R(y, x)| = 0 uniformly in x in some neighborhood of 0, we have

limx→0 R̃(x) = 0 and hence limx→0 θ(t, x) = 0. Moreover, ∂φ
∂x (t, x) is C0 as

the solution of the first variational equation. This settles the case k = 1 since
all partial derivatives (including the one with respect to t) are continuous.

For the general case k ≥ 1 we use induction: Suppose the claim holds
for k and let f ∈ Ck+1. Then φ(t, x) ∈ C1 and the partial derivative
∂φ
∂x (t, x) solves the first variational equation. But A(t, x) ∈ Ck and hence
∂φ
∂x (t, x) ∈ Ck, which, together with Lemma 2.3, shows φ(t, x) ∈ Ck+1. �

In fact, we can also handle the dependence on parameters. Suppose f
depends on some parameters λ ∈ Λ ⊆ R

p and consider the IVP

ẋ(t) = f(t, x, λ), x(t0) = x0, (2.53)

with corresponding solution

φ(t, t0, x0, λ). (2.54)

Theorem 2.11. Suppose f ∈ Ck(U × Λ,Rn), k ≥ 1. Around each point
(t0, x0, λ0) ∈ U × Λ we can find an open set I × B × Λ0 ⊆ U × Λ such that
φ(t, s, x, λ) ∈ Ck(I × I ×B × Λ0,R

n).
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Proof. This follows from the previous result by adding the parameters λ
to the dependent variables and requiring λ̇ = 0. Details are left to the
reader. �

Problem 2.11. Show (2.36).

Problem 2.12. Show (2.38). (Hint: Introduce ψ̃(t) = ψ(t) + γ
β .)

Problem 2.13. Find different functions f(t, x) = f(x) and g(t, x) = g(x)
such that the inequality in (2.40) becomes an equality.

Problem 2.14. Suppose f ∈ C(U,Rn) satisfies |f(t, x)−f(t, y)| ≤ L(t)|x−
y|. Show that the solution φ(t, x0) of (2.10) satisfies

|φ(t, x0)− φ(t, y0)| ≤ |x0 − y0| e|
∫ t

t0
L(s)ds|

.

Problem 2.15. Show that in the one dimensional case, we have

∂φ

∂x
(t, x) = exp

(∫ t

t0

∂f

∂x
(s, φ(s, x))ds

)

.

2.5. Regular perturbation theory

Using Theorem 2.11 we can now also justify the perturbation method pro-
posed in Problem 1.2 for initial value problems depending on a small pa-
rameter ε. In general, such a problem is of the form

ẋ = f(t, x, ε), x(t0) = x0, (2.55)

and known as a regular perturbation problem.

If we suppose f ∈ C1 then Theorem 2.11 ensures that the same is true
for the solution φ(t, ε), where we do not display the dependence on the
initial conditions (t0, x0) for notational simplicity. In particular, we have
the following Taylor expansions

φ(t, ε) = φ0(t) + φ1(t)ε+ o(ε) (2.56)

with respect to ε in a neighborhood of ε = 0.

Clearly the unperturbed term φ0(t) = φ(t, 0) is given as the solution of
the unperturbed equation

φ̇0 = f0(t, φ0), φ0(t0) = x0, (2.57)

where f0(t, x) = f(t, x, 0). Moreover the derivative φ1(t) = ∂
∂εφ(t, ε)|ε=0

solves the corresponding first variational equation

φ̇1 = f10(t, φ0(t))φ1 + f11(t, φ0(t)), φ1(t0) = 0, (2.58)

where f10(t, x) = ∂
∂xf(t, x, 0) and f11(t, x) = ∂

∂εf(t, x, ε)|ε=0. The initial
condition φ1(t0) = 0 follows from the fact that the initial condition x0 does
not depend on ε, implying φ1(t0) =

∂
∂εφ(t0, ε)|ε=0 =

∂
∂εx0|ε=0 = 0.
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Hence once we have the solution of the unperturbed problem φ0(t), we
can then compute the correction term φ1(t) by solving another linear equa-
tion.

Note that the procedure can be equivalently described as follows: Plug
the Taylor expansion for φ(t, ε) into the differential equation, expand the
right-hand side with respect to ε, and compare coefficients with respect to
powers of ε.

Example. Let us look at a simple example. Consider the equation

v̇ = −εv − g, v(0) = 0, ε ≥ 0,

which models the velocity of a falling object with air resistance (cf. Prob-
lem 1.17). The solution can be easily found

φ(t, ε) = g
e−εt − 1

ε

and there is no need for any perturbation techniques. However, we will still
apply it to illustrate the method. The unperturbed problem is

φ̇0 = −g, φ0(0) = 0,

and the solution is given by φ0(t) = −gt. Similarly, since f(t, v, ε) = −εv−g
it follows that f10(t, v) = 0, f11(t, v) = −v and the equation for the first
correction term is

φ̇1 = −φ0(t), φ1(0) = 0,

with solution given by φ1(t) =
g
2t

2. Hence our approximation is

v(t) = −g
(

t− ε
t2

2
+ o(ε)

)

which of course coincides with the Taylor expansion of the exact solution.
However note, the approximation is only valid for fixed time and will in
general get worse as t increases. In fact, observe that for ε > 0 the approxi-
mation diverges to +∞ while the exact solution converges to g

ε . ⋄

Clearly we can extend this procedure to get further approximations:

Theorem 2.12. Let Λ be some open interval. Suppose f ∈ Ck(U ×Λ,Rn),
k ≥ 1 and fix some values (t0, x0, ε0) ∈ U × Λ. Let φ(t, ε) ∈ Ck(I × Λ0,R

n)
be the solution of the initial value problem

ẋ = f(t, x, ε), x(t0) = x0, (2.59)

guaranteed to exist by Theorem 2.11.

Then

φ(t, ε) =
k∑

j=0

φj(t)

j!
(ε− ε0)

j + o((ε− ε0)
k), (2.60)
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where the coefficients can be obtained by recursively solving

φ̇j = fj(t, φ0, . . . , φj , ε0), φj(t0) =

{

x0, j = 0,

0, j ≥ 1,
(2.61)

where the function fj is recursively defined via

fj+1(t, x0, . . . , xj+1, ε) =
∂fj
∂ε

(t, x0, . . . , xj , ε)

+

j
∑

k=0

∂fj
∂xk

(t, x0, . . . , xj , ε)xk+1,

f0(t, x0, ε) =f(t, x0, ε). (2.62)

If we assume f ∈ Ck+1 the error term will be O((ε − ε0)
k+1) uniformly for

t ∈ I.

Proof. The result follows by plugging (2.60) into the differential equation

and comparing powers of ε. If f ∈ Ck+1 we know that ∂k+1

∂εk+1φ is continuous
and hence bounded on I × Λ0, which gives the desired estimate on the
remainder in the Taylor expansion. �

A few remarks are in order: Of course we could admit more than one
parameter if we are willing to deal with Taylor series in more than one
variable. Moreover, we could include the case where the initial condition
depends on ε by simply replacing the initial conditions for φj(t0) by the
corresponding expansion coefficients of x0(ε).

Finally, we remark that the Taylor expansion will converge if f is analytic
with respect to all variables. This will be shown in Theorem 4.2.

Problem 2.16. Compute the next term φ2 in the above example.

Problem 2.17. Approximate the solutions of ẍ + x + εx3 = 0, x(0) = 1,
ẋ(0) = 0 up to order one. (Hint: It is not necessary to convert this second
order equation to a first order system. In order to solve the second order
equations you need to use the computer or preview Section 3.3.)

2.6. Extensibility of solutions

We have already seen that solutions might not exist for all t ∈ R even though
the differential equation is defined for all t ∈ R. This raises the question
about the maximal interval on which a solution of the IVP (2.10) can be
defined.

Suppose that solutions of the IVP (2.10) exist locally and are unique
(e.g., f is Lipschitz). Let φ1, φ2 be two solutions of the IVP (2.10) defined
on the open intervals I1, I2, respectively. Let I = I1 ∩ I2 = (T−, T+) and
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2.6. Extensibility of solutions 51

let (t−, t+) be the maximal open interval on which both solutions coincide.
I claim that (t−, t+) = (T−, T+). In fact, if t+ < T+, both solutions would
also coincide at t+ by continuity. Next, considering the IVP with initial
condition x(t+) = φ1(t+) = φ2(t+) shows that both solutions coincide in a
neighborhood of t+ by local uniqueness. This contradicts maximality of t+
and hence t+ = T+. Similarly, t− = T−.

Moreover, we get a solution

φ(t) =

{

φ1(t), t ∈ I1,
φ2(t), t ∈ I2,

(2.63)

defined on I1 ∪ I2. In fact, this even extends to an arbitrary number of
solutions and in this way we get a (unique) solution defined on some maximal
interval.

Theorem 2.13. Suppose the IVP (2.10) has a unique local solution (e.g. the
conditions of Theorem 2.5 are satisfied). Then there exists a unique maximal
solution defined on some maximal interval I(t0,x0) = (T−(t0, x0), T+(t0, x0)).

Proof. Let S be the set of all solutions φ of (2.10) which are defined on
an open interval Iφ. Let I =

⋃

φ∈S Iφ, which is again open. Moreover, if

t1 > t0 ∈ I, then t1 ∈ Iφ for some φ and thus [t0, t1) ⊆ Iφ ⊆ I. Similarly for
t1 < t0 and thus I is an open interval containing t0. In particular, it is of
the form I = (T−, T+). Now define φmax(t) on I by φmax(t) = φ(t) for some
φ ∈ S with t ∈ Iφ. By our above considerations any two φ will give the same
value, and thus φmax(t) is well-defined. Moreover, for every t1 > t0 there is
some φ ∈ S such that t1 ∈ Iφ and φmax(t) = φ(t) for t ∈ (t0−ε, t1+ε) which
shows that φmax is a solution. By construction there cannot be a solution
defined on a larger interval. �

The solution found in the previous theorem is called the maximal so-
lution. A solution defined for all t ∈ R is called a global solution. Clearly
every global solution is maximal.

Remark: If we drop the requirement that f is Lipschitz, we still have
existence of solutions (see Theorem 2.19 below), but we already know that
we might lose uniqueness. Even without uniqueness, two given solutions
of the IVP (2.10) can still be glued together at t0 (if necessary) to obtain
a solution defined on I1 ∪ I2. Furthermore, Zorn’s lemma can be used to
ensure existence of maximal solutions in this case. For example, consider
the differential equation ẋ =

√

|x| where we have found global (and thus
maximal) solutions which are however not unique.

Now let us look at how we can tell from a given solution whether an
extension exists or not.
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Lemma 2.14. Let φ(t) be a solution of (2.10) defined on the interval
(t−, t+). Then there exists an extension to the interval (t−, t++ ε) for some
ε > 0 if and only if there exists a sequence tm ∈ (t−, t+) such that

lim
m→∞

(tm, φ(tm)) = (t+, y) ∈ U. (2.64)

Similarly for t−.

Proof. Clearly, if there is an extension, then (2.64) holds for any sequence
tm ↑ t+. Conversely, suppose there is a sequence satisfying (2.64). We first
show that in this case

lim
t↑t+

φ(t) = y. (2.65)

Intuitively this follows, since otherwise the solution would need to oscillate
faster and faster as t approaches t+. Consequently its derivative would need
to grow, which is impossible since f(t, x) is bounded near y. More precisely,

since U is open there is some δ > 0 such that V = [t+ − δ, t+]×Bδ(y) ⊂ U
and M = max(t,x)∈V |f(t, x)| < ∞. Moreover, after maybe passing to a
subsequence, we can assume that tm ∈ (t+ − δ, t+), φ(tm) ∈ Bδ(y), and
tm < tm+1. If (2.65) were wrong, we could find a sequence τm ↑ t+ such
that |φ(τm) − y| ≥ γ > 0. Without loss we can choose γ < δ and τm ≥ tm.
Moreover, by the intermediate value theorem we can even require |φ(τm)−
y| = γ and |φ(t)− y| < δ for t ∈ [tm, τm]. But then

0 < γ = |φ(τm)− y| ≤ |φ(τm)− φ(tm)|+ |φ(tm)− y|

≤
∫ τm

tm

|f(s, φ(s))|ds + |φ(tm)− y| ≤M |τm − tm|+ |φ(tm)− y|,

where the right-hand side converges to 0 as m → ∞. A contradiction and
thus (2.65) holds.

Now take a solution φ̃(t) of the IVP x(t+) = y defined on the interval

(t+ − ε, t+ + ε). As before, we can glue φ(t) and φ̃(t) at t+ to obtain a
function on (t−, t+ + ε). This function is continuous by construction and
the limits of its left and right derivative are both equal to f(t+, y). Hence
it is differentiable at t = t+ and thus a solution defined on (t−, t+ + ε). �

Our final goal is to show that solutions exist for all t ∈ R if f(t, x) grows
at most linearly with respect to x. But first we need a better criterion which
does not require a complete knowledge of the solution.

Corollary 2.15. Let φ(t) be a solution of (2.10) defined on the interval
(t−, t+). Suppose there is a compact set [t0, t+]×C ⊂ U such that φ(tm) ∈ C
for some sequence tm ∈ [t0, t+) converging to t+. Then there exists an
extension to the interval (t−, t+ + ε) for some ε > 0.
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In particular, if there is such a compact set C for every t+ > t0 (C might
depend on t+), then the solution exists for all t > t0.

Similarly for t−.

Proof. Let tm → t+. By compactness φ(tm) has a convergent subsequence
and the claim follows from the previous lemma. �

The logical negation of this result is also of interest.

Corollary 2.16. Let I(t0,x0) = (T−(t0, x0), T+(t0, x0)) be the maximal inter-
val of existence of a solution starting at x(t0) = x0. If T+ = T+(t0, x0) <∞,
then the solution must eventually leave every compact set C with [t0, T+] ×
C ⊂ U as t approaches T+. In particular, if U = R×R

n, the solution must
tend to infinity as t approaches T+.

Now we come to the proof of our anticipated result.

Theorem 2.17. Suppose U = R × R
n and for every T > 0 there are con-

stants M(T ), L(T ) such that

|f(t, x)| ≤M(T ) + L(T )|x|, (t, x) ∈ [−T, T ]× R
n. (2.66)

Then all solutions of the IVP (2.10) are defined for all t ∈ R.

Proof. Using the above estimate for f we have (t0 = 0 without loss of
generality)

|φ(t)| ≤ |x0|+
∫ t

0
(M + L|φ(s)|)ds, t ∈ [0, T ] ∩ I,

and the variant (2.38) of Gronwall’s inequality shows

|φ(t)| ≤ |x0|eLT +
M

L
(eLT − 1).

Thus φ lies in a compact ball and the result follows by the previous lemma.
�

Again, let me remark that it suffices to assume

|f(t, x)| ≤M(t) + L(t)|x|, x ∈ R
n, (2.67)

where M(t), L(t) are locally integrable. A slight extension of the above
result is outlined in Problem 2.22.

Problem 2.18. Show that Theorem 2.17 is false (in general) if the estimate
is replaced by

|f(t, x)| ≤M(T ) + L(T )|x|α

with α > 1.

Author's preliminary version made available with permission of the publisher, the American Mathematical Society



54 2. Initial value problems

Problem 2.19. Consider a first-order autonomous system in R
n with f(x)

Lipschitz. Show that x(t) is a solution if and only if x(t − t0) is. Use this
and uniqueness to show that for two maximal solutions xj(t), j = 1, 2, the
images γj = {xj(t)|t ∈ Ij} ⊂ R

n either coincide or are disjoint.

Problem 2.20. Consider a first-order autonomous equation in R
1 with

f(x) Lipschitz. Suppose f(0) = f(1) = 0. Show that solutions starting
in [0, 1] cannot leave this interval. What is the maximal interval of defini-
tion (T−, T+) for solutions starting in [0, 1]? Does such a solution have a
limit as t→ T±?

Problem 2.21. Consider a first-order equation in R
1 with f(t, x) defined

on R × R. Suppose x f(t, x) < 0 for |x| > R. Show that all solutions exist
for all t > 0.

Problem 2.22. Suppose U = R× R
n and that

|f(t, x)| ≤ g(|x|)
for some positive continuous function g ∈ C([0,∞)) which satisfies

∫ ∞

0

dr

g(r)
= ∞.

Then all solutions of the IVP (2.10) are defined for all t ≥ 0.

Show that the same conclusion still holds if there is such a function gT (r)
for every t ∈ [0, T ].

(Hint: Look at the differential equation for r(t)2 = |x(t)|2. Estimate the
right-hand side and recall the analysis from Sections 1.3 and 1.5.)

2.7. Euler’s method and the Peano theorem

In this section we want to show that continuity of f(t, x) is sufficient for
existence of at least one solution of the initial value problem (2.10).

If φ(t) is a solution, then by Taylor’s theorem we have

φ(t0 + h) = x0 + φ̇(t0)h+ o(h) = x0 + f(t0, x0)h+ o(h). (2.68)

This suggests to define an approximate solution by omitting the error term
and applying the procedure iteratively. That is, we set

xh(tm+1) = xh(tm) + f(tm, xh(tm))h, tm = t0 +mh, (2.69)

and use linear interpolation in between. This procedure is known as Euler
method.

We expect that xh(t) converges to a solution as h ↓ 0. But how should
we prove this? Well, the key observation is that, since f is continuous, it is
bounded by a constant on each compact interval. Hence the derivative of
xh(t) is bounded by the same constant. Since this constant is independent
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of h, the functions xh(t) form an equicontinuous family of functions which
converges uniformly after maybe passing to a subsequence by the Arzelà–
Ascoli theorem.

Theorem 2.18 (Arzelà–Ascoli). Suppose the sequence of functions xm(t) ∈
C(I,Rn), m ∈ N, on a compact interval I is (uniformly) equicontinuous,
that is, for every ε > 0 there is a δ > 0 (independent of m) such that

|xm(t)− xm(s)| ≤ ε if |t− s| < δ, m ∈ N. (2.70)

If the sequence xm is bounded, then there is a uniformly convergent subse-
quence.

Proof. Let {tj}∞j=1 ⊂ I be a dense subset of our interval (e.g., all rational

numbers in I). Since xm(t1) is bounded, we can choose a subsequence x
(1)
m (t)

such that x
(1)
m (t1) converges (Bolzano–Weierstraß). Similarly we can extract

a subsequence x
(2)
m (t) from x

(1)
m (t) which converges at t2 (and hence also at t1

since it is a subsequence of x
(1)
m (t)). By induction we get a sequence x

(j)
m (t)

converging at t1, . . . , tj. The diagonal sequence x̃m(t) = x
(m)
m (t) will hence

converge for all t = tj (why?). We will show that it converges uniformly for
all t:

Fix ε > 0 and choose δ such that |xm(t) − xm(s)| ≤ ε
3 for |t − s| < δ.

The balls Bδ(tj) cover I and by compactness even finitely many, say 1 ≤
j ≤ p, suffice. Furthermore, choose Nε such that |x̃m(tj) − x̃n(tj)| ≤ ε

3 for
n,m ≥ Nε and 1 ≤ j ≤ p.

Now pick t and note that t ∈ Bδ(tj) for some j. Thus

|x̃m(t)− x̃n(t)| ≤|x̃m(t)− x̃m(tj)|+ |x̃m(tj)− x̃n(tj)|
+ |x̃n(tj)− x̃n(t)| ≤ ε

for n,m ≥ Nε, which shows that x̃m is Cauchy with respect to the maximum
norm. By completeness of C(I,Rn) it has a limit. �

More precisely, pick δ, T > 0 such that V = [t0, t0 + T ] × Bδ(x0) ⊂ U
and let

M = max
(t,x)∈V

|f(t, x)|. (2.71)

Then xh(t) ∈ Bδ(x0) for t ∈ [t0, t0 + T0], where T0 = min{T, δM }, and
|xh(t)− xh(s)| ≤M |t− s|. (2.72)

Hence any subsequence of the family xh(t) is equicontinuous and there is a
uniformly convergent subsequence φm(t) → φ(t). It remains to show that
the limit φ(t) solves our initial value problem (2.10). We will show this by
verifying that the corresponding integral equation (2.11) holds. Since f is

Author's preliminary version made available with permission of the publisher, the American Mathematical Society



56 2. Initial value problems

uniformly continuous on V , we can find a sequence ∆(h) → 0 as h → 0,
such that

|f(s, y)− f(t, x)| ≤ ∆(h) for |y − x| ≤Mh, |s − t| ≤ h. (2.73)

To be able to estimate the difference between left and right-hand side of
(2.11) for xh(t) we choose an m with t ≤ tm and write

xh(t) = x0 +

m−1∑

j=0

∫ tj+1

tj

χ(s)f(tj, xh(tj))ds, (2.74)

where χ(s) = 1 for s ∈ [t0, t] and χ(s) = 0 else. Then

∣
∣
∣
∣
xh(t)− x0 −

∫ t

t0

f(s, xh(s))ds

∣
∣
∣
∣

≤
m−1∑

j=0

∫ tj+1

tj

χ(s)|f(tj , xh(tj))− f(s, xh(s))|ds

≤ ∆(h)
m−1∑

j=0

∫ tj+1

tj

χ(s)ds = |t− t0|∆(h), (2.75)

from which it follows that φ is indeed a solution

φ(t) = lim
m→∞

φm(t) = x0 + lim
m→∞

∫ t

t0

f(s, φm(s))ds = x0 +

∫ t

t0

f(s, φ(s))ds

(2.76)
since we can interchange limit and integral by uniform convergence.

Hence we have proven Peano’s theorem.

Theorem 2.19 (Peano). Suppose f is continuous on V = [t0, t0 + T ] ×
Bδ(x0) ⊂ U and denote the maximum of |f | by M . Then there exists at
least one solution of the initial value problem (2.10) for t ∈ [t0, t0 + T0]

which remains in Bδ(x0), where T0 = min{T, δM }. The analogous result
holds for the interval [t0 − T0, t0].

Of course this theorem raises the question if there are also conditions on
f which are weaker than the Lipschitz condition but still guarantee unique-
ness. One such condition is presented in Problem 2.25.

Finally, let me remark that the Euler algorithm is well suited for the
numerical computation of an approximate solution since it only requires the
evaluation of f at certain points. On the other hand, it is not clear how
to find the converging subsequence, and so let us show that xh(t) converges
uniformly if f is Lipschitz. By (2.29) with x(t) = xh(t) and y(t) = K(xh)(t)
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2.7. Euler’s method and the Peano theorem 57

this yields

‖xh −Km(xh)‖ ≤
m−1∑

j=0

‖Kj(xh)−Kj+1(xh)‖

≤ ‖xh −K(xh)‖
m−1∑

j=0

(LT0)
j

j!
, (2.77)

using the same notation as in the proof of Theorem 2.2. Taking n→ ∞ we
finally obtain

‖xh − φ‖ ≤ T0e
LT0∆(h), t ∈ [t0, t0 + T0], (2.78)

since our above estimate (2.75) for t = t0 + T0 reads

‖xh −K(xh)‖ ≤ T0∆(h). (2.79)

Note that if we can find some Lipschitz constant L0 such that |f(t, x) −
f(s, x)| ≤ L0|t− s|, then we can choose ∆(h) = (L0 + LM)h.

Thus we have a simple numerical method for computing solutions plus
an error estimate. However, in practical computations one usually uses some
heuristic error estimates, e.g., by performing each step using two step sizes
h and h

2 . If the difference between the two results becomes too big, the step
size is reduced and the last step is repeated.

Of course the Euler algorithm is not the most effective one available
today. Usually one takes more terms in the Taylor expansion and approxi-
mates all differentials by their difference quotients. The resulting algorithm
will converge faster, but it will also involve more calculations in each step.
A good compromise is usually a method, where one approximates φ(t0 + h)
up to the fourth order in h. Setting tm = t0 + hm and xm = xh(tm) the
resulting algorithm

xm+1 = xm +
h

6
(k1,m + 2k2,m + 2k3,m + k4,m), (2.80)

where

k1,m = f(tm, xm), k2,m = f(tm + h
2 , xm + h

2k1,m),

k3,m = f(tm + h
2 , xm + h

2k2,m), k4,m = f(tm+1, xm + hk3,m),
(2.81)

is called Runge–Kutta algorithm. For even better methods see the liter-
ature on numerical methods for ordinary differential equations.

Problem 2.23. Heun’s method (or improved Euler) is given by

xm+1 = xm +
h

2

(
f(tm, xm) + f(tm+1, ym)

)
, ym = xm + f(tm, xm)h.
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Show that using this method the error during one step is of O(h3) (provided
f ∈ C2):

φ(t0 + h) = x0 +
h

2

(
f(t0, x0) + f(t1, y0)

)
+O(h3).

Note that this is not the only possible scheme with this error order since

φ(t0 + h) = x0 +
h

2

(
f(t1, x0) + f(t0, y0)

)
+O(h3)

as well.

Problem 2.24. Compute the solution of the initial value problem ẋ = x,
x(0) = 1, using the Euler and Runge–Kutta algorithm with step size h =
10−1. Compare the results with the exact solution.

Problem 2.25 (Osgood uniqueness criterion). We call a continuous non-
decreasing function ρ : [0,∞) → [0,∞) with ρ(0) = 0 a module of conti-
nuity. It is said to satisfy the Osgood condition if

∫ 1

0

dr

ρ(r)
= ∞.

We will say that a function f : R → R is ρ-continuous if |f(x) − f(y)| ≤
Cρ(|x − y|) for some constant C. For example in the case ρ(r) = rα, α ∈
(0, 1), we obtain the Hölder continuous functions and in the case ρ(r) = r
the Lipschitz continuous functions. Note that only in the Lipschitz case the
Osgood condition holds. Another module satisfying the Osgood condition
is ρ(r) = r(1 + | log(r)|), the corresponding functions are known as almost
Lipschitz functions.

Let f(t, x) be as in the Peano theorem and suppose

|(x− y) · (f(t, x)− f(t, y))| ≤ C|x− y|ρ(|x− y|),
t ∈ [t0, t0+T ], x, y ∈ Bδ(x0), for some modulus of continuity which satisfies
the Osgood condition (here the · indicates the scalar product). Then the
solution is unique.

(Hint: Consider the difference of two solutions R(t) = |x(t)− y(t)|2 and

suppose R(t1) = 0 but R(t) > 0 for t ∈ (t1, t2). Estimate Ṙ using the as-
sumptions and proceed as for a separable equation to obtain a contradiction.)
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Chapter 3

Linear equations

3.1. The matrix exponential

We begin with the study of the autonomous linear first-order system

ẋ(t) = Ax(t), x(0) = x0, (3.1)

where A is an n by n matrix. Here, as usual, we write Ax for the matrix
product whose components are given by

(Ax)i =
n∑

j=1

Ai,jxj, (3.2)

where (Ai,j)1≤i,j≤n are the entries of A and (xj)1≤j≤n are the components
of x. We also recall the definition of the scalar product and norm

x · y =
n∑

j=1

x∗jyj, |x| = √
x · x =





n∑

j=1

|xj |2




1/2

. (3.3)

Here ∗ denotes complex conjugation which can of course be omitted in the
real case. We will also use Aj for the powers of A defined inductively via
Aj = Aj−1A and A0 = I.

59
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60 3. Linear equations

If we perform the Picard iteration we obtain

x0(t) = x0

x1(t) = x0 +

∫ t

0
Ax0(s)ds = x0 +Ax0

∫ t

0
ds = x0 + tAx0

x2(t) = x0 +

∫ t

0
Ax1(s)ds = x0 +Ax0

∫ t

0
ds+A2x0

∫ t

0
s ds

= x0 + tAx0 +
t2

2
A2x0

and hence by induction

xm(t) =

m∑

j=0

tj

j!
Ajx0. (3.4)

The limit as m→ ∞ is given by

x(t) = lim
m→∞

xm(t) =

∞∑

j=0

tj

j!
Ajx0. (3.5)

In the one dimensional case (n = 1) this series is just the usual exponential
and hence we will write

x(t) = exp(tA)x0, (3.6)

where we define the matrix exponential by

exp(A) =

∞∑

j=0

1

j!
Aj . (3.7)

Hence, in order to understand our original problem, we have to under-
stand the matrix exponential! The Picard iteration ensures convergence
of exp(A)x0 for every vector x0 and choosing the canonical basis vectors
of Rn we see that all matrix elements converge. However, for later use we
want to introduce a suitable norm for matrices and give a direct proof for
convergence of the above series in this norm.

We will use C
n rather than R

n as underlying vector space since C is
algebraically closed (which will be important later on, when we compute
the matrix exponential with the help of the Jordan canonical form). So let
A be a complex matrix acting on C

n and introduce the matrix norm

‖A‖ = sup
x: |x|=1

|Ax|. (3.8)

It is not hard to see that the vector space of n by n matrices Cn×n becomes
a Banach space with this norm (Problem 3.1). In fact, we have

max
j,k

|Ajk| ≤ ‖A‖ ≤ nmax
j,k

|Ajk| (3.9)
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3.1. The matrix exponential 61

and thus a sequence of matrices converges in the matrix norm if and only if
all matrix entries converge. Moreover, using (Problem 3.2)

‖Aj‖ ≤ ‖A‖j (3.10)

convergence of the series (3.7) follows from convergence of
∑∞

j=0
‖A‖j
j! =

exp(‖A‖) (Problem 3.4).

However, note that in general exp(A + B) 6= exp(A) exp(B) unless A
and B commute, that is, unless the commutator

[A,B] = AB −BA (3.11)

vanishes. In this case you can mimic the proof of the one dimensional case
to obtain

Lemma 3.1. Suppose A and B commute. Then

exp(A+B) = exp(A) exp(B), [A,B] = 0. (3.12)

If we perform a linear change of coordinates,

y = U−1x, (3.13)

then the matrix exponential in the new coordinates is given by

U−1 exp(A)U = exp(U−1AU). (3.14)

This follows from (3.7) by using U−1AjU = (U−1AU)j together with con-
tinuity of the matrix product (Problem 3.3). Hence in order to compute
exp(A) we need a coordinate transform which renders A as simple as possi-
ble:

Theorem 3.2 (Jordan canonical form). Let A be a complex n by n
matrix. Then there exists a linear change of coordinates U such that A
transforms into a block matrix,

U−1AU =






J1
. . .

Jm




 , (3.15)

with each block of the form

J = αI+N =











α 1
α 1

α
. . .
. . . 1

α











. (3.16)

Here N is a matrix with ones in the first diagonal above the main diagonal
and zeros elsewhere.
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The numbers α are the eigenvalues of A and the new basis vectors uj
(the columns of U) consist of generalized eigenvectors of A. The general
procedure of finding the Jordan canonical form is quite cumbersome and
hence further details will be deferred to Section 3.8. In particular, since
most computer algebra systems can easily do this job for us!

Example. Let

In[1]:= A =





−11 −35 −24
−1 −1 −2
8 22 17



 ;

Then the command

In[2]:= {U, J} = JordanDecomposition[A];

gives us the transformation matrix U plus the Jordan canonical form J =
U−1AU .

In[3]:= J // MatrixForm

Out[3]//MatrixForm=



1 0 0
0 2 1
0 0 2





If you don’t trust me (or Mathematica), you can also check it:

In[4]:= A == U.J.Inverse[U]

Out[4]= True

⋄

To compute the exponential we observe

exp(U−1AU) =






exp(J1)
. . .

exp(Jm)




 , (3.17)

and hence it remains to compute the exponential of a single Jordan block
J = αI+N as in (3.16). Since αI commutes withN , we infer from Lemma 3.1
that

exp(J) = exp(αI) exp(N) = eα
k−1∑

j=0

1

j!
N j . (3.18)

Here we have used the fact that the series for exp(N) terminates after k
terms, where k is the size of N . In fact, it is not hard to see that N j is a
matrix with ones in the j’th diagonal above the main diagonal and vanishes
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once j reaches the size of J :

N =







0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0






, N2 =







0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0






, N3 =







0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0






,

and N4 = 0. In summary, exp(J) explicitly reads

exp(J) = eα












1 1 1
2! . . . 1

(k−1)!

1 1
. . .

...

1
. . . 1

2!
. . . 1

1












. (3.19)

Example. In two dimensions the exponential matrix of

A =

(
a b
c d

)

(3.20)

is given by

exp(A) = eδ
(

cosh(∆)I +
sinh(∆)

∆

(
γ b
c −γ

))

, (3.21)

where

δ =
a+ d

2
, γ =

a− d

2
, ∆ =

√

γ2 + bc. (3.22)

Here one has to set sinh(∆)
∆ = 1 for ∆ = 0. Moreover, note cosh(i∆) = cos(∆)

and sinh(i∆)
i∆ = sin(∆)

∆ .

To see this set A = δI +B and use exp(A) = eδ exp(B) plus

Bm =

{

∆2kB, m = 2k + 1,

∆2k
I, m = 2k,

B =

(
γ b
c −γ

)

.

Hence

exp(A) = eδ

( ∞∑

k=0

∆2k

(2k)!
I+

∞∑

k=0

∆2k

(2k + 1)!
B

)

establishing the claim. ⋄

Note that if A is in Jordan canonical form, then it is not hard to see
that

det(exp(A)) = exp(tr(A)). (3.23)

Since both the determinant and the trace are invariant under linear trans-
formations, the formula also holds for arbitrary matrices. In fact, we even
have:
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Lemma 3.3. A vector u is an eigenvector of A corresponding to the eigen-
value α if and only if u is an eigenvector of exp(A) corresponding to the
eigenvalue eα.

Moreover, the Jordan structure of A and exp(A) are the same except
for the fact that eigenvalues of A which differ by a multiple of 2πi (as well
as the corresponding Jordan blocks) are mapped to the same eigenvalue of
exp(A). In particular, the geometric and algebraic multiplicity of eα is the
sum of the geometric and algebraic multiplicities of the eigenvalues which
differ from α by a multiple of 2πi.

Proof. The first part is straightforward. To see the second it suffices to
consider one Jordan block with α = 0. We are looking for generalized
eigenvectors uk such that exp(N)uk = uk−1, that is,

n∑

l=j+1

1

(j − l)!
uk,l = uk−1,l, 2 ≤ k ≤ n, 1 ≤ j ≤ n.

Setting uk,l =
(l−1)!
(k−1)!s(k − 1, l − 1) with s(k, k) = 1 and s(k, l) = 0 for l > k

this requirement transforms into

k∑

l=j+1

(
l

j

)

s(k, l) = k s(k − 1, j), 0 ≤ j ≤ k − 1,

which is satisfied if we choose s(k, l) to be the Stirling numbers of the first
kind (Problem 3.6).

Hence the transformation matrix U we are looking for is U = ( (j−1)!
(k−1)!s(k−

1, j−1))1≤j,k≤n and its inverse is given by U−1 = ( (j−1)!
(k−1)!S(k−1, j−1))1≤j,k≤n

where S(j, k) are the Stirling numbers of the second kind defined via
n∑

k=j

S(l, k)s(k, j) = δj,k, 1 ≤ j, l ≤ n.

Then, by construction, U−1 exp(N)U = N and the claim follows. �

Clearly Mathematica can also compute the exponential for us:

In[5]:= MatrixExp[J] // MatrixForm

Out[5]//MatrixForm=



e 0 0
0 e2 e2

0 0 e2





To end this section let me emphasize, that both the eigenvalues and
generalized eigenvectors can be complex even if the matrix A has only real
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entries. However, in many applications only real solutions are of interest.
For such a case there is also a real Jordan canonical form which I want
to mention briefly.

So suppose the matrix A has only real entries. If an eigenvalue α is
real, both real and imaginary parts of a generalized eigenvector are again
generalized eigenvectors. In particular, they can be chosen real and there is
nothing else to do for such an eigenvalue.

If α is nonreal, there must be a corresponding complex conjugate block
J∗ = α∗

I+N and the corresponding generalized eigenvectors can be assumed
to be the complex conjugates of our original ones. Therefore we can replace
the pairs uj, u

∗
j in our basis by Re(uj) and Im(uj). In this new basis the

block
(
J 0
0 J∗

)

(3.24)

is replaced by










R I

R I

R
. . .
. . . I

R











, (3.25)

where

R =

(
Re(α) Im(α)
−Im(α) Re(α)

)

and I =

(
1 0
0 1

)

. (3.26)

Since the matrices
(
1 0
0 1

)

and

(
0 1
−1 0

)

(3.27)

commute, the exponential is given by











exp(R) exp(R) exp(R) 1
2! . . . exp(R) 1

(n−1)!

exp(R) exp(R)
. . .

...

exp(R)
. . . exp(R) 1

2!
. . . exp(R)

exp(R)












, (3.28)

where

exp(R) = eRe(α)

(
cos(Im(α)) sin(Im(α))
− sin(Im(α)) cos(Im(α))

)

. (3.29)

Problem 3.1. Show that the space of n by n matrices C
n×n together with

the matrix norm is a Banach space. Show (3.9).
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Problem 3.2. Show that the matrix norm satisfies

‖AB‖ ≤ ‖A‖‖B‖.
(This shows that Cn×n is even a Banach algebra.) Conclude ‖Aj‖ ≤ ‖A‖j .
Problem 3.3. Show that the matrix product is continuous with respect to
the matrix norm. That is, if Aj → A and Bj → B we have AjBj → AB.
(Hint: Problem 3.2).

Problem 3.4. Let Aj be a sequence in C
n×n. Show that

∞∑

j=0

Aj

converges if
∑∞

j=0 ‖Aj‖ does.

Problem 3.5. Is there a real matrix A such that

exp(A) =

(
−α 0
0 −β

)

, α, β > 0?

(Hint: (3.21).)

Problem 3.6. The Stirling numbers of the first kind are define as the coef-
ficients of the polynomials

Sn(x) = x(x− 1) · · · (x− n+ 1) =

n∑

k=0

s(n, k)xk.

and satisfy the basic recursion s(n, k) = s(n− 1, k − 1)− (n− 1)s(n− 1, k).

Show the Stirling numbers satisfy the recursion from the proof of Lemma 3.3.
(Hint: Insert the definition into Sn(1 + x) = (1 + x)Sn−1(x), apply the bi-
nomial theorem and compare coefficients. Finally use the basic recursion.)

3.2. Linear autonomous first-order systems

In the previous section we have seen that the solution of the autonomous
linear first-order system (3.1) is given by

x(t) = exp(tA)x0. (3.30)

In particular, the map exp(tA) provides an isomorphism between all initial
conditions x0 and all solutions. Hence the set of all solutions is a vector
space isomorphic to R

n (respectively C
n if we allow complex initial values).

In order to understand the dynamics of the system (3.1), we need to
understand the properties of the function exp(tA). We will start with the
case of two dimensions which covers all prototypical cases. Furthermore, we
will assume A as well as x0 to be real-valued.
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3.2. Linear autonomous first-order systems 67

In this situation there are two eigenvalues, α1 and α2, which are either
both real or otherwise complex conjugates of each other. We begin with
the generic case where A is diagonalizable and hence there are two linearly
independent eigenvectors, u1 and u2, which form the columns of U . In
particular,

U−1AU =

(
α1 0
0 α2

)

. (3.31)

Now using the change of coordinates

y(t) = U−1x(t), y0 = U−1x0, (3.32)

the solution of the transformed equation

ẏ = (U−1AU)y, y(0) = y0, (3.33)

is given by

y(t) = exp(tU−1AU)y0 =

(
eα1t 0
0 eα2t

)

y0 (3.34)

and the solution of our original equation (3.30) is given by

x(t) = U exp(tU−1AU)U−1x0 = U

(
eα1t 0
0 eα2t

)

U−1x0. (3.35)

Using y0 = U−1x0 = (y0,1, y0,2) we obtain

x(t) = y0,1e
α1tu1 + y0,2e

α2tu2. (3.36)

In the case where both eigenvalues are real, all quantities in (3.36) are real.
Otherwise we have α2 = α∗

1 and we can assume u2 = u∗1 without loss of
generality. Let us write α1 ≡ α = λ + iω and α2 ≡ α∗ = λ − iω. Then
Euler’s formula

eiω = cos(ω) + i sin(ω) (3.37)

implies

eαt = eλt (cos(ωt) + i sin(ωt)) , α = λ+ iω. (3.38)

Moreover, x∗0 = x0 implies y0,1u1 + y0,2u2 = y∗0,1u2 + y∗0,2u1 which shows

y∗0,1 = y0,2. Hence, both terms in (3.36) are complex conjugates of each
other implying

x(t) = 2Re(y0,1e
α1tu1)

= 2 cos(ωt)eλtRe(y0,1u1)− 2 sin(ωt)eλtIm(y0,1u1). (3.39)

This finishes the case where A is diagonalizable.

If A is not diagonalizable, both eigenvalues must be equal α1 = α2 ≡ α.
The columns u1 and u2 of the matrix U are the eigenvector and generalized
eigenvector of A, respectively. Hence

U−1AU =

(
α 1
0 α

)

(3.40)
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Figure 3.1. Phase portrait for a planar system where both eigenvalues
have positive respectively negative real part.

and with a similar computation as before the solution is given by

x(t) = (y0,1 + y0,2t)e
αtu1 + y0,2e

αtu2. (3.41)

This finishes the case where A is not diagonalizable.

Next, let us try to understand the qualitative behavior for large t. For
this we need to understand the function exp(αt). From (3.38) we can read
off that exp(αt) will converge to 0 as t → ∞ if λ = Re(α) < 0 and grow
exponentially if λ = Re(α) > 0. It remains to discuss the possible cases
according to the respective signs of Re(α1) and Re(α2).

Firstly, suppose both eigenvalues have positive real part. Then all so-
lutions grow exponentially as t → ∞ and decay exponentially as t → −∞.
The origin is called a source in this case. Similarly, if both eigenvalues
have negative real part, the situation can be reduced to the previous one
by replacing t → −t. The phase portrait stays the same except that the
solution curves are traversed in the opposite direction. The origin is called
a sink in this case. The typical phase portrait is depicted in Figure 3.1 for
the case of complex and in Figure 3.2 for the case of real eigenvalues. Note
that in the case of real eigenvalues the two lines (plotted thick in the figures)
correspond to the two eigenvectors of the coefficient matrix (why are there
no eigenvectors visible in the case of complex eigenvalues?). In the complex
case, the imaginary part ω causes a rotational component of the solutions
and the origin is also called a spiral source respectively spiral sink.

If one eigenvalue is positive and one eigenvalue is negative, the phase
portrait is shown in Figure 3.3 and the origin is called a saddle. Again the
two lines correspond to the two eigenvectors of the coefficient matrix. The
long-time behavior now depends on the initial condition x0. If x0 lies in the
eigenspace corresponding to the negative eigenvalue, the solution will decay
exponentially as t → ∞ and grow exponentially as t → −∞. If x0 lies in
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Figure 3.2. Phase portrait for a planar system where both eigenvalues
are positive respectively negative.

Figure 3.3. Phase portrait for a planar system with real eigenvalues of
opposite sign.

the eigenspace corresponding to the positive eigenvalue, it is the other way
round. If x0 has components in both eigenspaces, it will grow exponentially
as t→ ±∞.

If both eigenvalues are purely imaginary, the solutions will be periodic
and encircle the origin. The phase portrait looks as in Figure 3.4 and the
origin is called a center. All solutions are clearly bounded in this case.

In the case where the matrix is not diagonalizable, the phase portrait
looks as in Figure 3.5. As before, the line corresponds to the eigenvector.
If α is negative, all solutions will converge to 0, whereas if α is positive, all
solutions will grow exponentially as t → ∞. The polynomial term t does
not play a role since it is dominated by the exponential term exp(αt) unless
α = 0 (cf. Problem 3.7). If α = 0 the solution is constant if we start in the
subspace spanned by the eigenvector (i.e., y0,2 = 0 in (3.41)) and grows like
t otherwise (i.e., y0,2 6= 0).
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Figure 3.4. Phase portrait for a planar system with purely imaginary eigenvalues.

Figure 3.5. Phase portrait for a planar system with equal real eigen-
values (not diagonalizable).

Finally, we turn to the general case. As before, the considerations of
the previous section show that it suffices to consider the case of one Jordan
block

exp(tJ) = eαt












1 t t2

2! . . . tn−1

(n−1)!

1 t
. . .

...

1
. . . t2

2!
. . . t

1












. (3.42)

In particular, every solution is a linear combination of terms of the type
tj exp(αt). Since exp(αt) decays faster than any polynomial, our entire
Jordan block converges to zero if λ = Re(α) < 0 (cf. Problem 3.7). If
λ = 0, exp(αt) = exp(iωt) will remain at least bounded, but the polynomial
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terms will diverge. However, if we start in the direction of the eigenvector
(1, 0, . . . , 0), we won’t see the polynomial terms. In summary,

Theorem 3.4. A solution of the linear system (3.1) converges to 0 as t→ ∞
if and only if the initial condition x0 lies in the subspace spanned by the
generalized eigenspaces corresponding to eigenvalues with negative real part.

It will remain bounded as t → ∞ if and only if x0 lies in the sub-
space spanned by the generalized eigenspaces corresponding to eigenvalues
with negative real part plus the eigenspaces corresponding to eigenvalues with
vanishing real part.

Note that to get the behavior as t → −∞, you just need to replace
negative by positive.

A linear system (not necessarily autonomous) is called stable if all solu-
tions remain bounded as t→ ∞ and asymptotically stable if all solutions
converge to 0 as t→ ∞.

Corollary 3.5. The linear system (3.1) is stable if and only if all eigenval-
ues αj of A satisfy Re(αj) ≤ 0 and for all eigenvalues with Re(αj) = 0 the
corresponding algebraic and geometric multiplicities are equal. Moreover, in
this case there is a constant C such that

‖ exp(tA)‖ ≤ C, t ≥ 0. (3.43)

In the case of an asymptotically stable matrix we can even specify the
decay rate.

Corollary 3.6. The linear system (3.1) is asymptotically stable if and only
if all eigenvalues αj of A satisfy Re(αj) < 0. Moreover, in this case there
is a constant C = C(α) for every α < min{−Re(αj)}mj=1 such that

‖ exp(tA)‖ ≤ Ce−tα, t ≥ 0. (3.44)

Proof. It remains to prove the second claim. Since ‖U exp(tJ)U−1‖ ≤
‖U‖‖ exp(tJ)‖‖U−1‖ it is no restriction to assume that A is in Jordan
canonical form. Now note that ‖ exp(tA)‖ = e−tα‖ exp(t(A + αI))‖. Since
Re(αj + α) < 0 all entries of the matrix exp(t(A + αI)) are bounded and
consequently ‖ exp(t(A + αI))‖ ≤ C is bounded (cf. Problem 3.7) as re-
quired. �

Note that one can choose α = min{−Re(αj)}mj=1 if and only if for all

eigenvalues αj with −Re(αj) = α the corresponding algebraic and geometric
multiplicities are equal.

A matrix all whose eigenvalues satisfy Re(αj) < 0 is also known as
a Hurwitz matrix. The Routh-Hurwitz criterion (cf. [9, Sect. V.6])
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states that a real matrix is Hurwitz if and only if the following determinants
are strictly positive,

det








a1 1 0 0 0 0 · · · 0
a3 a2 a1 1 0 0 · · · 0
...

...
...

...
...

...
. . .

...
a2k−1 a2k−2 a2k−3 a2k−4 a2k−5 a2k−6 · · · ak







> 0, (3.45)

for 1 ≤ k ≤ n. Here the numbers aj are the coefficients of the characteristic
polynomial of A,

det(zI−A) = zn + a1z
n−1 + · · · + an−1z + an, (3.46)

and aj = 0 for j ≥ n.

Finally, observe that the solution of the inhomogeneous equation

ẋ(t) = Ax(t) + g(t), x(0) = x0, (3.47)

is given by

x(t) = exp(tA)x0 +

∫ t

0
exp((t− s)A)g(s)ds, (3.48)

which can be verified by a straightforward computation (however, we will
in fact prove a more general result in Theorem 3.12 below). This formula
is sometimes called Duhamel’s formula. As always for linear equations,
note that the solution consists of the general solution of the homogeneous
equation plus a particular solution of the inhomogeneous equation. However,
if the inhomogeneous term is of a special form, an ansatz might be faster
than evaluating the integral in (3.48) — see Problem 3.13.

Problem 3.7. Show

lim
t→∞

tmeαt = 0, m ∈ N0, Re(α) < 0,

and

max
0≤t<∞

|tmeαt| =
(

m

−Re(α)

)m

e−m, m ∈ N0, Re(α) < 0.

(Hint: l’Hôpital’s rule.)

Problem 3.8. Solve the following equations:

(i) ẋ = 3x.

(ii) ẋ = γ
t x, γ ∈ R.

(iii) ẋ = x+ sin(t).

Problem 3.9. Solve the systems corresponding to the following matrices:

(i). A =

(
2 1
0 2

)

, x0 =

(
1
1

)

(ii). A =

(
−1 1
0 1

)

, x0 =

(
1
−1

)

.
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Problem 3.10. Solve

ẋ = −y − t, ẏ = x+ t, x(0) = 1, y(0) = 0.

Problem 3.11. Find a two by two matrix such that x(t) = (sinh(t), et) is
a solution.

Problem 3.12. Which of the following functions

(i) x(t) = (3et + e−t, e2t)

(ii) x(t) = (3et + e−t, et)

(iii) x(t) = (3et + e−t, tet)

(iv) x(t) = (3et, t2et)

(v) x(t) = (et + 2e−t, et + 2e−t)

can be solutions of a first-order autonomous homogeneous system? (Hint:
Compare with the necessary structure of the solution found in this section.)

Problem 3.13. Let A be an n by n matrix and β a constant. Consider the
special inhomogeneous equation

ẋ = Ax+ p(t)eβt,

where p(t) is a vector all whose entries are polynomials. Set deg(p(t)) =
max1≤j≤n deg(pj(t)). Show that this equation has a particular solution of
the form

q(t)eβt,

where q(t) is a polynomial vector with deg(q(t)) = deg(p(t)) if β is not
an eigenvalue of A and deg(q(t)) = deg(p(t)) + a if β is an eigenvalue of
algebraic multiplicity a.

(Hint: Investigate (3.48) using the following fact:
∫
p(t)eβtdt = q(t)eβt,

where q(t) is a polynomial of degree deg(q) = deg(p) if β 6= 0 and deg(q) =
deg(p) + 1 if β = 0.)

Problem 3.14. Let A be a real 2 by 2 matrix. Then the eigenvalues can be
expressed in terms of the determinant D = det(A) and the trace T = tr(A).
In particular, (T,D) can take all possible values in R

2 if A ranges over
all possible matrices in R

2×2. Split the (T,D) plane into regions in which
the various cases discussed in this section occur (source, spiral source, sink,
spiral sink, saddle, center).

Problem 3.15 (Laplace transform). Let x : [0,∞) → C
n such that |x(t)| ≤

Meat for some constants M ≥ 0 and a ∈ R. Then the Laplace transform

L(x)(s) =
∫ ∞

0
e−stx(t)dt.
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exists and is analytic for Re(s) > a. Show that for x ∈ C1([0,∞)) satisfying
|x(t)|+ |ẋ(t)| ≤Meat we have

L(ẋ)(s) = sL(x)(s)− x(0)

for Re(s) > a. Moreover, show that the initial value problem

ẋ = Ax+ f(t), x(0) = x0

is transformed into a linear system of equations by the Laplace transform.

Problem 3.16. Suppose all eigenvalues of A satisfy Re(αj) < 0. Show that
every solution of (3.47) satisfies

lim
t→∞

x(t) = 0.

if limt→∞ |g(t)| = 0 (Hint: (3.48).) What if limt→∞ g(t) = g0?

3.3. Linear autonomous equations of order n

In this section, we want to have a brief look at the case of the n’th order
equations

x(n) + cn−1x
(n−1) + · · · + c1ẋ+ c0x = 0, (3.49)

which appear frequently in applications. Here c0, . . . , cn−1 are some real (or
complex) constants. Again the solutions form an n dimensional vector space
since a solution is uniquely determined by the initial conditions

x(0) = x0, . . . , x(n−1)(0) = xn−1. (3.50)

The corresponding system is given by

A =










0 1
0 1

. . .
. . .

0 1
−c0 −c1 · · · · · · −cn−1










(3.51)

and hence all our considerations apply: The characteristic polynomial can
be computed by performing the Laplace expansion with respect to the last
row and is given by

χA(z) = det(zI−A) = zn + cn−1z
n−1 + · · · + c1z + c0. (3.52)

One can show that the geometric multiplicity of every eigenvalue is one
(Problem 3.24).

Theorem 3.7. Let αj , 1 ≤ j ≤ m, be the zeros of the characteristic poly-
nomial

zn + cn−1z
n−1 + · · · + c1z + c0 =

m∏

j=1

(z − αj)
aj (3.53)
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associated with (3.49) and let aj be the corresponding multiplicities. Then
the functions

xj,k(t) = tk exp(αjt), 0 ≤ k < aj , 1 ≤ j ≤ m, (3.54)

are n linearly independent solutions of (3.49).

In particular, any other solution can be written as a linear combination
of these solutions.

Proof. Let us look at a solution of the corresponding first-order system. By
construction, the first component of every solution of the system will solve
our n’th order equation. By collecting functions from each Jordan block
(3.42), this first component must be a linear combination of the functions
xj,k(t). So the solution space of (3.49) is spanned by these functions. Since
this space is n dimensional, all functions must be present. In particular,
these functions must be linearly independent. �

Note that if the coefficients cj are real, and if we are interested in real
solutions, all we have to do is to take real and imaginary part. That is, for
αj = λj + iωj take

tkeλjt cos(ωjt), tkeλjt sin(ωjt). (3.55)

Example. Consider the differential equation

ẍ+ ω2
0x = 0, ω0 ≥ 0.

The characteristic polynomial is α2 + ω2
0 = 0 and the zeros are α1 = iω0,

α2 = −iω0. Hence for ω0 > 0 a basis of solutions is

x1(t) = eiω0t, x2(t) = e−iω0t

or, if we want real solutions,

x1(t) = cos(ω0t), x2(t) = sin(ω0t).

For ω0 = 0 we have only one zero α1 = 0 of multiplicity a1 = 2 and a basis
of solutions is given by

x1,0(t) = 1, x1,1(t) = t.

⋄

By (3.48) the solution of the inhomogeneous equation

x(n) + cn−1x
(n−1) + · · ·+ c1ẋ+ c0x = g(t) (3.56)

is given by

x(t) = xh(t) +

∫ t

0
u(t− s)g(s)ds, (3.57)
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where xh(t) is an arbitrary solution of the homogeneous equation and u(t) is
the solution of the homogeneous equation corresponding to the initial con-
dition u(0) = u̇(0) = · · · = u(n−2)(0) = 0 and u(n−1)(0) = 1 (Problem 3.21).

Hence the algorithm for solving a linear n’th order equation with con-
stant coefficients is as follows: Start with the homogeneous equation, com-
pute the zeros of the characteristic polynomial and write down the general
solution as a linear combination of the fundamental solutions (3.54). Find
a particular solution of the inhomogeneous equation and determine the un-
known constants of the homogeneous equation from the initial conditions.
The particular solution of the inhomogeneous equation can be found by eval-
uating the integral in (3.57). However, in many situations it is more efficient
to make a suitable ansatz for the solution (Problem 3.22):

Lemma 3.8. Consider the inhomogeneous equation (3.56) with right-hand
side of the form g(t) = p(t)eβt, where p(t) is a polynomial. Then there
is a particular solution of the same form xp(t) = q(t)eβt, where q(t) is a
polynomial which satisfies deg(q) = deg(p) if β 6∈ {αj}mj=1 is not equal to

any of the characteristic eigenvalues and deg(q) = deg(p) + aj if β = αj is
equal to one of the characteristic eigenvalues whose algebraic multiplicity is
aj.

Note that in the case β = αj you can assume the first aj coefficients of
q to be zero, since they correspond to a homogenous solution. Moreover,
if you allow complex values for β = λ + iω, this also includes the case
where g(t) = p(t)eλt cos(ωt) or g(t) = p(t)eλt sin(ωt) after taking real and
imaginary parts. Finally, the case of linear combinations of such terms comes
for free by linearity.

Of special importance is the case of second order, which appears in a
vast number of applications. For example when modeling electrical circuits:

Example. An electrical circuit consists of elements each of which has two
connectors (in and out), where every connector of one element is connected
to one or more connectors of the other elements. Mathematically speaking
we have a directed graph.

At each time t, there will be a certain current I(t) flowing through each
element and a certain voltage difference V (t) between its connectors. It is
of no importance which connector is called in and which one out. However,
the current is counted positively if it flows from in to out and similarly
for the voltage differences. The state space of the system is given by the
pairs (I, V ) of all elements in the circuit. These pairs must satisfy two
requirements. By Kirchhoff’s first law, the sum over all currents in a vertex
must vanish (conservation of charge) and by Kirchhoff’s second law, the

Author's preliminary version made available with permission of the publisher, the American Mathematical Society



3.3. Linear autonomous equations of order n 77

sum over all voltage differences in a closed loop must vanish (the voltage
corresponds to a potential).

In a simple circuit one has three types of different elements, inductors,
capacitors, and resistors. For an inductor we have

LİL = VL, (3.58)

where L > 0 is the inductance, IL(t) is the current through the inductor
and VL(t) is the voltage difference between the connectors. For a capacitor
we have

CV̇C = IC , (3.59)

where C > 0 is the capacitance, IC(t) is the current through the capacitor
and VC(t) is the voltage difference. For a resistor we have (Ohm’s law)

VR = RIR, (3.60)

where R > 0 is the resistance, IR(t) is the current through the resistor and
VR(t) is the voltage difference.

We will look at the case of one inductor L, one capacitor C, and one
resistor R arranged in a loop together with an external power source V (the
classical RLC circuit).

L
♠

V
≈

R
✲
I

C

Kirchhoff’s laws yield IR = IL = IC and VR+VL+VC = V . Using the prop-
erties of our three elements we arrive at the second-order linear differential
equation

LÏ(t) +Rİ(t) +
1

C
I(t) = V̇ (t) (3.61)

for the current I. Let us try to solve this equation for an external sinusoidal
voltage

V (t) = V0 cos(ωt). (3.62)

It turns out convenient to use the complex voltage V (t) = V0e
iωt:

Ï +
R

L
İ +

1

LC
I = i

ωV0
L

eiωt. (3.63)

We get the solutions for V (t) = V0 cos(ωt) and V (t) = V0 sin(ωt) by taking
real and imaginary part of the complex solution, respectively.

The eigenvalues are

α1,2 = −η ±
√

η2 − ω2
0, (3.64)
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where we have introduced the convenient abbreviations

η =
R

2L
and ω0 =

1√
LC

. (3.65)

If η > ω0 (over damping), both eigenvalues are negative and the solu-
tion of the homogeneous equation is given by

Ih(t) = k1e
α1t + k2e

α2t. (3.66)

If η = ω0 (critical damping), both eigenvalues are equal and the solution
of the homogeneous equation is given by

Ih(t) = (k1 + k2t)e
−ηt. (3.67)

Finally, for η < ω0 (under damping) we have complex conjugate eigenval-
ues and the solution of the homogeneous equation is given by

Ih(t) = k1e
−ηt cos(βt) + k2e

−ηt sin(βt), β =
√

ω2
0 − η2 > 0. (3.68)

In every case the real part of both eigenvalues is negative and the homoge-
neous solution decays exponentially as t→ ∞:

over damping critical damping under damping

Observe that for fixed η > 0, the choice ω0 = η gives that fastest decay
without an oscillatory component.

For the inhomogeneous solution we make the ansatz

Ii(t) = k eiωt (3.69)

with an unknown constant k. This produces

k =
V0

R+ i(Lω − 1
ωC )

. (3.70)

Since the homogeneous solution decays exponentially, we have after a short
time

I(t) = Ih(t) + Ii(t) ≈ Ii(t) =
V0
Z

eiωt =
1

Z
V (t), (3.71)

where

Z = R+ ZL + ZC , ZL = iLω, ZC = −i
1

ωC
(3.72)

is known as the complex impedance. The current I(t) = 1
ZV (t) attains its

maximum when

|Z|2 = R2 + (Lω − 1

ωC
)2 (3.73)
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gets minimal, that is, if Lω − 1
ωC = 0 and hence

ω = ω0 =
1√
LC

. (3.74)

The frequency ω0
2π is called the resonance frequency of the circuit.

By changing one of the parameters, say C, you can tune the circuit to
a specific resonance frequency. This idea is for example used to filter your
favorite radio station out of many other available ones. In this case the
external power source corresponds to the signal picked up by your antenna
and the RLC circuit starts only oscillating if the carrying frequency of your
radio station matches its resonance frequency. ⋄

Furthermore, our example is not only limited to electrical circuits. Many
other systems can be described by the differential equation

ẍ+ 2η ẋ+ ω2
0x = 0, η, ω0 > 0, (3.75)

at least for small amplitudes x(t). Here ω0
2π is the resonance frequency of

the system and η is the damping factor. If you add a periodic forcing term,

ẍ+ 2η ẋ+ ω2
0x = cos(ωt), (3.76)

you will get a maximal effect if the forcing is resonant, that is, ω coincides
with ω0. If η = 0, the solution corresponds to a free (undamped) oscillation
x(t) = k1 cos(ω0t)+k2 sin(ω0t) and a resonant forcing will result in a solution
whose amplitude tends to ∞ (cf. Problem 3.18).

Problem 3.17. Solve the following differential equations:

(i) ẍ+ 3ẋ+ 2x = sinh(t).

(ii) ẍ+ 2ẋ+ 2x = exp(t).

(iii) ẍ+ 2ẋ+ x = t2.

Problem 3.18 (Resonance catastrophe). Solve the equation

ẍ+ ω2
0x = cos(ωt), ω0, ω > 0.

Discuss the behavior of solutions as t → ∞. The inhomogeneous term is
also known as a forcing term. It is resonant if ω = ω0. What happens in
this case?

Problem 3.19 (Euler equation). Show that the equation

ẍ+
c1
t
ẋ+

c0
t2
x = 0, t > 0,

can be solved by introducing the new dependent variable τ = log(t). Discuss
the possible solutions for c0, c1 ∈ R.
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Problem 3.20. Find a formula for the Wronskian W (x, y) = xẏ − ẋy of
two solutions of the second-order autonomous equation

ẍ+ c1ẋ+ c0x = 0.

Problem 3.21. Prove (3.57) (either by reducing it to (3.48) or by a direct
verification – I recommend doing both;-)

Problem 3.22. Look at the second-order autonomous equation

ẍ+ c1ẋ+ c0x = g(t)

and let α1, α2 be the corresponding eigenvalues (not necessarily distinct).
Show that the equation can be factorized as

ẍ+ c1ẋ+ c0x =

(
d

dt
− α2

)(
d

dt
− α1

)

x.

Hence the equation can be reduced to solving two first order equations
(
d

dt
− α2

)

y = g(t),

(
d

dt
− α1

)

x = y.

Use this to prove Theorem 3.7 as well as Lemma 3.8 in the case n = 2.
Extend this to the general case n ∈ N. (Hint: The solution for the first
order case is given in (3.48). Moreover,

∫
p(t)eβtdt = q(t)eβt, where q(t) is

a polynomial of degree deg(q) = deg(p) if β 6= 0 and deg(q) = deg(p) + 1 if
β = 0. For the general case use induction.)

Problem 3.23. Derive Taylor’s formula with remainder

x(t) =

n∑

j=0

x(j)(t0)

j!
(t− t0)

j +
1

n!

∫ t

t0

x(n+1)(s)(t− s)nds

for x ∈ Cn+1 from (3.57).

Problem 3.24. Show that the geometric multiplicity of every eigenvalue of
the matrix A from (3.51) is one. (Hint: Can you find a cyclic vector? Why
does this help you?)

3.4. General linear first-order systems

In this section we want to consider the case of linear systems, where the
coefficient matrix can depend on t. As a preparation let me remark that a
matrix A(t) is called differentiable with respect to t if all coefficients are. In

this case we will denote by d
dtA(t) ≡ Ȧ(t) the matrix, whose coefficients are

the derivatives of the coefficients of A(t). The usual rules of calculus hold
in this case as long as one takes noncommutativity of matrices into account.
For example we have the product rule

d

dt
A(t)B(t) = Ȧ(t)B(t) +A(t)Ḃ(t) (3.77)
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and, if det(A(t)) 6= 0,

d

dt
A(t)−1 = −A(t)−1Ȧ(t)A(t)−1 (3.78)

(Problem 3.25). Note that the order is important!

Given vectors a1, . . . , an we will write A = (a1, . . . , an) for the matrix
which has these vectors as rows. Observe that BA is the matrix whose rows
are Ba1, . . . , Ban, that is, BA = (Ba1, . . . , Ban). Again note that the order
is important here.

We now turn to the general linear first-order system

ẋ(t) = A(t)x(t), (3.79)

where A ∈ C(I,Rn×n). Clearly our theory from Section 2.2 applies:

Theorem 3.9. The linear first-order system (3.79) has a unique solution
satisfying the initial condition x(t0) = x0. Moreover, this solution is defined
for all t ∈ I.

Proof. This follows directly from Theorem 2.17 (or alternatively from Corol-
lary 2.6) since we can choose L(T ) = max[0,T ] ‖A(t)‖ for every T ∈ I. �

It seems tempting to suspect that the solution is given by the formula

x(t) = exp(
∫ t
t0
A(s)ds)x0. However, as soon as you try to verify this guess,

noncommutativity of matrices will get into your way. In fact, this formula
only solves our initial value problem if [A(t), A(s)] = 0 for all t, s ∈ R.
Hence it is of little use. So we still need to find the right generalization of
exp((t− t0)A).

We start by observing that linear combinations of solutions are again
solutions. Hence the set of all solutions forms a vector space. This is of-
ten referred to as superposition principle. In particular, the solution
corresponding to the initial condition x(t0) = x0 can be written as

φ(t, t0, x0) =
n∑

j=1

φ(t, t0, δj)x0,j , (3.80)

where δj are the canonical basis vectors, (i.e., δj,k = 1 if j = k and δj,k = 0
if j 6= k) and x0,j are the components of x0 (i.e., x0 =

∑n
j=1 δjx0,j). Using

the solutions φ(t, t0, δj) as columns of a matrix

Π(t, t0) = (φ(t, t0, δ1), . . . , φ(t, t0, δn)), (3.81)

we see that there is a linear mapping x0 7→ φ(t, t0, x0) given by

φ(t, t0, x0) = Π(t, t0)x0. (3.82)
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The matrix Π(t, t0) is called principal matrix solution (at t0) and it solves
the matrix valued initial value problem

Π̇(t, t0) = A(t)Π(t, t0), Π(t0, t0) = I. (3.83)

Again observe that our basic existence and uniqueness result applies. In
fact, it is easy to check, that a matrix X(t) satisfies Ẋ = A(t)X if and only
if every column satisfies (3.79). In particular, X(t)c solves (3.79) for every
constant vector c in this case. In summary,

Theorem 3.10. The solutions of the system (3.79) form an n dimensional
vector space. Moreover, there exists a matrix-valued solution Π(t, t0) such
that the solution satisfying the initial condition x(t0) = x0 is given by
Π(t, t0)x0.

Example. In the simplest case, where A(t) ≡ A is constant, we of course

have Π(t, t0) = e(t−t0)A. ⋄

Example. Consider the system

ẋ =

(
1 t
0 2

)

x, (3.84)

which explicitly reads

ẋ1 = x1 + t x2, ẋ2 = 2x2. (3.85)

We need to find the solution corresponding to the initial conditions x(t0) =
δ1 = (1, 0) respectively x(t0) = δ2 = (0, 1). In the first case x(t0) = δ1, the
second equation gives x2(t) = 0 and plugging this into the first equation
shows x1(t) = et−t0 , that is, φ(t, t0, δ1) = (et−t0 , 0). Similarly, in the second

case x(t0) = (0, 1), the second equation gives x2(t) = e2(t−t0) and plugging

this into the first equation shows x1(t) = e2(t−t0)(t− 1)− et−t0(t0 − 1), that

is, φ(t, t0, δ2) = (e2(t−t0)(t − 1) − et−t0(t0 − 1), e2(t−t0)). Putting everything
together we obtain

Π(t, t0) =

(
et−t0 e2(t−t0)(t− 1)− et−t0(t0 − 1)

0 e2(t−t0)

)

. (3.86)

⋄

Note that using Gronwall’s inequality (cf. Problem 2.14) one can get a
rough estimate on the norm of the principal matrix solution

‖Π(t, t0)‖ ≤ e
|
∫ t

t0
‖A(s)‖ds|

. (3.87)

A better estimate is derived in Problem 3.31.

Furthermore, Π(t, t0) satisfies

Π(t, t1)Π(t1, t0) = Π(t, t0) (3.88)
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since both sides solve Π̇ = A(t)Π and coincide for t = t1. In particular,
choosing t = t0, we see that Π(t, t0) is an isomorphism with inverse

Π(t, t0)
−1 = Π(t0, t). (3.89)

More generally, taking n solutions φ1, . . . , φn we obtain a matrix solution
U(t) = (φ1(t), . . . , φn(t)). Note that the differential equation is uniquely de-

termined by n linearly independent solutions by virtue of A(t) = U̇(t)U(t)−1.

The determinant of U(t) is called Wronski determinant

W (t) = det(φ1(t), . . . , φn(t)). (3.90)

If detU(t) 6= 0, the matrix solution U(t) is called a fundamental matrix
solution. Moreover, if U(t) is a matrix solution, so is U(t)C, where C
is a constant matrix. Hence, given two fundamental matrix solutions U(t)
and V (t) we always have V (t) = U(t)U(t0)

−1V (t0), since a matrix solution
is uniquely determined by an initial condition. In particular, the principal
matrix solution can be obtained from any fundamental matrix solution via
Π(t, t0) = U(t)U(t0)

−1.

The following lemma shows that it suffices to check detU(t) 6= 0 for one
t ∈ R.

Lemma 3.11. The Wronski determinant of n solutions satisfies

W (t) =W (t0) exp

(∫ t

t0

tr(A(s)) ds

)

. (3.91)

This is known as Abel’s identity or Liouville’s formula.

Proof. By (3.83) we have

Π(t+ ε, t) = I+A(t)ε+ o(ε)

and using U(t+ ε) = Π(t+ ε, t)U(t) we obtain (Problem 3.26)

W (t+ ε) = det(I+A(t)ε + o(ε))W (t) = (1 + tr(A(t))ε + o(ε))W (t)

implying
d

dt
W (t) = tr(A(t))W (t).

This equation is separable and the solution is given by (3.91). �

Now let us turn to the inhomogeneous system

ẋ = A(t)x+ g(t), (3.92)

where A ∈ C(I,Rn × R
n) and g ∈ C(I,Rn). Since the difference of two

solutions of the inhomogeneous system (3.92) satisfies the corresponding
homogeneous system (3.79), it suffices to find one particular solution. This
can be done using the following ansatz

x(t) = Π(t, t0)c(t), c(t0) = x(t0) = x0, (3.93)
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which is known as variation of constants (also variation of parame-
ters). Differentiating this ansatz we see

ẋ(t) = A(t)x(t) + Π(t, t0)ċ(t) (3.94)

and comparison with (3.92) yields

ċ(t) = Π(t0, t)g(t). (3.95)

Integrating this equation shows

c(t) = x0 +

∫ t

t0

Π(t0, s)g(s)ds (3.96)

and we obtain (using (3.88)):

Theorem 3.12. The solution of the inhomogeneous system (3.92) corre-
sponding to the initial condition x(t0) = x0 is given by

x(t) = Π(t, t0)x0 +

∫ t

t0

Π(t, s)g(s)ds, (3.97)

where Π(t, t0) is the principal matrix solution of the corresponding homoge-
neous system.

To end this section, let me emphasize that there is no general way of
solving linear systems except for the trivial case n = 1 (recall (1.40)). How-
ever, if one solution φ1(t) is known, one can use the following method known
as reduction of order (d’Alembert): At least one component of φ1(t) is
nonzero, say the first one for notational simplicity. Let X(t) be the identity
matrix with the first row replaced by φ1(t),

X(t) = (φ1(t), δ2, . . . , δn) (3.98)

and consider the transformation

x(t) = X(t)y(t). (3.99)

Then the differential equation for y(t) = X(t)−1x(t) reads

ẏ = X−1ẋ−X−1ẊX−1x = X−1(AX − Ẋ)y (3.100)

with

AX − Ẋ = AX − (φ̇1, 0, . . . , 0) = A(X − (φ1, 0, . . . , 0)) = A(0, δ2, . . . , δn).
(3.101)

In particular, the right-hand side of the resulting system does not contain
y1. Hence we can first solve the n − 1 by n − 1 system for (y2, . . . , yn) and
finally determine y1 by one additional integration.

Example. Consider the system

A(t) =

(
t2 −1
2t 0

)
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and note that φ1(t) = (1, t2) is a solution. Hence we can make the change
of coordinates

x(t) = X(t)y(t), where X(t) =

(
1 0
t2 1

)

in which the differential equation reads

ẏ = X(t)−1A(t)

(
0 0
0 1

)

y =

(
0 −1
0 t2

)

y.

In particular, the right-hand side does not involve y1. Hence this system
can be solved by first solving the second component ẏ2 = t2y2 which gives

y2(t) = et
3/3.

Now integrating the first component ẏ1 = −y2 gives

y1(t) = −
∫

et
3/3dt

and thus a second solution is given by

φ2(t) =

(
1 0
t2 1

)(

−
∫
et

3/3dt

et
3/3

)

=

(

−
∫
et

3/3dt

et
3/3 − t2

∫
et

3/3dt

)

.

⋄

Problem 3.25 (Differential calculus for matrices.). Suppose A(t) and B(t)
are differentiable. Prove (3.77) and (3.78). (Hint: AA−1 = I.)

Problem 3.26. Show that for any n by n matrix A we have

det(I+ εA+ o(ε)) = 1 + ε tr(A) + o(ε),

where o(ε) (Landau symbol) collects terms which vanish faster than ε as
ε→ 0. (Hint: E.g. Jordan canonical form.)

Problem 3.27. Compute Π(t, t0) for the system

A(t) =

(
t 0
1 t

)

.

Problem 3.28. Compute Π(t, t0) for the system

A(t) =

(
2 + 2t 3 + 2t
−1− 2t −2− 2t

)

.

(Hint: φ1(t) = e−t(1,−1) is a solution.)

Problem 3.29 (QuantumMechanics). A quantum mechanical system which
can only attain finitely many states is described by a complex-valued vector
ψ(t) ∈ C

n. The square of the absolute values of the components |ψj(t)|2 is
interpreted as the probability of finding the system in the j’th state at time
t. Since there are only n possible states, these probabilities must add up to
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one, that is, ψ(t) must be normalized, |ψ(t)| = 1. The time evolution of the
system is governed by the Schrödinger equation

iψ̇(t) = H(t)ψ(t), ψ(t0) = ψ0,

where H(t), is a self-adjoint matrix, that is, H(t)∗ = H(t). (Here A∗ is the
adjoint (complex conjugate of the transposed) matrix.) The matrix H(t) is
called the Hamiltonian and describes the interaction. Show that the solution
is given by

ψ(t) = U(t, t0)ψ0, U(t0, t0) = I,

where U(t, t0) is unitary, that is, U(t, t0)
−1 = U(t, t0)

∗ (Hint: Problem 3.25).
Conclude that ψ(t) remains normalized for all t if ψ0 is.

Each observable (quantity you can measure) corresponds to a self-adjoint
matrix, say L0. The expectation value for a measurement of L0 if the system
is in the state ψ(t) is given by

〈ψ(t), L0ψ(t)〉,

where 〈ϕ,ψ〉 = ϕ∗ · ψ is the scalar product in C
n. Show that

d

dt
〈ψ(t), L0ψ(t)〉 = i〈ψ(t), [H(t), L0 ]ψ(t)〉

where [H,L] = HL− LH is the commutator.

Problem 3.30. Show that if lim inft→∞
∫ t
t0
tr(A(s))ds = ∞, then (3.79) has

an unbounded solution. (Hint: (3.91).)

Problem 3.31. For any matrix A, the matrix Re(A) = 1
2(A+A∗) is sym-

metric and hence has only real eigenvalues (cf. Theorem 3.29). Let α0 be its
largest eigenvalue.

Let A(t) be given and define α0(t) as above. Show that

‖Π(t, t0)‖ ≤ exp

(∫ t

t0

α0(s)ds

)

, t ≥ t0.

A similar formula holds for t ≤ t0 if we take the lowest eigenvalue. (Hint:
Compute d

dt |x(t)|2 for x(t) = Π(t, t0)x0 and note that 〈x,Re(A)x〉 ≤ α0|x|2
for every x ∈ R

n.)

Remark: If A(t) ≡ A is constant, we know that one can do much better
and replace α0 by the real part of the largest eigenvalue of A plus an arbi-
trarily small ε (the ε is necessary to cover possible polynomial terms) – cf.
also Corollary 3.6. Hence one might conjecture that the same is true in the
general case. However, this is not the case as Problem 3.40 below shows.
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3.5. Linear equations of order n

In this section, we want to have a brief look at the case of the n’th order
equations

x(n) + qn−1(t)x
(n−1) + · · ·+ q1(t)ẋ+ q0(t)x = 0, (3.102)

where q0(t), . . . , qn−1(t) are some continuous functions. Again the solutions
form an n dimensional vector space since a solution is uniquely determined
by the initial conditions

x(t0) = x0, . . . , x(n−1)(t0) = xn−1 (3.103)

and, as in the case of constant coefficients (cf. Section 3.3), the corresponding
system is given by

A(t) =










0 1
0 1

. . .
. . .

0 1
−q0(t) −q1(t) · · · · · · −qn−1(t)










. (3.104)

If we denote by φj(t, t0) the solution corresponding to the initial condition

(x(t0), . . . , x
(n−1)(t0)) = δj , the principal matrix solution is given by

Π(t, t0) =








φ1(t, t0) · · · φn(t, t0)

φ̇1(t, t0) · · · φ̇n(t, t0)
...

...
...

φ
(n−1)
1 (t, t0) · · · φ

(n−1)
n (t, t0)







. (3.105)

As a consequence of Theorem 3.12 we obtain:

Theorem 3.13. The solution of the inhomogeneous n-th order linear equa-
tion

x(n) + qn−1(t)x
(n−1) + · · · + q1(t)ẋ+ q0(t)x = g(t) (3.106)

corresponding to the initial condition

x(t0) = x0, . . . x(n−1)(t0) = xn−1, (3.107)

is given by

x(t) = x0φ1(t, t0) + · · ·+ xn−1φn(t, t0) +

∫ t

t0

φn(t, s)g(s)ds, (3.108)

where φj(t, t0), 1 ≤ j ≤ n, are the solutions corresponding to the initial

conditions (φj(t0, t0), . . . , φ
(n−1)
j (t0, t0)) = δj .
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Next, given sufficiently smooth functions f1, . . . , fm we define theirWron-
ski determinant (or simply their Wronskian) as

W (f1, . . . , fm) = det








f1 · · · fm
f ′1 · · · f ′m
...

...
...

f
(m−1)
1 · · · f

(m−1)
m







. (3.109)

Note that the Wronskian will vanish identically if the functions are linearly
dependent, but the converse is in general not true (cf. Problem 3.33).

By Lemma 3.11 the Wronskian of n solutions satisfies

W (φ1, . . . , φn)(t) =W (φ1, . . . , φn)(t0) exp

(

−
∫ t

t0

qn−1(s)ds

)

(3.110)

and it will vanish if and only if the solutions are linearly dependent.

Finally, note that the differential equation (3.102) is uniquely deter-
mined by n linearly independent solutions φ1, . . . , φn since this is true for
the corresponding system. Explicitly we have

W (φ1, . . . , φn, x)(t)

W (φ1, . . . , φn)(t)
= x(n)(t) + qn−1(t)x

(n−1)(t) + · · ·+ q0(t)x(t). (3.111)

In fact, by expanding the Wronski determinant with respect to the last
column we see that the left-hand side is of the same form as the right-hand
side with possibly different coefficients q̃j. However, since the Wronskian on
the left-hand side vanishes whenever we choose x = φj, the corresponding
differential equation has the same solutions and thus q̃j = qj.

Example. For example, in the case of second order equations we obtain
using Laplace expansion along the last column

W (φ1, φ2, x) =W (φ1, φ2)ẍ− Ẇ (φ1, φ2)ẋ+W (φ̇1, φ̇2)x (3.112)

and thus

q1 = −Ẇ (φ1, φ2)

W (φ1, φ2)
, q0 =

W (φ̇1, φ̇2)

W (φ1, φ2)
. (3.113)

Note that the formula for q1 is consistent with (3.110). ⋄

As for the case of systems, there is no general way of solving linear n’th
order equations except for the trivial case n = 1 (recall (1.40)). However, if
one solution φ1(t) is known, one can again use the following method known
as reduction of order (d’Alembert):

Given one solution φ1(t) of (3.102), the variation of constants ansatz

x(t) = c(t)φ1(t) (3.114)
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gives a (n−1)’th order equation for ċ: Setting qn = 1 and using Leibniz rule
we obtain

n∑

j=0

qjx
(j) =

n∑

j=0

qj

j
∑

k=0

(
j

k

)

c(k)φ
(j−k)
1 =

n∑

j=0

qj

j
∑

k=1

(
j

k

)

c(k)φ
(j−k)
1 , (3.115)

where we have used
∑n

j=0 qjcφ
(j)
1 = 0 for k = 0. Thus x solves (3.102) if

and only if d = ċ solves

n−1∑

k=0

d(k)
n∑

j=k+1

(
j

k + 1

)

qjφ
(j−k−1)
1 = 0. (3.116)

Hence it remains to solve this (n − 1)’th order equation for d and perform
one additional integration to obtain c.

Example. Consider the differential equation

ẍ− 2tẋ− 2x = 0

and observe that φ1(t) = et
2
is a solution. Hence we can set x(t) = et

2
c(t)

to obtain
(
et

2
c̈(t) + 4tet

2
ċ(t) + (2 + 4t2)et

2
c(t)
)
− 2
(
et

2
ċ(t) + 2tet

2
c(t)
)
− 2et

2
c(t)

= et
2
(c̈(t) + 2tċ(t)) = 0.

The solution of this equation is given by

ċ(t) = e−t
2

implying

c(t) =

∫ t

0
e−s

2
ds =

√
π

2
erf(t),

where erf(z) = 2√
π

∫ z
0 e−x

2
dx is the Gauss error function. Hence a second

solution is given by φ2(t) = et
2
erf(t). ⋄

There is also an alternative method based on factorizing the differential
equation outlined in Problems 3.35 and 3.36. Moreover, one can choose
qn−1(t) = 0 without loss of generality by Problem 3.37.

Problem 3.32. Use reduction of order to find the general solution of the
following equations:

(i) t ẍ− 2(t+ 1)ẋ+ (t+ 2)x = 0, φ1(t) = et.

(ii) t2ẍ− 3t ẋ+ 4x = 0, φ1(t) = t2.

Problem 3.33. Show that the Wronskian of the two functions f1(t) = t2

and f2(t) = t|t| vanishes identically even though the two solutions are not
linearly dependent.
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Problem 3.34. Consider the equation ẍ+ q0(t)x. Assume one solution is
φ1 and use reduction of order to show that a second solution is given by

φ2(t) = φ1(t)

∫ t 1

φ1(s)2
ds.

Problem 3.35. Verify that the second-order equation

ẍ+ (1− t2)x = 0

can be factorized as
(
d

dt
− t

)(
d

dt
+ t

)

x = 0

(note that the order is important). Use this to find the solution. (Hint: The
solution can be found by solving two first order problems.)

Problem 3.36. Show that any linear n-th order equation can be factorized
into first order equations:

Let φ1, . . . , φn be linearly independent solutions of the n-th order equation
Ln(f) = 0. Set

L1(f) =
W (φ1, f)

φ1
= f ′ − φ′1

φ1
f

and define ψj = L1(φj). Show that ψ2, . . . , ψn are linearly independent and

Ln(f) = Ln−1(L1(f)), Ln−1(f) =
W (ψ2, . . . , ψn, f)

W (ψ2, . . . , ψn)
.

Problem 3.37. Consider the change of variables

y(t) = Q(t)x(t), Q(t) = e
1
n

∫ t qn−1(s)ds.

Show that if x(t) satisfies (3.102), then y(t) satisfies

y(n) +
n−2∑

k=0

n∑

j=k

(
j

k

)

qj(t)Q
(j−k)(t)y(k),

where qn(t) = 1. In particular, the new equation does not contain y(n−1).

Problem 3.38. Show that x solves

ẍ+ q1(t)ẋ+ q0(t)x = 0

if and only if

y(t) = eQ(t) ẋ(t)

x(t)
, Q(t) =

∫ t

q1(s)ds,

solves the Riccati equation

ẏ + e−Q(t)y2 + eQ(t)q0(t).
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3.6. Periodic linear systems

In this section we want to consider (3.79) in the special case where A(t) is
periodic,

A(t+ T ) = A(t), T > 0. (3.117)

This periodicity condition implies that x(t+T ) is again a solution if x(t) is.
Moreover, we even have

Lemma 3.14. Suppose A(t) is periodic with period T . Then the principal
matrix solution satisfies

Π(t+ T, t0 + T ) = Π(t, t0). (3.118)

Proof. By d
dtΠ(t+T, t0+T ) = A(t+T )Π(t+T, t0+T ) = A(t)Π(t+T, t0+T )

and Π(t0 + T, t0 + T ) = I we see that Π(t+ T, t0 + T ) solves (3.83). Thus it
is equal to Π(t, t0) by uniqueness. �

Hence it suggests itself to investigate what happens if we move on by
one period, that is, to look at the monodromy matrix

M(t0) = Π(t0 + T, t0). (3.119)

Note that M(t0) is periodic by our previous lemma, that is, M(t0 + T ) =
M(t0).

A first naive guess would be that all initial conditions return to their
starting values after one period (i.e., M(t0) = I) and hence all solutions are
periodic. However, this is too much to hope for since it already fails in one
dimension with A(t) a constant.

However, we have

Π(t0 + ℓT, t0) = Π(t0 + ℓT, t0 + (ℓ− 1)T )Π(t0 + (ℓ− 1)T, t0)

=M(t0 + (ℓ− 1)T )Π(t0 + (ℓ− 1)T, t0)

=M(t0)Π(t0 + (ℓ− 1)T, t0)

=M(t0)
ℓΠ(t0, t0) =M(t0)

ℓ. (3.120)

Thus Π(t, t0) exhibits an exponential behavior if we move on by one period
in each step. If we factor out this exponential term, the remainder should
be periodic.

To factor out the exponential term we need to give a meaning to M(t0)
ℓ

for the case where t
T = ℓ is not an integer. If M(t0) is a number, the usual

way of doing this is to set M(t0)
t/T = exp( tT log(M(t0))). To mimic this

trick we need to find a matrix Q(t0) such that

M(t0) = exp(TQ(t0)), Q(t0 + T ) = Q(t0). (3.121)
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This is possible if and only if det(M(t0)) 6= 0 (see Section 3.8). Note however,
that Q(t0) is not unique.

That det(M(t0)) 6= 0 follows from Liouville’s formula (3.91) which im-
plies that the determinant of the monodromy matrix

det(M(t0)) = exp

(∫ t0+T

t0

tr(A(s))ds

)

= exp

(∫ T

0
tr(A(s))ds

)

(3.122)

is independent of t0 and positive.

Now writing

Π(t, t0) = P (t, t0) exp((t− t0)Q(t0)) (3.123)

a straightforward computation shows that

P (t+ T, t0) = Π(t+ T, t0)M(t0)
−1e−(t−t0)Q(t0)

= Π(t+ T, t0 + T )e−(t−t0)Q(t0)

= Π(t, t0)e
−(t−t0)Q(t0) = P (t, t0) (3.124)

as anticipated. In summary we have proven Floquet’s theorem.

Theorem 3.15 (Floquet). Suppose A(t) is periodic. Then the principal
matrix solution of the corresponding linear system has the form

Π(t, t0) = P (t, t0) exp((t− t0)Q(t0)), (3.125)

where P (., t0) has the same period as A(.) and P (t0, t0) = I.

Example. Consider the one-dimensional case

ẋ = a(t)x, a(t+ T ) = a(t).

Then the principal matrix solution is

Π(t, t0) = e
∫ t
t0
a(s)ds

and the monodromy matrix is

M(t0) = e
∫ t0+T
t0

a(s)ds = eT ā, ā =
1

T

∫ T

0
a(s)ds.

Moreover,

P (t, t0) = e
∫ t

t0
(a(s)−ā)ds

, Q(t0) = ā.

⋄

Note that any fundamental matrix solution can be written in this form
(Problem 3.41). Moreover, note that Q(t0) will be complex even if A(t) is
real unless all real eigenvalues ofM(t0) are positive. However, since A(t) also
has the period 2T and Π(t0 + 2T, t0) =M(t0)

2, we infer from Lemma 3.34:
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Corollary 3.16. Suppose A(t) is real and periodic. Then the principal
matrix solution of the corresponding linear system has the form

Π(t, t0) = P̃ (t, t0) exp((t− t0)Q̃(t0)), (3.126)

where both P̃ (t, t0), Q̃(t0) are real and P̃ (., t0) has twice the period of A(.).

Hence to understand the behavior of solutions one needs to understand
the Jordan canonical form of the monodromy matrix. Moreover, we can
choose any t0 since M(t1) and M(t0) are similar matrices by virtue of

M(t1) = Π(t1 + T, t0 + T )M(t0)Π(t0, t1)

= Π(t1, t0)M(t0)Π(t1, t0)
−1. (3.127)

Thus the eigenvalues and the Jordan structure are independent of t0 (hence
the same also follows for Q(t0)).

The eigenvalues ρj of M(t0) are known as Floquet multipliers (also
characteristic multipliers) and the eigenvalues γj of Q(t0) are known as
Floquet exponents (characteristic exponents). By Lemma 3.3 they
are related via ρj = eTγj . Since the periodic part P (t, t0) is bounded we
obtain as in Corollary 3.5

Corollary 3.17. A periodic linear system is stable if all Floquet multipliers
satisfy |ρj| ≤ 1 (respectively all Floquet exponents satisfy Re(γj) ≤ 0) and
for all Floquet multipliers with |ρj | = 1 (respectively all Floquet exponents
with Re(γj) = 0) the algebraic and geometric multiplicities are equal.

A periodic linear system is asymptotically stable if all Floquet multipliers
satisfy |ρj | < 1 (respectively all Floquet exponents satisfy Re(γj) < 0).

Before I show how this result is used in a concrete example, let me
note another consequence of Theorem 3.15. The proof is left as an exercise
(Problem 3.42).

Corollary 3.18. The transformation y(t) = P (t, t0)
−1x(t) renders the sys-

tem into one with constant coefficients,

ẏ(t) = Q(t0)y(t). (3.128)

Note also that we have P (t, t0)
−1 = exp((t− t0)Q(t0))P (t0, t) exp(−(t−

t0)Q(t)) by virtue of Π(t, t0)
−1 = Π(t0, t).

In the remainder of this section we will look at one of the most prominent
examples, Hill’s equation

ẍ+ q(t)x = 0, q(t+ T ) = q(t). (3.129)

In this case the associated system is

ẋ = y, ẏ = −qx (3.130)
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and the principal matrix solution is given by

Π(t, t0) =

(
c(t, t0) s(t, t0)
ċ(t, t0) ṡ(t, t0)

)

, (3.131)

where c(t, t0) is the solution of (3.129) corresponding to the initial condition
c(t0, t0) = 1, ċ(t0, t0) = 0 and similarly for s(t, t0) but corresponding to the
initial condition s(t0, t0) = 0, ṡ(t0, t0) = 1. Liouville’s formula (3.91) shows

detΠ(t, t0) = 1 (3.132)

and hence the characteristic equation for the monodromy matrix

M(t0) =

(
c(t0 + T, t0) s(t0 + T, t0)
ċ(t0 + T, t0) ṡ(t0 + T, t0)

)

, (3.133)

is given by

ρ2 − 2∆ρ+ 1 = 0, (3.134)

where

∆ =
tr(M(t0))

2
=
c(t0 + T, t0) + ṡ(t0 + T, t0)

2
. (3.135)

If ∆2 > 1 we have two different real eigenvalues

ρ± = ∆±
√

∆2 − 1, (3.136)

with corresponding eigenvectors

u±(t0) =

(
1

m±(t0)

)

, (3.137)

where

m±(t0) =
ρ± − c(t0 + T, t0)

s(t0 + T, t0)
=

ċ(t0 + T, t0)

ρ± − ṡ(t0 + T, t0)
. (3.138)

Note that u±(t0) are also eigenvectors of Q(t0) corresponding to the eigen-
values γ± = 1

T log(ρ±) (Lemma 3.3). From ρ+ρ− = 1 we obtain γ++γ− = 0
mod 2πi and it is no restriction to assume |ρ+| ≥ 1 respectively Re(γ+) ≥ 0.
If we set γ = Re(γ+), we have γ± = ±γ if ρ± > 0 (i.e. ∆ = (ρ++ρ−)/2 > 0)
and γ± = ±γ + iπ if ρ± < 0 (i.e. ∆ < 0). In summary, the characteristic
multipliers are of the form

ρ± = σ e±Tγ , σ = sgn(∆), γ =
1

T
log |ρ+| > 0. (3.139)

Considering

Π(t, t0)u±(t0) = P (t, t0) exp((t− t0)Q(t0))u±(t0)

= eγ±(t−t0)P (t, t0)u±(t0), (3.140)

we see that there are two solutions of the form

e±γtp±(t), p±(t+ T ) = σ p±(t). (3.141)
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If ∆2 < 1 we have two different complex conjugate eigenvalues and hence
two solutions

e±iγtp±(t), p±(t+ T ) = p±(t), γ > 0, (3.142)

where γ = Im(γ+).

If ∆2 = 1 we have ρ± = ∆ and either two solutions

p±(t), p±(t+ T ) = σ p±(t), (3.143)

or two solutions

p+(t), p−(t) + t p+(t), p±(t+ T ) = σ p±(t), (3.144)

where σ = sgn(∆) = ∆.

Since a periodic equation is called stable if all solutions are bounded,
we have shown:

Theorem 3.19. Hill’s equation is stable if |∆| < 1 and unstable if |∆| > 1.

This result is of practical importance in applications. For example, the
potential of a charged particle moving in the electric field of a quadrupole
is given by

U(x) = e
V

a2
(x21 − x22). (3.145)

The corresponding equations of motion are Newton’s equation (1.5), where
the force is given by

F (x) = − ∂

∂x
U(x). (3.146)

If the voltage V varies with respect to time according to V (t) = V0+V1 cos(t),
one gets the following equations of motion (neglecting the induced magnetic
field)

ẍ1 = − 2e

ma2
(V0 + V1 cos(t))x1,

ẍ2 = +
2e

ma2
(V0 + V1 cos(t))x2,

ẍ3 = 0. (3.147)

The equation for the x1 and x2 coordinates is the Mathieu equation

ẍ = −ω2(1 + ε cos(t))x. (3.148)

A numerically computed stability diagram is depicted in Figure 3.6. The
shaded regions are the ones where ∆(ω, ε)2 > 1, that is, where the equation
is unstable. Observe that these unstable regions emerge from the points
2ω ∈ N0 where ∆(ω, 0) = cos(2πω) = ±1.

Varying the voltages V0 and V1 one can achieve that the equation is
only stable (in the x1 or x2 direction) if the mass of the particle lies within
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Figure 3.6. Numerically computed stability diagram for the Mathieu
equation with 0 ≤ ω ≤ 3 and −1.5 ≤ ε ≤ 1.5.

a certain region. This can be used to filter charged particles according to
their mass (quadrupole mass spectrometry).

Hill’s equation also can be used as a simple one-dimensional model in
quantum mechanics to describe a single electron moving in a periodic field
(cf. Problem 5.36). We will further investigate this problem in Section 5.6.

Problem 3.39. Consider
ẋ = a(t)Ax,

where a : R → R is periodic with period T and A is a constant two by two
matrix. Compute the Floquet exponent, and find P (t, t0) and Q(t0) in this
case.

Problem 3.40. Compute the monodromy matrix where A(t) is of period 1
and given by

A(t) =







(

α 1

0 α

)

, 0 ≤ t < 1
2 ,

(

α 0

1 α

)

, 1
2 ≤ t < 1,

α ∈ C.

Note that since A(t) is not continuous you have to match solutions at every
discontinuity such that the solutions are continuous (cf. Section 2.3).

For which values of α remain all solutions bounded? Show that the bound
found in Problem 3.31 is optimal by considering A(t/T ) as T → 0.

(Note that we could approximate A(t) by continuous matrices and obtain
the same qualitative result with an arbitrary small error.)

Problem 3.41. Show that any fundamental matrix solution U(t) of a pe-
riodic linear system can be written as U(t) = V (t) exp(tR), where V (t) is
periodic and R is similar to Q(t0).
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Problem 3.42. Prove Corollary 3.18.

Problem 3.43. Consider the inhomogeneous equation

ẋ(t) = A(t)x(t) + g(t),

where both A(t) and g(t) are periodic of period T . Show that this equation
has a unique periodic solution of period T if and only if 1 is not an eigenvalue
of the monodromy matrix M(t0). (Hint: Note that x(t) is periodic if and
only if x(T ) = x(0) and use the variation of constants formula (3.97).)

3.7. Perturbed linear first order systems

In this section we want to consider stability of perturbed linear systems of
the form

ẋ = (A(t) +B(t))x, (3.149)

where the asymptotic behavior as t→ ∞ of the system associated with A(t)
is well understood and B(t) is supposed to be some small perturbation. We
begin by looking at the one-dimensional case.

Example. The solution of the equation

ẋ = (−a+ b(t))x, x(0) = x0,

is given by

x(t) = x0 exp

(

−at+
∫ t

0
b(s)ds

)

.

If we assume a > 0, the unperturbed system is asymptotically stable and all
solutions tend to 0 exponentially fast, |x(t)| ≤ |x0|e−at, as t→ ∞. The same
is true for the perturbed system if we, for example, assume that eventually
b(t) ≤ b0 < a. However, note that even if b(t) → 0, the asymptotic form of
the solution will in general differ from the unperturbed one. For example,
in the case b(t) = (1 + t)−1 we obtain x(t) = x0(1 + t)e−at. In particular, in
the case a = 0 the unperturbed system is stable and for the above choice of
b(t) = (1 + t)−1 the perturbed system is unstable. If we make the stronger
requirement

∫∞
0 |b(t)|dt < ∞, then the perturbed system is again stable

even if a = 0. ⋄

Our aim is to transfer the above observations for the one-dimensional
case to general first order systems.

Theorem 3.20. Consider the system (3.149) and suppose that the principal
matrix solution of the unperturbed system corresponding to B(t) ≡ 0 satisfies

‖ΠA(t, s)‖ ≤ Ce−α(t−s), t ≥ s ≥ t0, (3.150)

for some constants C,α > 0 and a time t0 ≥ 0. Suppose that

‖B(t)‖ ≤ b0, t ≥ t0. (3.151)
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Then, if b0C < α, we have

‖ΠA+B(t, s)‖ ≤ De−(α−b0C)(t−s), t ≥ s ≥ 0, (3.152)

for some constant D > 0.

Proof. The key ingredient is the variation of constants formula (3.97),
where we rewrite (3.149) as

ẋ−A(t)x = B(t)x

and regard the right-hand side as an inhomogeneous term g(t) = B(t)x(t).
Then

x(t) = ΠA(t, s)x(s) +

∫ t

s
ΠA(t, r)B(r)x(r)dr.

By our assumptions we obtain

|x(t)| ≤ Ce−α(t−s)|x(s)|+
∫ t

s
Ce−α(t−r)b0|x(r)|dr

for t ≥ s ≥ t0. Introducing y(t) = |x(t)|eα(t−s) we get

y(t) ≤ C|x(s)|+
∫ t

s
Cb0y(r)dr

and Gronwall’s inequality implies y(t) ≤ C|x(s)|eCb0(t−s) and hence

|x(t)| ≤ C|x(s)|e−(α−Cb0)(t−s), t ≥ s ≥ t0.

Finally, to obtain the general case use (3.88) to reduce it to the case where
all times are either ≥ t0 or ≤ t0 and (3.87) to estimate the latter case.

This shows that the claim holds with D = e(β+(α−Cb0))t0C, where β =
max0≤t≤t0 ‖A(t) +B(t)‖. �

In order to apply this result note that estimates for ΠA(t, s) of the re-
quired type are provided in Problem 3.31.

As a first consequence we conclude that asymptotic stability is preserved
for perturbed linear systems of the form

ẋ = (A+B(t))x, (3.153)

where B(t) is continuous and satisfies ‖B(t)‖ → 0 as t → ∞. To this
end recall that by Corollary 3.6 the unperturbed system corresponding to
B(t) = 0 is asymptotically stable if and only if all eigenvalues of A have
negative real part. Moreover, in this case (3.44) shows that the assumptions
of our theorem are satisfied.

Corollary 3.21. Suppose all eigenvalues αj of A have negative real part
and B(t) satisfies

lim
t→∞

‖B(t)‖ = 0. (3.154)
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Then the linear system (3.153) is asymptotically stable. More precisely, for
every α < min{−Re(αj)}mj=1 there is a constant C such that

|x(t)| ≤ Ce−tα|x0|, t ≥ 0, (3.155)

where x(t) is the solution corresponding to the initial condition x(0) = x0.

Example. Consider the two dimensional system with

A =

(
−a 0
0 −a

)

, B(t) =

(
0 sin(t)

cos(t) 0

)

.

Since

‖B(t)‖ = max(| sin(t)|, | cos(t)|)
does not tend to 0 (use Problem 3.49 to compute the norm), our corollary
does not apply. However, A satisfies (3.150) with C = 1, α = a and hence
we can conclude that this system is asymptotically stable if a > 1. ⋄

Since, by Floquet’s theorem (Theorem 3.15), the principal matrix solu-
tion of a periodic linear system looks like the one of a constant system up
to periodic factors, the above result applies even in this more general case.

Corollary 3.22. Let A(t) be periodic. Suppose all Floquet exponents γj of
A(t) have negative real part and B(t) satisfies

lim
t→∞

‖B(t)‖ = 0. (3.156)

Then the linear system (3.149) is asymptotically stable. More precisely, for
every γ < min{−Re(γj)}mj=1 there is a constant C such that

|x(t)| ≤ Ce−tγ |x0|, t ≥ 0, (3.157)

where x(t) is the solution corresponding to the initial condition x(0) = x0.

As our second result we will show that stability is preserved under such
perturbations if the norm of the perturbation is integrable.

Theorem 3.23. Consider the system (3.149) and suppose that the principal
matrix solution of the unperturbed system corresponding to B(t) ≡ 0 satisfies

‖ΠA(t, s)‖ ≤ C, t ≥ s ≥ t0, (3.158)

for some constant C > 0 and a time t0 ≥ 0. Suppose that
∫ ∞

0
‖B(t)‖dt <∞. (3.159)

Then we have

‖ΠA+B(t, 0)‖ ≤ D, t ≥ 0, (3.160)

for some constant D > 0.
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Proof. As in the previous proof our point of departure is

x(t) = ΠA(t, t0)x0 +

∫ t

0
ΠA(t, s)B(s)x(s)ds

and using our estimate for ΠA we obtain

|x(t)| ≤ C|x0|+
∫ t

0
C‖B(s)‖|x(s)|ds.

Hence an application of Gronwall’s inequality

|x(t)| ≤ C|x0| exp
(

C

∫ ∞

0
‖B(s)‖ds

)

finishes the proof. �

Again we can apply this to the case where A is constant. To this end
recall that by Corollary 3.5 the system corresponding to B(t) = 0 is stable if
and only if all eigenvalues of A have nonpositive real part. Moreover, (3.43)
provides the necessary estimate.

Corollary 3.24. Suppose all eigenvalues αj of A satisfy Re(αj) ≤ 0 and for
all eigenvalues with Re(αj) = 0 the corresponding algebraic and geometric
multiplicities are equal, and B(t) satisfies

∫ ∞

0
‖B(t)‖dt <∞. (3.161)

Then the linear system (3.153) is stable. More precisely, there is a constant
C such that

‖x(t)‖ ≤ C|x0|, t ≥ 0, (3.162)

where x(t) is the solution corresponding to the initial condition x(0) = x0.

Again the result applies to perturbed periodic systems as well.

Corollary 3.25. Let A(t) be periodic. Suppose all Floquet exponents γj
of A(t) satisfy Re(γj) ≤ 0 and for all Floquet exponents with Re(γj) = 0
the corresponding algebraic and geometric multiplicities are equal, and B(t)
satisfies

∫ ∞

0
‖B(t)‖dt <∞. (3.163)

Then the linear system (3.149) is stable. More precisely, there is a constant
C such that

|x(t)| ≤ C|x0|, t ≥ 0, (3.164)

where x(t) is the solution corresponding to the initial condition x(0) = x0.
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Finally, note that we also could admit nonlinear perturbations,

ẋ = A(t)x+ g(t, x), (3.165)

as long as the nonlinear term satisfies a linear estimate. For example, the
same proof as for Theorem 3.20 shows:

Theorem 3.26. Consider the system (3.165) and suppose that the princi-
pal matrix solution of the unperturbed system corresponding to g(t, x) ≡ 0
satisfies

‖ΠA(t, s)‖ ≤ Ce−α(t−s), t ≥ s ≥ 0, (3.166)

for some constants C,α > 0. Suppose that

|g(t, x)| ≤ b0|x|, |x| < δ, t ≥ 0, (3.167)

for some constant 0 < δ ≤ ∞. Then, if b0C < α, the solution x(t) starting
at x(0) = x0 satisfies

‖x(t)‖ ≤ De−(α−b0C)t|x0|, |x0| <
δ

C
, t ≥ 0, (3.168)

for some constant D > 0.

As an important consequence we single out a useful criterion for asymp-
totic stability of a fixed point of an autonomous system.

Corollary 3.27. Suppose f ∈ C1 satisfies f(0) = 0 and suppose that all
eigenvalues of the Jacobian matrix at 0 have negative real part. Then there
is a δ > 0 and an α > 0 such that solutions of

ẋ = f(x), x(0) = x0, (3.169)

satisfy

|x(t)| ≤ Ce−αt|x0|, |x0| ≤ δ. (3.170)

Proof. We first write our system in the form (3.165), where A(t) = A is
the Jacobian matrix of f(x) at 0 and g(t, x) = g(x) is the remainder. Then,
by assumption, A satisfies our requirements and the same is true for g(x)
where b0 can be made arbitrarily small by making δ small (since the Jacobian
matrix of g vanishes at 0). �

Example. (Perron) Consider the nonlinear system

A(t) =

(
−α 0
0 −2α+ sin(log(t)) + cos(log(t))

)

, g(t, x) =

(
0
x21

)

.

The solution of the corresponding unperturbed system is given by

ΠA(t, t0) =

(
e−α(t−t0) 0

0 e−2α(t−t0)+t sin(log(t))−t0 sin(log(t0)))

)

, t, t0 > 0.
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However, while solutions decay exponentially for α > 1
2 it is not clear

for what α the stronger estimates (3.166) holds. Since the derivative of
t sin(log(t)) does not exceed

√
2, we have |t sin(log(t)) − s sin(log(s))| ≤√

2|t − s|, and we get asymptotic stability from Theorem 3.26 at least for
α > 1√

2
.

The general solution of the nonlinear system is given by

x(t) =

(
c1e

−αt

e−2αt+t sin(log(t))
(
c2 + c21

∫ t
0 e

−s sin(log(s))ds
)

)

.

Now for the sequence tn = e(2n+11/6)π , n ∈ N, we see that by
∫ tn

0
e−s sin(log(s))ds >

∫ tn

tn exp(−2π/3)
e−s sin(log(s))ds

> tn(1− exp(−2π/3))etn exp(−2π/3)/2

the solutions with c1 6= 0 are unbounded as t → ∞ for 1
2 < α < 1

2 + 1
4e

−π.
This shows that the condition (3.166) cannot be replaced by exponential
decay of solutions. ⋄

Of course we can also obtain a nonlinear version of Theorem 3.23 by
making the obvious changes in its proof.

Theorem 3.28. Consider the system (3.165) and suppose that the princi-
pal matrix solution of the unperturbed system corresponding to g(t, x) ≡ 0
satisfies

‖ΠA(t, s)‖ ≤ C, t ≥ s ≥ 0, (3.171)

for some constant C > 0. Suppose that

|g(t, x)| ≤ b(t)|x|, |x| < δ, t ≥ 0, (3.172)

for some constant 0 < δ ≤ ∞ and some function b(t) with B =
∫∞
0 b(t) < 0.

Then the solution x(t) starting at x(0) = x0 satisfies

|x(t)| ≤ C exp(CB)|x0|, |x0| ≤
δ

C exp(CB)
, t ≥ 0. (3.173)

Problem 3.44 (Long-time asymptotics). Suppose
∫ ∞

0
‖A(t)‖dt <∞.

Show that every solution x(t) of (3.79) converges to some limit:

lim
t→∞

x(t) = x∞.

(Hint: First show that all solutions are bounded and then use the corre-
sponding integral equation.)
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3.8. Appendix: Jordan canonical form

In this section we want to review some further facts on the Jordan canonical
form. In addition, we want to draw some further consequences to be used
later on.

Consider a decomposition of Cn into a direct sum of two linear subspaces,
C
n = K1⊕K2. Such a decomposition is said to reduce A if both subspaces

K1 andK2 are invariant under A, that is, AKj ⊆ Kj , j = 1, 2. Changing to
a new basis u1, . . . , un such that u1, . . . , um is a basis forK1 and um+1, . . . , un
is a basis for K2, implies that A is transformed to the block form

U−1AU =

(
A1 0
0 A2

)

, U = (u1, . . . , un), (3.174)

in these new coordinates. Here Aj = A|Kj
. Moreover, we even have

U−1 exp(A)U = exp(U−1AU) =

(
exp(A1) 0

0 exp(A2)

)

. (3.175)

Hence we need to find some invariant subspaces which reduce A. If we look
at one-dimensional subspaces we must have

Ax = αx, x 6= 0, (3.176)

for some α ∈ C. If (3.176) holds, α is called an eigenvalue of A and
x is called eigenvector. In particular, α is an eigenvalue if and only if
Ker(A − αI) 6= {0} and hence Ker(A− α) is called the eigenspace of α in
this case. Here we have used the shorthand notation A−α for A−αI. Since
Ker(A−αI) 6= {0} implies that A− αI is not invertible, the eigenvalues are
the zeros of the characteristic polynomial of A,

χA(z) =

m∏

j=1

(z − αj)
aj = det(z −A), (3.177)

where αi 6= αj. The number aj is called algebraic multiplicity of αj and
gj = dimKer(A− αj) is called geometric multiplicity of αj .

The set of all eigenvalues of A is called the spectrum of A,

σ(A) = {α ∈ C| Ker(A− α) 6= {0}} = {α ∈ C|χA(α) = 0}. (3.178)

If the algebraic and geometric multiplicities of all eigenvalues happen to be
the same, we can find a basis consisting only of eigenvectors and U−1AU
is a diagonal matrix with the eigenvalues as diagonal entries. Moreover,
U−1 exp(A)U is again diagonal with the exponentials of the eigenvalues as
diagonal entries.

There is an important class of matrices where this will indeed work. To
this end recall the definition of the adjoint matrix A∗ which is defined as
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the complex conjugate of the transposed matrix such that

x · (Ay) = (A∗x) · y, (3.179)

where x · y =
∑n

j=1 x
∗
jyj is the scalar product in C

n. A matrix is called

symmetric if A∗ = A. A matrix U is called orthogonal (or unitary) if
U∗ = U−1. Note that a matrix is orthogonal if and only if it preserves the
scalar product,

(Ux) · (Uy) = x · (U∗Uy) = x · y. (3.180)

In particular, the equation U∗U = I is equivalent to the fact that the row
vectors of U form an orthonormal basis, that is, they are mutually or-
thogonal and normalized such that they have norm one. The same is true
for the column vectors.

Theorem 3.29. The eigenvalues of a symmetric matrix are real and there
is an orthonormal basis of eigenvectors. In particular, there is an orthogonal
matrix U which transforms A to diagonal form.

Proof. Start with one normalized eigenvector u1. Extend this vector to an
orthogonal basis u1, . . . un (e.g. using the Gram–Schmidt procedure). Now
observe that, by symmetry, we obtain u1 ·(Auj) = (Au1)·uj = α1(u1 ·uj) = 0
for j = 2, . . . , n. Hence in this new basis A is of the form

U−1AU =

(
α1 0
0 A2

)

, U = (u1, · · · , un).

Since the transformation U is unitary, it preserves the scalar product and
the (n− 1) by (n− 1) matrix A2 is again symmetric and we can repeat this
procedure until we have found an orthonormal basis of eigenvalues. �

However, life is not that simple and we only have gj ≤ aj in general. It
turns out that the right objects to look at are kernels of powers of A− αj :

Kj,k = Ker(A− αj)
k, j = 1, . . . ,m, k = 1, . . . (3.181)

First of all observe that

Kj,1 ⊆ Kj,2 ⊆ · · · (3.182)

and since our vector space is n dimensional there must be a smallest index
dj ≤ n such that equality holds. In fact, it turns out that these spaces will
remain the same from this index on:

Kj,1 ⊂ Kj,2 ⊂ · · · ⊂ Kj,dj = Kj,dj+1 = . . . (3.183)

To see this note that (A−αj)dj+lu = 0 for some l ≥ 1 implies (A−αj)l−1u ∈
Kj,dj+1 = Kj,dj and thus (A − αj)

dj+l−1u = (A − αj)
dj (A − αj)

l−1u = 0.
We call

Kj = Ker(A− αj)
dj . (3.184)

Author's preliminary version made available with permission of the publisher, the American Mathematical Society



3.8. Appendix: Jordan canonical form 105

the generalized eigenspace corresponding to αj and its elements are called
generalized eigenvectors. For a generalized eigenvector u the smallest k
with (A− αj)

ku = 0 is called its order.

Lemma 3.30. Suppose ej ∈ N0 are given numbers. Then

m∏

j=1

(A− αj)
ejv = 0 (3.185)

if and only if

v ∈ K1,e1 ⊕ · · · ⊕Km,em . (3.186)

Proof. We show that (3.185) implies (3.186) via induction on e =
∑

j ej
(the other direction being obvious). The case e = 1 is trivial. Now suppose
e ≥ 2 and assume there are two indices j, k such that ej ≥ 1 and ek ≥ 1
(otherwise the claim is again trivial). Then by induction hypothesis

vj = (A− αj)v =
∑

l

uj,l and vk = (A− αk)v =
∑

l

uk,l,

where uj,l ∈ Kl,el for l 6= j and uj,j ∈ Kj,ej−1 as well as uk,l ∈ Kl,el for l 6= k
and uk,k ∈ Kk,ek−1. But then the claim also holds for e since

v =
1

αj − αk
(vk − vj) =

1

αj − αk

∑

l

(uk,l − uj,l).

To show that we have a direct sum let
∑

j xj = 0, xj ∈ Kj,ej , and set

pk(z) = p(z)/(z − αk)
ek−l with p(z) =

∏

j(z − αj)
ej and l < ek chosen such

that yk = (A − αk)
lxk 6= 0 but (A − αk)yk = (A − αk)

l+1xk = 0. Then
0 = pk(A)

∑

j xj =
∏

j 6=k(αk − αj)
djyk which contradicts yk 6= 0. �

Lemma 3.31. There is a unique monic polynomial µA(z) of minimal degree
which annihilates A in the sense that µA(A) = 0. It is of the form

µA(z) =
m∏

j=1

(z − αj)
dj , dj ≥ 1, (3.187)

and called the minimal polynomial of A. Moreover, we can decompose
our vector space as the following direct sum of invariant subspaces:

C
n = K1 ⊕ · · · ⊕Km. (3.188)

Proof. There are clearly polynomials which annihilate A since the matrices
Aj, j = 0, . . . , n2 cannot be linearly independent. If there were more than
one monic of minimal degree, their difference would also annihilate A and
be of smaller degree.

Now let αj be an eigenvalue with corresponding eigenvector uj . Then
0 = µA(A)uj = µA(αj)uj shows that αj is a zero of µA(z). Conversely, let
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α be a zero and write µA(z) = (z − α)µ̃(z). Since µ̃(z) does not annihilate
A, there is some u with v = µ̃(z)u 6= 0. But then (A − α)v = µA(A)u = 0
shows that α is an eigenvalue.

Hence µA(z) =
∏

j(z − αj)
ej for some numbers ej ≥ 1. By the previous

lemma we have ⊕jKj,ej = V which shows ej ≥ dj . The converse direction
of the lemma shows dj ≤ ej . �

So, if we choose a basis uj of generalized eigenvectors, the matrix U =
(u1, . . . , un) transforms A to a block structure

U−1AU =






A1

. . .

Am




 , (3.189)

where each matrix Aj = A|Kj
has only the eigenvalue αj (why?). Hence it

suffices to restrict our attention to this case.

A vector u ∈ C
n is called a cyclic vector for A if the vectors Aku,

0 ≤ k ≤ n− 1 span Cn, that is,

C
n = {

n−1∑

k=0

akA
ku|ak ∈ C}. (3.190)

The case where A has only one eigenvalue and where there exists a cyclic
vector u is quite simple. Take

U = (u, (A − α)u, . . . , (A− α)n−1u), (3.191)

then U transforms A to

J = U−1AU =











α 1
α 1

α
. . .
. . . 1

α











, (3.192)

since (A−α)nu = 0 by K = Ker(A−α)n = C
n. The matrix (3.192) is called

a Jordan block. It is of the form αI +N , where N is nilpotent, that is,
Nn = 0.

Hence, we need to find a decomposition of the spaces Kj into a direct
sum of spaces Kjk, each of which has a cyclic vector ujk.

We again restrict our attention to the case where A has only one eigen-
value α and consider again the spaces

Kk = Ker(A− α)k. (3.193)
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To begin with we define Mn such that

Kn = Kn−1 ⊕Mn. (3.194)

Since (A−α)Mn ⊆ (A−α)Kn ⊆ Kn−1 we can proceed to defineMn−1 such
that

Kn−1 =Mn−1 ⊕ (A− α)Mn ⊕Kn−2. (3.195)

This can be done since by construction of Mn, the space (A−α)Mn cannot
contain any nontrivial vector from Kn−2. Proceeding like this we can find
Ml such that

C
n =

n⊕

l=1

l−1⊕

k=0

(A− α)kMl. (3.196)

Now choose a basis uj for M1 ⊕ · · · ⊕Mn, where each uj lies in some Ml.

Let Vj be the subspace generated by (A − α)kuj , k = 0, . . . , l − 1. Then
C
n = V1 ⊕ · · · ⊕ Vm by construction of the sets Mk and each Vj has a cyclic

vector uj. In summary, we get

Theorem 3.32 (Jordan canonical form). Let A be an n by n matrix.
Then there exists a basis for Cn, such that A is of block form with each block
as in (3.192).

This also leads to the following algorithm for computing the Jordan
canonical form:

(i) For every eigenvalue αj compute a basis of generalized eigenvectors
by solving (A− αj)u = v recursively.

(ii) Pick a generalized eigenvector u of highest order k and choose
(A − αj)

lu, l = 0, . . . , k − 1, as new basis elements. Remove all
generalized eigenvectors which are in the linear span of the al-
ready chosen ones and repeat the last step until no generalized
eigenvectors are left.

Furthermore, from the Jordan canonical form we can read off that

dim(Ker(A− αj)
dj ) = aj (3.197)

and since (A − αj)
dj annihilates the Jordan block corresponding to αj we

see
m∏

j=1

(A− αj)
dj = 0. (3.198)

In particular, since 1 ≤ dj ≤ aj we obtain

Theorem 3.33 (Cayley–Hamilton). Every matrix satisfies its own charac-
teristic equation

χA(A) = 0. (3.199)
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In addition, to the matrix exponential we will also need its inverse. That
is, given a matrix A we want to find a matrix B such that

A = exp(B). (3.200)

In this case we will call B = log(A) a matrix logarithm of A. Clearly, by
(3.23) this can only work if det(A) 6= 0. Hence suppose that det(A) 6= 0.
It is no restriction to assume that A is in Jordan canonical form and to
consider the case of only one Jordan block, A = αI+N .

Motivated by the power series for the logarithm,

log(1 + x) =
∞∑

j=1

(−1)j+1

j
xj, |x| < 1, (3.201)

we set

B = log(α)I+

n−1∑

j=1

(−1)j+1

jαj
N j

=












log(α) 1
α

−1
2α2 . . . (−1)n

(n−1)αn−1

log(α) 1
α

. . .
...

log(α)
. . . −1

2α2

. . . 1
α

log(α)












. (3.202)

By construction we have exp(B) = A. Note that B is not unique since
different branches of log(α) will give different matrices. Moreover, it might
be complex even if A is real. In fact, if A has a negative eigenvalue, then
log(α) = log(|α|) + iπ implies that log(A) will be complex. We can avoid
this situation by taking the logarithm of A2.

Lemma 3.34. A matrix A has a logarithm if and only if det(A) 6= 0.
Moreover, if A is real and all real eigenvalues are positive, then there is a
real logarithm. In particular, if A is real we can find a real logarithm for
A2.

Proof. Since the eigenvalues of A2 are the squares of the eigenvalues of
A (show this), it remains to show that B is real if all real eigenvalues are
positive.

In this case only the Jordan block corresponding to complex eigenvalues
could cause problems. We consider the real Jordan canonical form (3.25)
and note that for

R =

(
Re(α) Im(α)
−Im(α) Re(α)

)

= r

(
cos(ϕ) − sin(ϕ)
sin(ϕ) cos(ϕ)

)

, α = reiϕ,
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the logarithm is given by

log(R) = log(r)I+

(
0 −ϕ
ϕ 0

)

.

Now write the real Jordan block RI + N as R(I + R−1N). Then one can
check that

log(RI+N) = log(R)I+

n−1∑

j=1

(−1)j+1

j
R−jN j

is the required logarithm. �

Similarly, note that the resolvent (A− z)−1 can also be easily computed
in Jordan canonical form, since for a Jordan block we have

(J − z)−1 =
1

α− z

n−1∑

j=0

1

(z − α)j
N j . (3.203)

In particular, note that the resolvent has a pole at each eigenvalue with the
residue being the linear projector (cf. Problem 3.46) onto the corresponding
generalized eigenspace.

For later use we also introduce the subspaces

E±(A) =
⊕

|αj |±1<1

Ker(A− αj)
aj ,

E0(A) =
⊕

|αj |=1

Ker(A− αj)
aj , (3.204)

where αj are the eigenvalues of A and aj are the corresponding algebraic mul-
tiplicities. The subspaces E+(A), E−(A), E0(A) are called contracting,
expanding, unitary subspace of A, respectively. For each of these sub-
spaces we can define the corresponding projections P+(A), P 0(A), P−(A)
as the linear projections whose image is the corresponding subspace and
whose kernel is the direct sum of the other two subspaces. The restriction
of A to these subspaces is denoted by A+, A−, A0, respectively.

Problem 3.45. Let f(z) be a function analytic in a disc around 0 of radius
R:

f(z) =
∞∑

k=0

f (k)(0)

k!
zk, |z| < R. (3.205)

Show that the corresponding power series for f(A) converges if r(A) =
maxj{|αj |} < R. In particular, show that for one Jordan block J = αI+N
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the result is

f(J) =












f(α) f ′(α) f ′′(α)
2! . . . f(k−1)(α)

(k−1)!

f(α) f ′(α)
. . .

...

f(α)
. . . f ′′(α)

2!
. . . f ′(α)

f(α)












. (3.206)

Problem 3.46. A linear projection P : Cn → C
n is a linear map sat-

isfying P 2 = P . Show that the kernel and range of P are complementary
subspaces: Ker(P ) ⊕ Ran(P ) = C

n. Show that I − P is also a projection
with Ker(I − P ) = Ran(P ) and Ran(I − P ) = Ker(P ). Show that P has
the only possible eigenvalues 0 and 1. Show that given two complementary
subspace U ⊕ V = C

n there is a unique projection P with Ker(P ) = U and
Ran(P ) = V .

Problem 3.47. Suppose A(λ) is Ck and has no unitary subspace. Then the
projectors P±(A(λ)) onto the contracting, expanding subspace are given by

P−(A(λ)) =
1

2πi

∫

|z|=1

dz

z −A(λ)
, P+(A(λ)) = I− P−(A(λ)).

In particular, conclude that they are Ck. (Hint: Jordan canonical form and
(3.203).)

Problem 3.48. Denote by r(A) = maxj{|αj |} the spectral radius of A.
Show that for every ε > 0 there is a norm ‖.‖ε on C

n such that

‖A‖ε = sup
x: ‖x‖ε=1

‖Ax‖ε ≤ r(A) + ε.

(Hint: It suffices to prove the claim for a Jordan block J = αI+N (why?).
Now choose a diagonal matrix Q = diag(1, ε, . . . , εn) and observe Q−1JQ =
αI+ εN .)

Problem 3.49. Show that for a symmetric matrix A the norm is equal to
the spectral radius r(A) = maxj{|αj |}. Show that for an arbitrary matrix
‖A‖2 = ‖A∗A‖ = r(A∗A). (Hint: Observe that since A∗A is symmetric we
obtain ‖A∗A‖ = max|x|=1 x·A∗Ax = max|x|=1 |Ax|2, where x·y =

∑n
j=1 x

∗
jyj

denotes the scalar product in C
n.)
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Chapter 4

Differential equations
in the complex domain

This chapter requires some basic knowledge from complex analysis. Readers
only interested in dynamical systems can skip this and the next chapter and
go directly to Chapter 6.

4.1. The basic existence and uniqueness result

Until now we have only imposed rather weak requirements on the smoothness
of our differential equations. However, on the other hand, most examples
encountered were in fact (real) analytic. Up to this point we did not use
this additional information, but in the present chapter I want to show how
to gain a better understanding for these problems by taking the detour over
the complex plane.

We want to look at differential equations in a complex domain Ω ⊆ C
n+1.

We suppose that

f : Ω → C
n, (z, w) 7→ f(z, w), (4.1)

is analytic (complex differentiable) in Ω and consider the equation

w′ = f(z, w), w(z0) = w0. (4.2)

Here the prime denotes complex differentiation,

w′(z0) =
dw(z0)

dz
= lim

z→z0

w(z) − w(z0)

z − z0
, (4.3)

and hence the equation only makes sense if w(z) is analytic as well.

111
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112 4. Differential equations in the complex domain

We recall that the existence of the complex derivative is a much stronger
condition than existence of the real derivative. In fact, it implies that w(z)
can be expanded in a convergent power series near z0:

w(z) =
∞∑

j=0

w(j)(z0)

j!
(z − z0)

j, w(j)(z0) =
djw(z0)

dzj
. (4.4)

By the Cauchy–Hadamard theorem the radius of convergence of this
series is given by

R−1 = lim sup
j→∞

|wj |1/j , wj =
w(j)(z0)

j!
. (4.5)

If f(w) = f(w1, . . . , wn) depends on more than one variable, it is called
analytic if the partial complex derivatives

∂

∂wj
f(w), 1 ≤ j ≤ n, (4.6)

exist (in the complex sense as defined in (4.3)). Again it can be shown that
f(w) can be expanded in a convergent power series. However, we will not
need this result here. Just observe that the definition implies that if f(z, w)
is analytic in the n + 1 variables (z, w) and w(z) is analytic in the single
variable z, then f(z, w(z)) is analytic in the single variable z by the chain
rule.

Clearly, the first question to ask is whether solutions exist at all. For-
tunately, this can be answered using the same tools as in the real case. It
suffices to only point out the differences.

The first step is to rewrite (4.2) as

w(z) = w0 +

∫ z

z0

f(ζ, w(ζ))dζ. (4.7)

But note that we now have to be more careful since the integral is along a
path in the complex plane and independence of the path is not clear. On
the other hand, we will only consider values of z in a small disc around
z0. Since a disc is simply connected, path independence follows from the
Cauchy integral theorem. Next, we need a suitable Banach space. As in the
real case we can use the sup norm

sup
|z−z0|<ε

|w(z)| (4.8)

since the (locally) uniform limit of a sequence of analytic functions is again
analytic by the Weierstraß convergence theorem. Now we can proceed as in
the real case to obtain
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Theorem 4.1. Let Ω = {(z, w)| |z − z0| < ε, |w − w0| < δ} be an open
rectangle and suppose f : Ω → C is analytic and bounded. Then the initial
value problem (4.2) has a unique analytic solution defined in the disc {z| |z−
z0| < ε0}, where

ε0 = min(ε,
δ

M
), M = sup

(z,w)∈Ω
|f(z, w)|. (4.9)

Example. The following example shows that the estimates for the conver-
gence radius ε0 of the solution cannot be improved in general (of course it
cannot be larger than ε in general). Consider

w′ =M

(
1

2

(

1 +
w

δ

))1/m

, M, δ > 0, m > 1.

Observe that the right-hand side satisfies the assumptions of our theorem
with ε = ∞ and the constants M , δ are equal to the ones used in the
differential equation above.

The solution corresponding to the initial condition w(0) = 0 can be
obtained by separation of variables and is given by

w(z) = δ

((

1 +
z

am

)m/(m−1)

− 1

)

, am =

(

m21/m

m− 1

)

δ

M
> 0.

The solution has a branch point at z = −am and hence the convergence
radius around zero is am. Finally observe that am → ε0 =

δ
M as m→ ∞. ⋄

Note that we even get analytic dependence on the initial condition and
on parameters.

Theorem 4.2. Suppose f : Ω × Λ → C is analytic. Then the initial value
problem

w′ = f(z, w, λ), w(z0) = w0, (4.10)

has a unique solution w(z, w0, λ) defined in a sufficiently small neighborhood
around (z0, w0, λ0) ∈ Ω× Λ which is analytic with respect to all variables.

Proof. This follows again from the Weierstraß convergence theorem since
the Picard iterates are analytic together with the fact that constants in
the convergence estimates can be chosen uniform in some sufficiently small
compact neighborhood around (z0, w0, λ0) (cf. the proof of Theorem 2.9).

�

Next, let us look at maximally defined solutions. Unfortunately, this
topic is more tricky than in the real case. In fact, let w1(z) and w2(z)
be two solutions defined on the domains U1 and U2 respectively. If they
coincide at a point z1 ∈ U1 ∩ U2, they also coincide in a neighborhood of z1
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by our local uniqueness result. Hence the set where they coincide is open.
By continuity of wj(z) it is also closed (in the relative topology) and hence
both solutions coincide on the connected component of U1 ∩ U2 containing
z1. But this is all we can say in general as the following example shows.

Example. Consider

w′ =
1

z
, w(1) = 0, z ∈ C\{0}. (4.11)

The solution is given by

w(z) = log(z) = log |z|+ i arg(z) (4.12)

and different choices of the branch cut (i.e., the half-ray along which arg(z)
will jump by 2π) will give different solutions. In particular, note that there
is no unique maximal domain of definition. ⋄

Finally, let us show how analyticity can be used in the investigation of
a simple differential equation.

Example. Consider

w′ + w2 = z, w(0) = w0. (4.13)

This is a Riccati equation and we already know that it cannot be solved
unless we find a particular solution. However, after you have tried for some
time, you will agree that it seems not possible to find one and hence we need
to try something different. Since we know that the solution is analytic near
0, we can at least write

w(z) =

∞∑

j=0

wjz
j , w′(z) =

∞∑

j=0

jwjz
j−1, (4.14)

and plugging this into our equation yields

∞∑

j=0

jwjz
j−1 +





∞∑

j=0

wjz
j





2

= z. (4.15)

Expanding the product (using the Cauchy product formula) and aligning
powers of z gives

∞∑

j=0

(

(j + 1)wj+1 +

j
∑

k=0

wkwj−k

)

zj = z. (4.16)

Comparing powers of z we obtain

w1 = −w2
0, w2 = w3

0 +
1

2
, wj+1 =

−1

j + 1

j
∑

k=0

wkwj−k. (4.17)
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Hence we have at least found a recursive formula for computing the coeffi-
cients of the power series of the solution. ⋄

In general one obtains the following result by differentiating the differ-
ential equation:

Theorem 4.3. Suppose f : Ω → C is analytic. Then the expansion coef-
ficients in the power series (4.4) of the solution w(z) for the initial value
problem (4.2) can be found recursively via

w(j)(z0) = f j(z0, w(z0), . . . , w
(j−1)(z0)), (4.18)

where the function f j is recursively defined via

f j+1(z, w(0), . . . , w(j)) =
∂f j

∂z
(z, w(0), . . . , w(j−1))

+

j−1
∑

k=0

∂f j

∂w(k)
(z, w(0), . . . , w(j−1))w(k+1),

f1(z, w(0)) = f(z, w(0)). (4.19)

However, this procedure gets too cumbersome if the function f involves
w in a too complicated way. Hence we will only investigate the case of linear
equations further. But, to make things a bit more exciting, we will allow for
poles in the coefficients, which is often needed in applications. In fact, this
will eventually allow us to solve the Riccati equation from the last example
using special functions (Problem 4.13).

Problem 4.1. Make a power series ansatz for the following equations:

(i) w′ + w = z, w(0) = w0.

(ii) w′ + w2 = z2, w(0) = w0.

(iii) w′ + w = 1
1−z , w(0) = w0.

Problem 4.2. Try to find a solution of the initial value problem

w′′ = (z2 − 1)w, w(0) = 1, w′(0) = 0,

by using the power series method from above. Can you find a closed form
for the solution? What is a second solution? (Hint: Problem 3.34)

Problem 4.3. Make a power series ansatz for the differential equation

z2w′ = w − z.

What is the radius of convergence of the resulting series?

Problem 4.4. Consider (4.2) at z0 = 0. Show that the power series for
the n’th Picard iteration and the solution coincide up to order n. This
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116 4. Differential equations in the complex domain

can be used to derive an effective numerical scheme known as the Parker–
Sochacki algorithm. (Hint: Let wn(z) be the Picard iterates and suppose
w(z) = wn(z) + O(zn+1). What does the Lipschitz estimate tell you about
the relation between f(z, w(z)) and f(z, wn(z))?)

4.2. The Frobenius method for second-order equations

To begin with, we will restrict our attention to second-order linear equations

u′′ + p(z)u′ + q(z)u = 0, (4.20)

which are among the most important ones in applications. Clearly, every-
thing we know from the real case (superposition principle, etc.) carries over
to the complex case and we know that the solutions are analytic whenever
the coefficients p(z) and q(z) are. However, in many applications the coeffi-
cients will have singularities and one of the main questions is the behavior
of the solutions near such a singularity. This will be our next topic. We will
assume that the singular point is z0 = 0 for notational convenience.

Recall that a function u(z), which is analytic in the domain Ω = {z ∈
C | 0 < |z| < r}, can be expanded into a (convergent) Laurent series

u(z) =
∑

j∈Z
ujz

j , z ∈ Ω. (4.21)

It is analytic at z = 0 if all negative coefficients uj, j < 0, vanish. If
all but finitely many vanish, u(z) is said to have a pole. The smallest
n with u−m = 0 for m > n is called the order of the pole. Otherwise, if
infinitely many negative coefficients are nonzero, z = 0 is called an essential
singularity.

Now let us begin by considering the prototypical example.

Example. The Euler equation is given by

u′′ +
p0
z
u′ +

q0
z2
u = 0, z ∈ C\{0}. (4.22)

Obviously the coefficients have poles at z = 0 and, since C\{0} is not sim-
ply connected, solutions might not be defined for all z ∈ C\{0}. Hence
we introduce a branch cut along the negative real axis and consider the
simply connected domain Ω = C\(−∞, 0]. To solve (4.22) we will use the
transformation

ζ = log(z) = log |z|+ i arg(z), −π < arg(z) < π, (4.23)

which maps Ω to the strip Ω̃ = {z ∈ C| − π < Im(z) < π}. The equation in
the new coordinates reads

ω′′ + (p0 − 1)ω′ + q0ω = 0, ω(ζ) = u(eζ). (4.24)
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Since it has constant coefficients, a basis of solutions can be given in terms
of the characteristic eigenvalues

α1,2 =
1

2
(1− p0 ±

√

(p0 − 1)2 − 4q0) (4.25)

according to Theorem 3.7. If they are different, α1 6= α2, we have two
linearly independent solutions

u1(z) = zα1 , u2(z) = zα2 (4.26)

and if they are equal, α1 = α2, we have two linearly independent solutions

u1(z) = zα1 , u2(z) = log(z)zα1 . (4.27)

⋄

Now let us turn to the general case. As a warm up, we will look at
first-order equations.

Lemma 4.4. The first-order equation

u′ + p(z)u = 0 (4.28)

has a solution of the form

u(z) = zαh(z), h(z) =

∞∑

j=0

hjz
j , h0 = 1, (4.29)

if and only if p(z) has at most a first-order pole. In this case we have
α = − limz→0 z p(z) and the radius of convergence for the power series of
h(z) and the Laurent series of p(z) are the same.

Proof. If p(z) = p0
z + p1 + p2z + . . . has a first-order pole, the solution of

the above equation is explicitly given by (cf. (1.38))

u(z) = exp

(

−
∫ z

p(t)dt

)

= exp (−p0 log(z) + c− p1z + . . . )

= z−p0 exp (c− p1z + . . . ) .

Conversely we have

p(z) = −u
′(z)
u(z)

= −α
z
− h′(z)
h(z)

.

�

Now we are ready for our second-order equation (4.20). Motivated by
our example, we will assume that the coefficients are of the form

p(z) =
1

z

∞∑

j=0

pjz
j , q(z) =

1

z2

∞∑

j=0

qjz
j, (4.30)
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118 4. Differential equations in the complex domain

and we will search for a solution of the form

u(z) = zαh(z), (4.31)

where α ∈ C and h(z) is analytic near z = 0 with h(0) = 1. This is the
generalized power series method, or Frobenius method.

Using our ansatz we obtain

q(z)u(z) =
1

z2

∞∑

k=0

qkz
k

∞∑

j=0

hjz
α+j = zα−2

∞∑

j=0

j
∑

k=0

qkhj−kz
j , (4.32)

p(z)u′(z) =
1

z

∞∑

k=0

pkz
k

∞∑

j=0

(α+ j)hjz
α+j−1

= zα−2
∞∑

j=0

j
∑

k=0

(α+ j − k)pkhj−kz
j , (4.33)

u′′(z) = zα−2
∞∑

j=0

(α + j)(α + j − 1)hjz
j . (4.34)

Plugging this into (4.20) and comparing coefficients we obtain

(

(α+j)2+(p0−1)(α+j)+q0

)

hj+

j
∑

k=1

(
(α+j−k)pk+qk

)
hj−k = 0. (4.35)

Since h0 = 1, this gives for j = 0 the indicial equation

α2 + (p0 − 1)α + q0 = 0. (4.36)

Hence the possible choices for α are the characteristic exponents

α1,2 =
1

2
(1− p0 ±

√

(p0 − 1)2 − 4q0). (4.37)

Here we will take the standard branch of the root (with branch cut along
the negative real axis), such that Re(α1) ≥ Re(α2). Using

α2 + (p0 − 1)α+ q0 = (α− α1)(α− α2) (4.38)

we obtain in the case α = α1

hj =
−1

(α1 − α2 + j)j

j
∑

k=1

(
(α1 + j − k)pk + qk

)
hj−k, j > 0, (4.39)

which is always solvable since Re(α1 − α2) ≥ 0 by assumption. In the case
α = α2 we obtain

hj =
−1

(α2 − α1 + j)j

j
∑

k=1

(
(α2 + j − k)pk + qk

)
hj−k, (4.40)

which might have a problem at j = m if α1 = α2 +m for some m ∈ N0.
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In this case, hj , 1 ≤ j ≤ m− 1, are uniquely determined by our choice
h0 = 1, whereas for j = m we obtain

0 =
m∑

k=1

(
(α1 − k)pk + qk

)
hm−k. (4.41)

If this equation is fulfilled, we can choose hm as we like (this freedom reflects
the fact that we can add an arbitrary multiple of u1 to u2) and the remaining
hj, j > m, are again determined recursively. Otherwise there is no solution
of the form zα2h(z).

Hence we need a different ansatz in this last case. To find the form
of the second solution we use the variation of constants ansatz (compare
Section 3.5)

u2(z) = c(z)u1(z) = c(z)zα1h1(z). (4.42)

Then

c′′(z) +
(

2
α1

z
+ 2

h′1(z)
h1(z)

+ p(z)
)

c′(z) = 0, (4.43)

where
(

2
α1

z
+ 2

h′1(z)
h1(z)

+ p(z)
)

=
1− α2 + α1

z
+ 2h′1(0) + p1 + . . . (4.44)

Hence, by Lemma 4.4,

c′(z) = zα2−α1−1
∞∑

j=0

cjz
j , c0 6= 0. (4.45)

Integrating once we obtain (neglecting the integration constant)

c(z) = zα2−α1

∞∑

j=0

cj
α2 − α1 + j

zj , (4.46)

if α1 − α2 6∈ N0 and

c(z) = zα2−α1

∞∑

j=0,j 6=m

cj
α2 − α1 + j

zj + cm log(z), (4.47)

if α1 − α2 = m ∈ N0. In the latter case cm could be zero unless m = 0.

In summary we have:

Theorem 4.5 (Fuchs). Suppose the coefficients p(z) and q(z) of the second
order equation (4.20) have poles of order (at most) one and two respectively.
Then, if α1, α2 are the characteristic exponents defined in (4.37) and ordered
according to Re(α1) ≥ Re(α2), two cases can occur:

Case 1. If α1 − α2 6∈ N0, a fundamental system of solutions is given by

uj(z) = zαjhj(z), j = 1, 2, (4.48)
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120 4. Differential equations in the complex domain

where the functions hj(z) are analytic near z = 0 and satisfy hj(0) = 1.

Case 2. If α1−α2 = m ∈ N0, a fundamental system of solutions is given
by

u1(z) = zα1h1(z),

u2(z) = zα2h2(z) + c log(z)u1(z), (4.49)

where the functions hj(z) are analytic near z = 0 and satisfy hj(0) = 1.
The constant c ∈ C might be zero unless m = 0.

Moreover, in both cases the radius of convergence of the power series for
h1(z) and h2(z) is at least equal to the minimum of the radius of convergence
for p(z) and q(z).

Proof. Since u1 and u2 are clearly linearly independent, the only item re-
maining is to show that the power series for h1(z) has a nonzero radius of
convergence. Let hj be the coefficients defined via (4.39) and let R > 0 be
smaller than the radius of convergence of the series for p(z) and q(z). We
will show that |hj |Rj ≤ C for some C > 0.

Abbreviate

P =

∞∑

j=1

|pj |Rj, Q =

∞∑

j=1

|qj |Rj.

Then there is a j0 > 0 such that

(|α1|+ j)P +Q

(Re(α1 − α2) + j)j
≤ 1

for j > j0. Choose C = max0≤j≤j0 |hj |Rj . Then the claim holds for j ≤ j0
and we can proceed by induction: Suppose it holds up to j − 1. Then we
obtain from (4.39)

|hj |Rj ≤
1

(Re(α1 − α2) + j)j

j
∑

k=1

(
(|α1|+ j)|pk|+ |qk|

)
C Rk

≤ (|α1|+ j)P +Q

(Re(α1 − α2) + j)j
C ≤ C,

which proves the claim. �

For the practical application of this result it remains to discuss the case
α1 − α2 = m ∈ N0. One option is to use the variation of constants ansatz
(4.42). However, unless one is able to find a closed form for the power series

of the quotient
h′1(z)
h(z) it might be better to work directly with the ansatz

u2(z) = û2(z) + c log(z)u1(z), û2(z) = zα2h2(z), (4.50)
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from our theorem. Inserting this ansatz into our differential equation we
obtain

û′′2(z) + p(z)û′2(z) + q(z)û2(z) = −c
(
2

z
u′1(z) +

(p(z)

z
− 1

z2
)
u1(z)

)

, (4.51)

where the logarithmic terms cancel since u1 solves our equation. For the
generalized power series of the expression on the right-hand side we obtain

− c zα2−2
∞∑

j=m

(

(2j −m)h1,j−m +

j−m
∑

k=1

pkh1,j−m−k

)

zj . (4.52)

Now comparing powers between both sides (for the left-hand sides the coef-
ficients are given by (4.35) with α = α2) we obtain the following cases: For
j < m the right-hand side does not contribute and thus h2,j, 1 ≤ j < m, are
uniquely determined by h2,0 = 1 and

h2,j =
−1

(j −m)j

j
∑

k=1

(
(α2 + j − k)pk + qk

)
h2,j−k. (4.53)

At j = m we obtain

m∑

k=1

(
(α1 − k)pk + qk

)
h2,m−k = −cm. (4.54)

If m = 0 this equation is trivially satisfied and we can choose any (nonzero)
c. Otherwise we obtain the unique value

c = − 1

m

m∑

k=1

(
(α1 − k)pk + qk

)
h2,m−k, m ∈ N. (4.55)

Finally, for j > m we obtain

h2,j =
−1

(j −m)j

j
∑

k=1

(
(α2 + j − k)pk + qk

)
h2,j−k

− c

(

(2j −m)h1,j−m +

j−m
∑

k=1

pkh1,j−m−k

)

(4.56)

which determines the remaining coefficients uniquely once a value for h2,m
is chosen.

Furthermore, the conditions on p and q are optimal:

Theorem 4.6 (Fuchs). The equation (4.20) has two solutions u1(z), u2(z)
as in the previous theorem if and only if p(z) and zq(z) have at most first-
order poles.
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Proof. Consider v(z) = (u2(z)/u1(z))
′ and observe that it is of the form

v(z) = zβk(z), where k(z) is analytic near z = 0.

Now a straightforward calculation shows

p(z) = −v
′(z)
v(z)

− 2
u′1(z)
u1(z)

and since the right-hand side has at most a first-order pole, so does p.
Similarly,

q(z) = −u
′′
1(z)

u1(z)
− p(z)

u′1(z)
u1(z)

has at most a second-order pole. �

Note that (3.113) implies that p(z) and q(z) will be holomorphic near
z = 0 if and only if there are two linearly independent holomorphic solutions
u1(z) and u2(z).

Finally, let me remark that this characterization can also be applied
to classify singularities at z0 = ∞. To this end one makes the change of
variables ζ = 1

z which transforms our equation to

ω′′ +
(
2ζ−1 − ζ−2p(ζ−1)

)
ω′ + ζ−4q(ζ)−1ω = 0, ω(ζ) = u(ζ−1). (4.57)

In particular, the equation will satisfy (4.30) in the new variable ζ if and
only if the following limits

2− lim
z→∞

z p(z) = p0, lim
z→∞

z2 q(z) = q0 (4.58)

exist in C. Now, let us see how this method works by considering an explicit
example. This will in addition show that all cases from above can occur.

Example. Consider the famous Bessel equation

z2u′′ + zu′ + (z2 − ν2)u = 0, ν ∈ C. (4.59)

After dividing by z2 we see that it is of the form (4.20) with p(z) = 1
z and

q(z) = 1 − ν2

z2
. In particular, p0 = 1 and q0 = −ν2. Moreover, it is no

restriction to assume Re(ν) ≥ 0 and hence we will do so.

The characteristic exponents are given by α1,2 = ±ν and hence there is
a solution of the form

u1(z) = zν
∞∑

j=0

h1,jz
j , h1,0 = 1. (4.60)
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Plugging this into our equation yields

z2
∞∑

j=0

h1,j(j + ν − 1)(j + ν)zj+ν−2 + z
∞∑

j=0

h1,j(j + ν)zj+ν−1

+ (z2 − ν2)

∞∑

j=0

h1,jz
j+ν = 0 (4.61)

and after multiplying by z−ν and aligning powers of z
∞∑

j=0

(
h1,j(j + ν − 1)(j + ν) + h1,j(j + ν) + h1,j−2 − h1,jν

2
)
zj = 0, (4.62)

where we set h1,j = 0 for j < 0. Comparing coefficients we obtain the
recurrence relation

j(j + 2ν)h1,j + h1,j−2 = 0 (4.63)

for the unknown expansion coefficients h1,j . In particular, this can be viewed
as two independent recurrence relations for the even h1,2j and odd h1,2j+1

coefficients. The solution is easily seen to be

h1,2j =
(−1)j

4jj!(ν + 1)j
, h2j+1 = 0, (4.64)

where we have used the Pochhammer symbol

(x)0 = 1, (x)j = x(x+ 1) · · · (x+ j − 1) =
Γ(x+ j)

Γ(x)
. (4.65)

Here Γ(x) is the usual Gamma function (cf. Problem 4.5). This solution,
with a different normalization, is called Bessel function

Jν(z) =
u1(z)

2νΓ(ν + 1)
=

∞∑

j=0

(−1)j

j!Γ(ν + j + 1)

(z

2

)2j+ν
(4.66)

of order ν. Now what about the second solution? So let us investigate the
equation for −ν. Replacing ν by −ν in the previous calculation, we see that
we can find a second (linearly independent) solution J−ν(z) provided ν 6= 0
and (−ν + 1)j 6= 0 for all j, that is, provided ν 6∈ N0. Hence there are no
logarithmic terms even for ν = 2n+1

2 , where α1 − α2 = 2ν = 2n + 1 ∈ N.
It remains to look at the case, where ν = n ∈ N0. We begin with the case
n ∈ N. All odd coefficients must be zero and the recursion for the even
ones gives us a contradiction at j = 2n. Hence the only possibility left is a
logarithmic solution

u2(z) = z−nh2(z) + c log(z)u1(z). (4.67)

Inserting this into our equation yields

j(j − 2n)h2,j + h2,j−2 = −2c(j − n)h1,j−2n, (4.68)
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where we again set h2,j = 0 for j < 0. Again all odd coefficients vanish,
h2,2j+1 = 0. The even coefficients h2,2j can be determined recursively for
j < n as before

h2,2j =
1

4jj!(n − 1)j
, j < n. (4.69)

The recursion (4.68) for j = 2n reads h2,2(n−1) = −2c n from which

c =
−2

4nn!(n− 1)!
(4.70)

follows. The remaining coefficients now follow recursively from

4j(j + n)h2,2j+2n + h2,2(j−1)+2n = −2c(2j + n)h1,2j (4.71)

once we choose a value for h2,2n (this freedom just reflects the fact that we
can always add a multiple of u1(z) to u2(z)). This is a first-order linear
inhomogeneous recurrence relation with solution given by (see Problem 4.9
and note that the solution of the homogeneous equation is h1,2j)

h2,2j+2n = h1,2j

(

h2,2n −
c

2

j
∑

k=1

2k + n

k(k + n)

)

. (4.72)

Choosing h2,2n = − c
2Hn, where

Hj =

j
∑

k=1

1

k
(4.73)

are the harmonic numbers, we obtain

h2,2n+2j =
(−1)j(Hj+n +Hj)

4j+n(n− 1)!j!(j + n)!
. (4.74)

Usually, the following linear combination

Yn(z) =− 2n(n − 1)!

π
u2(z) +

γ − log(2)

2n−1πn!
u1(z)

=
2

π
(γ + log(

z

2
))Jn(z)−

1

π

n−1∑

j=0

(−1)j(n− 1)!

j!(1 − n)j

(z

2

)2j−n

− 1

π

∞∑

j=0

(−1)j(Hj+n +Hj)

j!(j + n)!

(z

2

)2j+n
(4.75)

is taken as second independent solution. Here γ = limj→∞(Hj − log(j)) ≈
0.577216 is the Euler–Mascheroni constant.

So the only remaining case is n = 0. In this case the recursion does
not give a contradiction at j = 2n but we still need to take the logarithmic
term in order to get a different solution. In particular, we still make the
ansatz (4.67) and the recursion (4.68) remains valid for n = 0. However, in
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this case c will not follow from the recursion for j = 2n (which just reads
0 = 0) but can be chosen arbitrary. The recursion can be solved as before
and (4.72) is still valid, that is,

h2,2j = h1,2j (1− cHj) =
(−1)j

(j!)2
(1− cHj). (4.76)

Choosing c = 2
π the linear combination

Y0(z) = u2(z) +
(
− 1 +

2

π
(γ − log(2))

)
u1(z)

=
2

π
(γ + log(

z

2
))J0(z)−

2

π

∞∑

j=0

(−1)jHj

(j!)2

(z

2

)2j
(4.77)

will agree with (4.75) in the special case n = 0.

Finally, let me remark that one usually uses the Hankel function

Yν(z) =
cos(πν)Jν(z)− J−ν(z)

sin(πν)
(4.78)

as second solution of the Bessel equation. For fixed z 6= 0 the right-hand
side has a singularity for ν ∈ N0. However, since

J−n(z) =
∞∑

j=0

(−1)j

j!Γ(−n+ j + 1)

(z

2

)2j−n

=
∞∑

j=n

(−1)j

j!Γ(−n+ j + 1)

(z

2

)2j−n
= (−1)nJn(z), n ∈ N0, (4.79)

(here we used Γ(−n+ j+1)−1 = 0 for j = 0, 1, . . . , n− 1) it can be removed
and it can be shown that the limit is a second linearly independent solution
(Problem 4.10) which coincides with (4.75) from above.

Whereas you might not find Bessel functions on your pocket calculator,
they are available in Mathematica. For example, here is a plot of the Bessel
and Hankel function of order ν = 0.

In[1]:= Plot[{BesselJ[0, z], BesselY[0, z]}, {z, 0, 12}]

Out[1]= 2 4 6 8 10 12

-1.0

-0.5

0.5

1.0

⋄
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Problem 4.5. The Gamma function is defined via

Γ(z) =

∫ ∞

0
xz−1e−xdx, Re(z) > 0.

Verify that the integral converges and defines an analytic function in the
indicated half plane. Use integration by parts to show

Γ(z + 1) = zΓ(z), Γ(1) = 1.

Conclude Γ(n) = (n−1)! for n ∈ N. Show that the relation Γ(z) = Γ(z+1)/z
can be used to define Γ(z) for all z ∈ C\{0,−1,−2, . . . }. Show that near

z = −n, n ∈ N0, the Gamma functions behaves like Γ(z) = (−1)n

n!z +O(1).

Problem 4.6. Show that the change of variables

v(z) = e
1
2

∫ z p(ζ)dζu(z)

transforms (4.20) into

v′′ +

(

q(z)− 1

2
p′(z)− 1

4
p(z)2

)

v = 0.

Problem 4.7. Solve the following differential equations by the Frobenius
method:

(i) z u′ + (1 + z)u = 0.

(ii) u′′ − 2u′ + (1 + 1
4z2

)u = 0.

(iii) u′′ + 1−z
z(1+z)u

′ − 1−z
z(1+z)2

u = 0.

(iv) z u′′ + u′ + u = 0.

Problem 4.8. Show that the coefficients of h(x) from Lemma 4.4 are re-
cursively given by

hj =
1

j

j−1
∑

k=0

pj−khk,

if p(z) = z−1
∑∞

j=0 pjz
j.

Problem 4.9. Consider the first-order liner inhomogeneous difference equa-
tion

x(n+ 1)− f(n)x(n) = g(n), f(n) 6= 0.

Show that the solution of the homogeneous equation (g = 0) is given by

xh(n) = x(0)







n−1∏

j=0
f(j), n > 0,

1, n = 0,
−1∏

j=n
f(j)−1, n < 0,
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Use a variation of constants ansatz for the inhomogeneous equation and
show that the solution is given by

x(n) = xh(n) +







xh(n)
n−1∑

j=0

g(j)
xh(j+1) , n > 0,

0, n = 0,

−xh(n)
−1∑

j=n

g(j)
xh(j+1) , n < 0.

Problem 4.10 (Hankel functions). Prove that the Hankel function is a
second linearly independent solution for all ν as follows:

(i) Use (4.79) to prove that the Hankel function is well defined for all
ν and analytic in both variables z and ν (for z ∈ C\(−∞, 0] and
Re(ν) > 0).

(ii) Show that the modified Wronskian

W (u(z), v(z)) = z(u(z)v′(z)− u′(z)v(z))

of two solutions of the Bessel equation is constant (Hint: Liou-
ville’s formula). Prove

W (Jν(z), J−ν(z)) =
−2

Γ(ν)Γ(1− ν)
= − 2

π
sin(πν).

(Hint: Use constancy of the Wronskian and evaluate it at z = 0.
You don’t need to prove the second equality which is just Euler’s
reflection formula for the Gamma function.)

(iii) Now show

W (Jν(z), Yν(z)) =
2

π
.

Differentiate this formula with respect to z and show that Yν(z)
satisfies the Bessel equation.

Problem 4.11. Prove the following properties of the Bessel functions.

(i) (z±νJν(z))′ = ±z±νJν∓1(z).

(ii) Jν+1(z) + Jν−1(z) =
2ν
z Jν(z).

(iii) Jν+1(z)− Jν−1(z) = 2J ′
ν(z).

Problem 4.12. Show
∫ a

0
Jν(z)

2z dz =
a2

2
J ′
ν(a)

2 +
a2 − ν2

2
Jν(a)

2, ν ≥ 0.

(Hint: Multiply Bessel’s equation by u′(z) and show that the result is a
complete differential up to one term.)
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Problem 4.13. Many differential equations occur in practice that are not
of the standard form (4.59). Show that the differential equation

w′′ +
1− 2a

z
w′ +

(

(bczc−1)2 +
a2 − ν2c2

z2

)

w = 0.

can be transformed to the Bessel equation via w(z) = zau(bzc).

Find the solution of

• w′ + w2 = z,

• w′ = w2 − z2

in terms of Bessel functions. (Hint: Problem 3.38.)

Problem 4.14 (Legendre polynomials). The Legendre equation is given
by

(1− z2)w′′ − 2zw′ + n(n+ 1)w = 0.

Make a power series ansatz at z = 0 and show that there is a polynomial
solution pn(z) if n ∈ N0. What is the order of pn(z)?

Problem 4.15 (Hypergeometric equation). The hypergeometric equa-
tion is given by

z(1− z)w′′ + (c− (1 + a+ b)z)w′ − abw = 0.

Classify all singular points (including ∞). Use the Frobenius method to show
that

F (a, b, c; z) =
∞∑

j=0

(a)j(b)j
(c)jj!

zj, −c 6∈ N0,

is a solution. This is the hypergeometric function. Show that z1−cw(z) is
again a solution of the hypergeometric equation but with different coefficients.
Use this to prove that z1−cF (a− c+1, b− c+1, 2− c; z) is a second solution
for c− 2 6∈ N0. This gives two linearly independent solutions if c 6∈ Z.

Problem 4.16 (Confluent hypergeometric equation). The confluent hy-
pergeometric equation is given by

zw′′ + (c− z)w′ − aw = 0.

Classify all singular points (including ∞). Use the Frobenius method to show
that

K(a, c; z) =

∞∑

j=0

(a)j
(c)jj!

zj, −c 6∈ N0,

is a solution. This is the confluent hypergeometric or Kummer func-
tion.

Show that z1−cw(z) is again a solution of the confluent hypergeometric
equation but with different coefficients. Use this prove that z1−cK(a − c +
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1, 2 − c; z) is a second solution for c − 2 6∈ N0. This gives two linearly
independent solutions if c 6∈ Z.

Problem 4.17. Show that any second-order equation (4.20) with finitely
many singular points z0, . . . , zn,∞ of Fuchs type is of the form

p(z) =

n∑

j=0

pj
z − zj

, q(z) =

n∑

j=0

(
qj

(z − zj)2
+

rj
z − zj

)

,

where pj , qj, rj ∈ C and necessarily
n∑

j=0

rj = 0.

Show that there is no singularity at ∞ if in addition p∞ = q∞ = r∞ = 0,
where

p∞ = 2−
n∑

j=0

pj , q∞ =

n∑

j=0

(qj + rjzj), r∞ =

n∑

j=0

zj(2qj + rjzj).

Problem 4.18 (Riemann equation). A second-order equation is called a
Riemann equation if it has only three singular points (including ∞) of
Fuchs type. Solutions of a Riemann equation are denoted by the Riemann
symbol

P







z0 z1 z2
α1 β1 γ1 z
α2 β2 γ2






,

where the numbers zj are the singular points and the numbers below zj are
the corresponding characteristic exponents.

Recall that given distinct points zj , j = 0, 1, 2, can be mapped to any
other given points ζj = ζ(zj), j = 0, 1, 2, by a fractional linear transform
(Möbius transform)

ζ(z) =
az + b

cz + d
, ad− bc 6= 0.

Pick ζ0 = 0, ζ1 = 1 and ζ2 = ∞ and show that

P







z0 z1 z2
α1 β1 γ1 z
α2 β2 γ2






= P







0 1 ∞
α1 β1 γ1

(z−z0)(z1−z2)
(z−z2)(z1−z0)

α2 β2 γ2







.

For the case z0 = 0, z1 = 1, z2 = ∞ show that

p(z) =
p0
z

+
p1
z − 1

, q(z) =
q0
z2

+
r0
z

+
q1

(z − 1)2
− r0
z − 1

.

Express the coefficients p(z) and q(z) in terms of the characteristic exponents
and show that

α1 + α2 + β1 + β2 + γ1 + γ2 = 1.
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Conclude that a Riemann equation is uniquely determined by its symbol.

Finally, show

zν(1− z)µP







0 1 ∞
α1 β1 γ1 z
α2 β2 γ2






= P







0 1 ∞
α1 + ν β1 + µ γ1 − µ− ν z
α2 + ν β2 + µ γ2 − µ− ν







and conclude that any Riemann equation can be transformed into the hyper-
geometric equation

P







0 1 ∞
0 0 a z

1− c c− a− b b






.

Show that the Legendre equation is a Riemann equation. Find the transfor-
mation which maps it to the hypergeometric equation.

4.3. Linear systems with singularities

Now we want to extend the results from the previous section to linear sys-
tems

w′ = A(z)w, w(z0) = w0, z, z0 ∈ Ω ⊆ C, (4.80)

where A(z) is a matrix whose coefficients are analytic in Ω.

As in the real case one can show that one can always extend solutions.
However, extensions along different paths might give different solutions in
general, as we have seen in example (4.11). These problems do not arise if
Ω is simply connected.

Theorem 4.7. Suppose w′ = A(z)w + b(z) is linear, where A : Ω → C
n×n

and b : Ω → C
n are analytic in a simply connected domain Ω ⊆ C. Then for

every z0 ∈ Ω the corresponding initial value problem has a unique solution
defined on all of Ω.

In particular, the power series for every solution will converge in the
largest disc centered at z0 and contained in Ω.

Proof. If Ω is a disc centered at z0 the result follows as in Corollary 2.6.
For general Ω, pick z ∈ Ω and let γ : [0, 1] → Ω be a path from z0 to z.
Around each point γ(t) we have a solution in a ball with radius independent
of the initial condition and of t ∈ [0, 1]. So we can define the value of w(z)
by analytic continuation along the path γ. Since Ω is simply connected, this
value is uniquely defined by the monodromy theorem. �

This result has the important consequence that a solution of a lin-
ear equation can have singularities (poles, essential singularities, or branch
points) only at the points where the coefficients have isolated singularities.
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That is, the singularities are fixed and do not depend on the initial condi-
tion. On the other hand, nonlinear equations will in general have movable
singularities, as the simple example

w′ = −w2, (4.81)

whose general solution is

w(z) =
1

z − z0
, (4.82)

shows. Equations whose only movable singularities are poles play an impor-
tant role in applications. It can be shown that a first order equation

w′ = f(z, w) (4.83)

which is rational in w and meromorphic in z has this property if it is of
Riccati type, that is, f(z, w) = f0(z) + f1(z)w + f2(z)w

2, and can hence
be transformed to a second order linear equation (cf. Problem 3.38). In the
case of a second order equation

w′′ = f(z, w,w′) (4.84)

which is rational in w, w′ and meromorphic in z, Painlevé and his coworkers
showed that there are six equations which cannot be linearized or solved by
well-known special functions. These are nowadays known as the Painlevé
transcendents. For example, the first two are given by

PI : w′′ = 6w2 + z,

PII : w′′ = z w + 2w3 + α, α ∈ C. (4.85)

They play an important role in nonlinear physics just as special functions
(like Bessel functions) play in linear physics. However, this is beyond this
introduction, see for example the book by Ince [23], and we return to linear
equations.

Again, as in the real case, the superposition principle holds. Hence, we
can find a principal matrix solution Π(z, z0) such that the solution of (4.80)
is given by

w(z) = Π(z, z0)w0. (4.86)

It is also not hard to see that Liouville’s formula (3.91) extends to the
complex case.

Again we will allow singularities at z0 = 0. So let us start with the
prototypical example. The system

w′ =
1

z
Aw, z ∈ C\{0}, (4.87)

is called Euler system. Obviously it has a first order pole at z = 0 and
since C\{0} is not simply connected, solutions might not be defined for all
z ∈ C\{0}. Hence we introduce a branch cut along the negative real axis
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and consider the simply connected domain Ω = C\(−∞, 0]. To solve (4.87)
we will use the transformation

ζ = log(z) = log |z|+ i arg(z), −π < arg(z) < π, (4.88)

which maps Ω to the strip Ω̃ = {z ∈ C| − π < Im(z) < π}. The equation in
the new coordinates reads

ω′ = Aω, ω(ζ) = w(eζ). (4.89)

Hence a fundamental system is given by

W (z) = zA = exp(log(z)A), (4.90)

where the last expression is to be understood as the definition of zA. As
usual, zA can be easily computed if A is in Jordan canonical form. In
particular, for a Jordan block J we obtain

zJ = zα












1 log(z) log(z)2

2! . . . log(z)n−1

(n−1)!

1 log(z)
. . .

...

1
. . . log(z)2

2!
. . . log(z)

1












. (4.91)

Therefore the solution consists of terms of the form zα log(z)k, where α is
an eigenvalue of A and k is a nonnegative integer. Note that the logarithmic
terms are only present if A is not diagonalizable.

This behavior is in fact typical near any isolated singularity as the fol-
lowing result shows.

Theorem 4.8. Suppose A(z) is analytic in Ω = {z ∈ C|0 < |z − z0| < ε}.
Then a fundamental system of w′ = A(z)w is of the form

W (z) = U(z)(z − z0)
M , (4.92)

where U(z) is analytic in Ω.

Proof. Again we use our change of coordinates ζ = log(z) to obtain

ω′ = eζA(eζ)ω, Re(ζ) < log(ε).

But this system is periodic with period 2πi and hence the result follows as
in the proof of Floquet’s theorem (Theorem 3.15). �

Observe that any other fundamental system W̃ (z) can be written as

W̃ (z) =W (z)C = U(z)C (z − z0)
C−1MC , det(C) 6= 0, (4.93)

and hence has a representation W̃ (z) = Ũ(z)(z − z0)
M̃ , where M̃ is linearly

equivalent to M .
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Please note that this theorem does not say that all the bad terms are
sitting in (z − z0)

M . In fact, U(z) might have an essential singularity at z0.
However, if this is not the case, the singularity is called regular and we can
easily absorb the pole of U(z) in the (z − z0)

M term by using

W (z) = U(z)(z − z0)
m (z − z0)

M−mI. (4.94)

But when can this be done? We expect this to be possible if the singularity
of A(z) is not too bad. However, the equation w′ = 1

z2
w has the solution

w(z) = exp(−1
z ), which has an essential singularity at 0. Hence our only

hope left are first-order poles. We will say that z0 is a simple singularity
(or weak singularity) of our system if A(z) has a pole of (at most) first
order at z0.

Theorem 4.9. Suppose A(z) is analytic in Ω = {z ∈ C|0 < |z − z0| < ε}
and has a simple singularity at z0. Then W (z) is of the form (4.92) and
U(z) can be chosen analytic in {z ∈ C| |z − z0| < ε}.

Proof. It is no restriction to consider z0 = 0 and it suffices to show that
U(z) can have at most a pole. Let w(z) be any solution. Moreover, for given
r0 > 0 we can find a number m such that ‖A(z)‖ ≤ m

|z| for |z| ≤ r0. Using

polar coordinates z = reiϕ we have

|w(reiϕ)| = |w(r0eiϕ) +
∫ r0

r
A(seiϕ)w(seiϕ)eiϕds|

≤ |w(r0eiϕ)|+
∫ r0

r

m

s
|w(seiϕ)|ds

for 0 < r ≤ r0. Applying Gronwall and taking the maximum over all ϕ we
obtain

|w(z)| ≤ sup
ζ:|ζ|=r0

|w(ζ)|
∣
∣
∣
r0
z

∣
∣
∣

m
,

which is the desired estimate. �

The converse of this result is in general not true (except in one dimension;
cf. Lemma 4.4). However,

Lemma 4.10. If z0 is a regular singularity, then A(z) has at most a pole
at z0.

Proof. This follows from

A(z) = U ′(z)U(z)−1 +
1

z − z0
U(z)MU(z)−1,

since det(U(z)) can have at most a finite order zero, and hence the entries
of U(z)−1 can have at most poles of the same order. �
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There are no restrictions on the order of the pole as can be seen from
the following

Example.

A(z) =
1

z

(
0 z−m

zm m

)

, U(z) =

(
1 0
0 zm

)

, M =

(
0 1
1 0

)

. (4.95)

⋄

Problem 4.19. Let z0 be a simple singularity and letW (z) be a fundamental
system as in (4.92). Show that

det(W (z)) = (z − z0)
tr(A0)d(z), d(z0) 6= 0,

where d(z) is analytic near z0 and A0 = limz→z0(z − z0)A(z). Moreover,
conclude that tr(A0 − M) ∈ Z. (Hint: Use Abel’s identity (3.91) for the
determinant.)

4.4. The Frobenius method

In this section we pursue our investigation of simple singularities. Without
loss of generality we will set z0 = 0. Since we know how a fundamental
system looks like from Theorem 4.9, we can make the ansatz

W (z) = U(z)zM , U(z) =
∞∑

j=0

Ujz
j , U0 6= 0. (4.96)

Using

A(z) =
1

z

∞∑

j=0

Ajz
j (4.97)

and plugging everything into our differential equation yields the recurrence
relation

Uj (j +M) =

j
∑

k=0

AkUj−k (4.98)

for the coefficient matrices Uj . However, since we don’t know M , this does
not help us much. By (4.90) you could suspect that we just have M = A0

and U0 = I. Indeed, if we assume det(U0) 6= 0, we obtain U0M = A0U0

for j = 0 and hence W (z)U−1
0 = U(z)U−1

0 zA0 is of the anticipated form.
Unfortunately, we don’t know that det(U0) 6= 0 and, even worse, this is
wrong in general (examples will follow).

So let us be less ambitious and look for a single solution first. If µ is an
eigenvalue with corresponding eigenvector u0 of M , then

w0(z) =W (z)u0 = zµU(z)u0 (4.99)

Author's preliminary version made available with permission of the publisher, the American Mathematical Society



4.4. The Frobenius method 135

is a solution of the form

w0(z) = zαu0(z), u0(z) =

∞∑

j=0

u0,jz
j , u0,0 6= 0, α = µ+m. (4.100)

Here m ∈ N0 is chosen such that u0(0) = u0,0 6= 0. Inserting this ansatz into
our differential equation we obtain

(α+ j)u0,j =

j
∑

k=0

Aku0,j−k (4.101)

respectively

(A0 − α− j)u0,j +

j
∑

k=1

Aku0,j−k = 0. (4.102)

In particular, for j = 0,

(A0 − α)u0,0 = 0, (4.103)

we see that α must be an eigenvalue of A0!

Now what about the case where µ corresponds to a nontrivial Jordan
block of size n > 1? Then, by (4.91), we have a corresponding set of gener-
alized eigenvectors ul, 1 ≤ l ≤ n, such that

wl(z) =W (z)ul = zα
(

ul(z) + log(z)ul−1(z) + · · ·+ log(z)l

l!
u0(z)

)

,

(4.104)
1 ≤ l ≤ n, are n solutions. Here

ul(z) = zµ−αU(z)ul =

∞∑

j=ml

ul,jz
j , ul,ml

6= 0, 1 ≤ l ≤ n, (4.105)

As before, mℓ ∈ Z is chosen such that ul,ml
6= 0 (note that ml ≥ µ − α =

−m). We set ul,j = 0 for j < ml and u−1,j = 0 for notational convenience
later on.

Again, inserting this ansatz into our differential equation, we obtain

ul−1,j = 0, j < ml, (4.106)

and

(α+ j)ul,j + ul−1,j =

j−ml∑

k=1

Akul,j−k, j ≥ ml. (4.107)

The first part implies ml−1 ≥ ml and in particular ml ≤ m0 = 0. The
second implies

(A0 − α− j)ul,j +

j
∑

k=1

Akul,j−k = ul−1,j, j ≥ ml. (4.108)
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Furthermore, for j = ml we get

(A0 − α−ml)ul,ml
= ul−1,ml

. (4.109)

Hence there are two cases, ml = ml−1 and (A0 − α−ml)ul,ml
= ul−1,ml−1

,
that is, α+ml−1 corresponds to a nontrivial Jordan block of A0. Or ml <
ml−1 and (A0 − α −ml)ul,ml

= 0, that is, α +ml is another eigenvalue of
A0.

In summary,

Theorem 4.11. If A(z) has a simple pole at z0 = 0 with residue A0, then
every solution of w′ = A(z)w is of the form

w(z) = zα
l∑

k=0

ul−k(z)
log(z)k

k!
, ul(z) =

∞∑

j=ml

ul,jz
j , ul,ml

6= 0, (4.110)

where −ml ∈ N0 and ml ≤ ml−1 ≤ · · · ≤ m1 ≤ m0 = 0. The vectors ul,ml

are eigenvectors, (A0 − α +ml)ul,ml
= 0, if ml = ml−1 (set m−1 = 0) or

generalized eigenvectors, (A0 − α+ml)ul,ml
= ul,ml−1

, if ml < ml−1.

In particular, the Jordan structures of M and A0 are related as follows:

Theorem 4.12. For every eigenvalue µ of M there must be an eigenvalue
α = µ +m, m ∈ N0, of A0. For every Jordan block of µ there is a corre-
sponding Jordan block of α, which might be smaller or equal. If it is smaller,
there must be eigenvalues αj = α+mj, −mj ∈ N, of A0 with corresponding
Jordan blocks, which make up for the missing parts.

If no two eigenvalues of A0 differ by an integer, then A0 and M are
similar.

So we have found a quite complete picture of the possible forms of solu-
tions of our differential equation in the neighborhood of the singular point
z = 0 and we can now try to go the opposite way. Given a solution of the
system of linear equations (4.108), where α is an eigenvalue of A0 we get a
solution of our differential equation via (4.104) provided we can show that
the series converges.

But before turning to the problem of convergence, let us reflect about
how to solve the system (4.108). If the numbers α+ j are not eigenvalues of
A0 for j > 0, we can multiply (4.108) by (A0 −α− j)−1 and ul,j is uniquely
determined by ul,j−1. Whereas this might not always be true, it is at least
true for j > j0 with j0 sufficiently large. Hence we are left with a finite
system for the coefficients ul,j, 0 ≤ l ≤ n, 0 ≤ j ≤ j0, which we can solve
first. All remaining coefficients are then determined uniquely in a recursive
manner.
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Theorem 4.13. Suppose ul,j solves (4.108). Then ul(z) defined via the
power series (4.105) has the same radius of convergence as the power series
for zA(z) around z = 0. Moreover, wl(z) defined via (4.104) is a solution
of w′ = A(z)w.

Proof. Suppose δ is smaller than the radius of convergence of the power
series for zA(z) around z = 0 and abbreviate

M =

∞∑

j=0

‖Aj‖ δj <∞.

We equip the space of vector valued u = (uj)j∈N0 expansion coefficients with
the norm (Problem 4.20)

‖u‖ =

∞∑

j=0

|uj | δj .

The idea is now to cut off the first j0 terms which cause trouble and view
the rest as a fixed point equation in the above Banach space. Let

Kuj =

{

, 0 j ≤ j0,
1
γ+j

∑j
k=0Akuj−k, j > j0,

then

‖Ku‖ ≤ 1

j0 − |Re(γ)|

∞∑

j=0

j
∑

k=0

‖Ak‖ |uj−k|δj

=

∞∑

j=0

∞∑

k=0

‖Ak‖ |uj |δj+k =
M

j0 − |Re(γ)| ‖u‖.

Hence for j0 sufficiently large, the equation uj = vj + Kuj has a unique
solution by the contraction principle for any fixed vj. Now let ul,j be a
solution of (4.107)

ul,ml+j =
1

α+ml + j

j
∑

k=1

Akul,ml+j−k −
1

α+ml + j
ul−1,ml+j

and choose γ = α + ml and vj = ul,ml+j for j ≤ j0 respectively vj =

− 1
α+ml+j

ul−1,ml+j for j > j0. Then the solution of our fixed point problem

uj coincides with our solution ul,ml+j of (4.108) by construction. �

In summary, we obtain the following procedure for finding a full set of
linearly independent solutions:

For all eigenvalues α of A0 for which α + j is not an eigenvalue for all
j ∈ N0, take corresponding generalized eigenvectors u0,l 6= 0, (A0 −α)u0,l =
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138 4. Differential equations in the complex domain

u0,l−1. Then wl(z) as defined in (4.104) with ml = 0 and

ul,j = (A0 − α− j)−1

(

ul−1,j −
j
∑

k=1

akul,j−k

)

, (4.111)

are linearly independent solutions.

For all other eigenvalues α̃ = α + mj, there are two cases. First try
to find solutions for α̃ as in the case before until a sufficient number of
solutions has been found or until this is no longer possible (i.e., (4.108) has
no nontrivial solution). Next, add further terms in the ansatz (4.104) for α
until a sufficient number of solutions has been found. This will produce a
full set of linearly independent solutions.

This procedure for finding the general solution near a simple singularity
is known as Frobenius method. The eigenvalues of A0 are also called
characteristic exponents. Observe that our requirement of the singular-
ity to be simple is indeed crucial, since it ensures that the algebraic system
of equations for the coefficients can be solved recursively.

Clearly we can also try to apply this procedure to get a power series
around infinity. To this end, one makes the change of coordinates ζ = 1

z .
Then our system transforms to

ω′ = − 1

ζ2
A(

1

ζ
)ω, w(z) = ω(

1

z
). (4.112)

In particular, ∞ is a simple singularity if and only if A(z) has (at least) a
first-order zero at ∞, that is,

A(
1

ζ
) = ζ

∞∑

j=0

Ajζ
j. (4.113)

A system is called a Fuchs system if it has only finitely many singularities
all of which, including infinity, are simple.

Lemma 4.14. Every Fuchs system is of the form

A(z) =

k∑

j=1

Aj
z − zj

. (4.114)

Proof. Consider,

B(z) = A(z)−
k∑

j=1

Aj
z − zj

,

where Aj = limz→zj(z − zj)A(z). Then B(z) is analytic on all of C by
construction. Moreover, since A(z) vanishes at ∞, so does B(z) und thus
B(z) vanishes by Liouville’s theorem (every bounded analytic function is
constant). �
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4.4. The Frobenius method 139

Note that a Fuchs system is regular at ∞ if and only if
∑k

j=1Aj = 0.

Hence every nontrivial (A(z) 6= 0) Fuchs system has at least two singulari-
ties.

Finally, let me remark, that all results for systems apply to the n’th
order linear equation

u(n)(z) + qn−1(z)u
(n−1)(z) + · · ·+ q1(z)u

′(z) + q0(z)u(z) = 0. (4.115)

Transforming this equation to a system as usual, shows that z0 = 0 is a
simple singularity if the coefficients qj(z), 0 ≤ j ≤ n − 1 have at most
first-order poles. However, we can do even better. Introducing

w(z) = (u(z), z u′(z), . . . , zn−1u(n−1)(z)). (4.116)

shows that

A(z) =
1

z













0 1
1 1

2 1
. . .

. . .

. . . 1
−znq0 −zn−1q1 · · · · · · −z2qn−2 n− 1− z qn−1













(4.117)
has a simple singularity at z = 0 if qj(z), 0 ≤ j ≤ n− 1, has a pole of order
at most n− j at z = 0.

For example, transforming (4.20) we obtain the system

w′ = A(z)w, A(z) =

(
0 1

z
−zq(z) 1

z − p(z)

)

. (4.118)

Problem 4.20. Let wj > 0, j ∈ N0, be given weights. Show that the set of
all sequences u = (uj)j∈N0 with uj ∈ C

n for which the norm

‖u‖ =

∞∑

j=0

|uj |wj

is finite, form a Banach space.
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Chapter 5

Boundary value
problems

5.1. Introduction

Boundary value problems are of fundamental importance in physics. How-
ever, solving such problems usually involves a combination of methods from
ordinary differential equations, functional analysis, complex functions, and
measure theory. The present chapter tries to give a brief introduction under
minimal requirements. Since the remaining chapters do not depend on the
present one, you can also skip it and go directly to Chapter 6.

To motivate the investigation of boundary value problems, let us look
at a typical example from physics first. The vibrations of a string can be
described by its displacement u(t, x) at the point x and time t. The equation
of motion for this system is the one dimensional wave equation

1

c2
∂2

∂t2
u(t, x) =

∂2

∂x2
u(t, x), (5.1)

where c is the propagation speed of waves in our string. Moreover, we will
assume that the string is fixed at both endpoints, that is, x ∈ [0, 1] and
u(t, 0) = u(t, 1) = 0, and that the initial displacement u(0, x) = u(x) and
the initial velocity ∂u

∂t (0, x) = v(x) are given.

Unfortunately, this is a partial differential equation and hence none of
our methods found thus far apply. In particular, it is unclear how we should
solve the posed problem. Hence let us try to find some solutions of the
equation (5.1) first. To make it a little easier, let us try to make an ansatz
for u(t, x) as a product of two functions, each of which depends on only one

141
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142 5. Boundary value problems

variable:

u(t, x) = w(t)y(x). (5.2)

This ansatz is called separation of variables. Plugging everything into
the wave equation and bringing all t, x dependent terms to the left, right
side, respectively, we obtain

1

c2
ẅ(t)

w(t)
=
y′′(x)
y(x)

. (5.3)

Here we have used dots to indicate derivatives with respect to t and primes
to indicate derivatives with respect to x. Now, if this equation should hold
for all t and x, the quotients must be equal to a constant −λ (the extra minus
is chosen for convenience later on). That is, we are led to the equations

− 1

c2
ẅ(t) = λw(t) (5.4)

and

− y′′(x) = λy(x), y(0) = y(1) = 0, (5.5)

which can easily be solved. The first one gives

w(t) = c1 cos(c
√
λt) + c2 sin(c

√
λt) (5.6)

and the second one

y(x) = c3 cos(
√
λx) + c4 sin(

√
λx). (5.7)

However, y(x) must also satisfy the boundary conditions y(0) = y(1) = 0.
The first one y(0) = 0 is satisfied if c3 = 0 and the second one yields (c4 can
be absorbed by w(t))

sin(
√
λ) = 0, (5.8)

which holds if λ = (πn)2, n ∈ N. In summary, we obtain the solutions

u(t, x) = (c1 cos(cnπt) + c2 sin(cnπt)) sin(nπx), n ∈ N. (5.9)

In particular, the string can only vibrate with certain fixed frequencies!

Note that if λ is negative, then the trigonometric functions have to
be replaced by their hyperbolic counterparts. However, since sinh(x) only
vanishes at x = 0 this does not produce any further solutions (check this).

So we have found a large number of solutions satisfying the boundary
conditions, but we still have not dealt with our initial conditions. This can
be done using the superposition principle which holds since our equation is
linear. Moreover, since we have infinitely many solutions we can consider in-
finite linear combinations under appropriate assumptions on the coefficients.

Lemma 5.1. Suppose c1,n and c2,n are sequences satisfying

∞∑

n=1

n2|c1,n| <∞,
∞∑

n=1

n2|c2,n| <∞. (5.10)
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5.1. Introduction 143

Then

u(t, x) =

∞∑

n=1

(c1,n cos(cnπt) + c2,n sin(cnπt)) sin(nπx), (5.11)

is in C2(R×[0, 1]) and satisfies the wave equation (5.1) as well as the bound-
ary conditions u(t, 0) = u(t, 1) = 0.

Proof. Consider

uN (x, t) =

N∑

n=1

(c1,n cos(cnπt) + c2,n sin(cnπt)) sin(nπx),

wN (x, t) =
N∑

n=1

(c1,n cos(cnπt) + c2,n sin(cnπt))nπ cos(nπx).

By our assumption (5.10) the WeierstraßM -test implies that both series con-
verge uniformly to continuous functions u(x, t), w(x, t), respectively. Fur-
thermore, since wN (t, x) = ∂

∂xuN (x, t) this also shows that u(x, t) has a

continuous partial derivative with respect to x given by ∂
∂xu(x, t) = w(t, x).

Similarly one shows existence of the remaining derivatives. In particular,
the fact that uN solves the wave equation remains valid in the limit. �

Next, under the assumptions (5.10), the proof of the previous lemma
also shows

u(0, x) =
∞∑

n=1

c1,n sin(nπx),
∂

∂t
u(0, x) =

∞∑

n=1

cnπc2,n sin(nπx). (5.12)

Now observe that the sums on the right-hand side are nothing else but
Fourier sine series. Moreover, recall that the trigonometric functions form a
complete orthonormal system and, under mild assumptions, arbitrary func-
tions can be expanded in such a series (do not worry if you are not familiar
with this result, it will follow as a special case of our analysis in this chapter).

Hence, expanding the initial conditions into Fourier sine series

u(x) =
∞∑

n=1

un sin(nπx), v(x) =
∞∑

n=1

vn sin(nπx), (5.13)

where

un = 2

∫ 1

0
sin(nπx)u(x)dx, vn = 2

∫ 1

0
sin(nπx)v(x)dx, (5.14)

we see that the solution of our original problem is given by (5.11) with
c1,n = un and c2,n = vn

cnπ , provided the Fourier coefficients satisfy

∞∑

n=1

n2|un| <∞,
∞∑

n=1

n|vn| <∞. (5.15)
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144 5. Boundary value problems

It can be shown that this last condition holds if u ∈ C3[0, 1] with u(0) =
u′′(0) = u(1) = u′′(1) = 0 and v ∈ C2[0, 1] with v(0) = v(1) = 0. We will
consider this issue in the example after Theorem 5.11 and in Problem 5.22.
For a different method of solving the one-dimensional wave equation see
Problem 5.1.

In general, a vast number of problems in various areas lead to the inves-
tigation of the following problem

Ly(x) = λy(x), L =
1

r(x)

(

− d

dx
p(x)

d

dx
+ q(x)

)

, (5.16)

subject to the boundary conditions

cos(α)y(a) = sin(α)p(a)y′(a), cos(β)y(b) = sin(β)p(b)y′(b), (5.17)

α, β ∈ R. Such a problem is called Sturm–Liouville boundary value
problem. Our example shows that we should prove the following facts
about Sturm–Liouville problems:

(i) The Sturm–Liouville problem has a countable number of eigen-
values En with corresponding eigenfunctions un(x), that is, un(x)
satisfies the boundary conditions and Lun(x) = Enun(x).

(ii) The eigenfunctions un are complete, that is, any nice function u(x)
can be expanded into a generalized Fourier series

u(x) =

∞∑

n=1

cnun(x).

This problem is very similar to the eigenvalue problem of a matrix.
However, our linear operator is now acting on some space of functions which
is not finite dimensional. Nevertheless, we can equip such a function space
with a scalar product

〈f, g〉 =
∫ b

a
f∗(x)g(x)dx, (5.18)

where ‘∗’ denotes complex conjugation. In fact, it turns out that the proper
setting for our problem is a Hilbert space and hence we will recall some facts
about Hilbert spaces in the next section before proceeding further.

Problem 5.1. Note that the wave equation (5.1) can be factorized according
to

(
∂

∂x
− 1

c

∂

∂t

)(
∂

∂x
+

1

c

∂

∂t

)

u =

(
∂

∂x
+

1

c

∂

∂t

)(
∂

∂x
− 1

c

∂

∂t

)

u = 0.

Hence f(x+ ct) and g(x− ct) as well as f(x+ ct) + g(x− ct) are solutions
of the wave equation for arbitrary f, g ∈ C2(R).
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Express f and g in terms of the initial conditions u(0, x) = u(x) ∈ C2(R)
and ∂

∂tu(0, x) = v(x) ∈ C1(R) to obtain d’Alembert’s formula

u(t, x) =
u(x+ ct) + u(x− ct)

2
+

1

2c

∫ x+ct

x−ct
v(y)dy.

In order to obtain a solution on x ∈ [0, 1] satisfying the boundary conditions
u(t, 0) = u(t, 1) = 0, use the following reflection technique: Extend the initial
condition u(x) ∈ C2[0, 1] to [−1, 1] using reflection u(−x) = −u(x) and then
to R using periodicity u(x + 2) = u(x). Show that the resulting function u
will be C2(R) provided u(0) = u′′(0) = u(1) = u′′(1) = 0. Similarly we can
extend v ∈ C1[0, 1] to a function v ∈ C1(R) provided v(0) = v(1) = 0.

Problem 5.2. Show that

q2(x)y
′′ + q1(x)y

′ + q0(x)y, q2(x) > 0,

can be written as
1

r(x)

(
−(p(x)y′)′ + q(x)y

)
.

Find r, p, q in terms of q0, q1, q2.

Write the Bessel and Legendre equations (Problem 4.14) in this form.

Problem 5.3 (Hanging cable). Consider the vibrations of a cable suspended
at x = 1. Denote the displacement by u(t, x). Then the motion is described
by the equation

∂2

∂t2
u(t, x) = g

∂

∂x
x
∂

∂x
u(t, x),

with boundary conditions u(t, 1) = u′(t, 0) = 0. Find all solutions of the
form u(t, x) = w(t)y(x). (Hint: Problem 4.13.)

Problem 5.4 (Heat equation). Use the method described in this section to
solve the heat equation

∂

∂t
u(t, x) =

∂2

∂x2
u(t, x)

with boundary conditions u(t, 0) = u0, u(t, 1) = u1 and initial condition
u(0, x) = u(x). It models the temperature distribution of a thin wire whose
edges are kept at a fixed temperature u0 and u1. What can you say about
limt→∞ u(t, x). (Hint: If u(x, t) solves the heat equation so does u(x, t) +
a+ bx. Use this to reduce the boundary conditions to the case u0 = u1 = 0.)

Problem 5.5 (Harmonic crystal in one dimension). Suppose you have a
linear chain of identical particles coupled to each other by springs. Then the
equation of motion is given by

m
d2

dt2
u(t, n) = k(u(t, n+1)−u(t, n))+k(u(t, n−1)−u(t, n)), (t, n) ∈ R×Z,
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146 5. Boundary value problems

where m > 0 is the mass of the particles and k > 0 is the spring constant.
Here u(t, n) is the displacement of the n’th particle from its equilibrium
position at time t. (This is an infinite system of differential equations to
which our theory does not apply!) Look for a solution in terms of Bessel
functions c(t, n) = Jan(bt). (Hint: Problem 4.11.) Show that s(t, n) =
∫ t
0 c(s, n)ds is a second solution. Can you give the solution corresponding

to the initial data u(0, n) = u(n), du
dt (0, n) = v(n) provided u(n) and v(n)

decay sufficiently fast?

5.2. Compact symmetric operators

Suppose H is a vector space. A map 〈., ..〉 : H×H → C is called a sesquilin-
ear form if it is conjugate linear in the first argument and linear in the
second; that is,

〈α1f1 + α2f2, g〉 = α∗
1〈f1, g〉 + α∗

2〈f2, g〉,
〈f, α1g1 + α2g2〉 = α1〈f, g1〉+ α2〈f, g2〉, α1, α2 ∈ C, (5.19)

where ‘∗’ denotes complex conjugation. A sesquilinear form satisfying the
requirements

(i) 〈f, f〉 > 0 for f 6= 0 (positive definiteness),

(ii) 〈f, g〉 = 〈g, f〉∗ (symmetry)

is called an inner product or scalar product. Associated with every
scalar product is a norm

‖f‖ =
√

〈f, f〉. (5.20)

Only the triangle inequality is nontrivial (cf. Section 2.1). It will follow from
the Cauchy–Schwarz inequality below. Until then, just regard (5.20) as a
convenient short hand notation.

The pair (H0, 〈., ..〉) is called inner product space. If H0 is complete
with respect to the above norm, it is called a Hilbert space. It is usually
no restriction to assume that H0 is complete since one can easily replace it
by its completion H. However, for our purpose this is not necessary and
hence we will not do so here to avoid technical complications later on.

Example. Clearly C
n with the usual scalar product

〈a, b〉 =
n∑

j=1

a∗jbj (5.21)

is a (finite dimensional) Hilbert space. ⋄

A vector f ∈ H0 is called normalized or unit vector if ‖f‖ = 1.
Two vectors f, g ∈ H0 are called orthogonal or perpendicular (f ⊥ g) if
〈f, g〉 = 0 and parallel if one is a multiple of the other.
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If f and g are orthogonal we have the Pythagorean theorem:

‖f + g‖2 = ‖f‖2 + ‖g‖2, f ⊥ g, (5.22)

which is one line of computation.

Suppose u is a unit vector. Then the projection of f in the direction of
u is given by

f‖ = 〈u, f〉u (5.23)

and f⊥ defined via

f⊥ = f − 〈u, f〉u (5.24)

is perpendicular to u since 〈u, f⊥〉 = 〈u, f −〈u, f〉u〉 = 〈u, f〉−〈u, f〉〈u, u〉 =
0.

f

f‖

f⊥

u✏✏✏✶
✏✏✏✏✏✏✏✏✏✶❇

❇
❇
❇❇▼

�
�
�
�
�
�
��✒

Taking any other vector parallel to u it is easy to see

‖f − αu‖2 = ‖f⊥ + (f‖ − αu)‖2 = ‖f⊥‖2 + |〈u, f〉 − α|2 (5.25)

and this expression attains its minimum precisely if α = 〈u, f〉. Hence
f‖ = 〈u, f〉u is the unique vector parallel to u which is closest to f .

As a first consequence we obtain the Cauchy–Schwarz–Bunjakowski
inequality:

Theorem 5.2 (Cauchy–Schwarz–Bunjakowski). Let H0 be an inner product
space. Then for every f, g ∈ H0 we have

|〈f, g〉| ≤ ‖f‖ ‖g‖ (5.26)

with equality if and only if f and g are parallel.

Proof. It suffices to prove the case ‖g‖ = 1 and use f = 〈g, f〉g + f⊥. But
then the claim follows from ‖f‖2 = |〈g, f〉|2+‖f⊥‖2 ≥ |〈g, f〉|2 with equality
if and only if f⊥ = 0. �

Note that the Cauchy–Schwarz inequality entails that the scalar product
is continuous in both variables, that is, if fn → f and gn → g we have
〈fn, gn〉 → 〈f, g〉.

As another consequence we infer that the map ‖.‖ is indeed a norm since
it satisfies the triangle inequality:

‖f + g‖2 = ‖f‖2 + 〈f, g〉+ 〈g, f〉+ ‖g‖2 ≤ (‖f‖+ ‖g‖)2. (5.27)
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The remaining two requirements are easy.

Next, let us generalize the projection to more than one vector. A set
of vectors {uj} is called orthonormal set if 〈uj , uk〉 = 0 for j 6= k and
〈uj , uj〉 = 1.

Lemma 5.3. Suppose {uj}nj=0 is an orthonormal set. Then every f ∈ H0

can be written as

f = f‖ + f⊥, f‖ =
n∑

j=0

〈uj, f〉uj , (5.28)

where f‖ and f⊥ are orthogonal. Moreover, 〈uj , f⊥〉 = 0 for all 0 ≤ j ≤ n.
In particular,

‖f‖2 =
n∑

j=0

|〈uj , f〉|2 + ‖f⊥‖2. (5.29)

Moreover, every f̂ in the span of {uj}nj=0 satisfies

‖f − f̂‖ ≥ ‖f⊥‖ (5.30)

with equality holding if and only if f̂ = f‖. In other words, f‖ is uniquely
characterized as the vector in the span of {uj}nj=0 closest to f .

Proof. A straightforward calculation shows 〈uj , f − f‖〉 = 0 and hence f‖
and f⊥ = f − f‖ are orthogonal. The formula for the norm follows by
applying (5.22) iteratively.

Now, fix a vector

f̂ =

n∑

j=0

αjuj .

in the span of {uj}nj=0. Then one computes

‖f − f̂‖2 = ‖f‖ + f⊥ − f̂‖2 = ‖f⊥‖2 + ‖f‖ − f̂‖2

= ‖f⊥‖2 +
n∑

j=0

|αj − 〈uj , f〉|2

from which the last claim follows. �

From (5.29) we obtain Bessel’s inequality

n∑

j=0

|〈uj , f〉|2 ≤ ‖f‖2 (5.31)

with equality holding if and only if f lies in the span of {uj}nj=0.
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In particular, the Bessel inequality shows that we can also handle count-
able orthonormal sets (cf. Problem 5.7). An orthonormal set {uj}Nj=0, N ∈
N0 ∪ {∞} is called an orthonormal basis if

‖f‖2 =
N∑

j=0

|〈uj , f〉|2 (5.32)

for all f ∈ H0. Abbreviating

fn =
n∑

j=0

〈uj , f〉uj , (5.33)

equation (5.29) implies f − fn → 0 as n→ N and hence (5.32) is equivalent
to

f =

N∑

j=0

〈uj , f〉uj (5.34)

for every f ∈ H0.

A linear operator is a linear mapping

A : D(A) → H0, (5.35)

where D(A) is a linear subspace of H0, called the domain of A. A linear
operator A is called symmetric if its domain is dense (i.e., its closure is
H0) and if

〈g,Af〉 = 〈Ag, f〉, f, g ∈ D(A). (5.36)

A number z ∈ C is called eigenvalue of A if there is a nonzero vector
u ∈ D(A) such that

Au = zu. (5.37)

The vector u is called a corresponding eigenvector in this case. The set of
all eigenvectors corresponding to z augmented by the zero vector is called
the eigenspace

Ker(A− z) = {u ∈ D(A)|(A− z)u = 0} (5.38)

corresponding to z. Here we have used the shorthand notation A−z for A−
zI. An eigenvalue is called simple if there is only one linearly independent
eigenvector.

Theorem 5.4. Let A be symmetric. Then all eigenvalues are real and
eigenvectors corresponding to different eigenvalues are orthogonal.

Proof. Suppose λ is an eigenvalue with corresponding normalized eigen-
vector u. Then λ = 〈u,Au〉 = 〈Au, u〉 = λ∗, which shows that λ is real.
Furthermore, if Auj = λjuj , j = 1, 2, we have

(λ1 − λ2)〈u1, u2〉 = 〈Au1, u2〉 − 〈u1, Au2〉 = 0
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finishing the proof. �

Unfortunately this theorem does not tell us anything about the exis-
tence of eigenvalues. In fact, a general symmetric operators might have no
eigenvalues at all. Hence we need to impose some further requirements.

The linear operator A defined on D(A) = H0 is called bounded if

‖A‖ = sup
f :‖f‖=1

‖Af‖ (5.39)

is finite. It is not hard to see that this is indeed a norm (Problem 5.8) on
the space of bounded linear operators. By construction, a bounded operator
is Lipschitz continuous

‖Af‖ ≤ ‖A‖‖f‖ (5.40)

and hence continuous.

Moreover, a linear operator A defined on D(A) = H0 is called compact
if every sequence Afn has a convergent subsequence whenever fn is bounded.
Every compact linear operator is bounded and the product of a bounded and
a compact operator is again compact (Problem 5.9).

In combination with symmetry compactness will turn out to guarantee
the existence of an orthonormal basis of eigenfunctions. The crucial step is
to prove existence of one eigenvalue.

Theorem 5.5. A compact symmetric operator has an eigenvalue α0 which
satisfies |α0| = ‖A‖.

Proof. We set α = ‖A‖ and assume α 6= 0 (i.e., A 6= 0) without loss of
generality. Since

‖A‖2 = sup
f :‖f‖=1

‖Af‖2 = sup
f :‖f‖=1

〈Af,Af〉 = sup
f :‖f‖=1

〈f,A2f〉

there exists a normalized sequence un such that

lim
n→∞

〈un, A2un〉 = α2.

Since A is compact, it is no restriction to assume that A2un converges, say
limn→∞A2un = α2u. Now

‖(A2 − α2)un‖2 = ‖A2un‖2 − 2α2〈un, A2un〉+ α4

≤ 2α2(α2 − 〈un, A2un〉)
(where we have used ‖A2un‖ ≤ ‖A‖‖Aun‖ ≤ ‖A‖2‖un‖ = α2) implies
limn→∞(A2un−α2un) = 0 and hence limn→∞ un = u. In addition, u is a nor-
malized eigenvector of A2 since (A2−α2)u = 0. Factorizing this last equation
according to (A−α)u = v and (A+α)v = (A+α)(A−α)u = (A2−α2)u = 0
shows that either v 6= 0 is an eigenvector corresponding to −α or v = 0 and
hence u 6= 0 is an eigenvector corresponding to α. �
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Note that for a bounded operator A, there cannot be an eigenvalue with
absolute value larger than ‖A‖, that is, the set of eigenvalues is bounded by
‖A‖ (Problem 5.10).

Now consider a compact symmetric operator A with eigenvalue α0 (as
above) and corresponding normalized eigenvector u0. Then we can establish
existence of an orthonormal basis of eigenfunctions by mimicking the proof
of the finite dimensional case from Theorem 3.29: Set

H
(1)
0 = {f ∈ H0|〈u0, f〉 = 0} (5.41)

and observe that H
(1)
0 is a closed linear subspace and hence an inner product

space of its own. Moreover, we can restrict A to H
(1)
0 since f ∈ H

(1)
0 implies

〈Af, u0〉 = α0〈f, u0〉 = 0 and hence Af ∈ H
(1)
0 . Denoting this restriction by

A1, it clearly inherits both the symmetry and compactness from A (check
this!). Hence we can apply Theorem 5.5 iteratively to obtain a sequence of
eigenvalues αj with corresponding normalized eigenvectors uj. Moreover, by
construction, uj is orthogonal to all uk with k < j and hence the eigenvectors
{uj} form an orthonormal set. This procedure will not stop unless H0 is finite
dimensional. However, note that αj = 0 for j ≥ n might happen if An = 0.

Theorem 5.6 (Spectral theorem for compact symmetric operators). Sup-
pose H0 is an inner product space and A : H0 → H0 is a compact symmetric
operator. Then there exists a sequence of real eigenvalues αj converging to
0. The corresponding normalized eigenvectors uj form an orthonormal set
and every f ∈ Ran(A) = {Ag|g ∈ H0} can be written as

f =
N∑

j=0

〈uj, f〉uj . (5.42)

If Ran(A) is dense, then the eigenvectors form an orthonormal basis.

Proof. We assume that H0 is infinite dimensional without loss of generality.
Existence of the eigenvalues αj and the corresponding eigenvectors uj has
already been established. If the eigenvalues should not converge to zero,
there is a subsequence such that vk = α−1

jk
ujk is a bounded sequence for

which Avk has no convergent subsequence since ‖Avk − Avl‖2 = ‖ujk −
ujl‖2 = 2.

Next, let f = Ag ∈ Ran(A). Set

fn =
n∑

j=0

〈uj , f〉uj, gn =
n∑

j=0

〈uj , g〉uj
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and observe

fn =

n∑

j=0

〈uj , Ag〉uj =
n∑

j=0

〈Auj , g〉uj =
n∑

j=0

αj〈uj, g〉uj = Agn.

Thus

‖f − fn‖ = ‖A(g − gn)‖ = ‖An+1(g − gn)‖ ≤ |αn+1|‖g − gn‖ ≤ |αn+1|‖g‖

since g − gn ∈ H
(n+1)
0 . Letting n → ∞ shows fn → f proving (5.42) in the

case f ∈ Ran(A).

Next, let f ∈ H0 be arbitrary and suppose Ran(A) is dense. For fixed

ε > 0, there is an f̃ε ∈ Ran(A) such that ‖f − f̃ε‖ < ε
2 . Moreover, by the

previous part, there is an f̂ε in the span of {uj}nj=0 for some sufficiently

large n, such that ‖f̃ε − f̂ε‖ < ε
2 . That is, ‖f − f̂ε‖ < ε and since, by

Lemma 5.3, fn is the best approximation within the span of {uj}nj=0 we

even have ‖f − fn‖ ≤ ‖f − f̂ε‖ < ε for n sufficiently large. �

This is all we need and it remains to apply these results to Sturm–
Liouville operators.

Problem 5.6. Prove the parallelogram law

‖f + g‖2 + ‖f − g‖2 = 2‖f‖2 + 2‖g‖2

for f, g ∈ H0.

Problem 5.7. Let {uj}∞j=0 ⊂ H0 be a countable orthonormal set and f ∈ H0.
Show that

fn =

n∑

j=0

〈uj , f〉uj

is a Cauchy sequence.

Problem 5.8. Show that (5.39) is indeed a norm. Show that the product of
two bounded operators is again bounded with ‖AB‖ ≤ ‖A‖‖B‖.

Problem 5.9. Show that every compact linear operator is bounded and that
the product of a bounded and a compact operator is compact (compact oper-
ators form an ideal).

Problem 5.10. Show that if A is bounded, then every eigenvalue α satisfies
|α| ≤ ‖A‖.
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5.3. Sturm–Liouville equations

Before we will apply the theory of inner product spaces to the investigation
of Sturm–Liouville problems we have a look at the underlying differential
equation

− (p(x)y′)′ + (q(x)− z r(x))y = 0, z ∈ C, x ∈ I = (a, b), (5.43)

for y ∈ C2(I,C), which is equivalent to the first-order system

y′ = 1
p(x)w

w′ = (q(x)− z r(x))y
, (5.44)

where w(x) = p(x)y′(x). Hence we see that there is a unique solution if
p(x)−1, q(x), and r(x) are continuous in I. In fact, as noted earlier, it
even suffices to assume that p(x)−1, q(x), and r(x) are integrable over each
compact subinterval of I. I remark that essentially all you have to do is to
replace differentiable by absolutely continuous (respectively differentiable in
the weak sense) in the sequel. However, we will assume that

r, q ∈ C0([a, b],R), p ∈ C1([a, b],R), p(x), r(x) > 0, x ∈ [a, b], (5.45)

for the rest of this chapter and call the differential equation (5.43) regular
in this case. Note that if we only assume p ∈ C0([a, b],R), we will still be
within the framework of the theory developed so far, but then y might no
longer be C2 since we only know w = py′ ∈ C1.

By (3.105) the principal matrix solution of (5.44) is given by

Π(z, x, x0) =

(
c(z, x, x0) s(z, x, x0)

p(x)c′(z, x, x0) p(x)s′(z, x, x0)

)

, z ∈ C, (5.46)

where c(z, x, x0) is the solution of (5.43) corresponding to the initial condi-
tion c(z, x0, x0) = 1, p(x0)c

′(z, x0, x0) = 0 and similarly for s(z, x, x0) but
corresponding to the initial condition s(z, x0, x0) = 0, p(x0)s

′(z, x0, x0) = 1.

We know that Π(z, x, x0) is continuous with respect to x and x0 by
Theorem 2.9. But with respect to z a much stronger result is true. Recall
that a function is said to be entire if it is analytic on all of C.

Lemma 5.7. The principal matrix solution Π(z, x, x0) is entire with respect
to z for every fixed (x, x0) ∈ I × I.

Proof. It suffices to show that every solution is entire with respect to z in
a neighborhood of x0 if the initial conditions are constant. In this case each
of the iterations (2.13) is entire (in fact even polynomial) with respect to
z. Moreover, for z in a compact set, the Lipschitz constant can be chosen
independently of z. Hence the series of iterations converges uniformly for z in
any compact set, implying that the limit is again analytic by the Weierstraß
convergence theorem. �
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154 5. Boundary value problems

Moreover, by Liouville’s formula (3.91) the modified Wronskian

Wx(u, v) = u(x)p(x)v′(x)− p(x)u′(x)v(x) (5.47)

is independent of x if u(x) and v(x) both solve (5.43) with the same z ∈ C.
In particular,

detΠ(z, x, x0) =W (c(z, ., x0), s(z, ., x0)) = 1. (5.48)

Moreover, by (3.97) the solution of the inhomogeneous equation

− (p(x)y′)′ + (q(x)− z r(x))y = g(x)r(x) (5.49)

is given by

y(x) = y(x0)c(z, x, x0) + y′(x0)s(z, x, x0) +
∫ x

x0

s(z, x, t)g(t)r(t)dt. (5.50)

Moreover, note that given two linearly independent solutions u, v of (5.43)
we have

c(z, x, x0) =
u(x)p(x0)v

′(x0)− p(x0)u
′(x0)v(x)

W (u, v)
,

s(z, x, x0) =
u(x)v(x0)− u(x0)v(x)

W (u, v)
. (5.51)

(Since both functions are solutions it suffice to check the initial conditions.)

Problem 5.11. Given one solution u(x) of (5.43), make a variation of
constants ansatz v(x) = c(x)u(x) and show that a second solution is given
by

v(x) = u(x)

∫ x 1

p(t)u(t)2
dt.

While this formula breaks down at points where u vanishes, Rofe-Beketov’s
formula works even at such points:

v(x) =u(x)

∫ x (q(t) + p(t)−1 − z r(t))(u(t)2 − (p(t)u′(t))2)
(u(t)2 + (p(t)u′(t))2)2

dt

− p(x)u′(x)
u(x)2 + (p(x)u′(x))2

.

Problem 5.12. Show that if u is a solution of (5.43), then w = pu′/u
satisfies the Riccati equation

w′ + p(x)−1w2 = q(x)− z r(x).

Problem 5.13 (Liouville normal form). Show that if p, r ∈ C2[a, b], the
differential equation (5.43) can be transformed into one with r = p = 1
using the diffeomorphism

y(x) =

∫ x

a

√

r(t)

p(t)
dt,
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which maps the interval (a, b) to the interval (0, c), c =
∫ b
a

√
r(t)
p(t)dt. By a

slight abuse of notation we will denote the inverse of this diffeomorphism by
x(y). Then, setting

v(y) = 4
√

r(x(y))p(x(y)) u(x(y))

the Sturm–Liouville equation

−(p(x)u′(x))′ + q(x)u(x) = r(x)zu(x), x ∈ (a, b),

transforms into

−v′′(y) +Q(y)v(y) = zv(y), y ∈ (0, c),

where

Q(y) = q(x(y))− (p(x(y))r(x(y)))1/4

r(x(y))

(
p(x(y))((p(x((y))r(x(y)))−1/4)′

)′
.

Moreover,
∫ b

a
|u(x)|2r(x)dx =

∫ c

0
|v(y)|2dy.

Problem 5.14. Suppose u(x) satisfies

u′′(x) + g(x)u′(x) + f(x)u(x) = h(x).

Show that

v(x) = e
1
2

∫ x g(y)dyu(x)

satisfies

v′′(x) +

(

f(x)− 1

2
g′(x)− 1

4
g(x)2

)

v(x) = e
1
2

∫ x g(y)dyh(x).

5.4. Regular Sturm–Liouville problems

Now we want to apply the theory of inner product spaces to the investigation
of Sturm–Liouville problems. As in the previous section we continue to
assume (5.45).

We first need a suitable scalar product. We will consider

〈f, g〉 =
∫

I
f(x)∗g(x)r(x)dx, (5.52)

and denote C([a, b],C) with this inner product by H0.

Next, we want to consider the Sturm–Liouville equation as an operator

L =
1

r(x)

(

− d

dx
p(x)

d

dx
+ q(x)

)

(5.53)
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in H0. Since there are functions in H0 which are not differentiable, we cannot
apply it to arbitrary function in H0. Thus we need a suitable domain

D(L) = {f ∈ C2([a, b],C)|BCa(f) = BCb(f) = 0}, (5.54)

where
BCa(f) = cos(α)f(a)− sin(α)p(a)f ′(a),
BCb(f) = cos(β)f(b)− sin(β)p(b)f ′(b).

(5.55)

In other words, we allow linear combinations of the boundary values f(a)
and f ′(a) (resp. f(b) and f ′(b)) as boundary conditions. This choice ensures
that D(L) is a linear subspace of H0 and one can even show that it is dense:

Lemma 5.8. The set of twice differentiable functions with compact support
C2
c ((a, b),C) is dense in H0.

Proof. Let P (x) = 30
∫ x
0 y

2(y − 1)2dy = x3(6x2 − 15x + 10). Note that
by construction P (x) is monotone increasing from 0 to 1 (in particular 0 ≤
P (x) ≤ 1 for 0 ≤ x ≤ 1) and both P ′(x) as well as P ′′(x) vanish at x = 0, 1.
We set P (x) = 0 for x ≤ 0 and P (x) = 1 for x ≥ 1 such that P (x) ∈ C2(R).

Next pick f ∈ C([a, b],C). Since f is uniformly continuous we can find
a δ > 0 for every ε > 0 such that |f(x)− f(y)| ≤ ε whenever |x− y| ≤ δ. By
decreasing δ we can assume b− a = nδ for some integer n and δ ≤ ε. Now
set xj = a+ jδ, 0 ≤ j ≤ n, and define

fε(x) =f(x1)P (
x− a− δ/2

δ/2
) +

n−1∑

j=1

(f(xj+1)− f(xj))P (
x− xj
δ

)

− f(xn−1)P (
x− b+ δ

δ/2
).

Then fε ∈ C2
c ((a, b),C) and maxx∈[x1,xn−1] |f(x)− fε(x)| ≤ ε. Hence

‖f − fε‖2 ≤ 8M2R2δ + ε2R2(b− a) ≤ ε(8M2 + ε(b− a))R2,

where M = maxx∈[a,b] |f(x)|, R = maxx∈[a,b] |r(x)|, and the claim follows.
�

It is not hard to show that the same is true for C∞
c ((a, b),C) (Prob-

lem 5.18).

The two most important cases are α = 0 (i.e., u(a) = 0) and α = π/2
(i.e., u′(a) = 0). The condition u(a) = 0 is called a Dirichlet boundary
condition at a and the condition u′(a) = 0 is called a Neumann bound-
ary condition at a. The general case is also known as Robin boundary
condition. Note that without loss of generality one can assume α ∈ [0, π).

Clearly we want L to be symmetric. In order to get L from one side in
the scalar product to the other we use integration by parts (twice) to obtain
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the Lagrange identity
∫ d

c
g(Lf) rdx =Wc(g, f)−Wd(g, f) +

∫ d

c
(Lg)f rdx (5.56)

for f, g ∈ C2([a, b],C) and a ≤ c < d ≤ b. Specializing to the case (c, d) =
(a, b) and replacing g by g∗,

〈g, Lf〉 =Wa(g
∗, f)−Wb(g

∗, f) + 〈Lg, f〉, (5.57)

this is almost what we want except for the extra boundary terms and here is
where the boundary conditions come into play: If f and g satisfy the same
boundary conditions the above two Wronskians vanish (Problem 5.19) and
hence

〈g, Lf〉 = 〈Lg, f〉, f, g ∈ D(L), (5.58)

which shows that L is symmetric.

Of course we want to apply Theorem 5.6 next and for this we would
need to show that L is compact. Unfortunately, it turns out that L is not
even bounded (Problem 5.16) and it looks like we are out of luck. However,
there is one last chance: the inverse of L might be compact so that we can
apply Theorem 5.6 to it.

Since L might not be injective (0 might be an eigenvalue), we will con-
sider L−z for some fixed z ∈ C. To compute the inverse of L−z we need to
solve the inhomogeneous equation (L−z)f = g which can be done by virtue
of (5.50). Moreover, in addition to the fact that f is a solution of the differ-
ential equation (L− z)f = g it must also be in the domain of L, that is, it
must satisfy the boundary conditions. Hence we must choose the unknown
constants in (5.50) such that the boundary conditions are satisfied. To this
end we will choose two solutions ub and ua of the homogeneous equation,
which will be adapted to our boundary conditions, and use (5.51). In this
case (5.50) can be written as

f(x) =
ub(z, x)

W (z)

(

c1 +

∫ x

a
ua(z, t)g(t) r(t)dt

)

+
ua(z, x)

W (z)

(

c2 +

∫ b

x
ub(z, t)g(t) r(t)dt

)

, (5.59)

implying

f ′(x) =
u′b(z, x)

W (z)

(

c1 +

∫ x

a
ua(z, t)g(t) r(t)dt

)

+
u′a(z, x)
W (z)

(

c2 +

∫ b

x
ub(z, t)g(t) r(t)dt

)

. (5.60)

Here we have abbreviated

W (z) =W (ub(z), ua(z)) (5.61)
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which is independent of x as noted in the previous section.

Now let us choose c1 = 0. Then f(a) = cua(z, a) and f ′(a) = cu′a(z, a)

(where c = c2+〈ub(z)∗,g〉
W (z) ). So choosing ua(z, x) such that BCa(ua(z)) = 0,

we infer BCa(f) = 0. Similarly, choosing c2 = 0 and ub(z, x) such that
BCb(ub(z)) = 0, we infer BCb(f) = 0. But can we always do this? Well,
using the initial conditions

ua(z, a) = sin(α), p(a)u′a(z, a) = cos(α),
ub(z, b) = sin(β), p(b)u′b(z, b) = cos(β),

(5.62)

we have two solutions of the required type except for the fact that the
Wronskian W (z) might vanish. Now what is so special about the zeros of
this Wronskian?

Lemma 5.9. The Wronskian W (z) =W (ub(z), ua(z)) is an entire function
which vanishes precisely at the eigenvalues of L.

Proof. First of all, W (z) is entire since both ua(z, x) and ub(z, x) (as well
as their x derivatives) are by Lemma 5.7. Moreover, W (z) = 0 implies
that ub(z) and ua(z) are linearly dependent, that is, ub(z, x) = c(z)ua(z, x).
Hence BCa(ub(z)) = c(z)BCa(ua(z)) = 0 shows that z is an eigenvalue with
corresponding eigenfunction ub(z, x). �

In particular, all zeros of W (z) must be real and since the zeros of
an entire function can have no finite accumulation point (by the identity
theorem from complex analysis), the eigenvalues of L are discrete.

Note (Problem 5.20)

ua(z, x)
∗ = ua(z

∗, x), ub(z, x)
∗ = ub(z

∗, x) (5.63)

implying W (z)∗ = W (z∗). In particular both solutions are real-valued for
z ∈ R.

Now let us rewrite (5.59) in the operator form f(x) = RL(z)g(x) by
introducing the operator (the resolvent of L)

RL(z)g(x) =

∫ b

a
G(z, x, t)g(t) r(t)dt, g ∈ H0, (5.64)

where

G(z, x, t) =
1

W (z)

{

ub(z, x)ua(z, t), x ≥ t,

ub(z, t)ua(z, x), x ≤ t,
(5.65)

is called the Green function of L. Note that G(z, x, t) is meromorphic
with respect to z ∈ C with poles precisely at the zeros of W (z) and satisfies
(cf. (5.63))

G(z, x, t)∗ = G(z∗, x, t), G(z, x, t) = G(z, t, x). (5.66)
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Then, by construction we have RL(z) : H0 → D(L) and

(L− z)RL(z)g = g, g ∈ H0. (5.67)

Similarly we can verify

RL(z)(L − z)f = f, f ∈ D(L), (5.68)

which shows Ran(RL(z)) = D(L). To see this we proceed as in the proof of
the Lagrange identity

RL(z)(L− z)f(x) =

∫ b

a
G(z, x, t)((L − z)f(t))r(t)dt

=
ub(z, x)

W (z)

∫ x

a
ua(z, t)((L − z)f(t))r(t)dt

+
ua(z, x)

W (z)

∫ b

x
ub(z, t)((L − z)f(t))r(t)dt

=
ua(z, x)Wx(ub(z), f)− ub(z, x)Wx(ua(z), f)

W (z)

= f(x). (5.69)

Here we have used the Lagrange identity (5.56) andWa(ua, f) = −BCa(f) =
0, Wb(ub, f) = −BCb(f) = 0 in the third step.

In other words, RL(z) is the inverse of L − z. Our next lemma shows
that RL(z) is compact.

Lemma 5.10. The operator RL(z) is compact. In addition, for z ∈ R it is
also symmetric.

Proof. Fix z and note that G(z, ., ..) is continuous on [a, b]×[a, b] and hence
uniformly continuous. In particular, for every ε > 0 we can find a δ > 0 such
that |G(z, y, t)−G(z, x, t)| ≤ ε whenever |y−x| ≤ δ. Let g(x) = RL(z)f(x).
Then

|g(x) − g(y)| ≤
∫ b

a
|G(z, y, t) −G(z, x, t)| |f(t)| r(t)dt

≤ ε

∫ b

a
|f(t)| r(t)dt ≤ ε‖1‖ ‖f‖,

whenever |y − x| ≤ δ. (Here we have used the Cauchy–Schwarz inequality
in the last step.) Hence, if fn(x) is a bounded sequence in H0, then gn(x) =
RL(z)fn(x) is equicontinuous and has a uniformly convergent subsequence
by the Arzelà–Ascoli theorem (Theorem 2.18). But a uniformly convergent
sequence is also convergent in the norm induced by the scalar product since

‖f‖ =

√
∫ b

a
|f(t)|2r(t)dt ≤

√

sup
x∈[a,b]

|f(x)|2
∫ b

a
r(t)dt = ‖1‖ sup

x∈[a,b]
|f(x)|.
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Therefore RL(z) is compact.

If λ ∈ R, we have G(λ, t, x)∗ = G(λ∗, x, t) = G(λ, x, t) from which
symmetry of RL(λ) follows:

〈g,RL(λ)f〉 =
∫ b

a
g(x)∗

(∫ b

a
G(λ, x, t)f(t)r(t)dt

)

r(x)dx

=

∫ b

a

(∫ b

a
g(x)∗G(λ, x, t)r(x)dx

)

f(t)r(t)dt

=

∫ b

a

(∫ b

a
G(λ, t, x)g(x)r(x)dx

)∗
f(t)r(t)dt = 〈RL(λ)g, f〉.

This finishes the proof. �

As a consequence we can apply Theorem 5.6 to obtain

Theorem 5.11. The regular Sturm–Liouville problem has a countable num-
ber of discrete and simple eigenvalues En which accumulate only at ∞. The
corresponding normalized eigenfunctions un can be chosen real-valued and
form an orthonormal basis for H0, that is, every f ∈ H0 can be written as

f(x) =

∞∑

n=0

〈un, f〉un(x). (5.70)

Moreover, for f ∈ D(L) this series is uniformly convergent.

Proof. Pick a value λ ∈ R such that RL(λ) exists. By Theorem 5.6 RL(λ)
has a countable number of eigenvalues αn → 0 plus a corresponding or-
thonormal system of eigenfunctions un. Moreover, since Ran(RL(λ)) =
D(L) is dense, the eigenfunctions form an orthonormal basis.

Moreover, RL(λ)un = αnun is equivalent to Lun = (λ + 1
αn

)un, which

shows that En = λ+ 1
αn

are eigenvalues of L with corresponding eigenfunc-
tions un.

Hence the first two claims follow except for the fact that the eigenval-
ues are simple. To show this, observe that if un and vn are two different
eigenfunctions corresponding to En, then BCa(un) = BCa(vn) = 0 implies
Wa(un, vn) = 0 and hence un and vn are linearly dependent. In particular,
un(x) is a multiple of ua(En, x) and hence can be chosen real-valued.

To show that (5.70) converges uniformly if f ∈ D(L) we begin by writing
f = RL(λ)g, g ∈ H0, implying

∞∑

n=0

〈un, f〉un(x) =
∞∑

n=0

αn〈un, g〉un(x)
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Moreover, the Cauchy–Schwarz inequality shows
∣
∣
∣
∣
∣
∣

n∑

j=m

αj〈uj , g〉uj(x)

∣
∣
∣
∣
∣
∣

2

≤
n∑

j=m

|〈uj , g〉|2
n∑

j=m

|αjuj(x)|2.

Now, by (5.32),
∑∞

j=0 |〈uj , g〉|2 = ‖g‖2 and hence the first term is part of a
convergent series. Similarly, the second term can be estimated independent
of x since

αnun(x) = RL(λ)un(x) =

∫ b

a
G(λ, x, t)un(t)r(t)dt = 〈un, G(λ, x, .)〉

implies

n∑

j=m

|αjuj(x)|2 ≤
∞∑

j=0

|〈uj , G(λ, x, .)〉|2 =

∫ b

a
|G(λ, x, t)|2r(t)dt ≤M(λ)2‖1‖,

where M(λ) = maxx,t∈[a,b] |G(λ, x, t)|, again by (5.32). �

Moreover, it is even possible to weaken our assumptions for uniform
convergence. To this end we introduce the quadratic form associated
with L:

Q(f, g) =

∫ b

a

(
p(x)f ′(x)∗g′(x) + q(x)f(x)∗g(x)

)
dx

+Qα,a(f, g)−Qβ,b(f, g), f, g ∈ C1([a, b],C), (5.71)

where

Qγ,c(f, g) =

{

0, γ = 0,

cot(γ)f(c)∗g(c), γ 6= 0.
(5.72)

We will set Q(f) = Q(f, f). An integration by parts shows

Q(f, g) = 〈f, Lg〉 (5.73)

provided g ∈ D(L) and f satisfied a possible Dirichlet boundary condition
at the endpoints. In fact, the above formula continues to hold for f in a
slightly larger class of functions,

Q(L) = {f ∈ C1
p [a, b]|f(a) = 0 if α = 0, f(b) = 0 if β = 0} ⊇ D(L), (5.74)

which we call the form domain of L. Here C1
p [a, b] denotes the set of

piecewise continuously differentiable functions f in the sense that f is con-
tinuously differentiable except for a finite number of points at which it is
continuous and the derivative has limits form the left and right. In fact, any
class of functions for which the partial integration needed to obtain (5.73)
can be justified would be good enough (e.g. the set of absolutely continuous
functions).
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Lemma 5.12. The eigenvalues of a regular Sturm–Liouville problem are
bounded from below and can hence be ordered as follows:

E0 < E1 < · · · . (5.75)

Moreover, we have the Rayleigh–Ritz principle

E0 = min
f∈D(L):‖f‖=1

Q(f) = min
f∈D(L):‖f‖=1

〈f, Lf〉 (5.76)

with equality if and only if f = u0. In particular, for 0 ≤ α ≤ π
2 and

π
2 ≤ β ≤ π we obtain

min
x∈[a,b]

q(x) ≤ E0. (5.77)

Proof. We first assume 0 ≤ α ≤ π
2 and π

2 ≤ β ≤ π such that the boundary

terms in (5.71) are non-negative. Then we have Q(f) ≥ minx∈[a,b] q(x)‖f‖2
and hence (5.73) implies Q(uj) = Ej ≥ minx∈[a,b] q(x). In particular, we
can order the eigenvalues as indicated. The second claim now follows using
f =

∑∞
j=0〈uj , f〉uj implying

〈f, Lf〉 =
∞∑

j=0

|〈uj , f〉|2Ej

and the equality Q(f) = 〈f, Lf〉 for f ∈ D(L).

If one of the boundary terms is negative, it can still be controlled in
terms of the integral using Problem 5.23. Details are left as an exercise. �

Lemma 5.13. For a regular Sturm–Liouville problem (5.70) converges uni-
formly provided f ∈ Q(L).

Proof. We first assume 0 ≤ α ≤ π
2 and π

2 ≤ β ≤ π such that the boundary
terms in (5.71) are non-negative.

By replacing L→ L− q0 for q0 > minx∈[a,b] q(x) we can assume q(x) > 0
without loss of generality (this will shift the eigenvalues En → En − q0 and
leave the eigenvectors unchanged). In particular, we have Q(f) > 0 after
this change. By (5.73) we also have Ej = 〈uj , Luj〉 = Q(uj) > 0.

Now let f ∈ Q(L) and consider (5.70). Then, using that Q(f, g) is a
symmetric sesquilinear form (after our shift it is even a scalar product) plus
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(5.73) one obtains

0 ≤Q
(
f −

n∑

j=m

〈uj , f〉uj
)

=Q(f)−
n∑

j=m

〈uj , f〉Q(f, uj)−
n∑

j=m

〈uj , f〉∗Q(uj , f)

+

n∑

j,k=m

〈uj , f〉∗〈uk, f〉Q(uj , uk)

=Q(f)−
n∑

j=m

Ej |〈uj , f〉|2

which implies
n∑

j=m

Ej |〈uj , f〉|2 ≤ Q(f).

In particular, note that this estimate applies to f(y) = G(λ, x, y). Now
we can proceed as in the proof of the previous theorem (with λ = 0 and
αj = E−1

j )

n∑

j=m

|〈uj , f〉uj(x)| =
n∑

j=m

Ej|〈uj , f〉〈uj , G(0, x, .)〉|

≤





n∑

j=m

Ej |〈uj , f〉|2
n∑

j=m

Ej|〈uj , G(0, x, .)〉|2




1/2

< Q(f)1/2Q(G(0, x, .))1/2 ,

where we have used the Cauchy–Schwarz inequality for the weighted scalar
product (fj, gj) 7→

∑

j f
∗
j gjEj. Finally note that Q(G(0, x, .)) is continuous

with respect to x and hence can be estimated by its maximum over [a, b].

Finally, if one of the boundary terms is negative, it can still be controlled
in terms of the integral using Problem 5.23. Details are again left as an
exercise. �

Example. Let us look at the Sturm–Liouville problem which arose in Sec-
tion 5.1,

L = − d2

dx2
, D(L) = {f ∈ C2([0, 1],C)|f(0) = f(1) = 0}.

with underlying inner product space and scalar product given by

H0 = C([0, 1],C), 〈f, g〉 =
∫ 1

0
f(x)∗g(x)dx.
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The corresponding eigenvalues and normalized eigenfunctions are

λn = (πn)2, un(x) =
√
2 sin(nπx), n ∈ N.

Moreover, every function f ∈ H0 can be expanded into a Fourier sine series

f(x) =

∞∑

n=1

fnun(x), fn =

∫ 1

0
un(x)f(x)dx,

which is convergent with respect to our scalar product. If we assume f
piecewise continuously differentiable with f(0) = f(1) = 0 the series will
even converge uniformly. See also Problem 5.22 for a direct proof. ⋄

At first sight it might look like Theorem 5.11 answers all our questions
concerning Sturm–Liouville problems. Unfortunately this is not true since
the assumptions we have imposed on the coefficients are too restrictive for
some important applications! First of all, as noted earlier, it suffices to as-
sume that r(x), p(x)−1, q(x) are integrable over I. However, this is a minor
point. The more important one is, that in most cases at least one of the
coefficients will have a (non integrable) singularity at one of the endpoints
or the interval might be infinite. For example, the Legendre equation (Prob-
lem 4.14) appears on the interval I = (−1, 1), over which p(x)−1 = (1−x2)−1

is not integrable.

In such a situation, the solutions might no longer be extensible to the
boundary points and the boundary condition (5.55) makes no sense. How-
ever, in this case it is still possible to find two solutions ua(z0, x), ub(z0, x)
(at least for z0 ∈ C\R) which are square integrable near a, b and satisfy
limx↓aWx(ua(z0)

∗, ua(z0)) = 0, limx↑bWx(ub(z0)
∗, ub(z0)) = 0, respectively.

Introducing the boundary conditions

BCa(f) = limx↓aWx(ua(z0), f) = 0
BCb(f) = limx↑bWx(ub(z0), f) = 0

(5.78)

one obtains again a symmetric operator. The inverse RL(z) can be computed
as before, however, the solutions ua(z, x) and ub(z, x) might not exist for
z ∈ R and consequently might not be analytic in the entire complex plane.

It can be shown that Lemma 5.10 (and thus the first part of Theo-
rem 5.11) still holds if

∫ b

a

∫ b

a
|G(z, x, y)|2r(x)r(y) dx dy <∞. (5.79)

Integral operators satisfying this estimate are known as Hilbert–Schmidt
operators. This estimate can for example be verified in the case of Le-
gendre’s equation using the explicit behavior of solutions near the singular
points ±1, which follows from the Frobenius method.
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However, even for such simple cases as r(x) = p(x) = 1, q(x) = 0 on
I = R, this generalization is still not good enough! In fact, it is not hard to
see that there are no eigenfunctions at all in this case. For the investigation
of such problems a sound background in measure theory and functional
analysis is necessary and hence this is way beyond our scope. I just remark
that a similar result holds if the eigenfunction expansion is replaced by an
integral transform with respect to a Borel measure. For example, in the case
r(x) = p(x) = 1, q(x) = 0 on I = R one is led to the Fourier transform on
R.

Problem 5.15. Compute the eigenvalues and eigenfunctions of

L = − d2

dx2
, D(L) = {f ∈ C2([0, 1],C)|f ′(0) = f ′(1) = 0}.

Problem 5.16. Show directly that L = − d2

dx2
on I = (0, π) with Dirichlet

boundary conditions is unbounded. (Hint: Consider fn(x) = sin(nx).)

Problem 5.17. Show that D(L) is a linear subspace invariant under com-
plex conjugation.

Problem 5.18. Show that the set of infinitely differentiable functions with
compact support C∞

c ((a, b),C) is dense in H0. (Hint: Replace P (x) in the

proof of Lemma 5.8 by
∫ x
0 exp((y(y − 1))−1)dy/

∫ 1
0 exp((y(y − 1))−1)dy.)

Problem 5.19. Show that if f and g both satisfy BCa(f) = BCa(g) = 0,
then Wa(f, g) = 0.

Problem 5.20. Show (5.63).

Problem 5.21 (Periodic boundary conditions). Show that L defined on

D(L) = {f ∈ C2([a, b],C)|f(a) = f(b), p(a)f ′(a) = p(b)f ′(b)} (5.80)

is symmetric.

Problem 5.22. Consider the Fourier sine

f(x) =
∞∑

n=1

sn(f) sin(nπx), sn(f) = 2

∫ 1

0
sin(nπx)f(x)dx,

and Fourier cosine series

f(x) =

∞∑

n=0

cn(f) cos(nπx), cn(f) = (2− δ0,n)

∫ 1

0
cos(nπx)f(x)dx,

obtained from L = − d2

dx2
on [0, 1] with Dirichlet and Neumann boundary

conditions, respectively.

Author's preliminary version made available with permission of the publisher, the American Mathematical Society



166 5. Boundary value problems

For given k ∈ N0, show that
∞∑

n=1

nk|sn(f)| <∞

if f ∈ Ck+1([0, 1],C) with f (2j)(0) = f (2j)(1) = 0 for 0 ≤ j ≤ k
2 . (Hint: Use

integration by parts to show

(1 + δ0,n)cn(f
′) = 2((−1)nf(1)− f(0)) + nπsn(f)

and

sn(f
′) = −nπ(1 + δ0,n)cn(f).

Now observe that for g ∈ C([0, 1],C), both sn(g) and cn(g) are square sum-
mable (by the Bessel inequality). Moreover, the sequence n−1 is also square
summable and the product of two square summable is (absolutely) summable
by the Cauchy–Schwarz inequality.)

Problem 5.23. Suppose f ∈ C1
p [a, b]. Show that for every ε > 0

|f(x)|2 ≤ ε

∫ b

a
|f ′(x)|2 dx+

(
1

ε
+

1

b− a

)∫ b

a
|f(x)|2 dx.

(Hint: d
dx |f(x)|2 = 2Re

(
f(x)f ′(x)

)
≤ 2|f(x)f ′(x)|.)

5.5. Oscillation theory

In this section we want to gain further insight by looking at the zeros of the
eigenfunctions of a Sturm–Liouville equation. If you look at the simplest
Sturm–Liouville equation r = p = 1 and q = 0, the solutions are trigono-
metric functions for λ > 0 and if you plot the solution in phase space,
that is, the solutions of the underlying first order system (5.44) given by
(u(x), p(x)u′(x)) ∈ R

2, they will rotate around the origin. It turns out that
this behavior is quite common for Sturm–Liouville equations and in order to
investigate this further we introduce polar coordinates in phase space which
are known as Prüfer variables:

u(x) = ρu(x) sin(θu(x)), p(x)u′(x) = ρu(x) cos(θu(x)). (5.81)

Clearly the Prüfer radius is given by

ρu(x) =
√

u(x)2 + (p(x)u′(x))2 (5.82)

and the Prüfer angle is

θu(x) = atan2(p(x)u′(x), u(x)) mod 2π, (5.83)

where

atan2(x, y) =







arccos( x√
x2+y2

), y ≥ 0,

− arccos( x√
x2+y2

), y < 0.
(5.84)
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For (5.83) to make sense we of course need to assume ρu(x) 6= 0 but if
ρu(x0) = 0 we have u(x0) = p(x0)u

′(x0) = 0 and hence u ≡ 0 by uniqueness.
Since the trivial solution u ≡ 0 is of no interest we will exclude this and
assume that u is a non-trivial solution from now on. Moreover, we will also
assume that all solutions are real-valued.

Moreover, the angle θu(x) is defined only up to multiples of 2π and if
we restrict it to (−π, π], as usual, it will jump from +π to −π at a zero of
u which crosses the negative x axis from above. Since we do not want this
behavior, we will choose the unknown multiple of 2π such that θu remains
continuous. This makes θu unique for x ∈ (a, b) once an initial value at some
point c has been chosen.

That u satisfies Lu = λu is now equivalent to the system (Problem 5.24)

θ′u =
cos(θu)

2

p
+ (λr − q) sin(θu)

2,

ρ′u = ρu (
1

p
+ q − λr)

sin(2θu)

2
. (5.85)

Observe that the equation for θu does not involve ρu and that the equation
for ρu can be solved once θu is known:

ρu(x) = ρu(c) exp

(
1

2

∫ x

c
(p−1(t) + q(t)− λr(t)) sin(2θu(t))dt

)

. (5.86)

Hence we have effectively reduced our second order equation to a first order
one. However, this does not come without a price: the equation for θu is no
longer linear! Moreover, note that if we compute θu by solving the system
(5.85), this will automatically give us the required continuous representative.
Finally, note that if θu(x) is a solution of (5.85), then the same is true for
θu(x)+nπ, n ∈ Z, in fact, this is a Prüfer angle corresponding to (−1)nu(x).

Now, if we look at the right-hand side of the equation for θu we see
that it will be positive if λr − q > 0, which will always hold for sufficiently
large λ. In particular, we expect θu to increase as λ increases and hence the
solution to oscillate faster. We will come back to this in a moment, but for
now observe that at a zero of u the Prüfer angle always increases:

u(x0) = 0 ⇔ θ0(x0) = 0 mod π ⇒ θ′u(x0) = p(x0)
−1 > 0. (5.87)

In particular, the Prüfer angel can cross an integer multiple of π only from
below and hence will always increase by π between two consecutive zeros.
Hence we can use the integer part of θu/π to count the number of zeros:

Lemma 5.14. Let u be a solution of Lu = λu and denote by #(u) the
number of zeros of u inside (a, b). Then

#(u) = ⌈θu(b)/π⌉ − ⌊θu(a)/π⌋ − 1, (5.88)
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Figure 5.1. Prüfer angle θa(λ, x)/π as a function of λ for x = b (right)
and a function of x for various λ (left).

where ⌊x⌋ = max{n ∈ Z|n ≤ x}, ⌈x⌉ = min{n ∈ Z|n ≥ x} denote the floor,
ceiling functions, respectively.

Next we want to return to our previous observation that θu should in-
crease with λ. So we consider solutions u(λ, x) of Lu = λu and denote the
associated Prüfer variables by ρu(λ, x), θu(λ, x). In fact, note that if u(λ, x)
solves Lu = λu and λ1 > λ0, then θu(λ1, x) > θu(λ0, x) for x > c provided
θu(λ1, c) ≥ θu(λ0, c) by Theorem 1.3. For x < c the inequalities have to be
reversed.

Now things get particularly interesting if we apply these findings to the
solutions u(x) = ua,b(λ, x) defined in (5.62), for which we can fix the Prüfer
angles by setting

θa(λ, a) = α ∈ [0, π), −θb(λ, b) = π − β ∈ [0, π). (5.89)

By our findings θa(., x) is increasing and bounded below θa(., x) > 0. Sim-
ilarly, θb(., x) is decreasing and bounded above θb(., x) < 0, or equivalently
−θb(., x) is increasing and bounded below −θb(., x) > 0.

The situation for θa(λ, x) is illustrated in Figure 5.1 which shows the
Prüfer angle as a function of λ (for fixed x = b) and as a function of x for
some fixed values of λ. Note that for the picture on the right, the crossings
with the grid lines correspond to the case where θa is an integer multiple
of π and hence to the zeros of ua(λ). Since θa(λ) increases as λ increases
the zeros must move to the left and a new one will enter the interval (a, b)
precisely when ua(λ, b) vanishes.

As λ → −∞ the picture seems to indicate that θa(λ, x) tends to zero.
That this is indeed always the case will be shown in the following lemma.

Lemma 5.15. We have

lim
λ↓−∞

θb(λ, x) = 0, x ∈ [a, b), lim
λ↓−∞

θa(λ, x) = 0, x ∈ (a, b]. (5.90)

Proof. We only do the proof for θa(x) = limλ↓−∞ θa(λ, x). By monotonicity
and θa(λ, x) > 0 the limit exists and satisfies θa(x) ≥ 0.
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Fix x0 ∈ (a, b] and consider w(x) = π − (π − ε) x−ax0−a for ε > 0 small.

Abbreviate p0 = infx∈[a,b] p(x) and q0 = infx∈[a,b] q(x). Then, for λ < q0 −
(p−1

0 + π−ε
x0−a) sin(ε)

−2, we have

1

p
cos(w)2 − (q − λ) sin(w)2 <

1

p0
− (q0 − λ) sin(ε)2 < − π − ε

x0 − a
= w′

for x ∈ [a, x0] which shows that w is a super solution. Hence by Lemma 1.2
we infer 0 ≤ θa(x0) ≤ ε for any ε. �

After these preparations we can now easily establish several beautiful
and important results. To this end recall that ua(λ) is an eigenfunction if
and only if it satisfies the boundary condition at b, that is, if and only if
θa(λ, b) = β mod π.

First of all, Lemma 5.15 says that θa(λ, b) converges to 0 from above
as λ → −∞ and thus will eventually drop below β ∈ (0, π] after which it
can no longer satisfy the boundary condition at b. Hence there is a lowest
eigenvalue E0 determined by the condition θa(E0, b) = β. Now as λ further
increases we will hit the second eigenvalue E1 precisely when θa(λ, b) = β+π
and continuing like this we obtain

Lemma 5.16. We have

#(−∞,λ)(L) =

⌈
θa(λ, b)− β

π

⌉

=

⌊
α− θb(λ, a)

π

⌋

, (5.91)

where #(λ0,λ1)(L) denotes the number of eigenvalues of L inside (λ0, λ1).

In particular,

θa(En, b) = β+nπ, β ∈ (0, π], θb(En, a) = α−(n+1)π, α ∈ [0, π), (5.92)

where En are the eigenvalues ordered in increasing size.

Moreover, in combination with Lemma 5.14 this even shows that the
n’th eigenfunction has precisely n zeros. In summary we have shown:

Theorem 5.17. The regular Sturm–Liouville problem has a lowest eigen-
value and the eigenvalues can be ordered according to E0 < E1 < · · · . In
this case the eigenfunction un corresponding to En has precisely n zeros in
the interval (a, b).

Furthermore,

Theorem 5.18. Suppose L has a Dirichlet boundary condition at b. Then
we have

#(−∞,λ)(L) = #(ua(λ)), (5.93)
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where #(u) is the number of zeros of u inside (a, b) and as before #(λ0,λ1)(L)
is the number of eigenvalues of L inside (λ0, λ1). Likewise, suppose L has
a Dirichlet boundary condition at a. Then we have

#(−∞,λ)(L) = #(ub(λ)). (5.94)

Proof. In the first case we have β = π and ⌊θa(λ, a)/π⌋ = ⌊α/π⌋ = 0.
Hence the claim follows by combining Lemma 5.16 with Lemma 5.14. For
the second claim note ⌈θb(λ, b)/π⌉ = ⌈β/π⌉ = 1 and ⌊−x⌋ = −⌈x⌉. �

Up to this point we have only looked at one Sturm–Liouville operator
L. However, our key to success was to look at the behavior of solutions
of (L − λ)u = 0 as we vary λ. Hence one might also try to vary not only
the spectral parameter λ but the entire operator. Hence we will consider
two operators L0 and L1 associated with coefficients p0, q0, r0 and p1, q1, r1,
respectively. We will consider solutions uj of Ljuj = λjuj and use the short-
hand notation ρj = ρuj , θj = θuj for the corresponding Prüfer variables.

First of all we establish monotonicity of θ with respect to the coefficients.

Lemma 5.19. Let Lj, j = 0, 1, be two operators associated with pj, qj, rj
and let uj be solutions of Ljuj = λjuj . Suppose p1 ≤ p0 and λ0r0 − q0 ≤
λ1r1 − q1.

If θ1(c) ≥ θ0(c) for some c ∈ (a, b), then θ1(x) ≥ θ0(x) for all x ∈ (c, b).
If the inequality becomes strict at some x ∈ [c, b) it remains so.

Moreover, if θ1(c) = θ0(c) for some c ∈ (a, b) and θ1(d) = θ0(d) for some
d ∈ (c, b), then p1 = p0 and λ0r0 − q0 = λ1r1 − q1 on (c, d).

Proof. The first part is immediate from Theorem 1.3. Moreover, by the
first part θ1(c) = θ0(c) and θ1(d) = θ0(d) can only happen if θ1(x) = θ0(x)
for all x ∈ [c, d] and the claim follows by subtracting the corresponding
differential equations for the Prüfer angles from (5.85). �

With the help of this lemma we now come to the famous Sturm’s com-
parison theorem.

Theorem 5.20 (Sturm). Let Lj , j = 0, 1, be two operators associated with
pj, qj, rj and let uj be solutions of Ljuj = λjuj . Suppose p1 ≤ p0 and
λ0r0 − q0 ≤ λ1r1 − q1.

If at each end of (c, d) ⊆ (a, b) either W (u1, u0) = 0 or u0 = 0, then
u1 must vanish in (c, d) unless u1 and u0 are equal up to a constant. (The
latter case can only happen if p1 = p0 and λ0r0 − q0 = λ1r1 − q1 on (c, d).)

Proof. Without loss (and perhaps after flipping signs of u0 and u1) we
can assume θ0(c), θ1(c) ∈ [0, π). Since by assumption either θ0(c) = 0 or
θ0(c) = θ1(c) (cf. (5.97) below), we have θ0(c) ≤ θ1(c). Hence Lemma 5.19
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implies θ0(d) < θ1(d) unless u1 and u0 are equal up to a constant. Now
either θ0(d) = 0 mod π and thus π ≤ θ0(d) < θ1(d) by (5.87) or otherwise
θ0(d) = θ1(d) mod π and hence θ0(d) + π ≤ θ1(d). �

For example, this shows that the zeros of consecutive eigenfunctions
must be interlacing:

Lemma 5.21. Let un be the eigenfunctions of a regular Sturm–Liouville
problem ordered according to the size of the eigenvalues. Then the zeros of
un+1 interlace the zeros of un. That is, if xn,j are the zeros of un inside
(a, b), then

a < xn+1,1 < xn,1 < xn+1,2 < · · · < xn+1,n+1 < b. (5.95)

Our next aim is to generalize Theorem 5.18. It will turn out hat the
key object for this generalization will be the Wronski determinant of two
solutions uj of Ljuj = λjuj, j = 0, 1 defined as

Wx(u0, u1) = u0(x)p1(x)u
′
1(x)− p0(x)u

′
0(x)u1(x). (5.96)

The connection with Prüfer angles is given by

Wx(u0, u1) = ρ0(x)ρ1(x) sin(θ0(x)− θ1(x)), (5.97)

which is straightforward to verify using the trigonometric addition formula
sin(x − y) = sin(x) cos(y) − cos(x) sin(y). In particular, this last equation
shows that the Wronskian will vanishWx0(u0, u1) = 0 if and only if θ1(x0) =
θ0(x0) mod π which is the case if and only if both u0 and u1 satisfy the
same boundary condition at x0.

Of course it is tempting to relate the relative Prüfer angle

∆1,0 = θ1(x)− θ0(x) (5.98)

with the numbers of zeros of the Wronskian as we did for Prüfer angles in
Lemma 5.14. However, this turns out impossible. First of all the zeros of
the Wronskian are not simple and could vanish on an entire interval (e.g.
if both equations agree on an interval) and, even worse, ∆1,0 can clearly
cross integer multiples of π from both sides (this reflects the fact that we
can always reverse the roles of u0 and u1). Nevertheless we simply define

#(u0, u1) = ⌈∆1,0(b)/π⌉ − ⌊∆1,0(a)/π⌋ − 1 (5.99)

and call it the weighted number of sign flips of the Wronskian. In other
words, we count a sign flip as +1 if the relative Prüfer angle crosses an
integer multiple from below and as −1 if it crosses from above. Sign flips
where the relative Prüfer angel does not cross but just turns around are not
counted at all.
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If p1 ≤ p0 and λ0r0− q0 ≤ λ1r1− q1, then Theorem 1.3 implies that ∆1,0

is increasing at a sign flip and hence all sign flips are counted as +1. This
happens for example if L0 = L1 and λ1 > λ0.

As in the case of Theorem 5.18 one proves

Theorem 5.22. Suppose L0 and L1 are two regular Sturm–Liouville oper-
ators associated with the same boundary conditions at a and b. Then

#(−∞,λ1)(L1)−#(−∞,λ0](L0) = #(u0,a(λ0), u1,b(λ1))

= #(u0,b(λ0), u1,a(λ1)), (5.100)

where #(u0, u1) is the number of weighted sign flips ofW (u0, u1) inside (a, b)
and #(−∞,λj)(Lj) is the number of eigenvalues of Lj inside (−∞, λj).

In the special case where we have only one operator L with different
spectral parameters the result reads:

Corollary 5.23. Let L be a regular Sturm–Liouville operator and λ0 < λ1.
Then

#(λ0,λ1)(L) = #(ua(λ0), ub(λ1)) = #(ub(λ0), ua(λ1)), (5.101)

where #(ua(λ0), ub(λ1)) is the number of sign flips of W (ua(λ0), ub(λ1)).

Finally, we note that given a positive differentiable function h one can
modify the Prüfer variables according to

u(x) =
ρ̃u(x)
√

h(x)
sin(θ̃u(x)), p(x)u′(x) =

√

h(x)ρ̃u(x) cos(θ̃u(x)).

(5.102)

That is, they are the Prüfer variables for (
√

h(x)u(x), p(x)u′(x)/
√

h(x)) and
hence have the same properties. In particular,

ρ̃u(x) =
√

h(x)u(x)2 + h(x)−1(p(x)u′(x))2 (5.103)

is positive and

θ̃u(x) = atan2(p(x)u′(x)/
√

h(x),
√

h(x)u(x)) mod 2π (5.104)

is uniquely determined once a value of θ̃u(c) is chosen by requiring θ̃u to
be continuous. In the special case h ≡ 1 we recover our original Prüfer
variables, and since the modified Prüfer angle equals the original one at
every zero of u as well as at every zero of u′, they can differ by at most π/2:

⌊2θu
π

⌋ = ⌊2θ̃u
π

⌋. (5.105)
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That u satisfies Lu = λu is now equivalent to the system

θ̃′u =
h

p
− p−1h2 + q − λr

h
sin(θ̃u)

2 + sin(2θ̃u)
h′

2h
,

ρ̃′u = ρ̃u

(
p−1h2 + q − λr

2h
sin(2θ̃u) + cos(2θ̃u)

h′

2h

)

. (5.106)

Making appropriate choices for h one can read off the asymptotic behavior
of θu.

Lemma 5.24. Suppose p r ∈ C1. Then the Prüfer angles θa,b(λ, x) satisfy

θa(λ, x) =
√
λ

∫ x

a

√

r(t)

p(t)
dt+O(1), θb(λ, x) = −

√
λ

∫ b

x

√

r(t)

p(t)
dt+O(1)

(5.107)
as λ→ ∞.

Proof. We only consider the case of θa. Without loss of generality we can
replace the original Prüfer angles by modified ones with h(x) =

√

λr(x)p(x)

(assuming λ > 0). Then the differential equation for θ̃a reads

θ̃′a =
√
λ

√
r

p
− q√

λpr
sin(θ̃a)

2 + sin(2θ̃a)
(pr)′

(pr)

and the claim follows after integrating both sides observing | sin(θ̃a)| ≤ 1. �

As a simple corollary we now obtain from (5.92) a famous result of Weyl:

Theorem 5.25 (Weyl asymptotics). Suppose p r ∈ C1. Then the eigenval-
ues satisfy

En = π2

(
∫ b

a

√

r(t)

p(t)
dt

)−2

n2 +O(n). (5.108)

For another application of the modified Prüfer transformation to obtain
asymptotics for large x see Problem 5.31.

We conclude this section by mentioning that the results presented here
can be extended to Sturm–Liouville equations on unbounded intervals. Again
one can show that there is a connection between the number of eigenvalues
and zeros of solutions. Once the interval is unbounded, it can happen that
a solution of the equation (L − λ)u = 0 has an infinite number of zeros
and L− λ is called oscillating in this case. Theorem 5.20 implies that this
is then true for all solutions. For example, if we consider the differential
equation (L0 − λ)u = −u′′ − λu = 0 on I = (0,∞), then it will be oscilla-
tory for λ > 0 and non-oscillatory for λ ≤ 0. In particular, the borderline
case λ = 0 in combination with Sturm’s comparison theorem implies that
any perturbation L = L0 + q will be (non-)oscillatory if q(x) is eventually
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positive (negative). If q(x) → 0 as x → ∞ the following refinement can be
applied.

Theorem 5.26 (Kneser). Consider the differential equation Lu(x) = −u′′(x)+
q(x)u(x) on (0,∞). Then

lim inf
x→∞

(
x2q(x)

)
> −1

4
implies nonoscillation of L (5.109)

and

lim sup
x→∞

(
x2q(x)

)
< −1

4
implies oscillation of L. (5.110)

Proof. The key idea is that the equation

Lµu(x) = −u′′(x) + µ

x2
u(x) = 0

is of Euler type. Hence it is explicitly solvable with a fundamental system
given by

u±(x) = x
1
2
±
√

µ+ 1
4 .

There are two cases to distinguish. If µ ≥ −1/4, all solutions are nonoscil-
latory. If µ < −1/4, one has to take real/imaginary parts and all solutions
are oscillatory. Hence a straightforward application of Sturm’s comparison
theorem between Lµ and L yields the result. �

Problem 5.24. Prove equation (5.85).

Problem 5.25. Prove Lemma 5.21.

Problem 5.26. Consider the equation −u′′+ qu = 0 with q > 0. Show that
every nontrivial solution has at most one zero.

Problem 5.27. Consider the equation −u′′ + qu = 0 and suppose q0 ≤
q(x) ≤ q1 < 0. Show that for two consecutive zeros xk and xk+1 of u(x) we
have

π√−q0
≤ xk+1 − xk ≤

π√−q1
.

Problem 5.28. Suppose that q(x) > 0 and let −(pu′)′ + qu = 0. Show that
at two consecutive zeros xk and xk+1 of u′(x) we have

|u(xk)| ≤ |u(xk+1)| if (pq)′ ≥ 0.

Hint: Consider

u2 − 1

pq
(pu′)2.

Problem 5.29. Consider the ordered eigenvalues En(α) of our Sturm–
Liouville problem as a function of the boundary parameter α. Show that
the eigenvalues corresponding to different parameters are interlacing. That
is, suppose 0 < α1 < α2 ≤ π and show En(α1) < En(α2) < En+1(α1).
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Problem 5.30. Show that the derivative of the Wronskian of two solutions
uj of Ljuj = λjuj is given by

W ′(u0, u1) = (q1 − λ1 − q0 + λ0)u0u1 +

(
1

p0
− 1

p1

)

p0u
′
0p1u

′
1. (5.111)

Problem 5.31. Show that solutions of the Bessel equation (4.59) have the
asymptotics

u(x) = a

(
sin(x+ b)

x1/2
− (1/4 − ν2) cos(x+ b)

2x3/2
+O(x−5/2)

)

,

u′(x) = a

(
cos(x+ b)

x1/2
+

(1/4− ν2) sin(x+ b)

2x3/2
+O(x−5/2)

)

.

(Hint: Show that after the transformation v(x) =
√
xu(x) the Bessel equa-

tion reads (cf. Problem 4.13)

−v′′(x) + q(x)v(x) = 0, q(x) = −1− 1/4− ν2

x2
.

Now use a modified Prüfer transform with h(x) =
√

−q(x) (set p(x) = 1,
r(x) = 0) and verify

θ̃′v(x) = 1 +
1/4− ν2

2x2
+O(x−3),

ρ̃′v(x)
ρ̃v(x)

= O(x−3),

as x→ ∞.)

Problem 5.32. Solve the initial value problem

y′ = cos(y)2 +
1

3x2
sin(y)2, y(1) = 0,

numerically and make a guess what the limit limx→∞ y(x) will be.

Observe that the above equation is the differential equation for the Prüfer
angle of a Sturm–Liouville operator which can be explicitly solved. Show that
limx→∞ y(x) = ∞.

How does your numerical analysis compare to the analytic result?

5.6. Periodic Sturm–Liouville equations

In Section 3.6 we have investigated periodic differential equations and dis-
cussed Hill’s equation as a particular example. Of course Hill’s equation
is a special case of a Sturm–Liouville equation for which r(x) = p(x) = 1.
Moreover, it will not come as a surprise that our analysis can be generalized
to arbitrary Sturm–Liouville equations in a straightforward manner. In fact,
using the results of the previous sections we will be able to say much more
about the spectrum of Hill’s equation.
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We will now suppose that r(x), p(x), and q(x) are ℓ-periodic functions
throughout this section.

Let us begin by recalling what we already know. Denote by

Π(z, x, x0) =

(
c(z, x, x0) s(z, x, x0)

p(x)c′(z, x, x0) p(x)s′(z, x, x0)

)

(5.112)

the principal matrix solution of the underlying system (5.44) introduced in
(5.46). Since the base point will not play an important role we will just set it
equal to x0 = 0 and write c(z, x) = c(z, x, 0), s(z, x) = s(z, x, 0). Moreover,
recall that the determinant of Π(z, x, 0) equals one, (5.48).

In Section 3.6 we have introduced the monodromy matrix M(z) =
Π(z, ℓ, 0) and its eigenvalues, the Floquet multipliers,

ρ±(z) = ∆(z)±
√

∆(z)2 − 1, ρ+(z)ρ−(z) = 1. (5.113)

We will choose the branch of the square root such that |ρ+(z)| ≤ 1. Here
the Floquet discriminant is given by

∆(z) =
tr(M(z))

2
=
c(z, ℓ) + p(ℓ)s′(z, ℓ)

2
. (5.114)

Moreover, we have found two solutions

u±(z, x) = c(z, x) +m±(z)s(z, x), (5.115)

the Floquet solutions, satisfying
(

u±(z, ℓ)
p(ℓ)u′±(z, ℓ)

)

= ρ±(z)

(
u±(z, 0)

p(0)u′±(z, 0)

)

= ρ±(z)

(
1

m±(z)

)

. (5.116)

Here

m±(z) =
ρ±(z)− c(z, ℓ)

s(z, ℓ)
=

p(ℓ)c′(z, ℓ)
ρ±(z)− p(ℓ)s′(z, ℓ)

(5.117)

are the Weyl–Titchmarsh m-functions. Note that at a point z with
s(z, ℓ) = 0, the functionsm±(z) and hence also u±(z, x) are not well defined.
This is due to our normalization u±(z, 0) = 1 which is not possible if the
first component of the eigenvector of the monodromy matrix vanishes.

Lemma 5.27. The zeros of s(z, ℓ) are all real and only occur when |∆| ≥ 1.

Proof. Since the zeros are eigenvalues of a Strum–Liouville problem with
two Dirichlet boundary conditions, they are real. Moreover, at such a zero
s(z, x) is a Floquet solution corresponding to the real Floquet multiplier
p(ℓ)s′(z, ℓ). �

The Wronskian of u+ and u− is given by

W (u−(z), u+(z)) = m+(z)−m−(z) =
2
√

∆(z)2 − 1

s(z, ℓ)
(5.118)
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and hence they are linearly independent if ∆(z) 6= ±1. If ∆(z) = ±1 both
functions are clearly equal.

The functions u±(z, x) are exponentially decaying as x→ ±∞ if |ρ+(z)| <
1, that is, |∆(z)| > 1, and are bounded if |ρ+(z)| = 1, that is, |∆(z)| ≤ 1.
The stability set

Σ = {λ ∈ R | |∆(λ)| ≤ 1} (5.119)

is also called the spectrum. Our goal is to understand the stability set. A
critical role is given by the points with ∆(λ) = ±1 which are precisely the
spectra of the periodic L+ and antiperiodic L− operators associated
with (5.43) and the following domains

D(L±) = {f ∈ C2([0, ℓ],C)|f(ℓ) = ±f(0), p(ℓ)f ′(ℓ) = ±p(0)f ′(0)}. (5.120)

Theorem 5.28. The spectrum of L± is given by

σ(L±) = {λ ∈ R |∆(λ) = ±1} (5.121)

and consist of a sequence of real eigenvalues with no finite accumulation
point.

Proof. By definition of the boundary conditions for D(L±) we see that z ∈
C is an eigenvalue of L± if and only if ±1 is an eigenvalue of the monodromy
matrix, that is, if and only if ∆(z) = ±1. As in Section 5.4 one can show
that L± is a symmetric operator with compact resolvent (Problem 5.33) and
hence the claim follows. �

Note that an eigenvalue of L± is simple if the monodromy matrix has
just one eigenvector and twice degenerate if the monodromy matrix has two
linearly independent eigenvectors.

First of all note, that there are no eigenvalues of L± below some λ0.

Lemma 5.29. We have ∆(λ) > 1 for λ < λ0, where

λ0 = min
x∈[0,ℓ]

q(x)

r(x)
. (5.122)

Proof. Let λ < λ0. Then q−λr > 0 and any solution u of (5.43) with z = λ
satisfies (pu′)′ = q − λr > 0. Hence pu′ is increasing, that is, p(x)u′(x) >
p(0)u′(0) for x > 0. Moreover, if p(0)u′(0) ≥ 0, then u is also increasing,
that is, u(x) > u(0) for x > 0. In particular, c(λ, x) > c(λ, 0) = 1 and
p(x)s′(λ, x) > p(0)s′(λ, 0) = 1 for x > 0. �

To investigate the derivative of ∆(z) at a point where ∆(z) = ±1 we

first derive a practical formula for ∆̇(z).
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Lemma 5.30. We have

∆̇(z) =− s(z, ℓ)

2

∫ ℓ

0
u+(z, x)u−(z, x)r(x)dx

=
1

2

∫ ℓ

0

(

p(ℓ)c′(z, ℓ)s(z, x)2 +
(
c(z, ℓ) − p(ℓ)s′(z, ℓ)

)
s(z, x)c(z, x)

− s(z, ℓ)c(z, x)2
)

r(x)dx, (5.123)

where the dot denotes a derivative with respect to z.

Proof. Let u(z, x), v(z, x) be two solutions of Lu = zu, which are smooth.
Then integrating

W ′
x(u(z0), v(z)) = (z0 − z)r(x)u(z0, x)v(z, x)

from 0 to ℓ, dividing by z0 − z and taking z0 → z gives

Wℓ(u̇(z), v(z)) −W0(u̇(z), v(z)) =

∫ ℓ

0
u(z, t)v(z, t)r(t)dt. (5.124)

(Use constancy of the Wronskian Wℓ(u(z), v(z)) − W0(u(z), v(z)) = 0 to
see that the left-hand side is in fact a differential quotient). Now choose
u(z) = u+(z) and v(z) = u−(z) in (5.124) and evaluate the Wronskians

Wℓ(u̇+(z), u−(z)) −W0(u̇+(z), u−(z)) = ρ̇+(z)ρ−(z)W (u+(z), u−(z))

= − ∆̇(z)
√

∆(z)2 − 1
W (u−(z), u+(z))

to obtain the first formula. The second follows using (5.115) plus constancy
of the Wronskian c(z, ℓ)p(ℓ)s′(z, ℓ) − p(ℓ)c′(z, ℓ)s(z, ℓ) = 1. �

Corollary 5.31. For λ ∈ Σ with s(λ, ℓ) 6= 0 we have

∆̇(λ) = −s(λ, ℓ)
2

∫ ℓ

0
|u±(λ, x)|2r(x)dx. (5.125)

In particular, ∆̇(λ) is nonzero in the interior of Σ.

Proof. For λ ∈ Σ we have ρ−(λ) = ρ+(λ) and consequently also u−(λ, x) =
u+(λ, x). �

Lemma 5.32. At a point E ∈ R with ∆(E) = ±1 we have ∆̇(E) = 0 if
and only if s(E, ℓ) = p(ℓ)c′(E, ℓ) = 0, that is, if and only if M(E) = ±I.

Moreover, in this case we have ∆(E)∆̈(E) < 0.

Proof. Suppose ∆(E) = ±1. First of all s(E, ℓ) = p(ℓ)c′(E, ℓ) = 0 is clearly
equivalent to M(E) = ±I. Moreover, in this case the second part of (5.123)

shows ∆̇(E) = 0 (note that we cannot use the first part since u±(E, x) are
not well-defined if s(E, ℓ) = 0).
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Conversely, suppose ∆(E) = ±1 and ∆̇(E) = 0 but s(E, ℓ) 6= 0. Then
Corollary 5.31 yields a contradiction. Thus s(E, ℓ) = 0 as well as c(E, ℓ) =
p(ℓ)s′(ℓ) = ∆ and the second part of (5.123) shows p(ℓ)c′(E, ℓ) = 0.

For the remaining part we will not display z = E for notational conve-
nience. Differentiating (5.123) and evaluating at point z = E with M(E) =
±I shows

∆̈ =
1

2

∫ ℓ

0

(

p(ℓ)ċ′(ℓ)s(x)2 + (ċ(ℓ)− p(ℓ)ṡ′(ℓ))s(x)c(x) − ṡ(ℓ)c(x)2
)

r(x)dx.

Furthermore, choosing u = v = s in (5.124) shows

Wℓ(ṡ, s) =

∫ ℓ

0
s(x)2r(x)dx (5.126)

and by s(ℓ) = 0, p(ℓ)s′(ℓ) = ±1 we have

ṡ(ℓ) = ±
∫ ℓ

0
s(x)2r(x)dx.

Similarly, we obtain

p(ℓ)ċ′(ℓ) = ∓
∫ ℓ

0
c(x)2r(x)dx, ċ(ℓ) = −p(ℓ)ṡ′(ℓ) = ±

∫ ℓ

0
s(x)c(x)r(x)dx.

Hence

∆∆̈ =
(∫ ℓ

0
s(x)c(x)r(x)dx

)2
−
( ∫ ℓ

0
s(x)2r(x)dx

)(∫ ℓ

0
c(x)2r(x)dx

)

and since equality in the Cauchy–Schwarz inequality can only occur if c(x)
and s(x) were linearly dependent, the right-hand side is strictly negative. �

In summary, these results establish the following behavior of ∆(z): By
Lemma 5.29 ∆(λ) will first hit +1 at some point E0. At this point we must

have ∆̇(E) < 0. In fact, ∆̇(E) = 0 would imply ∆̈(E) < 0 by Lemma 5.32,
contradicting the fact that we intersect the line +1 from above. By Corol-
lary 5.31 ∆(λ) cannot turn around until it hits −1 at some point E1 > E0.

Now it can either cross (∆̇(E1) < 0) or turn around (∆̇(E1) = 0, ∆̈(E1) > 0).
In the first case it will hit −1 again at some later point E2, in the latter case
we can just set E2 = E1 (in this case E1 = E2 is a twice degenerate eigen-
value of L−). Since there is an infinite number of periodic (antiperiodic)
eigenvalues (Problem 5.33), this process can never stop and we obtain:

Theorem 5.33. There is a sequence of real numbers

E0 < E1 ≤ E2 < E3 ≤ E4 · · · (5.127)
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Figure 5.2. A Floquet discriminant ∆(z).

tending to ∞ such that

Σ =

∞⋃

n=0

[E2n, E2n+1]. (5.128)

Moreover,

σ(L+) = {E0 < E3 ≤ E4 < E7 ≤ E8 < · · · } (5.129)

and

σ(L−) = {E1 ≤ E2 < E5 ≤ E6 < · · · }. (5.130)

That is, the spectrum consist of an infinite sequence of bands, some of
which might touch. In fact, if q = 0 we get ∆(z) = cos(

√
z) and all bands

touch, so Σ = [0,∞). A prototypical discriminant is depicted in Figure 5.2.

There are even further connections with the spectra of the operators
associated with (5.43) and the domains

D(Lα) = {f ∈ C2([0, ℓ],C)| cos(α)f(0) − sin(α)p(0)f ′(0) =

cos(α)f(ℓ)− sin(α)p(ℓ)f ′(ℓ) = 0}. (5.131)

As a preparation we show

Lemma 5.34. All singularities of m±(z) are one the real line where |∆(z)| ≥
1. If a singularity occurs at a point with ∆(z) = ±1 then c(z, ℓ) = p(ℓ)s′(z, ℓ) =
±1 and both m±(z) have a square root type singularity. Otherwise, if a sin-
gularity occurs at a point with |∆(z)| > 1 then precisely one of the functions
m±(z) has a first order pole.

Proof. By (5.117) singularities of m±(z) can only occur at zeros of s(ℓ, z)
and the first claim follows from Lemma 5.27. So let µ be a zero of s(z, ℓ).

Then, by (5.126) we see that

ṡ(µ, ℓ) =
1

p(ℓ)s′(µ, ℓ)

∫ ℓ

0
s(µ, x)2r(x)dx 6= 0

and thus µ is a first order zero.
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If ∆(µ) = ±1 then we must have ρ±(µ) = ±1 and c(µ, ℓ) = p(ℓ)s′(µ, ℓ) =
±1. Hence both m±(z) have a square root type singularity by (5.117).

If |∆(µ)| > 1 then the numerator of the first equation in (5.117) can
vanish for at most one sign and hence there is at least one pole. Similarly,
the denominator of the second equation in (5.117) can vanish for at most
one sign and thus there is at most one pole. �

Lemma 5.35. We have

ṁ±(z) =
∫ ±∞

0
u±(z, x)

2r(x)dx, z ∈ C\Σ. (5.132)

Proof. Integrate

W ′
x(u±(z0), u±(z)) = (z0 − z)r(x)u±(z0, x)u±(z, x)

from 0 to ±∞:

−W0(u±(z0), u±(z)) = (z0 − z)

∫ ±∞

0
u±(z0, x)u±(z, x)r(x)dx.

Now divide by z0 − z,

1

z0 − z
W0(u±(z0), u±(z)) =W0(

u±(z0)− u±(z)
z0 − z

, u±(z))

= −
∫ ±∞

0
u±(z0, x)u±(z, x)r(x)dx,

and let z0 → z (use dominated convergence, c.f. Theorem 9.13),

W0(u̇±(z), u±(z)) = −
∫ ±∞

0
u±(z, x)

2r(x)dx.

Finally W0(u̇±(z), u±(z)) = −ṁ±(z) finishes the proof. �

Theorem 5.36. Denote the spectrum of Lα, α ∈ [0, π), by

σ(Lα) = {λ0(α) < λ1(α) < · · · }, α 6= 0 (5.133)

and
σ(L0) = {λ1(0) < λ2(0) < · · · }. (5.134)

Then there is a one-to-one correspondence between (−∞, E0] and
⋃

α∈(0,π) λ0(α)
respectively [E2j−1, E2j ] and

⋃

α∈[0,π) λj(α) for j ∈ N with E2j−1 < E2j . If

E2j−1 = E2j we have λj(α) = E2j−1 = E2j for all α ∈ [0, π).

Proof. First of all note that λ ∈ σ(Lα) if and only if m+(λ) = cot(α) or
m−(λ) = cot(α) since the corresponding eigenfunction will give rise to an
eigenvector of the monodromy matrix and vice versa.

Hence it suffices to show that m−(λ) and m+(λ) traverse all values
in R ∪ {∞} when λ runs from E2j−1 to E2j . Essentially this follows from
monotonicity ofm±(λ) in these regions (Lemma 5.35) plus the fact that they
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must be equal at the boundary points. While this looks like a contradiction
at first sight (if both start at the same point and one is increasing, one is
decreasing, they can never meet again), it turns out to be none sincem± can
(and will) have poles! The prototypical situation is depicted in Figure 5.3.
Our aim is to prove that the picture always looks like this.

We start with λ ∈ (−∞, E0). For λ < λ0 the proof of Lemma 5.29
shows that s(λ, ℓ) > 0 which together with ρ+(λ) < 1 < ρ−(λ) implies
m+(λ) < m−(λ). Now as λ increases, m+(λ) increases andm−(λ) decreases.
Since they cannot cross before λ = E0 (by linear independence of u+(λ, x)
and u−(λ, x)), they will meet precisely at λ = E0. To see thatm±(λ) → ∓∞
as λ→ −∞ one observes that m±(λ) = cot(θ±(λ, 0)), where θ±(λ, x) is the
Prüfer angle of u±(λ, x). As in the proof of Lemma 5.15 one shows that
θ±(λ, x) converges to a multiple of π and this finishes the case λ ∈ (−∞, E0).

If E2j−1 = E2j all solutions are (anti)periodic and hence any solution
satisfying the boundary condition at 0, also satisfies the same boundary at
ℓ. In other words, λj(α) = E2j−1 = E2j for all α ∈ [0, π).

If λ ∈ (E2j−1, E2j) there are two cases, either m−(λ) < m+(λ) or
m−(λ) > m+(λ). The case s(λ, ℓ) = 0 can always be avoided by mov-
ing λ a little. We only do the first case m−(λ) < m+(λ), since the second
is completely analogous. As λ increases, m−(λ) decreases and m+(λ) in-
creases, and both will hit at E2j . As λ decreases, m−(λ) increases and
m+(λ) decreases. Now if there is no pole in (E2j−1, λ), they cannot meet at
a finite value m−(E2j−1) = m+(E2j−1) and thus m±(E2j−1) = ∞, that is
s(E2j−1, ℓ) = 0. Otherwise precisely one of them has a pole and after this
pole we have m+ > m−. Since they cannot cross, there cannot be another
pole and they must hit at some finite value at E2j−1. �

As a simple consequence we obtain
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Theorem 5.37. The lowest periodic eigenvalue E0 is simple and the corre-
sponding eigenfunction u(E0, x) has no zeros. The antiperiodic eigenfunc-
tions u(E4j−3, x), u(E4j−2, x) have 2j − 1 zeros in [0, ℓ) and the periodic
eigenfunctions u(E4j−1, x), u(E4j , x) have 2j zeros in [0, ℓ).

Proof. First of all note that a periodic eigenfunction must have an even
number of zeros and an antiperiodic eigenfunction must have an odd number
of zeros (why?). Moreover, by Theorem 5.18 the eigenfunction corresponding
to λj(0) has precisely j − 1 zeros.

Sturm’s comparison theorem (Theorem 5.20) implies that any solution
u(λ, x) with λj(0) ≤ λ ≤ λj+1(0) has at least j − 1 and at most j zeros.
Since λj(0) ≤ E2j−1 < E2j ≤ λj+1(0) the claim on the number of zeros
follows.

If E0 is twice degenerate, we could take a linear combination of two
linearly independent eigenfunctions, to obtain an eigenfunction which van-
ishes at 0. By periodicity this function must also vanish at ℓ. Hence it is an
eigenfunction of L0 implying λ1(0) = E0 contradicting E0 < E1 ≤ λ1(0). �

Problem 5.33 (Periodic and antiperiodic spectra).

(i) Show that L± are symmetric.

(ii) Show that the corresponding Green function is given by

G±(z, x, y) =

{
1

1∓ρ+(z)u+(z, x)u−(z, y) +
1

1∓ρ−(z)u−(z, x)u+(z, y), y < x,
ρ+(z)

1∓ρ+(z)u+(z, y)u−(z, x) +
ρ−(z)

1∓ρ−(z)u−(z, y)u+(z, x), y > x.

Conclude that the periodic and antiperiodic eigenvalues form a se-
quence of real numbers which converge to ∞.

(iii) Show by example that the periodic, antiperiodic eigenvalues are not
necessarily simple. (Hint: r = p = 1 and q = 0.)

Problem 5.34. Show:

m+(z) +m−(z) =
p(ℓ)s′(z, ℓ)− c(z, ℓ)

s(z, ℓ)
,

m+(z)m−(z) = −p(ℓ)c
′(z, ℓ)

s(z, ℓ)
,

u+(z, x)u−(z, x) =
s(z, x+ ℓ, x)

s(z, ℓ)
.

(Hint: s(z, x, x0) = c(z, x0)s(z, x) − c(z, x)s(z, x0) and Π(z, x + ℓ, 0) =
Π(z, x+ ℓ, ℓ)M(z) = Π(z, x, 0)M(z).)

Problem 5.35 (Reflection symmetry). Suppose q is periodic q(t+ ℓ) = q(t)
and symmetric q(−x) = q(x) (and set r(x) = p(x) = 1). Prove
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(i) c(z,−x) = c(z, x) and s(z,−x) = −s(z, x),
(ii) c(z, x ± ℓ) = c(z, ℓ)c(z, x) ± c′(z, ℓ)s(z, x) and

s(z, x± ℓ) = ±s(z, ℓ)c(z, x) + s′(z, ℓ)s(z, x),

(iii) c(z, ℓ) = ṡ(z, ℓ).

Problem 5.36. A simple quantum mechanical model for an electron in a
crystal leads to the investigation of

−u′′ + q(x)u = λu, where q(x+ 1) = q(x).

The parameter λ ∈ R corresponds to the energy of the electron. Only energies
for which the equation is stable are allowed and hence the set Σ = {λ ∈
R||∆(λ)| ≤ 1} is called the spectrum of the crystal. Since ∆(λ) is continuous
with respect to λ, the spectrum consists of bands with gaps in between.

Consider the explicit case

q(x) = q0, 0 ≤ x <
1

2
, q(x) = 0,

1

2
≤ x < 1.

Show that there are no spectral bands below a certain value of λ. Show that
there is an infinite number of gaps if q0 6= 0. How many gaps are there for
q0 = 0? (Hint: Set λ− q0 → (a− ε)2 and λ→ (a+ ε)2 in the expression for
∆(λ). If q0 → 0, where would you expect gaps to be? Choose these values
for a and look at the case a→ ∞.)
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Chapter 6

Dynamical systems

6.1. Dynamical systems

You can think of a dynamical system as the time evolution of some physical
system, such as the motion of a few planets under the influence of their
respective gravitational forces. Usually you want to know the fate of the
system for long times, for instance, will the planets eventually collide or will
the system persist for all times?

For some systems (e.g., just two planets) these questions are relatively
simple to answer since it turns out that the motion of the system is regular
and converges, for example, to an equilibrium.

However, many interesting systems are not that regular! In fact, it turns
out that for many systems even very close initial conditions might get spread
far apart in short times. For example, you probably have heard about the
motion of a butterfly which can produce a perturbance of the atmosphere
resulting in a thunderstorm a few weeks later.

We begin with the definition: A dynamical system is a semigroup G
with identity element e acting on a set M . That is, there is a map

T : G×M → M
(g, x) 7→ Tg(x)

(6.1)

such that

Tg ◦ Th = Tg◦h, Te = I. (6.2)

If G is a group, we will speak of an invertible dynamical system.

We are mainly interested in discrete dynamical systems where

G = N0 or G = Z (6.3)

187
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188 6. Dynamical systems

and in continuous dynamical systems where

G = R
+ or G = R. (6.4)

Of course this definition is quite abstract and so let us look at some examples
first.

Example. The prototypical example of a discrete dynamical system is an
iterated map. Let f map an interval I into itself and consider

Tn = fn = f ◦ fn−1 = f ◦ · · · ◦ f
︸ ︷︷ ︸

n times

, G = N0. (6.5)

Clearly, if f is invertible, so is the dynamical system if we extend this defi-
nition for n ∈ Z in the usual way. You might suspect that such a system is
too simple to be of any interest. However, we will see that the contrary is
the case and that such simple systems bear a rich mathematical structure
with lots of unresolved problems. ⋄

Example. The prototypical example of a continuous dynamical system is
the flow of an autonomous differential equation

Tt = Φt, G = R, (6.6)

which we will consider in the following section. ⋄

6.2. The flow of an autonomous equation

Now we will have a closer look at the solutions of an autonomous system

ẋ = f(x), x(0) = x0. (6.7)

Throughout the rest of this book we will assume f ∈ Ck(M,Rn), k ≥ 1,
where M is an open subset of Rn.

Such a system can be regarded as a vector field on R
n. Solutions are

curves inM ⊆ R
n which are tangent to this vector field at each point. Hence

to get a geometric idea of what the solutions look like, we can simply plot
the corresponding vector field.

Example. Using Mathematica the vector field of the mathematical pendu-
lum, f(x, y) = (y,− sin(x)), can be plotted as follows.

In[1]:= VectorPlot[{y,−Sin[x]}, {x,−2π, 2π}, {y,−5, 5}]
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We will return to this example in Section 6.7. ⋄

In particular, solutions of the IVP (6.7) are also called integral curves
or trajectories. We will say that φ is an integral curve at x0 if it satisfies
φ(0) = x0.

By Theorem 2.13 there is a (unique) maximal integral curve φx at
every point x, defined on a maximal interval Ix = (T−(x), T+(x)).

Introducing the set

W =
⋃

x∈M
Ix × {x} ⊆ R×M (6.8)

we define the flow of our differential equation to be the map

Φ : W →M, (t, x) 7→ φ(t, x), (6.9)

where φ(t, x) is the maximal integral curve at x. We will sometimes also use
Φx(t) = Φ(t, x) and Φt(x) = Φ(t, x).

If φ(.) is the maximal integral curve at x, then φ(. + s) is the maximal
integral curve at y = φ(s) and in particular Ix = s+ Iy. As a consequence,
we note that for x ∈M and s ∈ Ix we have

Φ(s+ t, x) = Φ(t,Φ(s, x)) (6.10)

for all t ∈ IΦ(s,x) = Ix − s.

Theorem 6.1. Suppose f ∈ Ck(M,Rn). For all x ∈ M there exists an
interval Ix ⊆ R containing 0 and a corresponding unique maximal integral
curve Φ(., x) ∈ Ck(Ix,M) at x. Moreover, the set W defined in (6.8) is
open and Φ ∈ Ck(W,M) is a (local) flow on M , that is,

Φ(0, x) = x,

Φ(t+ s, x) = Φ(t,Φ(s, x)), x ∈M, s, t+ s ∈ Ix. (6.11)

Proof. It remains to show that W is open and Φ ∈ Ck(W,M). Fix a point
(t0, x0) ∈ W (implying t0 ∈ Ix0) and set γ = Φx0([0, t0]). By Theorem 2.10
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there is an open neighborhood (−ε(x), ε(x)) × U(x) of (0, x) around each
point x ∈ γ such that Φ is defined and Ck on this neighborhood. Since
γ is compact, finitely many of the neighborhoods U(x) cover γ and hence
we can find an ε > 0 and an open neighborhood U0 of γ such that Φ is
defined on (−ε, ε) × U0. Next, pick m ∈ N so large that t0

m < ε such

that K ∈ Ck(U0,M), where K : U0 → M , K(x) = Φ t0
m

. Furthermore,

Kj ∈ Ck(Uj,M) for any 0 ≤ j ≤ m, where Uj = K−j(U0) ⊆ U0 is open.

Since x0 = K−j(Φ( jm t0, x0)) we even have x0 ∈ Uj, that is, Uj is nonempty.
In particular,

Φ(t, x) = Φ(t− t0,Φ(t0, x)) = Φ(t− t0,K
m(x))

is defined and Ck for all (t, x) ∈ (t0 − ε, t0 + ε)× Um. �

In particular, choosing s = −t respectively t = −s in (6.11) shows that
Φt(.) = Φ(t, .) is a local diffeomorphism with inverse Φ−t(.). Note also that
if we replace f → −f , then Φ(t, x) → Φ(−t, x).
Example. Let M = R and f(x) = x3. Then W = {(t, x)|2tx2 < 1} and
Φ(t, x) = x√

1−2x2t
. T−(x) = −∞ and T+(x) = 1/(2x2). ⋄

A point x0 with f(x0) = 0 is called a fixed point. Away from such points
all vector fields look locally the same.

Lemma 6.2 (Straightening out of vector fields). Suppose f(x0) 6= 0. Then
there is a local coordinate transform y = ϕ(x) such that ẋ = f(x) is trans-
formed to

ẏ = (1, 0, . . . , 0). (6.12)

Proof. Abbreviate δ1 = (1, 0, . . . , 0). It is no restriction to assume x0 = 0.
After a linear transformation we see that it is also no restriction to assume
f(0) = δ1.

Consider all points starting on the plane x1 = 0. Then the trans-
form ϕ we are looking for should map the point Φ(t, (0, x2, . . . , xn)) to
(0, x2, . . . , xn) + t(1, 0, . . . , 0) = (t, x2, . . . , xn).

✻

✲

(0, x2)
r
(t, x2)

. ..................................
................................

..............................

............................

...........................

.........................

.......................

.......................

........................

.........................

rΦ(t, (0, x2))
❏
❏
❏❫

ϕ

Hence ϕ should be the inverse of

ψ((x1, . . . , xn)) = Φ(x1, (0, x2, . . . , xn)),
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6.2. The flow of an autonomous equation 191

which is well defined in a neighborhood of 0. The Jacobian determinant at
0 is given by

det

(
∂ψ

∂x

) ∣
∣
∣
x=0

= det
(∂Φ

∂t
,
∂Φ

∂x2
, . . . ,

∂Φ

∂xn

)∣
∣
∣
t=0,x=0

= det I = 1

since ∂Φ/∂x|t=0,x=0 = In and ∂Φ/∂t|t=0,x=0 = f(0) = δ1 by assumption.
So by the inverse function theorem we can assume that ψ is a local dif-
feomorphism and we can consider new coordinates y = ψ−1(x). Since
(∂ψ/∂x)δ1 = ∂ψ/∂x1 = f(ψ(x)) our system reads in the new coordinates

ẏ =
(∂ψ

∂x

)−1∣∣
∣
y=ψ−1(x)

f(x) = δ1,

which is the required form. �

Problem 6.1. Can

φ(t) =

(
sin(t)
sin(2t)

)

be the solution of an autonomous system ẋ = f(x)? (Hint: Plot the orbit.)
Can it be the solution of ẋ = f(t, x)?

Problem 6.2. Compute the flow for f(x) = x2 defined on M = R.

Problem 6.3. Find a transformation which straightens out the flow ẋ = x
defined on M = R.

Problem 6.4. Show that Φ(t, x) = et(1 + x) − 1 is a flow (i.e., it satisfies
(6.11)). Can you find an autonomous system corresponding to this flow?

Problem 6.5 (One-parameter Lie groups). Suppose Φ(t, x) is differen-
tiable and satisfies (6.11). Then the family Φt(x) is known as a local one-
parameter Lie group of transformations (the term local is omitted if
W = R×M).

Show that Φ is the flow of the vector field

f(x) = Φ̇(0, x).

The differential operator

X = f(x) · grad =
n∑

j=1

fj(x)
∂

∂xj
(6.13)

is known as the infinitesimal generator of Φt(x).

Suppose f(x) is analytic in x and recall from Theorem 4.1 that Φ(t, x)
is analytic in t. Show that Φ can be recovered from X via its Lie series

φ(t, x) = exp(tX)x =
∞∑

j=0

tj

j!
Xjx. (6.14)
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Here the right-hand side is to be understood as the definition of exp(tX)x.
(Hint: The Taylor coefficients are the derivatives which can be obtained by
differentiating the differential equation.)

Problem 6.6. Show that T+(x) is lower semi-continuous: lim infx→x0 T (x) ≥
T (x0). Similarly, T−(x) is upper semi-continuous: lim supx→x0 T (x) ≤
T (x0).

6.3. Orbits and invariant sets

The orbit of x is defined as

γ(x) = Φ(Ix × {x}) ⊆M. (6.15)

Note that y ∈ γ(x) implies y = Φ(t, x) and hence γ(x) = γ(y) by (6.11). In
particular, different orbits are disjoint (i.e., we have the following equivalence
relation on M : x ≃ y if γ(x) = γ(y)). If γ(x) = {x}, then x is called a fixed
point (also singular, stationary, or equilibrium point) of Φ. Otherwise
x is called regular and Φ(., x) : Ix →֒M is injective.

Similarly we introduce the forward and backward orbits

γ±(x) = Φ((0, T±(x)), x). (6.16)

Clearly γ(x) = γ−(x) ∪ {x} ∪ γ+(x). One says that x ∈ M is a periodic
point of Φ if there is some T > 0 such that Φ(T, x) = x. The lower bound of
such T is called the period, T (x) of x, that is, T (x) = inf{T > 0|Φ(T, x) =
x}. By continuity of Φ we have Φ(T (x), x) = x and by the flow property
Φ(t+ T (x), x) = Φ(t, x). In particular, an orbit is called a periodic orbit
if one (and hence all) point of the orbit is periodic.

It is not hard to see (Problem 6.9) that x is periodic if and only if
γ+(x)∩ γ−(x) 6= ∅ and hence periodic orbits are also called closed orbits.

Hence we may classify the orbits of f as follows:

(i) fixed orbits (corresponding to a periodic point with period zero)

(ii) regular periodic orbits (corresponding to a periodic point with
positive period)

(iii) non-closed orbits (not corresponding to a periodic point)

The quantity T+(x) = sup Ix (resp. T−(x) = inf Ix) defined in the
previous section is called the positive (resp. negative) lifetime of x. A
point x ∈ M is called σ complete, σ ∈ {±}, if Tσ(x) = σ∞ and complete if
it is both + and − complete (i.e., if Ix = R).

Corollary 2.15 gives us a useful criterion when a point x ∈ M is σ
complete.
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Lemma 6.3. Let x ∈ M and suppose that the forward (resp. backward)
orbit lies in a compact subset C of M . Then x is + (resp. −) complete.

Clearly a periodic point is complete. If all points are complete, the
vector field is called complete. Thus f being complete means that Φ is
globally defined, that is, W = R×M .

A set U ⊆M is called σ invariant, σ ∈ {±}, if

γσ(x) ⊆ U, ∀x ∈ U, (6.17)

and invariant if it is both ± invariant, that is, if γ(x) ⊆ U .

If C ⊆M is a compact σ invariant set, then Lemma 6.3 implies that all
points in C are σ complete.

Lemma 6.4. (i). Arbitrary intersections and unions of σ invariant sets are
σ invariant. Moreover, the closure of a σ invariant set is again σ invariant.

(ii). If U and V are invariant, so is the complement U\V .

Proof. Only the last statement of (i) is nontrivial. Let U be σ invariant and
recall that x ∈ U implies the existence of a sequence xn ∈ U with xn → x.
Fix t ∈ Ix. Then (since W is open) for N sufficiently large we have t ∈ Ixn ,
n ≥ N , and Φ(t, x) = limn→∞Φ(t, xn) ∈ U .

Concerning (ii) let x ∈ U\V . Then, if γ(x) ∩ V contains some point y,
we must have γ(y) = γ(x) ⊆ V contradicting our assumption x 6∈ V . Thus
γ(x) ⊆ U\V . �

One of our main aims will be to describe the long-time asymptotics of
solutions. For this we next introduce the set where an orbit eventually
accumulates:

The ω±-limit set of a point x ∈ M , ω±(x), is the set of those points
y ∈M for which there exists a sequence tn → ±∞ with Φ(tn, x) → y.

Clearly, ω±(x) is empty unless x is ± complete. Observe, that ω±(x) =
ω±(y) if y ∈ γ(x) (if y = Φ(t, x) we have Φ(tn, y) = Φ(tn,Φ(t, x)) = Φ(tn +
t, x)). Hence ω±(x) depends only on the orbit γ(x). Moreover,

Lemma 6.5. The set ω±(x) is a closed invariant set.

Proof. To see that ω±(x) is closed, let y be in its closure and choose yn ∈
ω±(x) such that |y− yn| < (2n)−1 and tn → ±∞ such that |Φ(tn, x)− yn| <
(2n)−1. Then |Φ(tn, x)− y| < n−1 and thus y ∈ ω±(x).

The set ω±(x) is invariant since if Φ(tn, x) → y we have Φ(tn + t, x) =
Φ(t,Φ(tn, x)) → Φ(t, y) for every t ∈ Iy. �
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Example. For the equation ẋ = −x we have ω+(x) = {0} for every x ∈ R,
since every solution converges to 0 as t → ∞. Moreover, ω−(x) = ∅ for
x 6= 0 and ω−(0) = {0}. ⋄

In particular, even for complete x the set ω±(x) can be empty and we
need some further assumptions in order to guarantee that this does not
happen.

Lemma 6.6. If γσ(x) is contained in a compact set C, then ωσ(x) is non-
empty, compact, and connected.

Proof. By Lemma 6.3, x is σ complete and we can choose a sequence
Φ(tn, x) with tn → σ∞. By compactness we can extract a convergent sub-
sequence and hence ωσ(x) is nonempty and compact (since closed subsets of
compact sets are again compact). If ωσ(x) is disconnected, we can split it
into two disjoint closed sets ω1,2. Let δ = infy1∈ω1,y2∈ω2 |y1 − y2| > 0 be the

distance between ω1 and ω2. Taking all points which are at most δ2 away from
ω1,2, we obtain two disjoint neighborhoods U1,2 of ω1,2, respectively. Now
choose a strictly monotone sequence tn → σ∞ such that Φ(t2m+1, x) ∈ U1

and Φ(t2m, x) ∈ U2. By connectedness of Φ((t2m, t2m+1), x) we can find
Φ(t̃m, x) ∈ C\(U1 ∪ U2) with t2m < t̃m < t2m+1. Since C\(U1 ∪ U2) is com-
pact, we can assume Φ(t̃m, x) → y ∈ C\(U1 ∪ U2). But y must also be in
ωσ(x), a contradiction. �

Under the same assumptions we can also show that the trajectory con-
verges to its ω±-limit set. To this end recall that the distance between a
point x ∈ R

n and a set A ⊆ R
n is defined by

d(x,A) = inf
y∈A

|x− y|. (6.18)

Lemma 6.7. Suppose γσ(x) is contained in a compact set. Then we have
limt→σ∞ d(Φ(t, x), ωσ(x)) = 0.

Proof. It suffices to show that every sequence tn → σ∞ has a subsequence
for which the corresponding points on the orbit converge to a point on
ωσ(x). But for every sequence tn → σ∞ we can find a subsequence such
that the corresponding points on the orbit converge to some point y by our
compactness assumption. By definition of ωσ(x) we must have y ∈ ωσ(x) as
required. �

Now let us consider an example which shows that the compactness re-
quirement is indeed necessary.

Example. Let M = R
2 and consider the vector field

f(x) =

(
cos(x1)

2(sin(x1)− x2 cos(x1))
sin(x1) + x2 cos(x1)

)

, (6.19)
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Since f is bounded it is complete by Theorem 2.17. The singularities are
given by (Zπ/2, 0). One further verifies that for x ∈ (−π/2, π/2) × R we
have

Φ(t, x) =

(
arctan(reτ(t) cos(τ(t) + θ))

reτ(t) sin(τ(t) + θ)

)

, (6.20)

where (r, θ) are the polar coordinates of (tan(x1), x2) and

τ̇(t) =
1

√

1 + r2e2τ(t) cos(τ(t))2
, τ(0) = 0. (6.21)

Clearly, τ ∈ C∞(R,R) is a diffeomorphism and hence ω−(x) = (0, 0) and
ω+(x) = {±π

2 } × R if x 6= (0, 0). Moreover,

Φ(t, (±π
2
, x2)) =

(
±π

2
x2 ± t

)

(6.22)

and hence ω−((±π
2 , 0)) = ω+((±π

2 , 0)) = ∅.
Thus far Φ is only given for x ∈ [−π

2 ,
π
2 ]×R. The remaining parts of the

plane can be investigated using the transformation (t, x1, x2) → (−t, x1 ±
π, x2). ⋄

A nonempty, compact, σ invariant set C is called minimal if it contains
no proper σ invariant subset possessing these three properties. Note that
for such a minimal set we have C = ω+(x) = ω−(x) for every x ∈ C.
One example of such a minimal set is a periodic orbit. In fact, in two
dimensions this is the only example (Corollary 7.12). However, in three or
more dimensions orbits can be dense on a compact hypersurface and in such
a case the hypersurface cannot be split into smaller closed invariant sets.

Lemma 6.8. Every nonempty, compact (σ) invariant set C ⊆ M contains
a minimal (σ) invariant set.

If in addition C is homeomorphic to a closed m-dimensional disc (where
m is not necessarily the dimension of M), it contains a fixed point.

Proof. The first part is a standard argument from general topology (cf.,
e.g., [25]). Consider the family F of all compact (σ) invariant subsets of C
partially ordered by inclusion ⊆. Every chain in F has a minimal element by
the finite intersection property of compact sets. So by Zorn’s lemma there
exists a minimal member of F .

Now let C be homeomorphic to a disc and fix σ = + for simplicity. Pick
a sequence Tj → 0. By Brouwer’s theorem Φ(Tj , .) : C → C has a fixed
point xj . Since C is compact, we can assume xj → x after maybe passing
to a subsequence. Fix t > 0 and pick nj ∈ N0 such that 0 ≤ t− njTj < Tj.
Then

Φ(t, x) = lim
j→∞

Φ(njTj , xj) = lim
j→∞

xj = x
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and x is fixed. �

Problem 6.7. Consider a first-order autonomous system in R
1. Suppose

f(x) is differentiable, f(0) = f(1) = 0, and f(x) > 0 for x ∈ (0, 1). Deter-
mine the orbit γ(x) and ω±(x) if x ∈ [0, 1].

Problem 6.8. Let φ(t) be the solution of a first-order autonomous sys-
tem. Suppose limt→∞ φ(t) = x ∈ M . Show that x is a fixed point and

limt→∞ φ̇(t) = 0.

Problem 6.9 (Periodic points). Let Φ be the flow of some first-order au-
tonomous system.

(i) Show that if T satisfies Φ(T, x) = x, the same is true for any
integer multiple of T . Moreover, show that we must have T =
nT (x) for some n ∈ Z if T (x) 6= 0.

(ii) Show that a point x is fixed if and only if T (x) = 0.

(iii) Show that x is periodic if and only if γ+(x) ∩ γ−(x) 6= ∅ in which
case γ+(x) = γ−(x) and Φ(t+ T (x), x) = Φ(t, x) for all t ∈ R. In
particular, the period is the same for all points in the same orbit.

Problem 6.10. A point x ∈M is called nonwandering if for every neigh-
borhood U of x there is a sequence of positive times tn → ∞ such that
Φtn(U) ∩ U 6= ∅ for all tn. The set of nonwandering points is denoted
by Ω(f).

(i) Ω(f) is a closed invariant set (Hint: show that it is the complement
of an open set).

(ii) Ω(f) contains all periodic orbits (including all fixed points).

(iii) ω+(x) ⊆ Ω(f) for all x ∈M .

Find the set of nonwandering points Ω(f) for the system f(x, y) = (y,−x).
Problem 6.11. Denote by d(x,A) = infy∈A |x − y| the distance between a
point x ∈ R

n and a set A ⊆ R
n. Show

|d(x,A) − d(z,A)| ≤ |x− z|.
In particular, x 7→ d(x,A) is continuous.

6.4. The Poincaré map

Recall the Poincaré map used successfully in Section 1.6 for differential equa-
tions ẋ = f(t, x), where f is periodic with respect to t, say f(t + 1, x) =
f(t, x). To fit this equation into our current framework we consider the
corresponding autonomous equation

ẏ1 = 1, ẏ2 = f1(y1, y2, . . . , yn+1), . . . , ẏn+1 = fn(y1, y2, . . . , yn+1).
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Then the idea was to look at the fate of an initial point after one period,
that is we start at some initial point y and ask when it hits the plane
Σ = {y|y1 = 1}. This intersection was precisely our Poincaré map

P (y) = Φ(1, y)

up to the fact that we dropped the first component P1(y) = Φ1(1, y) = y1+1
which carries no useful information and fixed y1 = 0.

Our present goal is to generalize this concept for later use. To this end,
recall that a set Σ ⊂ R

n is called a submanifold of codimension one (i.e.,
its dimension is n− 1), if it can be written as

Σ = {x ∈ U |S(x) = 0}, (6.23)

where U ⊂ R
n is open, S ∈ Ck(U), and ∂S/∂x 6= 0 for all x ∈ Σ. The

submanifold Σ is said to be transversal to the vector field f if (∂S/∂x)f(x) 6=
0 for all x ∈ Σ.

Lemma 6.9. Suppose x ∈ M and T ∈ Ix. Let Σ be a submanifold of
codimension one transversal to f such that Φ(T, x) ∈ Σ. Then there exists
a neighborhood U of x and τ ∈ Ck(U) such that τ(x) = T and

Φ(τ(y), y) ∈ Σ (6.24)

for all y ∈ U .

Σ
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Proof. Consider the equation S(Φ(t, y)) = 0 which holds for (T, x). Since

∂

∂t
S(Φ(t, y)) =

∂S

∂x
(Φ(t, y))f(Φ(t, y)) 6= 0

for (t, y) in a neighborhood I × U of (T, x) by transversality. So by the
implicit function theorem (maybe after restricting U), there exists a function
τ ∈ Ck(U) such that for all y ∈ U we have S(Φ(τ(y), y)) = 0, that is,
Φ(τ(y), y) ∈ Σ. �

If x is periodic and T = T (x) is its period, then

PΣ(y) = Φ(τ(y), y) (6.25)

is called Poincaré map. It maps Σ into itself and every fixed point corre-
sponds to a periodic orbit. It will turn out to be an important tool in the
investigation of periodic orbits.
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Problem 6.12. Which of the following equations determine a submanifold
of codimension one of R2?

(i) x = 0.

(ii) x2 + y2 = 1.

(iii) x2 − y2 = 1.

(iv) x2 + y2 = 0.

Which of them is transversal to f(x, y) = (x,−y), f(x, y) = (1, 0), or
f(x, y) = (0, 1), respectively.

Problem 6.13. At what points is Σ = {(x, y) ∈ R
2|x2+y2 = 1} transversal

to the vector field f(x, y) = (y,−2x)?

Problem 6.14. The vector field f(x, y) = (−y, x) has the periodic solution
(cos(t), sin(t)). Compute the Poincaré map corresponding to Σ = {(x, y) ∈
R
2|x > 0, y = 0}

6.5. Stability of fixed points

As already mentioned earlier, one of the key questions is the long-time be-
havior of the dynamical system (6.7). In particular, one often wants to know
whether the solution is stable or not. But first we need to define what we
mean by stability. Usually one looks at a fixed point and wants to know what
happens if one starts close to it. Hence we make the following definition:

A fixed point x0 of f(x) is called (Liapunov) stable if for any given
neighborhood U(x0) there exists another neighborhood V (x0) ⊆ U(x0) such
that any solution starting in V (x0) remains in U(x0) for all t ≥ 0. In
this respect recall that a solution remaining in a compact set exists for all
positive times by Lemma 6.3. A fixed point which is not stable will be called
unstable.

Similarly, a fixed point x0 of f(x) is called asymptotically stable if
it is stable and if there is a neighborhood U(x0) such that

lim
t→∞

|φ(t, x) − x0| = 0 for all x ∈ U(x0). (6.26)

Note that (6.26) does not automatically imply stability (Problem 6.16).

Finally, a fixed point x0 of f(x) is called exponentially stable if there
are constants α, δ, C > 0 such that

|φ(t, x) − x0| ≤ Ce−αt|x− x0|, |x− x0| ≤ δ. (6.27)

Clearly (6.27) implies stability as well as (6.26).

Example. Consider ẋ = ax in R
1. Then x0 = 0 is stable if and only if

a ≤ 0 and exponentially stable if and only if a < 0. ⋄
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Example. The definition above of course agrees with the definition of
stability for linear systems ẋ = Ax we have introduced in Section 3.2. In
particular, by Corollary 3.5 the origin is stable if and only if all eigenvalues
αj of A satisfy Re(αj) ≤ 0 and for all eigenvalues with Re(αj) = 0 the
corresponding algebraic and geometric multiplicities are equal. Similarly, by
Corollary 3.6 the origin is exponentially stable if and only if all eigenvalues
satisfy Re(αj) < 0. ⋄

More generally, suppose the equation ẋ = f(x) in R
1 has a fixed point

x0. Then it is not hard to see (compare Section 1.5) that x0 is stable if

f(x)− f(x0)

x− x0
≤ 0, x ∈ U(x0)\{x0} (6.28)

for some neighborhood U(x0) and asymptotically stable if strict inequality
holds. It will be exponentially stable if

f(x)− f(x0)

x− x0
≤ −α, 0 < |x− x0| ≤ δ. (6.29)

In fact, (6.27) with C = 1 follows from a straightforward sub/super solution
argument by comparing with solutions of the linear equation ẏ = −αy.

In particular, if f ′(x0) 6= 0 the stability can be read of from the derivative
of f at x0 alone (cf. Problem 6.15). Moreover, Corollary 3.27 implies that
a fixed point is exponentially stable if this is true for the corresponding
linearized system.

Theorem 6.10 (Exponential stability via linearization). Suppose f ∈ C1

has a fixed point x0 and suppose that all eigenvalues of the Jacobian matrix
at x0 have negative real part. Then x0 is exponentially stable.

However, if f ′(x0) = 0, no information on the stability of the nonlinear
system can be read off from the linearized one as can be seen from the
following example.

Example. The equation

ẋ = µx3 (6.30)

is asymptotically stable for µ < 0, stable for µ ≤ 0, and unstable for µ > 0. ⋄

In R
n, n > 1, the equation ẋ = f(x) cannot be solved explicitly in

general, and good criteria for stability are needed. This will be the topic of
the remainder of this chapter.

But before that, let me point out that it is also interesting to look at
the change of a differential equation with respect to a parameter µ. By
Theorem 2.11 the flow depends smoothly on the parameter µ (if f does).
Nevertheless very small changes in the parameters can produce large changes
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in the qualitative behavior of solutions. The systematic study of these phe-
nomena is known as bifurcation theory. I do not want to go into further
details at this point but I will rather show you some prototypical examples.

The system

ẋ = µx− x3 (6.31)

has one stable fixed point for µ ≤ 0 which becomes unstable and splits off
two stable fixed points at µ = 0. This is known as pitchfork bifurcation.
The system

ẋ = µx− x2 (6.32)

has two stable fixed points for µ 6= 0 which collide and exchange stability at
µ = 0. This is known as transcritical bifurcation. The system

ẋ = µ+ x2 (6.33)

has one stable and one unstable fixed point for µ < 0 which collide at µ = 0
and vanish. This is known as saddle-node bifurcation.

Observe that by the implicit function theorem, the number of fixed
points can locally only change at a point (x0, µ0) if f(x0, µ0) = 0 and
∂f
∂x(x0, µ0) = 0.

Problem 6.15. Suppose f ∈ C1(R). Show directly that a fixed point x0 is
exponentially stable if f ′(x0) < 0 and unstable if f ′(x0) > 0.

Problem 6.16. Consider the system

ẋ = x− y − x(x2 + y2) +
xy

√

x2 + y2
,

ẏ = x+ y − y(x2 + y2)− x2
√

x2 + y2
. (6.34)

Show that (1, 0) is not stable even though it satisfies (6.26). (Hint: Show that

in polar coordinates the system is given by ṙ = r(1− r2), θ̇ = 2 sin(θ/2)2.)

Problem 6.17. Draw phase plots as a function of µ for the three systems
from above and prove all statements made above.

6.6. Stability via Liapunov’s method

Pick a fixed point x0 of f and an open neighborhood U(x0) of x0. A Lia-
punov function is a continuous function

L : U(x0) → R (6.35)

which is zero at x0, positive for x 6= x0, and satisfies

L(φ(t0)) ≥ L(φ(t1)), t0 < t1, φ(tj) ∈ U(x0)\{x0}, (6.36)
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for any solution φ(t). It is called a strict Liapunov function if equality
in (6.36) never occurs. Note that U(x0)\{x0} can contain no periodic orbits
if L is strict (why?).

Since the function L is decreasing along integral curves, we expect the
sublevel sets of L to be positively invariant. Let Sδ be the connected compo-
nent of {x ∈ U(x0)|L(x) ≤ δ} containing x0. Note that in general Sδ might
not be closed since it can have a common boundary with U(x0). In such
a case orbits can escape through this part of the boundary and in order to
avoid this, we need to assume that Sδ is closed.

Lemma 6.11. If Sδ is closed, then it is positively invariant.

Proof. Suppose φ(t) leaves Sδ at t0 and let x = φ(t0). Since Sδ is closed,
x ∈ Sδ ⊂ U(x0) and there is a ball Br(x) ⊆ U(x0) such that φ(t0 + ε) ∈
Br(x)\Sδ for small ε > 0. But then L(φ(t0+ε)) > δ = L(x) for some ε since
otherwise Sδ could not be the full connected component (we could extend it
by adding φ([t0, t0 + ε])). This contradicts (6.36). �

Moreover, Sδ is a neighborhood of x0 which shrinks to a point as δ → 0.

Lemma 6.12. For every δ > 0 there is an ε > 0 such that

Sε ⊆ Bδ(x0) and Bε(x0) ⊆ Sδ. (6.37)

Proof. Assume that the first claim in (6.37) is false. Then for every n ∈ N,
there is an xn ∈ S1/n such that |xn − x0| ≥ δ. Since S1/n is connected, we
can even require |xn−x0| = δ and by compactness of the sphere we can pass
to a convergent subsequence xnm → y. By continuity of L we have L(y) =
limm→∞ L(xnm) = 0 implying y = x0. This contradicts |y − x0| = δ > 0.

If the second claim in (6.37) were false, we could find a sequence xn such
that |xn−x0| ≤ 1/n and L(xn) ≥ δ. But then δ ≤ limn→∞ L(xn) = L(x0) =
0, again a contradiction. �

Hence, given any neighborhood V (x0), we can find an ε such that Sε ⊆
V (x0) is positively invariant. In other words, x0 is stable.

Theorem 6.13 (Liapunov). Suppose x0 is a fixed point of f . If there is a
Liapunov function L, then x0 is stable.

But we can say even more. For every x with φ(t, x) ∈ U(x0), t ≥ 0, the
limit

lim
t→∞

L(φ(t, x)) = L0(x) (6.38)

exists by monotonicity. Moreover, for every y ∈ ω+(x) we have some se-
quence tn → ∞ such that φ(tn, x) → y and thus L(y) = limn→∞L(φ(tn, x)) =
L0(x). Hence, if L is not constant on any orbit in U(x0)\{x0} we must have
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ω+(x) = {x0}. In particular, this holds for every x ∈ Sε and thus x0 is
asymptotically stable.

In summary we have proven

Theorem 6.14 (Krasovskii–LaSalle principle). Suppose x0 is a fixed point
of f . If there is a Liapunov function L which is not constant on any orbit
lying entirely in U(x0)\{x0}, then x0 is asymptotically stable. This is for
example the case if L is a strict Liapunov function. Moreover, every orbit
lying entirely in U(x0) converges to x0.

The same proof also shows

Theorem 6.15. Let L : U → R be continuous and bounded from below. If
for some x we have γ+(x) ⊂ U and

L(φ(t0, x)) ≥ L(φ(t1, x)), t0 < t1, (6.39)

then L is constant on ω+(x) ∩ U .

Most Liapunov functions will in fact be differentiable. In this case (6.36)
holds if and only if

d

dt
L(φ(t, x)) = grad(L)(φ(t, x))φ̇(t, x) = grad(L)(φ(t, x))f(φ(t, x)) ≤ 0.

(6.40)
The expression

grad(L)(x) · f(x) (6.41)

appearing in the previous equation is known as the Lie derivative of L
along the vector field f . A function for which the Lie derivative vanishes is
constant on every orbit and is hence called a constant of motion.

Theorem 6.15 implies that all ω±-limit sets are contained in the set where
the Lie derivative of L vanishes.

Example. Consider the system

ẋ = y, ẏ = −x
together with the function L(x, y) = x2 + y2. The Lie derivative is given by

grad(L)(x) · f(x) =
(
2x
2y

)(
y
−x

)

= 2xy − 2yx = 0

and hence L is a Liapunov function; in fact, even a constant of motion. In
particular, the origin is stable. Every level set L(x, y) = δ corresponds to
an orbit and the system is not asymptotically stable. ⋄

Problem 6.18. Show that L(x, y) = x2 + y2 is a Liapunov function for the
system

ẋ = y, ẏ = −ηy − x,
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where η ≥ 0 and investigate the stability of (x0, y0) = (0, 0).

Problem 6.19 (Gradient systems). A system of the type

ẋ = f(x), f(x) = −gradV (x),

is called a gradient system. Investigate the stability of a fixed point. (Hint:
Compute the Lie derivative of V .)

Problem 6.20. Show Theorem 6.15.

Problem 6.21. Suppose L ∈ C1(M,R). Show that the level set L(x) = c
is invariant under the flow if and only if the Lie derivative of L along the
vector field vanishes on this level set.

6.7. Newton’s equation in one dimension

Finally, let us look at a specific example which will illustrate the results
from this chapter.

We have learned in the introduction, that a particle moving in one dimen-
sion under the external force field f(x) is described by Newton’s equation

ẍ = f(x). (6.42)

Physicist usually refer to M = R
2 as the phase space, to (x, ẋ) as a phase

point, and to a solution as a phase curve. Theorem 2.2 then says that
through every phase point there passes precisely one phase curve.

The kinetic energy is the quadratic form

T (ẋ) =
ẋ2

2
(6.43)

and the potential energy is the function

U(x) = −
∫ x

x0

f(ξ)dξ (6.44)

and is only determined up to a constant which can be chosen arbitrarily.
The sum of the kinetic and potential energies is called the total energy of
the system

E = T (ẋ) + U(x). (6.45)

It is constant along solutions as can be seen from

d

dt
E = ẋẍ+ U ′(x)ẋ = ẋ(ẍ− f(x)) = 0. (6.46)

Hence, solving (6.45) for ẋ, the solution corresponding to the initial condi-
tions x(0) = x0, ẋ(0) = x1 can be given implicitly as

sign(x1)

∫ x

x0

dξ
√

2(E − U(ξ))
= t, E =

ẋ1
2

2
+ U(x0). (6.47)

Author's preliminary version made available with permission of the publisher, the American Mathematical Society



204 6. Dynamical systems

If x1 = 0 then sign(x1) has to be replaced by − sign(U ′(x0)). Fixed points of
the equation of motion (6.42) are the solutions of ẋ = 0, U ′(x) = f(x) = 0
and hence correspond to extremal points of the potential. Moreover, if U(x)
has a local minimum at x0, the energy (more precisely E − U(x0)) can be
used as Liapunov function, implying that x0 is stable if U(x) has a local
minimum at x0. In summary,

Theorem 6.16. Newton’s equation has a fixed point if and only if ẋ = 0
and U ′(x) = 0 at this point. Moreover, a fixed point is stable if U(x) has a
local minimum there.

Note that a fixed point cannot be asymptotically stable (why?).

Now let us investigate some examples. We first look at the so called
mathematical pendulum given by

ẍ = − sin(x). (6.48)

Here x describes the displacement angle from the position at rest (x = 0).
In particular, x should be understood modulo 2π. The potential is given by
U(x) = 1−cos(x). To get a better understanding of this system we will look
at some solutions corresponding to various initial conditions. This is usually
referred to as phase portrait of the system. We will use Mathematica to plot
the solutions. The following code will do the computations for us.

In[2]:= PhasePlot[f , ic , tmax , opts ] :=
Block[{i, n = Length[ic], ff, ivp, sol, phaseplot},
ff = f /. {x → x[t], y → y[t]};
Do[
ivp = {x′[t] == ff[[1]], y′[t] == ff[[2]],
x[0] == ic[[i, 1]], y[0] == ic[[i, 2]]};

sol = NDSolve[ivp, {x[t], y[t]}, {t,−tmax, tmax}];
phaseplot[i] =
ParametricPlot[{x[t], y[t]}/.sol, {t,−tmax, tmax}, ]

, {i, 1, n}];
Show[Table[phaseplot[i], {i, 1, n}], opts]

];

Next, let us define the potential

In[3]:= U[x ] = 1− Cos[x];
Plot[U[x], {x,−2π, 2π}, Ticks → False]
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Out[3]=

and plot the phase portrait

In[4]:= PhasePlot[{y,−U′[x]}, {{0, 0.2}, {0, 1}, {−2π, 0.2}, {−2π, 1},
{2π, 0.2}, {2π, 1}, {0, 2}, {2π,−2}, {2π, 2}, {−2π,−2},
{−2π, 2}, {0,−2}, {0, 2.5}, {0,−2.5}, {0, 3}, {0,−3}},
2π, PlotRange→ {{−2π, 2π}, {−3, 3}}, Ticks → False]

Out[4]=

Now let us start with a rigorous investigation. We restrict our attention
to the interval x ∈ (−π, π]. The fixed points are x = 0 and x = π. Since
the potential has a minimum at x = 0, it is stable. Next, the level sets of
E(ẋ, x) = const are invariant as noted earlier. For E = 0 the corresponding
level set is the equilibrium position (ẋ, x) = (0, 0). For 0 < E < 2 the level
set is homeomorphic to a circle. Since this circle contains no fixed points,
it is a regular periodic orbit. Next, for E = 2 the level set consists of the
fixed point π and two non-closed orbits connecting −π and π. It is usually
referred to as separatrix. For E > 2 the level sets are again closed orbits
(since we regard everything modulo 2π).

In a neighborhood of the equilibrium position x = 0, the system is
approximated by its linearization sin(x) = x+O(x2) given by

ẍ = −x, (6.49)

which is called the harmonic oscillator. Since the energy is given by

E = ẋ2

2 + x2

2 , the phase portrait consists of circles centered at 0. More
generally, if

U ′(x0) = 0, U ′′(x0) =
ω2

2
> 0, (6.50)

our system should be approximated by

ÿ = −ω2y, y(t) = x(t)− x0. (6.51)

Clearly this equation can be transformed to (6.49) by scaling time according
to t→ t

ω .
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Finally, let remark that one frequently uses the momentum p = ẋ (we
have chosen units such that the mass is one) and the location q = x as
coordinates. The energy is called the Hamiltonian

H(p, q) =
p2

2
+ U(q) (6.52)

and the equations of motion are written as (compare Problem 7.10)

q̇ =
∂H(p, q)

∂p
, ṗ = −∂H(p, q)

∂q
. (6.53)

This formalism is called Hamilton mechanics and it is also useful for
systems with more than one degree of freedom. We will return to this point
of view in Section 8.3.

Problem 6.22. Consider the mathematical pendulum. If E = 2 what is the
time it takes for the pendulum to get from x = 0 to x = π?

Problem 6.23. Investigate the potential U(x) = x2

2 − x3

3 .

In[5]:= U[x ] =
x2

2
− x3

3
; Plot[U[x], {x,−1, 2}, Ticks → False]

Out[5]=

Here are some interesting phase curves to get you started.

In[6]:= PhasePlot[{y,−U′[x]}, {{−1, 0}, {−0.7, 0}, {−0.5, 0}, {−0.3, 0},
{1.05, 0.05}, {1.5, 0}, {2, 0}}, 8,
PlotRange→ {{−1, 2.5}, {−2, 2}}, Ticks → False]

Out[6]=
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Problem 6.24 (Korteweg–de Vries equation). The Korteweg–de Vries
equation

∂

∂t
u(t, x) +

∂3

∂x3
u(t, x) + 6u(t, x)

∂

∂x
u(t, x)

is a model for shallow water waves. One of its outstanding features is the
existence of so-called solitons, that is, waves which travel in time without
changing their shape.

To find the one soliton solution make the traveling wave ansatz u(x, t) =
v(x− ct), c ∈ R, which yields

−cv′ + v′′′ + 6vv′ = 0.

This equation can be integrated once

v′′ − cv + 3v2 + a = 0

such that one obtains an equation of Newton type with a cubic potential
U(v) = v3 − c

2v
2 − av. Physicists are interested in solutions which satisfy

limx→±∞ v(x) = 0. How does this limit the admissible parameters a, c? Find
the corresponding shape v(x).

Note that if we eliminate the −cv′ term via the transformation v(x) =
−2w(x) + c

6 , we obtain the differential equation

w′′′ = 12w′w

for the Weierstraß elliptic function ℘(x). The function v(x) = −2℘(x) + c
6

corresponds to a periodic solution of the Newton equation.

Problem 6.25. Show that all solutions are periodic if lim|x|→∞U(x) = +∞.

Problem 6.26. The mathematical pendulum with friction is described by

ẍ = −ηẋ− sin(x), η > 0.

Is the energy still conserved in this case? Show that the energy can be used as
a Liapunov function and prove that the fixed point (ẋ, x) = (0, 0) is (asymp-
totically) stable. How does the phase portrait change?

Problem 6.27. Consider a more general system with friction

ẍ = −η(x)ẋ− U ′(x), η(x) > 0.

(i) Use the energy to show that there are no regular periodic solutions
(compare Problem 7.11).

(ii) Show that minima of U(x) are asymptotically stable.
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Chapter 7

Planar dynamical
systems

7.1. Examples from ecology

In this section we want to consider a model from ecology. It describes two
populations, one predator species y and one prey species x. Suppose the
growth rate of the prey without predators is A (compare Problem 1.15). If
predators are present, we assume that the growth rate is reduced propor-
tional to the number of predators, that is,

ẋ = (A−By)x, A,B > 0. (7.1)

Similarly, if there is no prey, the numbers of predators will decay at a rate
−D. If prey is present, we assume that this rate increases proportional to
the amount of prey, that is

ẏ = (Cx−D)y, C,D > 0. (7.2)

Scaling x, y, and t we arrive at the system

ẋ = (1− y)x
ẏ = α(x− 1)y

, α > 0, (7.3)

which are the predator-prey equations of Volterra and Lotka.

There are two fixed points. First of all, there is (0, 0) and the lines x = 0
and y = 0 are invariant under the flow:

Φ(t, (0, y)) = (0, ye−αt), Φ(t, (x, 0)) = (xet, 0). (7.4)

209
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210 7. Planar dynamical systems

Figure 7.1. Phase portrait of the Volterra–Lotka system.

In particular, since no other solution can cross these lines, the first quadrant
Q = {(x, y)|x > 0, y > 0} is invariant. This is the region we are interested
in. The second fixed point is (1, 1).

Hence let us try to eliminate t from our differential equations to get a
single first-order equation for the orbits. Writing y = y(x), we infer from
the chain rule

dy

dx
=
dy

dt

(
dx

dt

)−1

= α
(x− 1)y

(1 − y)x
. (7.5)

This equation is separable and solving it shows that the orbits are given
implicitly by

L(x, y) = f(y) + αf(x) = const, f(x) = x− 1− log(x). (7.6)

The function f cannot be inverted in terms of elementary functions. How-
ever, f(x) is convex with its global minimum at x = 1 and tends to ∞ as
x → 0 and x → ∞. Hence the level sets are compact and each orbit is
periodic surrounding the fixed point (1, 1).

Theorem 7.1. All orbits of the Volterra–Lotka equations (7.3) in Q are
closed and encircle the only fixed point (1, 1).

The phase portrait is depicted in Figure 7.1.

Next, let us refine this model by assuming limited grow for both species
(compare again Problem 1.15). The corresponding system is given by

ẋ = (1− y − λx)x
ẏ = α(x− 1− µy)y

, α, λ, µ > 0. (7.7)
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Figure 7.2. Phase portrait of a predator prey model with limiting growth.

As before the lines x = 0 and y = 0 are invariant but now there are four
fixed points

(0, 0), (λ−1, 0), (0,−µ−1),

(
1 + µ

1 + µλ
,
1− λ

1 + µλ

)

. (7.8)

The third one is outside of Q and so will be the last one if λ > 1.

We first look at the case where λ ≥ 1 such that there is only one addi-
tional fixed point in Q, namely (λ−1, 0). It is a hyperbolic sink if λ > 1 and
if λ = 1, one eigenvalue is zero. Unfortunately, the equation for the orbits
is no longer separable and hence a more thorough investigation is necessary
to get a complete picture of the orbits.

The key idea now is to split Q into regions where ẋ and ẏ have definite
signs and then use the following elementary observation (Problem 7.1).

Lemma 7.2. Let φ(t) = (x(t), y(t)) be the solution of a planar system.
Suppose U is open and U is compact. If x(t) and y(t) are strictly monotone
in U , then either φ(t) hits the boundary at some finite time t = t0 or φ(t)
converges to a fixed point (x0, y0) ∈ U .

Now let us see how this applies to our case. The regions where ẋ and ẏ
have definite signs are separated by the two lines

L1 = {(x, y)|y = 1− λx}, L2 = {(x, y)|µy = x− 1}. (7.9)

A typical situation for α = µ = 1, λ = 2 is depicted in Figure 7.2.

This picture seems to indicate that all trajectories converge to the fixed
point (λ−1, 0). Now let us try to prove this. Denote the regions in Q enclosed
by these lines by (from left to right) Q1, Q2, and Q3. Observe that the lines
L2 and L1 are transversal and thus can only be crossed in the direction from
Q3 → Q2 and Q2 → Q1, respectively.

Suppose we start at a point (x0, y0) ∈ Q3. Then, adding to Q3 the
constraint x ≤ x0, we can apply Lemma 7.2 to conclude that the trajectory
enters Q2 through L2 or converges to a fixed point in Q3. The last case is
only possible if (λ−1, 0) ∈ Q3, that is, if λ = 1. Similarly, starting in Q2 the
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Figure 7.3. Phase portrait of a predator prey model with limiting growth.

trajectory will enter Q1 via L1 or converge to (λ−1, 0). Finally, if we start
in Q1, the only possibility for the trajectory is to converge to (λ−1, 0).

In summary, we have proven that for λ ≥ 1 every trajectory in Q con-
verges to (λ−1, 0).

Now consider the remaining case 0 < λ < 1 such that there is a third
fixed point ( 1+µ

1+µλ ,
1−λ
1+µλ ). A phase portrait for α = µ = 1, λ = 1

2 is shown in

Figure 7.3.

Again it looks like all trajectories converge to the sink in the middle.
We will use the same strategy as before. Now the lines L1 and L2 split
Q into four regions Q1, Q2, Q3, and Q4 (where Q4 is the new one). As
before we can show that trajectories pass through these sets according to
Q4 → Q3 → Q2 → Q1 → Q4 unless they get absorbed by one of the
fixed points. However, there is now a big difference to the previous case: A
trajectory starting in Q4 can return to Q4 and hence there could be periodic
orbits.

To exclude periodic orbits we will try to find a Liapunov function. In-
spired by (7.6) we will try to scale x and y such that the minimum is at the

fixed point (x0, y0) = ( 1+µ
1+µλ ,

1−λ
1+µλ ). We introduce

L(x, y) = γ1f(
y

y0
) + α γ2f(

x

x0
), f(x) = x− 1− log(x), (7.10)

where the constants γ1, γ2 > 0 are to be determined. Using

ẋ = (−ȳ − λx̄)x, ẏ = α(x̄− µȳ)y, x̄ = x− x0, ȳ = y − y0 (7.11)

we compute

L̇ =
∂L

∂x
ẋ+

∂L

∂y
ẏ = −α

(
λγ2
x0

x̄2 +
µγ1
y0

ȳ2 + (
γ2
x0

− γ1
y0

)x̄ȳ

)

. (7.12)

The right-hand side will be negative if we choose γ1 = y0 and γ2 = x0 such
that the third term vanishes. Hence we again see that all orbits starting in
Q converge to the fixed point (x0, y0).
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Theorem 7.3. Suppose λ ≥ 1. Then there is no fixed point of the equations
(7.7) in Q and all trajectories in Q converge to the point (λ−1, 0).

If 0 < λ < 1 there is only one fixed point ( 1+µ
1+µλ ,

1−λ
1+µλ) in Q. It is

asymptotically stable and all trajectories in Q converge to this point.

For our original model this means that the predators can only survive
if their growth rate is positive at the limiting population λ−1 of the prey
species.

Similarly on could consider systems of competing or cooperating species

ẋ = α(x, y)x, ẏ = β(x, y)y. (7.13)

Here we will call two species cooperative if the growth of one species in-
creases the growth rate of the other and vice versa, that is,

∂

∂y
α(x, y) ≥ 0 and

∂

∂x
β(x, y) ≥ 0, (x, y) ∈ Q. (7.14)

Similarly we will call two species competitive if the growth of one species
decreases the growth rate of the other and vice versa, that is,

∂

∂y
α(x, y) ≤ 0 and

∂

∂x
β(x, y) ≤ 0, (x, y) ∈ Q. (7.15)

It turns out that in this situation the analysis is much simpler. Moreover,
we can even be slightly more general.

Theorem 7.4. Suppose the system

ẋ = f(x, y), ẏ = g(x, y), (x, y) ∈M ⊆ R
2 (7.16)

is either strictly cooperative,

∂

∂y
f(x, y) > 0 and

∂

∂x
g(x, y) > 0, (x, y) ∈M, (7.17)

or strictly competitive,

∂

∂y
f(x, y) < 0 and

∂

∂x
g(x, y) < 0, (x, y) ∈M. (7.18)

Then all orbits converge either to a fixed point or to a boundary point (in-
cluding ∞) of M .

Proof. We assume that our system is cooperative and denote the quad-
rants of R

2 by Q1 = {(x, y)|x, y > 0}, Q2 = {(x, y)| − x, y > 0}, Q3 =
{(x, y)|x,−y > 0}, and Q4 = {(x, y)| − x,−y > 0}. The competitive case
can be handled analogously.

We first note that if (ẋ, ẏ) ∈ Q1 at some time t = t0, then (ẋ, ẏ) ∈ Q1

for all t > t0. In fact, if we should have ẋ(t1) = 0, then

ẍ =
∂f

∂x
(x, y)ẋ+

∂f

∂y
(x, y)ẏ
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is positive at such a point (if ẏ(t1) = 0 vanishes as well, we already are at
a fixed point). An analogous argument rules out ẏ(t1) = 0. Similarly for
Q3. Finally, if (ẋ, ẏ) ∈ Q2 ∪ Q4 it either remains there or enters Q1 ∪Q3.
Hence the sign of ẋ(t) as well as ẏ(t) can change at most once and thus both
components are eventually monotone. �

Note that time reversal maps a cooperative system in a competitive one
and vice versa.

In particular, if we assume limited growth, that is, α(x, y) becomes
eventually negative as x → ∞ and β(x, y) becomes eventually negative as
y → ∞, then every solution converges to a fixed point.

Problem 7.1. Prove Lemma 7.2.

Problem 7.2 (Volterra principle). Show that for any orbit of the Volterra–
Lotka system (7.3), the time average over one period

1

T

∫ T

0
x(t)dt = 1,

1

T

∫ T

0
y(t)dt = 1

is independent of the orbit. (Hint: Integrate d
dt log(x(t)) over one period.)

Problem 7.3. Show that the change of coordinates x = exp(q), y = exp(p)
transforms the Volterra–Lotka system (7.3) into a Hamiltonian system with
Hamiltonian H(p, q) = L(exp(q), exp(p)).

Moreover, use the same change of coordinates to transform (7.7). Then
use Bendixson’s criterion (Problem 7.11) to show that there are no periodic
orbits.

Problem 7.4. Show that (7.7) has no periodic orbits in the case λ < 1 if
µλ ≥ 1 as follows:

If there is a periodic orbit it must contain a point (x0, y0) on L1 which
satisfies

1 + µ

1 + µλ
< x0 <

1

λ
, y0 = 1− λx0. (7.19)

The trajectory enters Q1 and satisfies x(t) < x0 in Q1 since x(t) decreases
there. Hence we must have y(t) < y1 = x0−1

µ when it hits L2. Now we

enter Q2, where y(t) decreases implying x(t) < x1 = 1−y1
λ when we hit L1.

Proceeding like this we finally see y(t) > y2 = x1−1
µ when we return to L1.

If y2 ≥ y0, that is if

(1 + µ)(1− µλ) ≥ (1− (µλ)2)x0, (7.20)

the trajectory is spiraling inwards and we get a contradiction to our assump-
tion that it is periodic. This is the case when µλ ≥ 1.
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Problem 7.5 (Competing species). Suppose you have two species x and y
such that one inhibits the growth of the other. A simple model describing
such a situation would be

ẋ = (A−By)x
ẏ = (C −Dx)y

, A,B,C,D > 0.

Find out as much as possible about this system.

Problem 7.6 (Competing species with limited growth). Consider the same
setting as in the previous problem but now with limited growth. The equations
read

ẋ = (1− y − λx)x
ẏ = α(1 − x− µy)y

, α, λ, µ > 0.

Again, find out as much as possible about this system.

7.2. Examples from electrical engineering

In this section we want to come back to electrical circuits, which we already
considered in Section 3.3. We will again look at the case of one inductor,
one capacitor, and one resistor arranged in a loop. However, this time we
want to consider a resistor with arbitrary characteristic

VR = R(IR). (7.21)

Since there is no potential difference if there is no current, we must have
R(0) = 0. For a classical resistor we have R(I) = RI, where the resistance R
is a constant (Ohm’s law), but for sophisticated elements like semiconductors
the relation is more complicated. For example, the characteristic of a diode
is given by

V =
kT

q
log(1 +

I

IL
), (7.22)

where IL is the leakage current, q the charge of an electron, k the Boltzmann
constant and T the absolute temperature.

In the positive direction you need only a very small voltage to get a large
current whereas in the other direction you will get almost no current even
for fairly large voltages. Hence one says that a diode lets the current pass
in only one direction.

Kirchhoff’s laws yield IR = IL = IC and VR + VL + VC = 0. Using the
properties of our three elements and eliminating, say, IC , IR, VL, VR we
obtain the system

LİL = −VC −R(IL)

CV̇C = IL
, R(0) = 0, L,C > 0. (7.23)
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In addition, note that the change of energy in each element is given by I V .
By Kirchhoff’s laws we have

ILVL + ICVC + IRVR = 0, (7.24)

which can be rewritten as

d

dt

(
L

2
I2L +

C

2
V 2
C

)

= −IRR(IR). (7.25)

That is, the energy dissipated in the resistor has to come from the inductor
and the capacitor.

Finally, scaling VC and t we end up with Liénard’s equation (compare
Problem 7.7)

ẋ = y − f(x)
ẏ = −x , f(0) = 0. (7.26)

Equation (7.25) now reads

d

dt
W (x, y) = −xf(x), W (x, y) =

x2 + y2

2
. (7.27)

This equation will be our topic for the rest of this section. First of all,
the only fixed point is (0, 0). If xf(x) > 0 in a neighborhood of x = 0, then
W is a Liapunov function and hence (0, 0) is stable. Moreover, we even have

Theorem 7.5. Suppose xf(x) ≥ 0 for all x ∈ R and xf(x) > 0 for 0 <
|x| < ε. Then every trajectory of Liénard’s equation (7.26) converges to
(0, 0).

Proof. If W (x, y) is constant on an orbit, say W (x, y) = R2/2, then the

orbit must be a circle of radius R. Hence we must have Ẇ = −xf(x) = 0
for 0 ≤ |x| ≤ R and the result follows from the Krasovskii–LaSalle principle
(Theorem 6.14). �

Conversely, note that (0, 0) is unstable if xf(x) < 0 for 0 < |x| < ε. In
fact, the above argument shows that within this region the distance to the
fixed point will increase.

We will now show that Liénard’s equation has periodic orbits if f is odd
and if xf(x) is negative for x small and positive for x large. More precisely,
we will need the following assumptions. Suppose f is differentiable such that

(i) f is odd, that is, f(−x) = −f(x).
(ii) f(x) < 0 for 0 < x < α (f(α) = 0 without restriction).

(iii) lim infx→∞ f(x) > 0 and in particular f(x) > 0 for x > β (f(β) =
0 without restriction).

(iv) f(x) is monotone increasing for x > α (i.e., α = β).
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Figure 7.4. Typical f for Liénard’s equation.

A prototypical f is depicted in Figure 7.4.

Furthermore, let us abbreviate Q± = {(x, y)| ± x > 0} and L± =
{(x, y)|x = 0,±y > 0}. Our symmetry requirement (i) will allow us to
restrict our attention to Q+ since the corresponding results for Q− will fol-
low via the transformation (x, y) → (−x,−y) which maps Q+ to Q− and
leaves the differential equation (7.26) invariant if f is odd.

As a first observation we note that

Lemma 7.6. Every trajectory of Liénard’s equation (7.26) in Q+ can cross
the graph of f at most once.

Proof. A quick calculation shows that for ∆ = y − f(x) we have ∆̇ =

−x− f ′(x)∆ and thus ∆̇(t0) > 0 whenever ∆(t0) = 0 and (x, y) ∈ Q+. �

Next we show

Lemma 7.7. Suppose f satisfies the requirements (ii) and (iii). Then, every
trajectory starting in Q+ above the graph of f will eventually hit the graph at
a finite positive time. Similarly, every trajectory starting in Q+ on or below
the graph of f will hit L− at a finite positive time. Finally, every trajectory
starting on the graph will hit L+ at a finite negative time.

Proof. Suppose we start at some point (x0, y0) with x0 ≥ 0. Choose some

C < min f(x) and consider ∆ = x2+(y−C)2. Then ∆̇ = 2(xẋ+(y−C)ẏ) =
2x(C − f(x)) < 0 for (x, y) ∈ Q+. Hence starting in the region bounded
by L+, the graph of f and a circle ∆ = R2 we stay inside this region
until we hit the graph of f by Lemma 7.2 (we cannot converge to the only
fixed point (0, 0) since it is unstable). This shows the first claim. The
second follows similarly. For the last one use ∆ = x2 + (y −M)2, where
M > maxx∈[0,x0+ε] f(x) and consider the region bounded by the graph of f ,

the vertical line y = y0 + ε, and a circle ∆ = R2 containing (x0, y0). �

Now suppose f satisfies (i)–(iii). Denote the first intersection point of the
trajectory starting at (x(0), y(0)) = (0, y0) ∈ L+ with L− by (x(T ), y(T )) =
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Figure 7.5. Definition of the Poincaré map P (y0) for Liénard’s equation.

(0, P (y0)) (cf. Figure 7.5). Then, every periodic orbit orbit must encircle
(0, 0) and satisfy P (y0) = −y0. Hence every periodic orbit corresponds to a
zero of the function

∆(y0) =W (0, P (y0))−W (0, y0) = −
∫ T

0
x(t)f(x(t))dt. (7.28)

Now what can we say about this function? Clearly, for y0 < α we have
∆(y0) > 0. Hence it suffices to show that ∆(y0) becomes negative as y0 →
∞.

By the last part of Lemma 7.7 there is a number r > 0 such that the
trajectory starting at (0, r) intersects the graph of f at (β, 0). So for y0 > r
our trajectory intersects the line x = β at t1 and t2. Furthermore, since the
intersection with f can only be for t ∈ (t1, t2), we have y(t) > f(x(t)) for
0 ≤ t ≤ t1 and y(t) < f(x(t)) for t2 ≤ t ≤ T . Now let us split ∆ into three
parts by splitting the integral at t1 and t2.

For the first part we obtain

∆1(y0) = −
∫ t1

0
x(t)f(x(t))dt =

∫ β

0

−xf(x)
y(x)− f(x)

dx, (7.29)

where only y(x) depends on y0 in the last expression. Since y(x) is increasing
as y0 increases (orbits cannot intersect), the absolute value of the integrand
in ∆1(y0) decreases. In addition, since y(t1) → ∞ as y0 → ∞ we have
limy0→∞∆1(y0) = 0.

The second part is

∆2(y0) = −
∫ t2

t1

x(t)f(x(t))dt = −
∫ y(t1)

y(t2)
f(x(y))dy < 0. (7.30)
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By (iii) this part cannot tend to 0.

Finally,

∆3(y0) = −
∫ T

t2

x(t)f(x(t))dt =

∫ β

0

−xf(x)
f(x)− y(x)

dx (7.31)

also decreases, with a similar argument as for ∆1.

Moreover, I claim that ∆(y0) eventually becomes negative. If y(t2) →
−∞ then ∆3(y0) → 0 as in the case of ∆1 and the claim holds. Otherwise,
if y(t2) → y2 < 0, then every orbit passing through (β, y) with y ≤ y2 must
stay below f for all negative times by Lemma 7.7. Consequently we must
have f(x) → ∞ (since it must stay above any such solution). But then
∆2(y0) → −∞ (show this) and the claim again holds.

If in addition (iv) holds, it is no restriction to assume α = β and we
have that ∆(y0) is monotone decreasing for y0 > r. Since we must also have
α > r, there is precisely one zero in this case. This proves

Theorem 7.8. Suppose f satisfies the requirements (i)–(iii). Then Liénard’s
equation (7.26) has at least one periodic orbit encircling (0, 0).

If in addition (iv) holds, this periodic orbit is unique and every trajectory
(except (0, 0)) converges to this orbit as t→ ∞.

Proof. It remains to show that all orbits except (0, 0) converge to the unique
periodic orbit determined by y = −P (y). Since any initial condition reaches
L+ by Lemma 7.7, we can restrict our attention to orbits starting on L+.
By symmetry a solution starting at (0,−y) ∈ L− will hit L+ at −P (y) and
we thus set P (y) = −P (−y) for y < 0. Fix y0 > 0 and consider the sequence
of points yn = Pn(y0) (i.e., (0, y2m+1) is the sequence of intersections with
L− and (0, y2m) is the sequence of intersections with L+). Since ∆(y) is
positive for y < y and negative for y < y the sequence (−1)nyn is strictly
decreasing for y0 > y and strictly increasing for y0 < y and hence converges
to the only fixed point y. By continuity of the flow the points on the orbit
between yn and yn+1 must also converge to γ(y). �

The classical application is van der Pol’s equation

ẍ− µ(1− x2)ẋ+ x = 0, µ > 0, (7.32)

which models a triode circuit. By Problem 7.7 it is equivalent to Liénard’s

equation with f(x) = µ(x
3

3 − x). All requirements of Theorem 7.8 are
satisfied and hence van der Pol’s equation has a unique periodic orbit and
all trajectories converge to this orbit as t→ ∞.

The phase portrait for µ = 1 is shown in Figure 7.6.

It is also interesting to consider the family of Liénard’s equations with
fµ(x) = x3 − µx. For µ ≤ 0 it has a stable fixed point at (0, 0) which is
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Figure 7.6. Phase portrait of the van der Pol equation.

globally attracting by Theorem 7.5. For µ > 0 this fixed point becomes
unstable and a unique globally attracting periodic orbit emerges. This is
the prototypical example of a Poincaré–Andronov–Hopf bifurcation.

Problem 7.7. The equation

ẍ+ g(x)ẋ+ x = 0

is also often called Liénard’s equation. Show that it is equivalent to (7.26)
if we set y = ẋ+ f(x), where f(x) =

∫ x
0 g(t)dt.

Problem 7.8. Show that

ż = z(µ− (α+ iβ)|z|2), µ ∈ R, α, β > 0,

where z(t) = x(t) + iy(t), exhibits a Hopf bifurcation at µ = 0. (Hint: Use
polar coordinates z = reiϕ.)

7.3. The Poincaré–Bendixson theorem

In all our examples from the previous sections the solutions behaved quite
regular and would either converge to a fixed point or to a periodic orbit. It
turns out that this behavior is typical and it is the purpose of the present
section to classify the possible omega limit sets for planar systems. What
makes R

2 different from R
n, n ≥ 3, in this respect is the validity of the

Jordan Curve Theorem: Every Jordan curve J (i.e., a homeomorphic
image of the circle S1) dissects R2 into two connected regions. In particular,
R
2\J has two components. We will only use the special case where the curve

is piecewise smooth. A proof for this case can be found (e.g.) in [39].

So let M ⊆ R
2 and f ∈ C1(M,R2) be given. By an arc Σ ⊂ R

2 we
mean a submanifold of dimension one given by a smooth map t→ s(t) with
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Figure 7.7. Proof of Lemma 7.9

ṡ 6= 0. Using this map the points of Σ can be ordered. Moreover, for each
regular x ∈ M (i.e., f(x) 6= 0), we can find an arc Σ containing x which is
transversal to f (i.e., ṡ1(t)f2(s(t))− ṡ2(t)f1(s(t)) 6= 0).

Given a regular point x0 ∈ Σ we can define the points of subsequent
intersections of γσ(x0) with Σ by xn = Φ(tn, x0). Of course this set may be
finite or even empty in general. However, if it is infinite we must have tn →
Tσ(x0). In fact, if tn → T 6= Tσ(x0) then the limit y = limt→T Φ(t, x0) ∈M
exists and must be a regular point. Hence we can straighten out the flow
near y, which shows that the difference between two consecutive intersection
times cannot converge to 0 and hence contradicts our assumption.

Lemma 7.9. Let x0 ∈ M be a regular point and Σ a transversal arc con-
taining x0. Denote by xn = Φ(tn, x0), n ≥ 1, the (maybe finite) ordered
(according to tn) sequence of intersections of γσ(x0) with Σ. Then xn is
monotone (with respect to the order of Σ).

Proof. We only consider the σ = + case. If x0 = x1 we are done. Otherwise
consider the curve J from x0 to x1 along γ+(x0) and back from x1 to x0
along Σ. This curve J is the image of a continuous bijection from S1 to J .
Since S1 is compact, it is a homeomorphism. Hence J is a Jordan curve and
M\J =M1 ∪M2.

Now let Σ̃ ⊂ Σ be the arc from x0 to x1 along Σ. Then f always points
either in the direction of M1 or M2 along Σ̃ since it cannot change direction
by transversality of Σ. So γ+(x1) enters eitherM1 orM2 and then is trapped

since it can neither exit through Σ̃ (as the vector field points in the wrong
direction) nor cross the orbit from x0 to x1 (compare Figure 7.7). Hence
either γ+(x1) ⊂ M1 or γ+(x1) ⊂ M2. Moreover, if x0 < x1, then γ+(x1)
must remain in the component containing all points x ∈ Σ, x1 < x, and if
x0 > x1, then γ+(x1) must remain in the component containing all points
x ∈ Σ, x1 > x. Iterating this procedure proves the claim. �
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Next, observe that if y ∈ Σ∩ωσ(x), we can approximate y by a sequence
xn ∈ Σ ∩ γσ(x). In fact, choose tn → σ∞ such that xn = Φ(tn, x) → y.
Then, by Lemma 6.9 (with x = y and T = 0), we can use t̃n = tn + τ(xn)
to obtain a sequence Φ(t̃n, x) → y of the required type.

Corollary 7.10. Let Σ be a transversal arc. Then ωσ(x) intersects Σ in at
most one point.

Proof. Suppose there are two points of intersections y1 and y2. Then there
exist sequences x1,n, x2,n ∈ Σ∩γσ(x) converging to y1, y2, respectively. But
this is not possible since both are subsequence of the monotone sequence xn
from Lemma 7.9. �

Corollary 7.11. Suppose ωσ(x)∩ γσ(x) 6= ∅. Then x is periodic and hence
ω+(x) = ω−(x) = γ(x).

Proof. By assumption there is some y ∈ ωσ(x) ∩ γσ(x). Moreover, by
invariance of ωσ(x) we must even have γ(x) = γ(y) ⊆ ωσ(x). If y is fixed
we have γσ(x) = {y} and there is nothing to do. So we can assume that
y is not fixed and pick a transversal arc Σ containing y plus a sequence
xn ∈ Σ ∩ γσ(x) ⊆ Σ ∩ ωσ(x) converging to y. By the previous corollary we
must have xn = y and hence γ(y) = γ(x) is periodic. �

Corollary 7.12. A minimal compact σ invariant set C is a periodic orbit.

Proof. Pick x ∈ C. Then ωσ(x) = C by minimality and hence ωσ(x) ∩
γσ(x) 6= ∅. Therefore x is periodic by the previous corollary. �

After this sequence of corollaries we proceed with our investigation of
ω± limit sets.

Lemma 7.13 (Poincaré–Bendixson theorem). If ωσ(x) 6= ∅ is compact and
contains no fixed points, then ωσ(x) is a regular periodic orbit.

Proof. Let y ∈ ωσ(x). Take z ∈ ωσ(y) ⊆ ωσ(x) which is not fixed by
assumption. Pick a transversal arc Σ containing z and a sequence yn → z
with yn ∈ Σ ∩ γσ(y). Since Σ ∩ γσ(y) ⊆ Σ ∩ ωσ(x) = {z} by Corollary 7.10,
we conclude yn = z and hence ωσ(x) is a regular periodic orbit. �

Lemma 7.14. Suppose ωσ(x) is connected and contains a regular periodic
orbit γ(y). Then ωσ(x) = γ(y).

Proof. If ωσ(x)\γ(y) is nonempty, then, by connectedness, there is a point
ỹ ∈ γ(y) such that we can find a point z ∈ ωσ(x)\γ(y) arbitrarily close to ỹ.
Pick a transversal arc Σ containing ỹ. By Lemma 6.9 we can find τ(z) such
that Φ(τ(z), z) ∈ Σ. But then we even have Φ(τ(z), z) ∈ Σ ∩ ωσ(x) = {ỹ}
(by Corollary 7.10) and hence z ∈ γ(y) contradicting our assumption. �
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Figure 7.8. Proof of Lemma 7.15

Lemma 7.15. Let x ∈ M , σ ∈ {±}, and suppose ωσ(x) is compact. Let
x± ∈ ωσ(x) be distinct fixed points. Then there exists at most one orbit
γ(y) ⊂ ωσ(x) with ω±(y) = x±.

Proof. Suppose there are two orbits γ(y1,2). Since limt→±∞Φ(t, y1,2) =
x±, we can extend Φ(t, y1,2) to continuous functions on R ∪ {±∞} by
Φ(±∞, y1,2) = x±. Hence the curve J from x− to x+ along γ(y1) and
back from x+ to x− along γ(y2) is a Jordan curve. Writing M\J =M1∪M2

we can assume x ∈ M1 (since x ∈ J is prohibited by Corollary 7.11). Pick
two transversal arcs Σ1,2 containing y1,2 respectively (compare Figure 7.8).
Then γσ(x) intersects Σ1,2 in some points z1,2 respectively. Without loss we
can assume that there are no further intersections with Σ1 and Σ2 of γ(x)
between z1 and z2. Now consider the Jordan curve from y1 to z1 to z2 to y2
to x+ and back to y1 (along Σ1, γσ(x), Σ2, γ(y2), γ(y1)). It dissects M into
two parts N1, N2 such that γσ(z1) or γσ(z2) must remain in one of them,
say N2 (as in the proof of Lemma 7.9). But now γσ(x) cannot return close
to points of γ(y1,2) ∩N1 contradicting our assumption. �

These preparations now yield the following theorem.

Theorem 7.16 (generalized Poincaré–Bendixson). LetM be an open subset
of R2 and f ∈ C1(M,R2). Fix x ∈ M , σ ∈ {±}, and suppose ωσ(x) 6= ∅ is
compact, connected, and contains only finitely many fixed points. Then one
of the following cases holds:
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Figure 7.9. Phase portrait of an example where ω+(x) consists of two
fixed points and two orbits connecting them.

(i) ωσ(x) is a fixed orbit.

(ii) ωσ(x) is a regular periodic orbit.

(iii) ωσ(x) consists of (finitely many) fixed points {xj} and non-closed
orbits γ(y) such that ω±(y) ∈ {xj}.

Proof. If ωσ(x) contains no fixed points it is a regular periodic orbit by
Lemma 7.13. If ωσ(x) contains at least one fixed point x1 but no regular
points, we have ωσ(x) = {x1} since fixed points are isolated and ωσ(x) is
connected.

Suppose that ωσ(x) contains both fixed and regular points. Let y ∈
ωσ(x) be regular. We need to show that ω±(y) consists of one fixed point.
Therefore it suffices to show that it cannot contain regular points. Let
z ∈ ω±(y) be regular. Take a transversal arc Σ containing z and a sequence
yn → z, yn ∈ γ(y)∩Σ. By Corollary 7.10 γ(y) ⊆ ωσ(x) can intersect Σ only
in y. Hence yn = z and γ(y) is regular periodic. Now Lemma 7.14 implies
γ(y) = ωσ(x) which is impossible since ωσ(x) contains fixed points. �

Example. While we have already seen examples for case (i) and (ii) in
the Poincaré–Bendixson theorem we have not seen an example for case (iii).
Hence we consider the vector field

f(x, y) =

(
y + x2 − αx(y − 1 + 2x2)

−2(1 + y)x

)

.

First of all it is easy to check that the curves y = 1 − 2x2 and y = −1
are invariant. Moreover, there are four fixed points (0, 0), (−1,−1), (1,−1),
and ( 1

2α ,−1). We will chose α = 1
4 such that the last one is outside the

region bounded by the two invariant curves. Then a typical orbit starting
inside this region is depicted in Figure 7.9: It converges to the unstable fixed
point (0, 0) as t → −∞ and spirals towards the boundary as t → +∞. In
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Figure 7.10. Phase portrait of an example where ω+(x) consists of two leaves.

particular, its ω+((x0, y0)) limit set consists of three fixed points plus the
orbits joining them.

To prove this consider H(x, y) = x2(1 + y) + y2

2 and observe that its
change along trajectories

Ḣ = 2α(1 − y − 2x2)x2(1 + y)

is nonnegative inside our region (its boundary is given by H(x, y) = 1
2).

Hence it is straightforward to show that every orbit other than the fixed
point (0, 0) converges to the boundary. ⋄

Note that while Lemma 7.15 allows only one orbit in ωσ(x) to connect
different fixed points in ωσ(x). There could be more than one (even infinitely
many) connecting to the same fixed point as the following example shows.

Example. Consider the vector field

f(x, y) =

(
y

−ηE(x, y)2x− U ′(x)

)

,

where

E(x, y) =
(y2

2
+ U(x)

)
, U(x) = x2(x2 − 1).

In the case η = 0 this is a Newton equation with potential U(x) (cf. Sec-
tion 6.7). There are two stable fixed points (± 1√

2
, 0) and an unstable one

(0, 0) plus there are two separatrices
(
x(t)
y(t)

)

= ± 1

cosh(
√
2t)

(
1

−
√
2 tanh(

√
2t)

)

,

satisfying E(x(t), y(t)) = 0. If we consider η > 0 then the energy E(x, y)
will decrease as t increases since d

dtE = −ηE2y2 for all orbits except the two
separatrices. In particular, all orbits in the region E > 0 will have the set
consisting of the two separatrices and the fixed point (0, 0) as ω+((x0, y0)). ⋄

Let me also remark, that since the domain surrounded by a periodic
orbit is invariant, Lemma 6.8 implies

Author's preliminary version made available with permission of the publisher, the American Mathematical Society
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Lemma 7.17. The interior of every periodic orbit must contain a fixed
point.

Proof. By the Jordan curve theorem the interior is simply connected and
thus conformally equivalent to the unit disc by the Riemann mapping theo-
rem. As the boundary is a Jordan curve, this mapping extends to a homeo-
morphism to the closed unit disc by the Carathéodory theorem. Since orbits
starting in the interior cannot escape to the exterior without crossing the
boundary, that is our periodic orbit, the interior is also invariant. �

Periodic orbits attracting other orbits are also called limit cycles and
Hilbert’s 16th problem asks for a bound on the number of limit cycles for a
planar system with polynomial coefficients.

Note that we can show that every isolated periodic orbit must attract
nearby orbits either as t→ +∞ or t→ −∞.

Lemma 7.18. Let γ(y) be an isolated regular periodic orbit (such that there
are no other periodic orbits within a neighborhood). Then every orbit γ(x)
starting sufficiently close to γ(y) will have either ω−(x) = γ(y) or ω+(x) =
γ(y).

Proof. Choose a neighborhood of γ(y) which contains no other periodic
orbits and a transversal arc Σ ⊂ N containing y. Now consider a point x0
on Σ outside of γ(y) (the case where it is inside is similar). If this point
is sufficiently close to y it will stay inside N and return to Σ at a point
x1 6= y. Moreover, we will assume that x1 is closer to y (if it is farther away,
just reverse time to reduce it to this case). Hence the picture will look as
in Figure 7.7 with γ(y) inside M1. Now the semi-orbit γ+(x1) remains in
M1\M3 ⊂ N , where M3 is the interior of γ(y), and the same must be true
for ω+(x0). Since this set contains only one periodic orbit γ(y) we must
have ω+(x0) = γ(y). �

Example. Consider the system

ẋ = −y + f(r)x ẏ = x+ f(r)y, r =
√

x2 + y2,

which in polar coordinates x = (r cos(θ), r sin(θ)) reads just

ṙ = rf(r), θ̇ = 1.

Clearly every positive zero r0 of f(r) will correspond to a periodic orbit
which will attract nearby orbits if ±f ′(r0) < 0 for t → ±∞. If we consider
a double zero we can obtain an example where solutions on one side are
attracted as t → +∞ and on the other side as t → −∞. Finally, note that
the system will be polynomial if f is a polynomial in r2. ⋄
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7.3. The Poincaré–Bendixson theorem 227

Problem 7.9. Find and prove a ”Poincaré–Bendixson theorem” in R
1.

Problem 7.10. Suppose divf = 0 in some simply connected domain. Show

that there is a function F (x) such that f1(x) =
∂F (x)
∂x2

and f2(x) = −∂F (x)
∂x1

.

Show that every orbit γ(x) satisfies F (γ(x)) = const. Apply this to Newton’s
equation ẍ = f(x) in R.

Problem 7.11 (Bendixson’s criterion). Suppose divf does not change sign
and does not vanish identically in a simply connected region U ⊆ M . Show
that there are no regular periodic orbits contained (entirely) inside U . (Hint:
Suppose there is one and consider the line integral of f along this curve.
Recall the Gauss theorem in R

2.)

Use this to show that

ẍ+ p(x)ẋ+ q(x) = 0, x ∈ R,

has no regular periodic solutions if p(x) > 0.

Problem 7.12 (Dulac’s criterion). Show the following generalization of
Bendixson’s criterion. Suppose there is a scalar function α(x) such that
div(αf) does not change sign and does not vanish identically in a simply
connected region U ⊆M , then there are no regular periodic orbits contained
(entirely) inside U .

Problem 7.13. If the intersection ω+(x) ∩ ω−(x) 6= ∅ contains a regular
point, then x is periodic.
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Chapter 8

Higher dimensional
dynamical systems

8.1. Attracting sets

In most applications, the main interest is to understand the long-time be-
havior of the flow of a differential equation (which we assume σ complete
from now on for simplicity). In this respect it is important to understand
the fate of all points starting in some set X. Hence we will extend some of
our previous definitions to sets first.

Given a set X ⊆M we can always obtain a σ invariant set by considering

γ±(X) =
⋃

±t≥0

Φ(t,X) =
⋃

x∈X
γ±(x). (8.1)

Taking the closure γσ(X) we even obtain a closed σ invariant set by Lemma 6.4.
Moreover, the ω±-limit set of X is the set ω±(X) of all points y ∈ M for
which there exists sequences tn → ±∞ and xn ∈ X with Φ(tn, xn) → y.

Note that we have
⋃

x∈X
ω+(x) ⊆ ω+(X) (8.2)

but equality will not hold in general as the following example shows.

Example. Consider

ẋ = x(1− x2), ẏ = −y. (8.3)

The x-direction has two stable x = ±1 and one unstable x = 0 fixed points.
Similarly, the y-direction has the only stable fixed point y = 0. Hence it is
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230 8. Higher dimensional dynamical systems

not hard to see that

ω+(Br(0)) = [−1, 1] × {0}, r > 0. (8.4)

On the other hand,
⋃

x∈Br(0)

ω+(x) = {(−1, 0), (0, 0), (1, 0)}. (8.5)

In particular ω+(Br(0)) contains the three fixed points plus their connecting
orbits. That is, all orbits which lie entirely in Br(0). This is also true in
general as we will see in Theorem 8.3 below. ⋄

The following two lemmas are the analogs of Lemma 6.5 and Lemma 6.6.

Lemma 8.1. The set ωσ(X) is a closed invariant set given by

ωσ(X) =
⋂

σt≥0

Φ(t, γσ(X)) =
⋂

σt≥0

⋃

σ(s−t)≥0

Φ(s,X). (8.6)

Proof. The intersection of closed σ-invariant sets is again a closed σ-invariant
set by Lemma 6.4 and invariance follows literally as in Lemma 6.5. Hence
it suffices to show (8.6).

We only prove the σ = + case. First of all note that since Φ(t, .) is a
diffeomorphism we have

Φ(t, γ+(X)) = Φ(t, γ+(X)) =
⋃

s≥t
Φ(s,X).

To see
⋂

t≥0 Φ(t, γ+(X)) ⊆ ω+(X) choose some y ∈ ⋂t≥0 Φ(t, γ+(X)). Then,

for every n ∈ N we can find some yn = Φ(n + sn, xn) ∈ Φ(n, γ+(X)) such
that |y − yn| < 1

n . Setting tn = n + sn we have found a sequence tn → ∞
and points xn ∈ X such that Φ(tn, xn) → y, that is, y ∈ ωσ(X).

Conversely, to show ω+(X) ⊆ ⋂t≥0 Φ(t, γ+(X)) choose some y ∈ ω+(X).

Then there exists tn → ∞ and xn ∈ X such that yn = Φ(tn, xn) → y. This

implies yn ∈ Φ(t, γ+(X)) for tn > t and thus y ∈ Φ(t, γ+(X)) for every
t ≥ 0. �

We will only consider the case σ = + from now on for notational simplic-
ity. Since by the last equality in (8.6) the sets Φ(t, γσ(X)) are decreasing,
we see

ω+(X) =
⋂

t≥t0
Φ(t, γ+(X)) =

⋂

n∈N
Φ(n, γ+(X)). (8.7)

So if γ+(X) 6= ∅ is compact, ω+(X) is the intersection of countably many
nonempty compact nesting sets and thus it is also a nonempty compact set
by the finite intersection property of compact sets.

Author's preliminary version made available with permission of the publisher, the American Mathematical Society



8.1. Attracting sets 231

Lemma 8.2. Suppose X is nonempty. If the set γσ(X) is compact, then

ωσ(X) is nonempty and compact. If γσ(X) is in addition connected (e.g., if
X is connected), then so is ωσ(X).

Proof. It remains to show that Λ = ω+(X) is connected. Suppose it is not
and can be split into two disjoint closed sets, Λ = Λ0 ∪Λ1, none of which is
empty. Since Rn is normal, there are disjoint open sets U0 and U1 such that
Λ0 ⊂ U0 and Λ1 ⊂ U1. Moreover, the set Vn = Φ(n, γ+(X))\(U0 ∪ U1) is
compact. Hence V =

⋂

n Vn is either nonempty or Vn is eventually empty. In
the first case we must have V ⊂ Λ which is impossible since V ∩(U0∪U1) = ∅.
Otherwise, if Vn is eventually empty, then φ(n, γ+(X)) must be eventually

in U0 or in U1 (since φ(n, γ+(X)) is connected) implying Λ ⊂ U0 respectively
Λ ⊂ U1. Again a contradiction. �

Theorem 8.3. The set ωσ(X) is the union over all complete orbits lying

entirely in γσ(X).

Proof. Let γ(y) be such an orbit. Then γ(y) ⊆ γ+(X) and invariance of

γ(y) implies γ(y) ⊆ Φ(t, γ+(X)) for all t and hence γ(y) ⊆ ω+(X). Con-

versely, let y ∈ ω+(X). Then invariance of γ+(X) implies γ(y) ⊆ ω+(X) ⊆
γ+(X). �

For a given invariant set Λ ⊂M the sets

W±(Λ) = {x ∈M | lim
t→±∞

d(Φt(x),Λ) = 0} (8.8)

are the stable respectively unstable sets of Λ. Here d(x,A) = inf{|x −
y| |y ∈ A} denotes the distance between x and A ⊆ R

n (cf. Problem 6.11).

Example. For the previous example we have W+([−1, 1] × {0}) = R
2 and

W+({(±1, 0)}) = R± ×R. ⋄

An invariant set Λ is called attracting if W+(Λ) is a neighborhood of
of Λ. In this case the set W+(Λ) is also called the domain or basin of
attraction for Λ. Moreover, for any positively invariant neighborhood U
we have

W+(Λ) =
⋃

t<0

Φt(U). (8.9)

In particular, W+(Λ) is invariant and choosing U open we see that the basin
of attraction is also open:

Lemma 8.4. Let Λ be an invariant attracting set. Then its basin of attrac-
tion is invariant and open.

Note that by Lemma 6.4 the boundary ∂W+(Λ) = W+(Λ)\W+(Λ) is
invariant as well.
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But how can we find such an attracting set? Fortunately, using our con-
siderations from above, there is an easy way of doing so. An open connected
set E whose closure is compact is called a trapping region for the flow if
Φt(E) ⊂ E for all t > 0. Note that in this case every orbit starting in E is
complete. In many cases a trapping region can be found by looking for the
region bounded by some surface (e.g. the level set of some function) such
that the vector field points inwards on that surface, cf. Problem 8.2.

Lemma 8.5. Let E be a trapping region. Then

Λ = ω+(E) =
⋂

t≥0

Φ(t, E) (8.10)

is a nonempty, invariant, compact, and connected attracting set.

Proof. First of all note that by Φ(t+ ε,E) ⊂ Φ(t, E) ⊂ Φ(t, E) we have
⋂

t≥0

Φ(t, E) =
⋂

t≥0

Φ(t, E) =
⋂

t≥0

Φ(t, γ+(E)) = ω+(E).

and it remains to show that Λ is attracting.

To see this suppose there were an x ∈ E and a sequence tn → ∞
with d(Φ(tn, x),Λ) ≥ ε > 0. Then, since Φ(tn, x) remains in the compact
set E, we can assume Φ(tn, x) → y after passing to a subsequence. But
y ∈ ω+(x) ⊆ ω+(E) by (8.2), a contradiction. �

Unfortunately the definition of an attracting set is not always good
enough. In our example (8.3) any ball Br(0) with radius r > 1 is a trapping
region. However, whereas only the two fixed points (±1, 0) are really attract-
ing, the corresponding attracting set Λ also contains the repelling fixed point
(0, 0) plus its unstable manifold. In particular, the domain of attraction of
the two attracting fixed points W+({(−1, 0), (1, 0)}) = {(x, y) ∈ R

2|x = 0}
is up to a set of measure zero the same as W+(Λ) = R

2.

In fact, an attracting set will always contain the unstable manifolds of
all its points.

Lemma 8.6. Let E be a trapping region. Then

W−(x) ⊆ ω+(E), ∀x ∈ ω+(E). (8.11)

Proof. Let y ∈ W−(x), that is limt→−∞Φ(t, y) = x ∈ E. Since E is open
there is some t0 such γ−(Φ(t0, y)) ⊂ E. Since E is positive invariant we
even obtain γ(y) = γ(Φ(t0, y)) ⊆ E = γ+(E) and the claim follows from
Theorem 8.3. �

To exclude such situations, one has to ensure that an attracting set
cannot be split into smaller invariant sets. One such possibility is to define

Author's preliminary version made available with permission of the publisher, the American Mathematical Society



8.1. Attracting sets 233

Figure 8.1. Basin of attraction for the fixed point (−1, 0) of Duffing’s equation.

an attractor to be an attracting set which is topologically transitive. Here
a closed invariant set Λ is called topologically transitive if for any two
open sets U, V ⊆ Λ there is some t ∈ R such that Φ(t, U) ∩ V 6= ∅. In
particular, an attractor cannot be split into smaller attracting sets. Note
that Λ is topologically transitive if it contains a dense orbit (Problem 8.1).

This implies that only the sets {(−1, 0)} or {(1, 0)} are attractors for the
above example. The domains of attraction are W+({(±1, 0)}) = {(x, y) ∈
R
2| ± x > 0}.

Example. As another example let us look at the Duffing equation

ẍ = −δẋ+ x− x3, δ > 0, (8.12)

from Problem 9.5. It has a sink at (−1, 0), a hyperbolic saddle at (0, 0), and
a sink at (1, 0). The basin of attraction of the sink (−1, 0) is bounded by
the stable manifold of the hyperbolic saddle (0, 0). The situation for δ = 0.3
is depicted in Figure 8.1. ⋄

Example. For the van der Pol equation (7.32) the unique periodic orbit is
an attractor and its basin of attraction is R2\{0}. However, not all attractors
are fixed points or periodic orbits, as the example in our next section will
show. ⋄

Problem 8.1. Show that a closed invariant set which has a dense orbit is
topologically transitive.

Problem 8.2. Suppose L ∈ C1(M,R). Let VR = {x ∈ M |L(x) ≤ R} be a
compact set and suppose the Lie derivative satisfies

grad(L)(x) · f(x) < 0, ∀x : L(x) = R.

Then every connected component of VR is a trapping region.

Problem 8.3. Suppose E is a trapping region and let Λ = ω+(E). Then

W+(Λ) = {x ∈M |ω+(x) ⊆ Λ, ω+(x) 6= ∅}.
(Hint: Lemma 6.7.)

Author's preliminary version made available with permission of the publisher, the American Mathematical Society



234 8. Higher dimensional dynamical systems

8.2. The Lorenz equation

One of the most famous dynamical systems which exhibits chaotic behavior
is the Lorenz equation

ẋ = −σ(x− y),

ẏ = rx− y − xz,

ż = xy − bz, (8.13)

where σ, r, b > 0. Lorenz arrived at these equations when modelling a two-
dimensional fluid cell between two parallel plates which are at different tem-
peratures. The corresponding situation is described by a complicated system
of nonlinear partial differential equations. To simplify the problem, he ex-
panded the unknown functions into Fourier series with respect to the spacial
coordinates and set all coefficients except for three equal to zero. The result-
ing equation for the three time dependent coefficients is (8.13). The variable
x is proportional to the intensity of convective motion, y is proportional to
the temperature difference between ascending and descending currents, and
z is proportional to the distortion from linearity of the vertical temperature
profile.

So let us start with an investigation of this system. First of all observe
that the system is invariant under the transformation

(x, y, z) → (−x,−y, z). (8.14)

Moreover, the z axis is an invariant manifold since

x(t) = 0, y(t) = 0, z(t) = z0e
−bt (8.15)

is a solution of our system.

But now let us come to some deeper results. We first show that the
dynamic is quite simple if r ≤ 1. In this case there is only one fixed point
of the vector field, namely the origin. The Jacobian matrix at 0 is given by





−σ σ 0
r −1 0
0 0 −b



 (8.16)

and the corresponding eigenvalues are

− b, −1

2
(1 + σ ±

√

(1 + σ)2 + 4(r − 1)σ). (8.17)

Hence the origin is asymptotically stable for r < 1 by Corollary 3.27. How-
ever, we can even do better. To this end, let us make the ansatz

L(x, y, z) = αx2 + βy2 + γz2, α, β, γ > 0, (8.18)
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for a Liapunov function. Then a straightforward computation shows

L̇ = −2ασx2 + 2(ασ + βr)xy − 2βy2 − 2γbz2 + 2(γ − β)xyz. (8.19)

To eliminate the xyz term we choose γ = β. Since no choice of α, β > 0 will
make the xy disappear, we need to absorb it using 2xy = −(x−y)2+x2+y2,

L̇ = −(ασ−βr)x2− (ασ+βr)(x− y)2− ((2− r)β−ασ)y2− 2βbz2. (8.20)

Hence we need to choose α, β > 0 such that ασ−βr ≥ 0 and (2−r)β−ασ ≥
0. For example α = r and β = σ such that the first term vanishes and the
third becomes 2(1− r)σ ≥ 0 for r ≤ 1. In summary, for

L(x, y, z) = rx2 + σy2 + σz2 (8.21)

we have

L̇(x, y, z) = −2σ(r(x− y)2 + (1− r)y2 + bz2) (8.22)

and the following lemma follows easily from Theorem 6.14 (Problem 8.4).

Lemma 8.7. Suppose r ≤ 1. Then the Lorenz equation has only the origin
as fixed point and all solutions converge to the origin as t → ∞.

If r grows above 1, there are two new fixed points

(x, y, z) = (±
√

b(r − 1),±
√

b(r − 1), r − 1), (8.23)

and the linearization is given by




−σ σ 0

1 −1 ∓
√

b(r − 1)

±
√

b(r − 1) ±
√

b(r − 1) −b



 . (8.24)

One can again compute the eigenvalues but the result would almost fill one
page. Note however that by (8.14) the eigenvalues are the same for both
points. From (8.17) we can read off that one eigenvalue is now positive and
hence the origin is no longer stable. It can be shown that the two new fixed
points are asymptotically stable for 1 < r < 470/19 = 24.74.

Next, let us try to plot some solutions using Mathematica.

In[1]:= σ = 10; r = 28; b = 8/3;
sol = NDSolve[{x′[t] == −σ(x[t]− y[t]),

y′[t] == −x[t] z[t] + r x[t]− y[t],
z′[t] == x[t] y[t]− b z[t],
x[0] == 30, y[0] == 10, z[0] == 40},
{x, y, z}, {t, 0, 20}, MaxSteps → 5000];

ParametricPlot3D[Evaluate[{x[t], y[t], z[t]}/.sol], {t, 0, 20},
PlotPoints→ 2000, Axes→ False, PlotRange→ All];

Author's preliminary version made available with permission of the publisher, the American Mathematical Society



236 8. Higher dimensional dynamical systems

Out[1]=

We observe that all trajectories first move inwards and then encircle the
two fixed points in a pretty irregular way.

To get a better understanding, let us show that there exists an ellipsoid
Eε which all trajectories eventually enter and never leave again. To do this,
let us consider a small modification of our Liapunov function from above,

L(x, y, z) = rx2 + σy2 + σ(z − 2r)2. (8.25)

A quick computation shows

L̇(x, y, z) = −2σ(rx2 + y2 + b(z − r)2 − br2). (8.26)

Now let E be the ellipsoid defined by E = {(x, y, z)|L̇(x, y, z) ≥ 0} and
let M = max(x,y,z)∈E L(x, y, z). Define E1 = {(x, y, z)|L(x, y, z) < M + 1}.
Any point outside E1 also lies outside E and hence L̇ ≤ −δ < 0 for such
points. That is, for x ∈ R

3\E1 the value of L is strictly decreasing along its
trajectory and hence it must enter E1 after some finite time.

Moreover, E1 is a trapping region for the Lorenz equation and there is
a corresponding attracting set

Λ = ω+(E1), (8.27)

which is called the attractor of the Lorenz equation. In particular, we see
that solutions exist for all positive times. Note also that W+(Λ) = R

3. All
fixed points plus their unstable manifolds (if any) must also be contained in
Λ. Moreover, I even claim that Λ is of Lebesgue measure zero. To see this
we need a generalized version of Liouville’s formula (3.91).

Lemma 8.8. Let ẋ = f(x) be a dynamical system on R
n with corresponding

flow Φ(t, x). Let U be a bounded open subset of Rn and let V =
∫

U dx be its

volume. Abbreviate U(t) = Φ(t, U), respectively, V (t) =
∫

U(t) dx. Then

V̇ (t) =

∫

U(t)
div(f(x)) dx. (8.28)
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Proof. By the change of variable formula we have

V (t) =

∫

U(t)
dx =

∫

U
det(dΦt(x)) dx.

Since Πx(t) = dΦt(x) satisfies the first variational equation,

Π̇x(t) = df(Φt(x))Πx(t),

Liouville’s formula (3.91) for linear systems implies

det(dΦt(x)) = exp

(∫ t

0
div(f(Φs(x)))ds

)

(recall tr(df(x)) = div(f(x))). Thus

V̇ (t) =

∫

U
div(f(Φt(x))) det(dΦt(x)) dx

and a second application of the change of variable formula finishes the proof.
�

Applying this lemma to the Lorenz equation we obtain

V (t) = V e−(1+σ+b)t (8.29)

since

div(f) = −(1 + σ + b). (8.30)

In particular, we see that the measure of Φ(t, E1) decreases exponentially,
and the measure of Λ must be zero. Note that this result also implies that
none of the three fixed points can be a source.

Our numerical experiments from above show that Λ seems to be a quite
complicated set. This is why it was called the strange attractor of the
Lorenz equation.

However, this is clearly no satisfying mathematical definition of a strange
attractor. One possibility is to call an attractor strange if the dynamical
system generated by the time-one map

Φ1 : Λ → Λ (8.31)

is chaotic and if Λ is fractal. It is still unknown whether the Lorenz attractor
is strange in the sense of this definition. See the book by Sparrow [38] for a
survey of results.

I will not go into any further details at this point. We will see how these
terms are defined in Section 11.3 and Section 11.6, respectively. However,
I hope that this example shows that even simple systems in R

3 can exhibit
very complicated dynamics. I also hope that you can now better appreciate
the Poincaré–Bendixson which excludes such strange behavior in R

2.

Problem 8.4. Prove Lemma 8.7.
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Problem 8.5. Solve the Lorenz equation for the case σ = 0.

Problem 8.6. Investigate the Lorenz equation for the case r = ∞ as follows.
First introduce ε = r−1. Then use the change of coordinates (t, x, y, x) 7→
(τ, ξ, η, ζ), where τ = ε−1t, ξ = εx, η = σε2y, and ζ = σ(ε2z − ε).

Show that the resulting system for ε = 0 is given by

ξ′ = η, η′ = −ξζ, ζ ′ = ηξ,

which has two conserved quantities

ξ2 − 2ζ = 2α, η2 + ζ2 = β.

Derive the single third order equation ξ′′′ = −(32ξ
2 − α)ξ′. Integrate this

equation once and observe that the result is of Newton type (see Section 6.7).
Now what can you say about the solutions? (Hint: Problem 6.25.)

8.3. Hamiltonian mechanics

In the previous sections we have seen that even simple looking dynamical
systems in three dimension can be extremely complicated. In the rest of this
chapter we want to show that it is still possible to get some further insight
if the system has a special structure. Hence we will look again at systems
arising in classical mechanics.

The point of departure in classical mechanics is usually the Hamilton
principle. Suppose a mechanical system has n degrees of freedom described
by coordinates q ∈ V ⊆ R

n. Associated with such a system is a Lagrange
function

L(v, q), v = q̇, (8.32)

and an integral curve q(t) for which the action integral

I(q) =
∫ t1

t0

L(q̇(t), q(t))dt (8.33)

subject to the boundary conditions q(t0) = q0, q(t1) = q1 is extremal.

If L is differentiable, extremal curves can be found by setting the Gateaux
derivative of I equal to zero. That is, setting

qε(t) = q(t) + εr(t), (8.34)

we see that a necessary condition for q to be extremal is that

d

dε
I(qε)

∣
∣
∣
ε=0

= 0. (8.35)

Using integration by parts this immediately yields (Problem 8.7) the corre-
sponding Euler–Lagrange equation

∂L

∂q
− d

dt

∂L

∂v
= 0. (8.36)
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In the situation of particles under the influence of some forces we have

L(v, q) =
1

2
vMv − U(q), (8.37)

where M is a positive diagonal matrix with the masses of the particles as
entries and U is the potential corresponding to the forces. The associated
Euler–Lagrange equations are just Newton’s equations

Mq̈ = −gradU(q). (8.38)

If the momentum

p(v, q) =
∂L

∂v
(v, q) (8.39)

is a diffeomorphism for fixed q, and hence

det
∂2L

∂v2
6= 0, (8.40)

then we can consider the Legendre transform of L,

H(p, q) = pv − L(v, q), v = v(p, q), (8.41)

which is known as the Hamilton function of the system. The associated
variational principle is that the integral

I(p, q) =
∫ t1

t0

(

p(t)q̇(t)−H(p(t), q(t))
)

dt (8.42)

subject to the boundary conditions q(t0) = q0, q(t1) = q1 is extremal. The
corresponding Euler–Lagrange equations are Hamilton’s equations

q̇ =
∂H(p, q)

∂p
, ṗ = −∂H(p, q)

∂q
. (8.43)

This formalism is called Hamilton mechanics.

In the special case of some particles we have

p =Mv, H(p, q) =
1

2
pM−1p+ U(q) (8.44)

and the Hamiltonian corresponds to the total energy of the system.

Introducing the symplectic matrix

J =

(
0 I

−I 0

)

, J−1 = JT = −J, (8.45)

Hamilton’s equation can also be written as

d

dt

(
p
q

)

= −gradsH(p, q), (8.46)

where grads = −J grad is called the symplectic gradient.
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A straightforward calculation shows that H is a constant of motion,
that is,

d

dt
H(p(t), q(t)) =

∂H

∂p
ṗ+

∂H

∂q
q̇ = −∂H

∂p

∂H

∂q
+
∂H

∂q

∂H

∂p
= 0. (8.47)

More generally, for a differentiable function I(p, q) its change along a tra-
jectory is given by its Lie derivative (compare (6.41))

d

dt
I(p(t), q(t)) = {H(p(t), q(t)), I(p(t), q(t))}, (8.48)

where

{H, I} =
∂H

∂p

∂I

∂q
− ∂H

∂q

∂I

∂p
(8.49)

is called Poisson bracket. (This should be compared with the Heisenberg
equation of Problem 3.29.)

A function I(p, q) is called a first integral if it is constant along tra-
jectories, that is, if

{H, I} = 0. (8.50)

But how can we find first integrals? One source are symmetries.

Theorem 8.9 (Noether). Let Φ(t, q) be the flow generated by f(q). If Φ
leaves the Lagrangian invariant, then

I(v, q) =
∂L(v, q)

∂v
f(q) (8.51)

is a constant of motion.

Proof. Abbreviate qs(t) = Φ(s, q(t)). The invariance of L(v, q) implies

0 =
d

ds
L(q̇s(t), qs(t))

∣
∣
∣
s=0

=
∂L

∂v
(q̇(t), q(t))

∂f

∂q
(q(t))q̇(t) +

∂L

∂q
(q̇(t), q(t))f(q(t))

and hence

d

dt
I(q̇(t), q(t)) =

(
d

dt

∂L

∂v
(q̇, q)

)

f(q) +
∂L

∂v
(q̇, q)

∂f

∂q
(q)q̇

=

(
d

dt

∂L

∂v
(q̇, q)− ∂L

∂q
(q̇, q)

)

f(q) = 0

by the Euler–Lagrange equation. �

For example, if L(v, q) from (8.37) does not depend on the j’th coordi-
nate qj (for some fixed j), then it is clearly invariant under Φ(s, q) = q+sδj,
where δj is the unit vector in the j’th direction. Hence the j’th momentum

pj =
∂L(v, q)

∂vj
(8.52)
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is conserved in this case by Noether’s theorem. For another example see
Problem 8.13.

Another important property of Hamiltonian systems is that they are
volume preserving. This follows immediately form Lemma 8.8 since the
divergence of a Hamiltonian vector field is zero.

Theorem 8.10 (Liouville). The volume in phase space is preserved under
a Hamiltonian flow.

This property can often give important information concerning the mo-
tion via Poincaré’s recurrence theorem.

Theorem 8.11 (Poincaré). Suppose Φ is a volume preserving bijection of a
bounded region D ⊆ R

n. Then in any neighborhood U ⊆ D there is a point
x returning to U , that is, Φn(x) ∈ U for some n ∈ N.

Proof. Consider the sequence Φn(U) ⊆ D. There are two numbers l, k such
that Φl(U)∩Φk(U) 6= ∅ since otherwise their volume would be infinite. Hence
U ∩ Φk−l(U) 6= ∅. If y is a point in the intersection we have y = Φk−l(x),
which proves the claim. �

Problem 8.7. Derive the Euler–Lagrange equation (8.36) for q ∈ C2.

Problem 8.8. Consider the Lagrange functions L1(q, v) = |v| and L2(q, v) =
1
2 |v|2 in R

n. What is the corresponding action integral for L1? What are

the extremal curves for L1 and for L2? Show that I1(q) ≤
√

2(t1 − t0)I2(q)
with equality if |q̇| = 1 (Hint: Cauchy–Schwarz inequality).

Let M(q) be a positive definite matrix for every q ∈ R
n. Consider

L1(q, v) =
√

vM(q)v and L2(q, v) = 1
2vM(q)v. The action integral cor-

responding to L1 is called the length of the curve q and extremals are called
geodesics. Show that the length is independent of reparametrization.

Problem 8.9 (Legendre transform). Let F (v) be such that

det
∂2F

∂v2
(v0) 6= 0.

Show that the function p(v) = ∂F
∂v (v) is a local diffeomorphism near v0 and

that the Legendre transform

G(p) = pv(p)− F (v(p))

is well defined. Show that

p =
∂F

∂v
(v) ⇔ v =

∂G

∂p
(p)

and conclude that the Legendre transformation is involutive.
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Problem 8.10. Show that the Poisson bracket is a skew-symmetric bilinear
form on C∞(V ) satisfying the Jacobi identity

{I, {J,K}} + {J, {K, I}} + {K, {I, J}} = 0

and Leibniz’ rule

{I, J K} = J{I,K} +K{I, J}.
Problem 8.11. Suppose that D is bounded and positively invariant under a
volume preserving flow. Then D belongs to the set of nonwandering points.
(Hint: Poincaré’s recurrence theorem and Problem 6.10.)

Problem 8.12 (Relativistic mechanics). Einstein’s equation says that
the kinetic energy of a relativistic particle is given by

T (v) = m(v)c2, m(v) = m0

√

1 +
v2

c2
,

where c is the speed of light and m0 is the (rest) mass of the particle. De-
rive the equation of motions from Hamilton’s principle using the Lagrangian
L(v, q) = T (v)− U(q). Derive the corresponding Hamilton equations.

Problem 8.13. Consider L(v, q) from (8.37) in R
3 with M = mI3 and

suppose U(q) = U(|q|) is rotation invariant. Show that the angular mo-
mentum

l = x ∧ p
is conserved in this case. Here ∧ denotes the cross product in R

3.

8.4. Completely integrable Hamiltonian systems

Finally we want to show that there is also a canonical form for a Hamil-
ton system under certain circumstances. To do this we need to transform
our system in such a way that the Hamilton structure is preserved. More
precisely, if our transformation is given by

(P,Q) = ϕ(p, q), (p, q) = ψ(P,Q), (8.53)

we have
(
Ṗ

Q̇

)

= dϕ

(
ṗ
q̇

)

= −dϕJ gradH(p, q) = −(dϕJdϕT ) gradK(P,Q), (8.54)

whereK = H ◦ϕ is the transformed Hamiltonian. Hence, we need to require
that the Jacobian matrix of ϕ is a symplectic matrix, that is,

dϕ ∈ Sp(2n) = {M ∈ Gl(2n)|MJMT = J}, (8.55)

where Sp(2n) is the symplectic group. Such a map is called a symplectic
map. In this case ϕ is also called a canonical transform. Alternatively
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they can be characterized as those transformations which leave the sym-
plectic two form

ω((p1, q1), (p2, q2)) = (p1, q1)J(p2, q2) = p1q2 − p2q1 (8.56)

invariant.

To find canonical transformations, recall that we have derived Hamil-
ton’s equations from the variational principle (8.42). Hence, our transform
will be canonical if the integrands of (8.42) and

Ĩ(P,Q) =

∫ t1

t0

P (t)Q̇(t)−K(P (t), Q(t))dt (8.57)

only differ by a total differential. By H(p, q) = K(P,Q) we are led to

pdq − PdQ = dS, (8.58)

where dq has to be understood as dq(t) = q̇(t)dt for a given curve q(t).
The function S is called a generating function and could depend on all four
variables p, q, P , and Q. However, since only two of them are independent
in general, it is more natural to express two of them by the others.

For example, we could use

S = S1(q,Q) (8.59)

and

pdq − PdQ =
∂S1
∂q

dq +
∂S1
∂Q

dQ (8.60)

shows we have

p =
∂S1
∂q

, P = −∂S1
∂Q

, (8.61)

since the previous equation must hold for all curves q(t) and Q(t). Moreover,
if we require

det
∂S1
∂q∂Q

6= 0, (8.62)

we can solve p = ∂S1(q,Q)
∂q locally for Q = Q(p, q) and hence our canonical

transformation is given by

(P,Q) = (
∂S1
∂Q

(q,Q(p, q)), Q(p, q)). (8.63)

Similarly we could choose

S = −PQ+ S2(P, q), (8.64)

where

pdq − PdQ = −QdP − PdQ+
∂S2
∂P

dP +
∂S2
∂Q

dQ (8.65)
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implies

Q =
∂S2
∂P

, p =
∂S2
∂q

. (8.66)

Again, if we require

det
∂S2
∂P∂q

6= 0, (8.67)

we obtain a canonical transformation

(P,Q) = (P (p, q),
∂S2
∂P

(P (p, q), q)). (8.68)

The remaining two cases

S = qp+ S3(Q, p) and S = qp− PQ+ S4(P, p) (8.69)

are left as an exercise.

Now let us return to our canonical form. We will start with one dimen-
sion, that is, n = 1 with H(p, q) as in (6.52). Let q0 be a local minimum
of U(q) surrounded by periodic orbits γE which are uniquely determined by
the energy E of a point on the orbit. The two intersection points of γE with
the q axis to the left and right of q0 will be denoted by q−(E) and q+(E),
respectively. In particular, note U(q±(E)) = E.

The integral over the momentum along such a periodic orbit

I(E) =
1

2π

∫

γE

p dq =
1

π

∫ q+(E)

q−(E)

√

2(E − U(q))dq (8.70)

is called the action variable. Next, by (6.47)

I ′(E) =
1

π

∫ q+(E)

q−(E)

dq
√

2(E − U(q))
=
T (E)

2π
> 0, (8.71)

where T (E) is the period of γE and thus we can express E as a function of
I, say E = K(I). Hence if we take I as one of our new variables, the new
Hamiltonian K will depend on I only. To find a suitable second variable we
will look for a generating function S2(I, q). Since we want p = ∂S2

∂q we set

S2(I, q) =

∫ q

q−(K(I))
pdq =

∫ q

q−(K(I))

√

2(K(I)− U(q))dq (8.72)

and the second variable is

θ =
∂S2
∂I

=

∫ q

q−(E)

I ′(E)−1dq
√

2(E − U(q))
=

2π

T (E)
t, (8.73)

where t is the time it takes from q−(E) to q (compare again (6.47) and note
K ′(I) = I ′(E)−1). The variable θ is called the angle variable and is only
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defined modulo 2π. The equation of motion read

İ = −∂K
∂θ

= 0,

θ̇ =
∂K

∂I
= Ω(I), (8.74)

where Ω(I) = 2π/T (K(I)).

The main reason why we could find such a canonical transform to action-
angle variables is the existence of a first integral, namely the Hamiltonian.
In one dimension this single first integral suffices to decompose the surfaces
of constant energy into periodic orbits. In higher dimensions this is no longer
true unless one can find n first integrals Lj which are functionally indepen-
dent and in involution, {Lj, Lk} = 0. Such systems are called completely
integrable. If the system is integrable, the n first integrals can be used to
define the n-dimensional manifolds Γc = {(p, q)|Lj(p, q) = cj , 1 ≤ j ≤ n}
which can be shown to be diffeomorphic to an n-dimensional torus (if they
are compact). Taking a basis of cycles {γj(c)}nj=1 on the torus Γc one can
define the action variables as before via

Ij(c) =
1

2π

∫

γj(c)
p dq (8.75)

and the angle variables via a generating function S2(I, q) =
∫ q
p dq. I do not

want to go into further details here but I refer to the excellent book by Arnold
[2]. However, I will at least illustrate the situation for the prototypical
example. Approximating the potential U(q) near a local minimum we obtain

U(q) = U(q0) +
1

2
qWq + o(|q|2), (8.76)

where W is a positive matrix and U(q0) can be chosen zero. Neglecting the
higher order terms, the resulting model

H(p, q) =
1

2
(pMp+ qWq) (8.77)

is known as harmonic oscillator. Let V be the (real) orthogonal matrix

which transforms the symmetric matrix M−1/2WM−1/2 to diagonal form
and let ω2

j be the eigenvalues. Then the symplectic transform (P,Q) =

(VM1/2p, V M−1/2q) (Problem 8.15) gives the decoupled system

Q̇j = Pj , Ṗj = −ω2
jQj, j = 1, . . . , n. (8.78)

In particular,

K(P,Q) =
n∑

j=1

Kj , Kj =
1

2
(P 2

j +Q2
j ), (8.79)
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where the Kj ’s are n first integrals in involution (check this). The corre-
sponding action-angle variables are given by (Problem 8.17)

Ij =
1

2
(
P 2
j

ωj
+ ωjQ

2
j), θj = arccot

Pj
ωjQj

. (8.80)

For example, consider the following Hamiltonian

H(p, q) =

n∑

j=1

pj
2m

+ U0 (qj+1 − qj) , q0 = qn+1 = 0 (8.81)

which describes a lattice of n equal particles (with mass m) with nearest
neighbor interaction described by the potential U0(x). The zeroth and n’th
particle are considered fixed and qj is the displacement of the j’th particle
from its equilibrium position. If we assume that the particles are coupled
by springs, the potential would be U0(x) = k

2x
2, where k > 0 is the so

called spring constant, and we have a harmonic oscillator. The motion is
decomposed into n modes corresponding to the eigenvectors of the Jacobian
matrix of the potential. Physicists believed for a long time that a nonlinear
perturbation of the force will lead to thermalization. That is, if the system
starts in a certain mode of the linearized system, the energy will eventually
be distributed equally over all modes. However, Fermi, Pasta, and Ulam
showed with computer experiments that this is not true (Problem 8.18).
This is related to the existence of solitons, see for example [30].

Problem 8.14 (Symplectic group). Show that Sp(2n) is indeed a group.
Suppose M ∈ Sp(2n), show that det(M)2 = 1 and χM (z) = z2nχM (z−1).

Problem 8.15. Show that the linear transformation (P,Q) = (Up, (U−1)T q),
where U is an arbitrary matrix, is canonical.

Problem 8.16. Show that the transformation generated by a function S is
canonical by directly proving that dϕ is symplectic. (Hint: Prove −Jdϕ =
JdψT using

∂p

∂Q
=

∂2S1
∂Q∂q

= −
(
∂P

∂q

)T

and similar for the others.)

Problem 8.17. Consider the harmonic oscillator in one dimension

H(p, q) =
1

2
p2 +

ω2

2
q2

and show that S1(q, θ) =
ω
2 q

2 cot(θ) generates a canonical transformation to
action-angle variables.
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Problem 8.18 (Fermi–Pasta–Ulam experiment). Consider the Hamiltonian
(8.81) with the interaction potential U0(x) =

k
2 (x

2+αx3). Note that it is no
restriction to use m = k = 1 (why?).

Compute the eigenvalues and the eigenvectors of the linearized system
α = 0. Choose an initial condition in an eigenspace and (numerically)
compute the time evolution. Investigate how the state is distributed with
respect to the eigenvectors as a function of t. (Choose N = 32, α = 1/6.)

Problem 8.19 (Lax pair). Let L(p, q) and P (p, q) be n by n matrices. They
are said to form a Lax pair for a Hamiltonian system if the equations of
motion (8.43) are equivalent to the Lax equation

L̇ = [P,L].

Show that the quantities

tr(Lj), 1 ≤ j ≤ n,

are first integrals (Hint: Compare Problem 3.29).

8.5. The Kepler problem

Finally, as an application of our results we will show how to solve equation
(1.11) from Section 1.1. In fact, we will even consider a slightly more general
case, the two body problem. Suppose we have two masses placed at
x1 ∈ R

3 and x2 ∈ R
3. They interact with a force F depending only on the

distance of the masses and lies on the line connecting both particles. The
kinetic energy is given by

T (ẋ) =
m1

2
ẋ21 +

m2

2
ẋ22 (8.82)

and the potential energy is

U(x) = U(|x1 − x2|). (8.83)

The Lagrangian is the difference of both

L(ẋ, x) = T (ẋ)− U(x). (8.84)

Clearly it is invariant under translations (x1, x2) 7→ (x1+sa, x2+sa), a ∈ R
3,

and so Theorem 8.9 tells us that all three components of the total momentum

m1ẋ1 +m2ẋ2 (8.85)

are first integrals. Hence we will choose new coordinates

q1 =
m1x1 +m2x2
m1 +m2

, q2 = x1 − x2 (8.86)

in which our Lagrangian reads

L(q̇, q) =
M

2
q̇21 +

µ

2
q̇22 − U(q2), M = m1 +m2, µ =

m1m2

M
. (8.87)
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In particular, the system decouples and the solution of the first part is given
by q1(t) = q1(0) + q̇1(0)t. To solve the second, observe that it is invariant
under rotations and, invoking again Theorem 8.9, we infer that the angular
momentum

l = µq2 ∧ q̇2 (8.88)

is another first integral. Hence we have found three first integrals and we
suspect that our system is integrable. However, since

{l1, l2} = l3, {l1, l3} = −l2, {l2, l3} = l1 (8.89)

they are not in involution. But using {l, |l|2} = 0 it is not hard to see

Theorem 8.12. The two body problem is completely integrable. A full set of
first integrals which are functionally independent and in involution is given
by

p11, p12, p13,
µ

2
p22 + U(q2), |l|2, l3, (8.90)

where p1 =Mq̇1 and p2 = µq̇2.

Our next step would be to compute the action angle variables. But since
this is quite cumbersome, we will use a more direct approach to solve the
equation of motions. Since the motion is confined to the plane perpendicular
to l (once the initial condition has been chosen), it suggests itself to choose
polar coordinates (r, ϕ) in this plane. The angular momentum now reads

l0 = |l| = µr2ϕ̇ (8.91)

and conservation of energy implies

µ

2

(

ṙ2 +
l20
µ2r2

)

+ U(r) = E. (8.92)

Hence, r(t) follows (implicitly) from

ṙ =

√

2(E − U(r))

µ
− l20
µ2r2

(8.93)

via separation of variables. In case of the Kepler problem (gravitational
force)

U(r) = −γ
r

(8.94)

it is possible to compute the integral, but not to solve for r as a function of
t. However, if one is only interested in the shape of the orbit one can look
at r = r(ϕ) which satisfies

1

r2
dr

dϕ
=

√

2µ(E − U(r))

l20
− 1

r2
. (8.95)
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The solution is given by (Problem 8.20)

r(ϕ) =
p

1− ε cos(ϕ− ϕ0)
, p =

l20
γµ
, ε =

√

1 +
2El20
µγ2

(8.96)

Thus the orbit is an ellipsis if ε < 1, a parabola if ε = 1, and a hyperbola if
ε > 1.

In the case of an ellipsis the motion is periodic and the period T is given
by bringing the square root in (8.93) to the left and integrating from the
smallest radius r− to the largest r+:

T

2
=
l0
µ

∫ r+

r−

((1

r
− 1

r+

)( 1

r−
− 1

r

))−1/2

dr = π

√
µ

γ

(
p

1− ε2

)3/2

, (8.97)

where r± = p
1∓ε .

Equations (8.96), (8.91), and (8.97) establish Kepler’s first, second,
and third law for planetary motion:

(i) The orbit of every planet is an ellipse with the Sun at one focus.

(ii) A line segment joining a planet and the Sun sweeps out equal areas
during equal time intervals.

(iii) The square of the orbital period of a planet is directly proportional
to the cube of the semi-major axis of its orbit.

Problem 8.20. Solve (8.95). (Hint: Use the transformation ρ = r−1.)

8.6. The KAM theorem

In the last section we were quite successful solving the two body problem.
However, if we want to investigate the motion of planets around the sun
under the influence of the gravitational force we need to consider the general
N-body problem where the kinetic energy is given by

T (ẋ) =
N∑

j=1

mj

2
ẋ2j (8.98)

and the potential energy is

U(x) =
∑

1≤j<k≤N
Ujk(|xj − xk|). (8.99)

In case of the gravitational force one has

Ujk(|xj − xk|) =
mjmk

|xj − xk|
. (8.100)

However, whereas we could easily solve this problem for N = 2, this is no
longer possible for N ≥ 3. In fact, despite of the efforts of many astronomers
and mathematicians, very little is known for this latter case.
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The reason is of course that the N -body problem is no longer integrable
for N ≥ 3. In fact, it can be even shown that a generic Hamiltonian system
(with more than one degree of freedom) is not integrable. So integrable
systems are the exception from the rule. However, many interesting physical
systems are nearly integrable systems. That is, they are small perturbations
of integrable systems. For example, if we neglect the forces between the
planets and only consider the attraction by the sun, the resulting system is
integrable. Moreover, since the mass of the sun is much larger than those of
the planets, the neglected term can be considered as a small perturbation.

This leads to the study of systems

H(p, q) = H0(p, q) + εH1(p, q), (8.101)

where H0 is completely integrable and ε is small. Since H0 is integrable, we
can choose corresponding action angle variables (I, θ) and it hence suffices
to consider systems of the type

H(I, θ) = H0(I) + εH1(I, θ), (8.102)

where I ∈ R
n and all components of θ have to be taken modulo 2π, that is,

θ lives on the torus Tn.

By (8.74) the unperturbed motion for ε = 0 is given by

I(t) = I0, θ(t) = θ0 +Ω(I0)t. (8.103)

Hence the solution curve is a line winding around the invariant torus ΓI0 =
{I0} × T

n. Such tori with a linear flow are called Kronecker tori. Two
cases can occur.

If the frequencies Ω(I0) are nonresonant or rationally independent,

kΩ(I0) 6= 0 for all k ∈ Z
n\{0}, (8.104)

then each orbit is dense. On the other hand, if the frequencies Ω(I0) are
resonant,

kΩ(I0) = 0 for some k ∈ Z
n\{0}, (8.105)

the torus can be decomposed into smaller ones with the same property as
before.

The corresponding solutions are called quasi-periodic. They will be
periodic if and only if all frequencies in Ω(I0) are rationally dependent, that
is,

Ω(I0) = kω for some k ∈ Z
n, ω ∈ R. (8.106)

In case of the solar system such quasi-periodic solutions correspond to a
stable motion (planets neither collide nor escape to infinity) and the question
is whether they persist for small perturbations or not. Hence this problem
is also known as “stability problem” for the solar system.
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As noted by Kolmogorov most tori whose frequencies are nonresonant
survive under small perturbations. More precisely, let I ∈ D ⊆ R

n and
denote by Ω(D) the set of all possible frequencies for our system. Let Ωα(D)
be the set of frequencies Ω satisfying the following diophantine condition

|kΩ| ≥ α

|k|n for all k ∈ Z
n\{0}. (8.107)

Then the following famous result by Kolmogorov, Arnold, and Moser holds

Theorem 8.13 (KAM). Suppose H0, H1 are analytic on D × T
n and H0

is nondegenerate, that is,

det

(
∂H0

∂I

)

6= 0. (8.108)

Then there exists a constant δ > 0 such that for

|ε| < δα2 (8.109)

all Kronecker tori ΓI of the unperturbed system with I ∈ Ωα(D) persist as
slightly deformed tori. They depend continuously on I and form a subset of
measure O(α) of the phase space D × T

n.

The proof of this result involves what is know as “small divisor” prob-
lem and is beyond the scope of this book. However, we will at least consider
a simpler toy problem which illustrates some of the ideas and, in particular,
explains where the diophantine condition (8.107) comes from. See the books
by Arnold [2] or Moser [28] for further details and references.

But now we come to our toy problem. We begin with the system

ẋ = Ax, A =






iω1

. . .

iωn




 , ωj ∈ R, (8.110)

where the solution is quasi-periodic and given by

xj(t) = (eAtc)j = cje
iωjt. (8.111)

Next we perturb this system according to

ẋ = Ax+ g(x), (8.112)

where g(x) has a convergent power series

g(x) =
∑

|k|≥2

gkx
k, k ∈ N

n
0 , (8.113)

where k = (k1, . . . , kn), |k| = k1 + · · · + kn, and xk = xk11 · · · xknn . For the
solution of the perturbed system we can make the ansatz

x(t) =
∑

|k|≥1

cke
iωk t (8.114)
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or equivalently
x(t) = u(eAtc), (8.115)

where
u(x) = x+

∑

|k|≥2

ukx
k. (8.116)

Inserting this ansatz into (8.112) gives

∂u

∂x
(x)Ax = Au(x) + g(u(x)), (8.117)

that is,
∑

|k|≥2

(ωk −A)ukx
k = g(x+

∑

|k|≥2

ukx
k). (8.118)

Comparing coefficients of xk shows that

(iωk −A)uk = terms involving uℓ for |ℓ| < |k|. (8.119)

Hence the coefficients uk can be determined recursively provided

ωk − ωj 6= 0 for all |k| ≥ 2, 1 ≤ j ≤ n. (8.120)

Next one needs to show that the corresponding series converges and it is
clear that this will only be the case if the divisors ωk − ωj do not tend to
zero too fast. In fact, it can be shown that this is the case if there are
positive constants δ, τ such that

|ωk − ωj| ≥
δ

|k|τ (8.121)

holds. Moreover, it can be shown that the set of frequencies ω satisfying
(8.121) for some constants is dense and of full Lebesgue measure in R

n.

An example which shows that the system is unstable if the frequencies
are resonant is given in Problem 8.21.

Problem 8.21. Consider

g(x) =

(

xk1+1
1 xk22

0

)

, ω1k1 + ω2k2 = 0,

and show that the associated system is unstable. (Hint: Bernoulli equation.)
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Chapter 9

Local behavior near
fixed points

9.1. Stability of linear systems

Our aim in this chapter is to show that a lot of information on the stability
of a flow near a fixed point can be read off by linearizing the system around
the fixed point. As a preparation we recall the stability discussion for linear
systems

ẋ = Ax (9.1)

from Section 3.2. Clearly, our definition of stability in Section 6.5 is invariant
under a linear change of coordinates. Hence it will be no restriction to
assume that the matrix A is in Jordan canonical form.

Moreover, recall that, by virtue of the explicit form (3.42) of exp(tJ)
for a Jordan block J , it follows that the long-time behavior of the system
is determined by the real part of the eigenvalues. In general it depends on
the initial condition and there are two linear manifolds E+(eA) and E−(eA),
such that if we start in E+(eA) (resp. E−(eA)), then x(t) → 0 as t → ∞
(resp. t→ −∞).

The linear manifold E+(eA) (resp. E−(eA)) is called stable (resp. un-
stable) manifold and is spanned by the generalized eigenvectors corre-
sponding to eigenvalues with negative (resp. positive) real part,

E±(eA) =
⊕

±Re(αj)<0

Ker(A− αj)
aj . (9.2)

Similarly one can define the center manifold E0(eA) corresponding to
the eigenvalues with zero real part. However, since the center manifold is
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254 9. Local behavior near fixed points

generally not stable under small perturbations, one often assumes that it is
empty. Hence we will give a system where all eigenvalues have nonzero real
part a special name. They are called hyperbolic systems.

If all eigenvalues have negative real part we have the following result
from Section 3.2 which summarizes Corollary 3.5 and Corollary 3.6.

Theorem 9.1. Denote the eigenvalues of A by αj, 1 ≤ j ≤ m, and the cor-
responding algebraic and geometric multiplicities by aj and gj , respectively.

The system ẋ = Ax is globally stable if and only if Re(αj) ≤ 0 and
aj = gj whenever Re(αj) = 0.

The system ẋ = Ax is globally asymptotically stable if and only if we
have Re(αj) < 0 for all j. Moreover, in this case there is a constant C for
every α < min{−Re(αj)}mj=1 such that

‖ exp(tA)‖ ≤ Ce−tα, t ≥ 0. (9.3)

Finally, let us look at the hyperbolic case. In addition, our previous
theorem together with the fact that the stable and unstable manifolds are
invariant with respect to A (and thus with respect to exp(tA)) immediately
give the following result.

Theorem 9.2. The linear stable and unstable manifolds E± = E±(eA) are
invariant under the flow and every point starting in E± converges exponen-
tially to 0 as t→ ±∞. In fact, we have

| exp(tA)x±| ≤ Ce∓tα|x±|, ±t ≥ 0, x± ∈ E±, (9.4)

for any α < min{|Re(αj)| |αj ∈ σ(A),±Re(αj) < 0} and some C > 0
depending on α.

For our further investigations, it is also useful to introduce the space
spanned by all generalized eigenvectors of A corresponding to eigenvalues
with real part less/bigger than ∓α,

E±,α(eA) =
⊕

∓Re(αj)>α

Ker(A− αj)
aj = E±(eA±α). (9.5)

Equivalently,

E±,α(eA) = {x| lim
t→±∞

e±αt| exp(tA)x| = 0}, (9.6)

is the space spanned by all initial conditions which converge to 0 with some
given exponential rate α > 0. Note that E±,α is piecewise constant and will
jump at those values of α which are equal to the real part of some eigenvalue
of A.
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Problem 9.1. For the matrices in Problem 3.9. Determine the stability of
the origin and, if the system is hyperbolic, find the corresponding stable and
unstable manifolds.

Problem 9.2. Let A be a real-valued two by two matrix and let

χA(z) = z2 − Tz +D = 0, T = tr(A),D = det(A),

be its characteristic polynomial. Show that A is hyperbolic if TD 6= 0. More-
over, A is asymptotically stable if and only if D > 0 and T < 0. (Hint:
T = α1 + α2, D = α1α2.)

Let A be a real-valued three by three matrix and let

χA(z) = z3 − Tz2 +Mz −D = 0

be its characteristic polynomial. Show that A is hyperbolic if (TM −D)D 6=
0. Moreover, A is asymptotically stable if and only if D < 0, T < 0 and
TM < D. (Hint: T = α1+α2+α3, M = α1α2+α2α3+α2α3, D = α1α2α3,
and TM −D = (α1 + α2)(α1 + α3)(α2 + α3).)

9.2. Stable and unstable manifolds

In this section we want to transfer some of our results of the previous section
to nonlinear equations. We define the stable, unstable set of a fixed point
x0 as the set of all points converging to x0 for t→ ∞, t→ −∞, that is,

W±(x0) = {x ∈M | lim
t→±∞

|Φ(t, x)− x0| = 0}. (9.7)

Both sets are obviously invariant under the flow. Our goal in this section is
to investigate these sets.

Any function f ∈ C1 vanishing at x0 ∈M can be decomposed as

f(x) = A (x− x0) + g(x), (9.8)

where A is the Jacobian matrix of f at x0 and g(x) = o(|x − x0|). Clearly,
in a sufficiently small neighborhood of x0 we expect the solutions to be
described by the solutions of the linearized equation. This is true for small
t by Theorem 2.8, but what about |t| → ∞? In Section 6.5 we saw that for
n = 1 stability can be read off from A = f ′(x0) alone as long as f ′(x0) 6= 0.
In this section we will generalize this result to higher dimensions.

We will call the fixed point x0 hyperbolic if the linearized system is,
that is, if none of the eigenvalues of A has zero real part.

Since our result is of a local nature we fix a neighborhood U(x0) of x0
and define

M±,α(x0) = {x|γ±(x) ⊆ U(x0) and sup
±t≥0

e±αt|Φ(t, x)− x0| <∞} (9.9)
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Figure 9.1. Phase portrait for a planar system with a hyperbolic fixed
point (1, 1) together with the stable/unstable manifold (thick) and their
linear counterparts (dashed).

to be the set of all points which converge to x0 with some exponential rate
α > 0 as t → ±∞. This is the counterpart of E±,α, the space spanned by
all eigenvectors of A corresponding to eigenvalues with real part less/bigger
than ∓α. Now we define the local stable respectively unstable manifolds
of a fixed point x0 to be the set of all points which converge exponentially
to x0 as t→ ∞ respectively t→ −∞, that is,

M±(x0) =
⋃

α>0

M±,α(x0). (9.10)

Both sets are ± invariant under the flow by construction.

In the linear case we clearly have M±(0) = E±. Our goal is to show,
as a generalization of Theorem 9.2, that the sets M±(x0) are indeed man-
ifolds (smooth) and that E± is tangent to M±(x0) at x0, as illustrated in
Figure 9.1. Finally, we will show that M±(x0) =W±(x0) in the hyperbolic
case.

For notational convenience we will assume that x0 = 0 is our hyperbolic
fixed point. The key idea is again to reformulate our problem as an integral
equation which can then be solved by iteration. Since we understand the
behavior of the solutions to the linear system we can use the variation of
constants formula (3.97) to rewrite our equation as

x(t) = etAx(0) +

∫ t

0
e(t−r)Ag(x(r))dr. (9.11)

Now denote by P± the projectors onto the stable, unstable subspaces E±

of exp(A). Moreover, abbreviate x± = P±x(0) and g±(x) = P±g(x).

What we need is a condition on x(0) = x+ + x− such that x(t) remains
bounded. Clearly, if g(x) = 0, this condition is x− = 0. In the general case,
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we might still try to express x− as a function of x+: x− = h+(x+). To this
end we project out the unstable part of our integral equation and solve for
x−:

x− = e−tAx−(t)−
∫ t

0
e−rAg−(x(r))dr. (9.12)

Here x±(t) = P±x(t). If we suppose that |x(t)| is bounded for t ≥ 0, we can
let t→ ∞,

x− = −
∫ ∞

0
e−rAg−(x(r))dr, (9.13)

where the integral converges absolutely since the integrand decays exponen-
tially. Plugging this back into our equation we see

x(t) = etAx+ +

∫ t

0
e(t−r)Ag+(x(r))dr −

∫ ∞

t
e(t−r)Ag−(x(r))dr. (9.14)

Introducing P (t) = P+, t > 0, respectively P (t) = −P−, t ≤ 0, this can be
written more compactly as

x(t) = K(x)(t), K(x)(t) = etAx+ +

∫ ∞

0
e(t−r)AP (t− r)g(x(r))dr. (9.15)

In summary, ifA is hyperbolic, then every bounded solution solves (9.15) and
we can establish existence of solutions using similar fixed point techniques
as in Section 2.1. This will prove existence of a stable manifold which is
tangent to its linear counterpart for a hyperbolic fixed point. The unstable
manifold can be obtained by reversing time t→ −t.

In fact, we can do even a little better.

Theorem 9.3. Suppose f ∈ Ck, k ≥ 1, has a fixed point x0 with corre-
sponding Jacobian matrix A. Then, if α > 0 and A+αI is hyperbolic, there
is a neighborhood U(x0) = x0+U and a function h+,α ∈ Ck(E+,α∩U,E−,α)
such that

M+,α(x0) ∩ U(x0) = {x0 + a+ h+,α(a)|a ∈ E+,α ∩ U}. (9.16)

Both h+,α and its Jacobian matrix vanish at 0, that is, M+,α(x0) is tangent
to its linear counterpart E+,α at x0.

We haveM+,α2(x0) ⊆M+,α1(x0) for α1 ≤ α2 andM
+,α2(x0) =M+,α1(x0)

whenever E+,α2 = E+,α1 .

Proof. We suppose x0 = 0 and begin by assuming that A is hyperbolic
such that we can choose α = 0. Our underlying Banach space will be
Cb([0,∞),Rn) equipped with the sup norm

‖x‖ = sup
t≥0

|x(t)|.
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To solve (9.15) by iteration, suppose |x(t)| ≤ δ. Then, since the Jacobian
matrix of g at 0 vanishes, we have

|g(x(t)) − g(y(t))| ≤ ε |x(t)− y(t)|, (9.17)

where ε can be made arbitrarily small by choosing δ sufficiently small. More-
over, for α0 < min{|Re(α)| |α ∈ σ(A)} we have

‖e(t−r)AP (t− r)‖ ≤ Ce−α0|t−r|

by (9.4). Combining this with (9.17) we obtain

‖K(x)−K(y)‖ = sup
t≥0

∣
∣
∣
∣

∫ ∞

0
e(t−r)AP (t− r)

(
g(x(r))− g(y(r))

)
dr

∣
∣
∣
∣

≤ C sup
t≥0

∫ ∞

0
e−α0|t−r|∣∣g(x(r))− g(y(r))

∣
∣dr

≤ Cε‖x− y‖ sup
t≥0

∫ ∞

0
e−α0|t−r|dr =

2Cε

α0
‖x− y‖.

Hence, for ε < α0/(2C) existence of a unique solution ψ(t, x+) can be es-
tablished by the contraction principle (Theorem 2.1). However, by Theo-
rem 9.18 (see Section 9.4 below) we even get ψ(t, x+) is C

k with respect to
x+ if f is.

Clearly we have ψ(t, 0) = 0. Introducing the function h+(a) = P−ψ(0, a)
we obtain M+(0) ∩ U = {a+ h+(a)|a ∈ E+ ∩ U} for the stable manifold of
the nonlinear system in a neighborhood U of 0.

Moreover, I claim that M+(0) is tangent to E+ at 0. From the proof of
Theorem 9.18 it follows that ϕ(t, x+) =

∂
∂x+

ψ(t, x+) satisfies

ϕ(t, x+) = etAP+ +

∫ ∞

0
e(t−r)AP (t− r)gx(ψ(r, x+))ϕ(r, x+)dr. (9.18)

Evaluating this equation at (t, x+) = (0, 0) we see ϕ(0, 0) = P+ which is
equivalent to

∂

∂a
h+(a)

∣
∣
∣
a=0

= 0, (9.19)

that is, M+(0) is tangent to the linear stable manifold E+ at 0.

To see the general case, make the change of coordinates x̃(t) = exp(α t)x(t),

transforming A to Ã = A+ αI and g(x) to g̃(t, x̃) = exp(α t)g(exp(−α t)x̃).
Since Ã and g̃ satisfy the same assumptions we conclude, since supt≥0 |x̃(t)| ≤
δ, that supt≥0 |x(t)| ≤ δ exp(−α t). By uniqueness of the solution of our in-
tegral equation in a sufficiently small neighborhood of x0 we obtain (9.16).

For the last claim let x ∈M+,α2(x0)∩U(x0) ⊆M+,α1(x0)∩U(x0), then
x = x0 + a + h+,α2(a) = x0 + a + h+,α1(a) for a ∈ E+,α1 = E+,α2 implies
h+,α2(a) = h+,α1(a). From this the claim follows. �
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As a first consequence we obtain existence of stable and unstable man-
ifolds even in the non hyperbolic case, since M+(x0) = M+,ε(x0) for ε > 0
small such that E+ = E+,ε.

Theorem 9.4 (Stable manifold). Suppose f ∈ Ck, k ≥ 1, has a fixed point
x0 with corresponding Jacobian matrix A. Then, there is a neighborhood
U(x0) = x0 + U and functions h± ∈ Ck(E± ∩ U,E∓) such that

M±(x0) ∩ U(x0) = {x0 + a+ h±(a)|a ∈ E± ∩ U}. (9.20)

Both h± and their Jacobian matrices vanish at x0, that is, M±(x0) are
tangent to their respective linear counterpart E± at x0. Moreover,

|Φ(t, x)− x0| ≤ Ce∓tα,±t ≥ 0, x ∈M± (9.21)

for any α < min{|Re(αj)| |αj ∈ σ(A),Re(αj) 6= 0} and some C > 0 depend-
ing on α.

It can be shown that even a nonlinear counterpart of the center sub-
space E0 exists. However, such a center manifold might not be unique
(Problem 9.9).

In the hyperbolic case we can even say a little more.

Theorem 9.5. Suppose f ∈ Ck, k ≥ 1, has a hyperbolic fixed point x0.
Then there is a neighborhood U(x0) such that γ±(x) ⊂ U(x0) if and only if
x ∈M±(x0) ∩ U(x0). In particular,

W±(x0) =M±(x0). (9.22)

Proof. This follows since we have shown that any solution staying suffi-
ciently close to x0 solves (9.14). Hence uniqueness of the solution (in a
sufficiently small neighborhood of x0) implies that the initial value must lie
in M+(x0). �

Example. Consider the vector field

f(x) = (−x1 + x2 + 3x22, x2). (9.23)

Then it is not hard to check (start with the second equation) that its flow
is given by

Φ(t, x) = (x1e
−t + x2 sinh(t) + x22(e

2t − e−t), x2e
t). (9.24)

Moreover, there is only one fixed point x0 = 0 and the corresponding stable
and unstable manifolds are given by

W+(0) = {x|x2 = 0}, W−(0) = {x|x1 =
x2
2

+ x22}. (9.25)

The linearization is given by

A =

(
−1 1
0 1

)

(9.26)
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Figure 9.2. Phase portrait for a planar system with a hyperbolic fixed
point (0, 0) together with the stable/unstable manifold (thick) and their
linear counterparts (dashed).

and both W+(0) and W−(0) are tangent to their linear counterparts

E+ = {x|x2 = 0}, E− = {x|x1 =
x2
2
}. (9.27)

The system is depicted in Figure 9.2. ⋄

It can happen that an orbit starting in the unstable manifold of one fixed
point x0 ends up in the stable manifold of another fixed point x1. Such an
orbit is called heteroclinic orbit if x0 6= x1 and homoclinic orbit if
x0 = x1. See the problems for examples.

Moreover, as another consequence we obtain another proof of Theo-
rem 6.10. It also follows that, if the fixed point x0 of f is hyperbolic and
A has at least one eigenvalue with positive real part, then x0 is unstable
(why?).

Finally, it is also possible to include the case where f depends on a
parameter λ ∈ Λ. If x0 is a hyperbolic fixed point for f(x, 0) then, by
the implicit function theorem, there is a fixed point x0(λ) (which is again
hyperbolic) for λ sufficiently small. In particular we have

f(x, λ) = A(λ)(x− x0(λ)) + g(x, λ), (9.28)

where A(λ) is the Jacobian matrix of f(., λ) at x0(λ). By Problem 3.47, the
projectors P±(λ) = P±(A(λ)) vary smoothly with respect to λ and we can
proceed as before to obtain (compare Problem 9.12)

Theorem 9.6. Suppose f ∈ Ck, k ≥ 1, and let x0(λ) be as above. Then,
there is a neighborhood U(x0) = x0 + U and functions h± ∈ Ck(E± ∩ U ×
Λ, E∓) such that

M±(x0(λ)) ∩ U(x0) = {x0(λ) + P±(λ)a+ h±(a, λ)|a ∈ E± ∩ U}. (9.29)
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Problem 9.3. Find the subspaces E±,α for

A =





1 0 0
0 −1 0
0 0 −2



 .

Compute the projections P±.

Problem 9.4. Find the linearization of

f(x) = (x2,− sin(x1)).

and determine the stability of x = 0 if possible.

Problem 9.5 (Duffing equation). Investigate the Duffing equation

ẍ = −δẋ+ x− x3, δ ≥ 0.

Determine the stability of the fixed points by linearization. Find the stable
and unstable manifolds of the origin in the case δ = 0.

Problem 9.6. Consider the system

f(x) = (−x1, x2 + x21).

Find the flow (Hint: Start with the equation for x1.). Next, find the sta-
ble and unstable manifolds. Plot the phase portrait and compare it to the
linearization.

Problem 9.7 (Heteroclinic orbit). Determine the stability of the fixed points
of the pendulum (6.48) by linearization. Find the stable and unstable mani-
folds. Find a heteroclinic orbit.

Problem 9.8 (Homoclinic orbit). Determine the stability of the fixed points
of the system in Problem 6.23 by linearization. Find the stable and unstable
manifolds. Find a homoclinic orbit.

Problem 9.9. Consider

ẋ = −x, ẏ = y2.

Find all invariant smooth manifolds of the form {(h(a), a)|a ∈ R} which are
tangent to E0.

Problem 9.10. Consider the system

f(x) = (−x1 − x22, x2 + x21)

and find an approximation to the stable manifold by computing a few itera-
tions of (9.14). Plot the phase portrait (numerically) and compare it to the
linearization.
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Figure 9.3. Phase portrait for a planar system with a hyperbolic fixed
point (1, 1) together with the phase portrait of its linearization.

Problem 9.11. Classify the fixed points of the Lorenz equation

f(x) = (x2 − x1, rx1 − x2 − x1x3, x1x2 − x3), r > 0,

according to stability. At which value of r does the number of fixed points
change?

Problem 9.12. Suppose A(λ) is a matrix which is Ck with respect to λ in
some compact set. Suppose there is an 0 < α0 < min{|Re(α)| |α ∈ σ(A(λ))}.
Then

‖
(
d

dλ

)n

etA(λ)P (λ, t)‖ ≤ Cn(1 + |t|n)e−α0|t|, n ≤ k.

(Hint: Start with the case where A(λ) is a scalar. In the general case use
the power series for the exponential to find the derivative. The problem is
that A(λ) and its derivatives might not commute. However, once you take
the norm ...)

9.3. The Hartman–Grobman theorem

The result of the previous section only tells us something about the orbits
in the stable and unstable manifold. In this section we want to prove a
stronger result, which shows that the orbits near a hyperbolic fixed point
are locally just continuously deformed versions of their linear counterparts.
This is illustrated in Figure 9.3.

If we assume that A has no eigenvalues on the unit circle, we can use
R
n = E−(A) ⊕ E+(A) to split it into a contracting and expanding part

A = A− ⊕ A+, where A± = A
∣
∣
E±(A)

. By construction, all eigenvalues of

A+ are inside the unit circle and all eigenvalues of A− are outside the unit
circle. Hence, by Problem 3.48 we can find a norm such that ‖A+‖ < 1.

We begin with a lemma for maps.

Lemma 9.7. Suppose A is an invertible matrix with no eigenvalues on the
unit circle and choose a norm such that α = max(‖A−1

− ‖, ‖A+‖) < 1 (set
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‖A−1
− ‖ = 0 if there are no eigenvalues outside the unit circle). Then for

every bounded g satisfying

|g(x) − g(y)| ≤ ε|x− y|, ε <
1− α

2
, (9.30)

there is a unique continuous map ϕ(x) = x+ h(x) with h bounded such that

ϕ ◦ A = f ◦ ϕ, f = A+ g. (9.31)

If f is invertible (e.g. if ε‖A−1‖ < 1), then ϕ is a homeomorphism and if
in addition g(0) = 0 then ϕ(0) = 0.

Proof. We will assume that A has eigenvalues both inside and outside the
unit circle. The modifications for the two remaining cases are straightfor-
ward.

The requirement (9.31) is equivalent to

h(Ax) −Ah(x) = g(x+ h(x)). (9.32)

We will investigate this equation in the Banach space of continuous functions
C(Rn,Rn) with the sup norm. First of all note that the linear operator
U : C(Rn,Rn) → C(Rn,Rn) given by (Uh)(x) = h(Ax) is invertible (since
A is) and norm preserving. Clearly we can also regard A as a linear operator
A : C(Rn,Rn) → C(Rn,Rn) given by (Ah)(x) = Ah(x).

Introducing L = U −A we can write (9.32) as Lh(x) = g(x+ h(x)). To
obtain a fixed point equation we need to invert L. By splitting C(Rn,Rn) =
C(Rn, E−(A))⊕C(Rn, E+(A)) we obtain corresponding splittings A = A−⊕
A+, U = U− ⊕ U+, and L = L− ⊕ L+ (note that both A and U leave these
spaces invariant).

By L− = −A−(I − A−1
− U−) we see that L−1

− = −(I − A−1
− U−)−1A−1

− ,

where (I − A−1
− U−) is invertible with inverse given by the Neumann series

(Problem 9.13)

(I−A−1
− U−)

−1 =

∞∑

n=0

(A−1
− U−)

n

since ‖A−1
− U−‖ ≤ α. In particular, ‖L−1

− ‖ ≤ 1
1−α . Similarly, L−1

+ = (I −
U−1
+ A+)

−1U−1
+ with ‖L−1

+ ‖ ≤ 1
1−α .

In summary, L−1 = (U−−A−)−1⊕(U+−A+)
−1 exists and ‖L−1‖ ≤ 2

1−α .
Hence it remains to solve the fixed point equation

h(x) = L−1g(x+ h(x)).
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Since the operator on the right is a contraction,

‖L−1g(x+ h1(x))− L−1g(x+ h2(x))‖

≤ 2

1− α
‖g(x + h1(x)) − g(x+ h2(x))‖

≤ 2ε

1− α
‖h1 − h2‖,

the contraction principle (Theorem 2.1) guarantees existence of a unique
solution.

Now suppose f is invertible. Then there is a map ϑ(x) = x+ k(x) such
that A ◦ϑ = ϑ ◦ f . In fact, defining L as before but with U(k)(x) = k(f(x))
we see that this last equation is equivalent to L(k)(x) = −g(x) and since
the same argument as above shows that that L is invertible, we obtain
k(x) = −L−1(g)(x). Hence A ◦ ϑ ◦ ϕ = ϑ ◦ f ◦ ϕ = ϑ ◦ ϕ ◦ A and thus
ϑ ◦ϕ = I by the uniqueness part of our result (in the case g ≡ 0). Similarly,
A−1 ◦ϕ ◦ϑ = ϕ ◦ϑ ◦A−1 implies ϕ ◦ϑ = I and thus ϕ is a homeomorphism.

To show ϕ(0) = 0 evaluate Aϕ−1(x) = ϕ−1(f(x)) at x = 0 which shows
Aϕ−1(0) = ϕ−1(0). But this equation has only the solution ϕ−1(0) = 0. �

Corollary 9.8. Let A be as in the previous lemma and f arbitrary. Suppose
there is a homeomorphism ϕ(x) = x+ h(x) with h bounded such that

ϕ ◦ A = f ◦ ϕ, (9.33)

then ϕ is unique.

Proof. Suppose there are two such maps ϕ1 and ϕ2 and note that the
inverses ϕ−1

j are of the same type (Problem 9.14). Then f = ϕ1Aϕ
−1
1 =

ϕ2Aϕ
−1
2 implies A(ϕ−1

1 ϕ2) = (ϕ−1
1 ϕ2)A which shows that ϕ−1

1 ϕ2 = I by our
above lemma in the case g ≡ 0. �

Now we are able to prove the anticipated result.

Theorem 9.9 (Hartman–Grobman). Suppose f is a differentiable vector
field with 0 as a hyperbolic fixed point. Denote by Φ(t, x) the correspond-
ing flow and by A = df0 the Jacobian matrix of f at 0. Then there is a
homeomorphism ϕ(x) = x+ h(x) with h bounded such that

ϕ ◦ etA = Φt ◦ ϕ (9.34)

in a sufficiently small neighborhood of 0.

Proof. Our strategy is to apply Lemma 9.7 to find a ϕ which works for one
fixed t, say t = 1, and then verify that it works in fact for all t.
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First of all we will need to control

Π(t, x) =
∂

∂x
Φ(t, x).

From

Φ̇(t, x) = f(Φ(t, x)), Φ(0, x) = x,

we obtain

Π̇(t, x) =
∂f

∂x
(Φ(t, x))Π(t, x), Π(0, x) = I, (9.35)

and, setting x = 0,

Π(t, 0) = etA.

Thus

Φ1(x) = eAx+G(x),

where (9.30) holds at least when we are sufficiently close to our fixed point.
To make sure it always holds we will modify f .

Let φ : [0,∞) → R be a smooth bump function such that φ(x) = 0 for
0 ≤ x ≤ 1 and φ(x) = 1 for x ≥ 2. Replacing f(x) = Ax + g(x) by the

function f̃(x) = Ax+ (1− φ(|x|/δ))g(x), it is no restriction to consider the
global problem with f = A for |x| ≥ 2δ. Note that (show this!)

∣
∣
∣
∣

∂g̃

∂x
(x)

∣
∣
∣
∣
≤ C sup

|x|≤2δ

∣
∣
∣
∣

∂g

∂x
(x)

∣
∣
∣
∣

can be made arbitrarily small by choosing δ small. Moreover, note that
G̃(x) will be 0 for |x| sufficiently large (e.g., for |x| ≥ 2δeα, where α is some
nonnegative number which satisfies α ≥ −Re(αj) for all eigenvalues αj of

A). We will use f̃ from now on and drop the tilde for notational simplicity.

To be able to apply Lemma 9.7 we need to show that z(1, x), defined by

Π(t, x) = etA + z(t, x),

can be made arbitrarily small by choosing δ small. Plugging this into (9.35)
we obtain

z(t, x) =

∫ t

0

∂g

∂x
(Φ(s, x))esAds+

∫ t

0

∂f

∂x
(Φ(s, x))z(s, x)ds

and the claim follows from Gronwall’s inequality using that ∂g
∂x can be made

arbitrarily small by choosing δ small as noted above.

Hence, there is a ϕ such that (9.34) holds at least for t = 1. Furthermore,
the map ϕs = Φs ◦ ϕ ◦ e−sA also satisfies (9.34) for t = 1:

ϕs ◦ eA = Φs ◦ ϕ ◦ eA ◦ e−sA = Φs ◦ Φ1 ◦ ϕ ◦ e−sA = Φ1 ◦ ϕs.
Hence, if we can show that ϕt(x) = x+ ht(x) with ht bounded, then Corol-
lary 9.8 will tell us ϕ = ϕt which is precisely (9.34). Now observe

ht = Φt ◦ ϕ ◦ e−tA − I = (Φt − etA) ◦ e−tA +Φt ◦ h ◦ e−tA,
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266 9. Local behavior near fixed points

Figure 9.4. Phase portrait for a planar system with a hyperbolic fixed
point (0, 0) together with the phase portrait of its linearization.

where the first term is bounded since Φt(x) = etAx for sufficiently large x
(say |x| ≥ 2δetα as pointed out before) and the second is since h is. �

Example. Consider again the vector field

f(x) = (−x1 + x2 + 3x22, x2). (9.36)

Then one can verify that its flow (9.24) is mapped to its linear counterpart

etA =

(
e−t sinh(t)
0 et

)

(9.37)

by virtue of
ϕ(x) = (x1 − x22, x2). (9.38)

The system together with its linearization is depicted in Figure 9.4. ⋄

Two systems with vector fields f , g and respective flows Φf , Φg are said
to be topologically conjugate if there is a homeomorphism ϕ such that

ϕ ◦Φf,t = Φg,t ◦ ϕ. (9.39)

Note that topological conjugacy of flows is an equivalence relation.

The Hartman–Grobman theorem hence states that f is locally conju-
gate to its linearization A at a hyperbolic fixed point. In fact, there is an
even stronger results which says that two vector fields are locally conjugate
near hyperbolic fixed points if and only if the dimensions of the stable and
unstable subspaces coincide.

To show this, it suffices to show this result for linear systems. The rest
then follows from transitivity of the equivalence relations and the Hartman–
Grobman theorem.

Theorem 9.10. Suppose A and B are two matrices with no eigenvalues
on the imaginary axis. If the dimensions of their respective stable and un-
stable subspaces for their flows are equal, then their flows are topologically
conjugate.
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Proof. First of all, it is no restriction to assume that Rn = R
s⊕R

u, where
R
s and R

u are the stable and unstable subspaces for both flows (in fact, we
could even assume that both matrices are in Jordan canonical form using a
linear conjugation). Treating both parts separately, it suffices to prove the
two cases s = n and u = n. Moreover, it even suffices to prove the case
s = n, since the other one follows by considering A−1, B−1.

So let us assume s = n, that is, all eigenvalues have negative real part.
Hence there is a norm such that | exp(tA)x|A ≤ exp(−tα)|x|A for all t ≥ 0
and some small α > 0 (Problem 3.48). Replacing t→ −t and x→ exp(tA)x
we also obtain | exp(tA)x|A ≥ exp(−tα)|x|A for all t ≤ 0. Thus

d

dt
|x(t)|A = lim

s→0

| exp(sA)x(t)|A − |x(t)|A
s

≤ lim
s→0

exp(−sα)− 1

s
|x(t)|A = −α|x(t)|A

for t ≥ 0 and there is a unique time τA(x) > 0 such that | exp(τ(x)A)x|A = 1
for |x(t)|A > 1. Similarly, d

dt |x(t)|A ≥ −α|x(t)|A for t ≤ 0 and there is also
a unique time τA(x) < 0 such that | exp(τ(x)A)x|A = 1 for 0 < |x(t)|A ≤
1. Moreover, the unit sphere |x|A = 1 is transversal and hence τA is a
smooth function by Lemma 6.9. Note τA(exp(tA)x) = τA(x) − t. Similar
considerations can be made for B.

Then the function hAB(x) = x/|x|B maps the unit sphere for A contin-
uously to the one for B. Moreover, since the inverse is given by hBA(x) =
x/|x|A it is a homeomorphism. Now consider the map

h(x) = exp(−τA(x)B)hAB(exp(τA(x)A)x), x 6= 0,

which is a homeomorphism from R
n\{0} to itself. In fact its inverse is given

by

h−1(x) = exp(−τB(x)A)hBA(exp(τB(x)B)x), x 6= 0,

which follows since τB(y) = τA(x) if y = h(x). Furthermore, since τ(x) →
−∞ as x → 0 we have |h(x)| ≤ c‖ exp(−τA(x)B)‖ → 0 as x → 0. Thus we
can extend h to a homeomorphism from R

n to itself by setting h(0) = 0.

Finally, h is a topological conjugation since

h(exp(tA)x) = exp((t− τA(x))B)hAB(exp((τA(x)− t)A) exp(tA)x)

= exp(tB)h(x),

where we have used τA(exp(tA)x) = τA(x)− t. �

Problem 9.13. Let X be a Banach space and let A : X → X be a linear
operator. Set

‖A‖ = sup
‖x‖=1

‖Ax‖.
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Show that this defines a norm. Moreover, show that

‖AB‖ ≤ ‖A‖‖B‖
and that I+A is invertible if ‖A‖ < 1, with inverse given by the Neumann
series

(I−A)−1 =

∞∑

n=0

An.

Furthermore, ‖(I−A)−1‖ ≤ (1− ‖A‖)−1.

Problem 9.14. Let ϕ : Rn → R
n be a homeomorphism of the form ϕ(x) =

x+h(x) with bounded h. Show that ϕ−1(x) = x+ k(x), where k(x) is again
bounded (with the same bound).

Problem 9.15. Let

A =

(
−α β
−β −α

)

, B =

(
−1 0
0 −1

)

, α > 0.

Explicitly compute the conjugacy found in the proof of Theorem 9.10.

9.4. Appendix: Integral equations

I hope that, after the previous sections, you are by now convinced that
integral equations are an important tool in the investigation of differential
equations. In this appendix we will prove a few somewhat technical results
which can be omitted on first reading.

The main ingredient will again be fixed point theorems. But now we need
the case where our fixed point equation depends on additional parameters
λ ∈ Λ, where Λ is a subset of some Banach space.

Theorem 9.11 (Uniform contraction principle). Let C be a (nonempty)
closed subset of a Banach space X and Λ a subset of another Banach space.
Suppose Kλ : C → C is a uniform contraction, that is,

‖Kλ(x)−Kλ(y)‖ ≤ θ‖x− y‖, x, y ∈ C, λ ∈ Λ, (9.40)

for some θ ∈ [0, 1), and Kλ(x) is continuous with respect to λ ∈ Λ for every
x ∈ C. Then the unique fixed point x(λ) is continuous with respect to λ.

Moreover, if λn → λ, then

xn+1 = Kλn(xn) → x(λ). (9.41)

Proof. Existence of x(λ) for fixed λ follows from Theorem 2.1. We first
show that x(λ) is continuous. By the triangle inequality we have

‖x(λ)− x(η)‖ = ‖Kλ(x(λ))−Kλ(x(η)) +Kλ(x(η)) −Kη(x(η))‖
≤ θ‖x(λ)− x(η)‖ + ‖Kλ(x(η)) −Kη(x(η))‖
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and hence

‖x(λ)− x(η)‖ ≤ 1

1− θ
‖Kλ(x(η)) −Kη(x(η))‖.

Since the right-hand side converges to zero as λ → η, so does the left-hand
side and thus x(λ) is continuous.

To see the last claim abbreviate ∆n = ‖xn−x(λ)‖, εn = ‖x(λn)−x(λ)‖
and observe

∆n+1 ≤ ‖xn+1 − x(λn)‖+ ‖x(λn)− x(λ)‖ ≤ θ‖xn − x(λn)‖+ εn

≤ θ∆n + (1 + θ)εn.

Hence

∆n ≤ θn∆0 + (1 + θ)
n∑

j=1

θn−jεj−1

which converges to 0 since εn does (show this). �

There is also a uniform version of Theorem 2.4.

Theorem 9.12. Let C be a (nonempty) closed subset of a Banach space X
and Λ a subset of another Banach space. Suppose Kλ : C → C satisfies

‖Kλn ◦ · · · ◦Kλ1(x)−Kλn ◦ · · · ◦Kλ1(y)‖ ≤ θn‖x− y‖, x, y ∈ C, λj ∈ Λ,
(9.42)

with
∑∞

n=1 θn <∞, and Kλ(x) is continuous with respect to λ ∈ Λ for every
x ∈ C. Then the unique fixed point x(λ) is continuous with respect to λ.

Moreover, if λn → λ, then

xn+1 = Kλn(xn) → x(λ). (9.43)

Proof. We first show that Kλ = Kλn ◦ · · · ◦Kλ1 , λ = (λ1, . . . , λn), is con-
tinuous with respect to λ ∈ Λn for fixed x ∈ C. The claim holds for n = 1
by assumption. It remains to show it holds for n provided it holds for n−1.
But this follows from

‖Kλn ◦Kλ(x)−Kηn ◦Kη(x)‖
≤ ‖Kλn ◦Kλ(x)−Kλn ◦Kη(x)‖+ ‖Kλn ◦Kη(x)−Kηn ◦Kη(x)‖
≤ θ1‖Kλ(x)−Kη(x)‖ + ‖Kλn ◦Kη(x)−Kηn ◦Kη(x)‖,

where λ = (λ1, . . . , λn−1) and η = (η1, . . . , ηn−1).

Now observe that for n sufficiently large we have θn < 1 and hence Kλ is
a uniform contraction to which we can apply Theorem 9.11. In particular,
choosing λj = (λj , . . . , λj+n−1) we have that xn(j+1)+l = Kλnj+l

(xnj+l) con-

verges to the unique fixed point of K(λ,...,λ) which is precisely x(λ). Hence
limj→∞ xnj+l = x(λ) for every 0 ≤ l ≤ n−1 implying limj→∞ xj = x(λ). �
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Now we are ready to apply these results to integral equations. However,
the proofs require some results from integration theory which I state first.
We will consider functions f : U ⊆ R

m → R
n and by an integrable func-

tion we will mean a Riemann (or Lebesgue) integrable function for which
∫
|f(x)|dx is finite.

Theorem 9.13 (Dominated convergence). Suppose fn(x) is a sequence of
integrable functions converging pointwise to an integrable function f(x). If
there is a dominating function g(x), that is, g(x) is integrable and satisfies

|fn(x)| ≤ g(x), (9.44)

then

lim
n→∞

∫

fn(x)dx =

∫

f(x)dx. (9.45)

For a proof see any book on real analysis or measure theory.

This result has two immediate consequences which we will need below.

Corollary 9.14. Suppose fn(x) → f(x) pointwise and dfn(x) → g(x) point-
wise. If there is (locally) a dominating function for dfn(x), then f(x) is
differentiable and df(x) = g(x).

Proof. It suffices to prove the case where f is one dimensional. Using

fn(x) = fn(x0) +

∫ x

x0

f ′n(t)dt

the result follows after taking the limit on both sides. �

Corollary 9.15. Suppose f(x, λ) is integrable with respect to x for any λ
and continuously differentiable with respect to λ for any x. If there is a
dominating function g(x) such that

|∂f
∂λ

(x, λ)| ≤ g(x), (9.46)

then the function

F (λ) =

∫

f(x, λ)dx (9.47)

is continuously differentiable with derivative given by

∂F

∂λ
(λ) =

∫
∂f

∂λ
(x, λ)dx. (9.48)

Proof. Again it suffices to consider one dimension. Since

f(x, λ+ ε)− f(x, λ) = ε

∫ 1

0

∂f

∂λ
(x, λ+ εt)dt
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we have
F (λ+ ε)− F (λ)

ε
=

∫∫ 1

0

∂f

∂λ
(x, λ+ εt)dt dx.

Moreover, by |∂f∂λ(x, λ+ εt)| ≤ g(x) we have

lim
ε→0

∫ 1

0

∂f

∂λ
(x, λ+ εt)dt =

∂f

∂λ
(x, λ)

by the dominated convergence theorem. Applying dominated convergence

again, note |
∫ 1
0
∂f
∂λ(x, λ+ εt)dt| ≤ g(x), the claim follows. �

Now let us turn to integral equations. As in Section 2.2 we will equip the
set of continuous functions C(U,Rn) (where U ⊆ R

m) with the sup norm
‖f‖ = supx∈U |f(x)|, which will turn C(U,Rn) into a Banach space.

Suppose V is a closed subset of Rn and consider the following (nonlinear)
Volterra integral equation

Kλ(x)(t) = k(t, λ) +

∫ t

0
K(s, x(s), λ)ds, (9.49)

where

k ∈ C(I × Λ, V ), K ∈ C(I × V × Λ,Rn), (9.50)

with I = [−T, T ] and Λ ⊂ R
n compact. We will require that there is a

constant L (independent of t and λ) such that

|K(t, x, λ)−K(t, y, λ)| ≤ L|x− y|, x, y ∈ V. (9.51)

Theorem 9.16. Let Kλ satisfy the requirements (9.50)–(9.51) from above
and let T0 = min(T, δM ), where δ > 0 is such that

Cδ = {Bδ(k(t, λ)) |(t, λ) ∈ [T, T ]× Λ} ⊂ V (9.52)

and

M = sup
(t,x,λ)∈[−T,T ]×Bδ(0)×Λ

|K(t, k(t, λ) + x, λ)|. (9.53)

Then the integral equation Kλ(x) = x has a unique solution x(t, λ) ∈
C([−T0, T0]× Λ, V ) satisfying

|x(t, λ)− k(t, λ)| ≤ eLT0 sup
λ∈Λ

∫ T0

−T0
|K(s, k(s, λ), λ)|ds. (9.54)

Moreover, if in addition all partial derivatives of order up to r with
respect to λ and x of k(t, λ) and K(t, x, λ) are continuous, then all partial
derivatives of order up to r with respect to λ of x(t, λ) are continuous as
well.
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Proof. First observe that it is no restriction to assume k(t, λ) ≡ 0 by chang-
ing K(t, x, λ) and V . Then existence and the bound follows as in the proof
of Theorem 2.5. By the dominated convergence theorem Kλ(x) is contin-
uous with respect to λ for fixed x(t). Hence by Theorem 9.12 the second
term in

|x(t, λ)− x(s, η)| ≤ |x(t, λ)− x(s, λ)|+ |x(s, λ)− x(s, η)|
converges to zero as (t, λ) → (s, η) and so does the first since

|x(t, λ) − x(s, λ)| ≤ |
∫ t

s
K(r, x(r, λ), λ)dr| ≤M |t− s|.

Now let us turn to the second claim. Suppose that x(t, λ) ∈ C1. Then

y(t, λ) = ∂
∂λx(t, λ) is a solution of the fixed point equation K̃λ(x(λ), y) = y.

Here

K̃λ(x, y)(t) =

∫ t

0

∂K

∂λ
(s, x(s), λ)ds +

∫ t

0

∂K

∂x
(s, x(s), λ)y(s)ds. (9.55)

This integral operator is linear with respect to y and by the mean value
theorem and (9.51) we have

‖∂K
∂x

(t, x, λ)‖ ≤ L.

Hence the first part implies existence of a continuous solution y(t, λ) of

K̃λ(x(λ), y) = y. It remains to show that this is indeed the derivative of
x(λ).

Fix λ. Starting with (x0(t), y0(t)) = (0, 0) we get a sequence (xn+1, yn+1) =

(Kλ(xn), K̃λ(xn, yn)) such that yn(t) =
∂
∂λxn(t). Since K̃λ is continuous with

respect to x (Problem 9.17), Theorem 9.12 implies (xn, yn) → (x(λ), y(λ)).
Moreover, since (xn, yn) is uniformly bounded with respect to λ, we conclude
by Corollary 9.14 that y(λ) is indeed the derivative of x(λ).

This settles the r = 1 case. Now suppose the claim holds for r − 1.
Since the equation for y is of the same type as the one for x and since
kλ,

∂K
∂λ ,

∂K
∂x ∈ Cr−1 we can conclude y ∈ Cr−1 and hence x ∈ Cr. �

Corollary 9.17. If, in addition to the requirements from Theorem 9.16,
k ∈ Cr(I × Λ, V ) and K ∈ Cr(I × V × Λ,Rn), then x(t, λ) ∈ Cr(I × Λ, V ).

Proof. The case r = 0 follows from the above theorem. Now let r = 1.
Differentiating the fixed point equation with respect to t we see that

ẋ(t, λ) = k̇(t, λ) +K(t, x(t, λ), λ)

is continuous. Hence, together with the result from above, all partial deriva-
tives exist and are continuous, implying x ∈ C1. The case for general r now
follows by induction as in the proof of the above theorem. �
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Next we turn to the following Hammerstein integral equation which
we encountered in Section 9.2,

Kλ(x)(t) = k(t, λ) +

∫ ∞

0
κ(s − t, λ)K(s, x(s), λ)ds, (9.56)

where

k ∈ C([0,∞)×Λ,Rn), κ ∈ C(R×Λ,Rn), K ∈ C([0,∞)×V ×Λ,Rn), (9.57)

with Λ ⊂ R
n compact. Now we are going to show the analog of Theorem 9.16

for this equation, which we used in Section 9.2.

We assume that for every compact set C ⊆ V , k and K are uniformly
continuous and bounded

|k(t, λ)| ≤ m, |K(t, x, λ)| ≤M, (t, x, λ) ∈ [0,∞)× C × Λ, (9.58)

and that there is an integrable function α(s) such that

|κ(s + t, λ)| ≤ α(s) for |t| ≤ ε. (9.59)

In addition, suppose

|K(s, x, λ)−K(s, y, λ)| ≤ L|x− y|, x, y ∈ V, (9.60)

where L is independent of λ, and that

L

∫ ∞

−∞
|κ(s, λ)|ds ≤ θ < 1. (9.61)

Theorem 9.18. Let Kλ satisfy the requirements (9.57)–(9.61) from above.
Then the fixed point equation Kλ(x) = x has a unique solution x(t, λ) ∈
C([0,∞)× Λ, V ).

Assume in addition that all partial derivatives of order up to r with re-
spect to λ and x of k(t, λ), κ(s, λ), and K(s, x, λ) are continuous. Further-
more, for all partial derivatives of order up to r with respect to λ of κ(s, λ)
there are dominating functions as in (9.59) and all partial derivatives of or-
der up to r with respect to λ and x of K(s, x, λ) are uniformly continuous
and bounded when x is restricted to compacts as in (9.58). Then all partial
derivatives of order up to r with respect to λ of x(t, λ) are continuous.

Proof. As in Theorem 9.16 it is no restriction to assume k(t, λ) ≡ 0. Choose

δ = (1− θ)−1‖Kλ(0)‖,
then ‖x‖ ≤ δ implies

‖Kλ(x)‖ ≤
∫ ∞

0
|κ(s − t, λ)|(|K(s, 0, λ)| + |K(s, x(s), λ) −K(s, 0, λ)|)ds

≤ ‖Kλ(0)‖ + θ‖x‖ ≤ δ
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and hence Kλ maps C([0,∞), Bδ(0)) into itself. Moreover, by assumption
Kλ is a contraction with contraction constant θ implying that there is a
unique solution x(λ, t).

Next, we want to show that Kλ(x) is continuous with respect to λ,

|Kλ(x)(t)−Kη(x)(t)| ≤
∫ ∞

0
|κ(s − t, λ)| |K(s, x(s), λ) −K(s, x(s), η)|ds

∫ ∞

0
|κ(s − t, λ)− κ(s − t, η)| |K(s, x(s), η)|ds.

By uniform continuity ofK, for every ε > 0 we have |K(s, x, λ)−K(s, x, η)| ≤
ε provided |λ− η| is sufficiently small and hence

‖Kλ(x)(t)−Kη(x)(t)‖ ≤ εθ

L
+M

∫ ∞

−∞
|κ(s − t, λ)− κ(s− t, η)|ds.

Since the right-hand side can be made arbitrarily small by choosing |λ− η|
small (dominated convergence), the claim follows.

Now we can show that x is continuous. By our previous consideration,
the first term in

|x(t, λ)− x(s, η)| ≤ |x(t, λ)− x(t, η)| + |x(t, η) − x(s, η)|
converges to zero as (t, λ) → (s, η) and so does the second since

|x(t, η)− x(s, η)|

≤
∫ ∞

0
|κ(r − t, η)− κ(r − s, η)| |K(r, x(r, η), η)|dr

≤M

∫ ∞

0
|κ(r − t, η) − κ(r − s, η)|dr.

Hence the case r = 0 is finished.

Now let us turn to the second claim. Suppose that x(t, λ) ∈ C1. Then

y(t, λ) = ∂
∂λx(t, λ) is a solution of the fixed point equation K̃λ(x(λ), y) = y.

Here

K̃λ(x, y)(t) =

∫ ∞

0
κλ(s− t, λ)K(s, x(s), λ)ds

+

∫ ∞

0
κ(s− t, λ)Kλ(s, x(s), λ)ds

+

∫ ∞

0
κ(s− t, λ)Kx(s, x(s), λ)y(s)ds,

where the subscripts denote partial derivatives. The rest follows as in the
proof of the Theorem 9.16. To show that K̃λ(x, y) depends continuously on
x you need to use uniform continuity of K and its derivatives. �
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Problem 9.16. Suppose K : C ⊆ X → C is a contraction and

xn+1 = K(xn) + yn, ‖yn‖ ≤ αn + βn‖xn‖,
with limn→∞ αn = limn→∞ βn = 0. Then limn→∞ xn = x.

Problem 9.17. Suppose K(t, x, y) is a continuous function. Show that the
map

Kx(y)(t) =

∫ t

0
K(s, x(s), y(s))ds

is continuous with respect to x ∈ C(I,Rn). Conclude that (9.55) is contin-
uous with respect to x ∈ C(I,Rn). (Hint: Use the dominated convergence
theorem.)
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Chapter 10

Discrete dynamical
systems

10.1. The logistic equation

This chapter gives a brief introduction to discrete dynamical systems. Most
of the results are similar to the ones obtained for continuous dynamical
systems. Moreover, most results won’t be needed until Chapter 12. We
begin with a simple example.

Let N(t) be the size of a certain species at time t whose growth rate is
proportional to the present amount, that is,

Ṅ(t) = κN(t). (10.1)

The solution of this equation is clearly given by N(t) = N0 exp(κ t). Hence
the population grows exponentially if κ > 0 and decreases exponentially if
κ < 0. Similarly, we could model this situation by a difference equation

N(n+ 1)−N(n) = kN(n) (10.2)

or equivalently

N(n+ 1) = (1 + k)N(n), (10.3)

where N(n) is now the population after n time intervals (say years). The
solution is given by N(n) = N0(1 + k)n and we have again exponential
growth or decay according to the sign of k > −1. In particular, there is no
big difference between the continuous and the discrete case and we even get
the same results at t = n if we set κ = log(1 + k).

279
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280 10. Discrete dynamical systems

However, this result can be quite misleading as the following example
shows. A refined version of the above growth model is given by

Ṅ(t) = κN(t)(L−N(t)), (10.4)

where the population is limited by a maximum L. We have seen in Sec-
tion 1.5, that for any positive initial population N0, the species will eventu-
ally tend to the limiting population L. The discrete version reads

N(n+ 1)−N(n) = kN(n)(L−N(n)) (10.5)

or equivalently

N(n+ 1) = kN(n)(L̃−N(n)), L̃ = L+
1

k
. (10.6)

Introducing xn = N(n)/L̃, µ = kL̃ we see that it suffices to consider

xn+1 = µxn(1− xn), (10.7)

which is known as the logistic equation. Introducing the quadratic func-
tion

Lµ(x) = µx(1− x) (10.8)

we can write the solution as the n’th iterate of this map, xn = Lnµ(x0). But
if you try to work out a closed expression for these iterates, you will soon
find out that this is not as easy as in the continuous case. Moreover, the
above difference equation leads to very complicated dynamics and is still
not completely understood.

To get a first impression of the behavior of solutions let us do some
numerical experiments. We will consider 0 ≤ µ ≤ 4 in which case the
interval [0, 1] is mapped into itself under Lµ.

First of all, we will use the following Mathematica code

In[1]:= ShowWeb[f , xstart , nmax ] :=
Module[{x, xmin, xmax, delta, graph, web},
x[0] := xstart;
x[n ] := x[n] = f[x[n− 1]];
web = Flatten[Table[{{x[n], x[n]}, {x[n], x[n+ 1]}},
{n, 0, nmax}], 1];

xmax = Max[web]; xmin = Min[web]; delta = 0.1(xmax− xmin)
graph = Plot[{f[x], x}, {x, xmin− delta, xmax+ delta}];
Show[graph, Graphics[Line[web]]]

];

to visualize nmax iterations of a function f(x) starting at xstart. If µ is
small, say µ = 1,

In[2]:= ShowWeb[1#(1−#)&, 0.4, 20]
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Out[2]=

0.1 0.2 0.3 0.4

0.1

0.2

0.3

0.4

we see that all initial conditions in (0, 1) eventually converge to 0 which is
one solution of the fixed point equation x = Lµ(x). If µ increases beyond 1,

it turns out that all initial conditions converge to the second solution 1− 1
µ

of the fixed point equation.

In[3]:= ShowWeb[2#(1−#)&, 0.2, 20]

Out[3]=

0.20 0.25 0.30 0.35 0.40 0.45 0.50

0.20

0.25

0.30

0.35

0.40

0.45

0.50

At µ = 3 the behavior changes again and all initial conditions eventually
jump back and forth between the two solutions of the equation L2

µ(x) = x
which are not solutions of Lµ(x) = x.

In[4]:= ShowWeb[3.1#(1−#)&, 0.4, 20]

Out[4]=

0.4 0.5 0.6 0.7 0.8

0.4

0.5

0.6

0.7

0.8

Clearly this method of investigating the system gets quite cumbersome. We
will return to this problem in Section 11.1.

Problem 10.1. If the iteration converges, will the limit always be a fixed
point?

Problem 10.2. Consider an m’th order difference equation

xn+m = F (n, xn, . . . , xn+m−1). (10.9)

Show that it can be reduced to the iteration of a single map.
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10.2. Fixed and periodic points

Now let us introduce some notation for later use. To set the stage, let M
be a metric space and let f : M → M be continuous. We are interested in
investigating the dynamical system corresponding to the iterates

fn(x) = fn−1(f(x)), f0(x) = x. (10.10)

In most cases M will just be a subset of Rn. However, the more abstract
setting chosen here will turn out useful later on.

A point p ∈M satisfying

f(p) = p (10.11)

is called a fixed point of f . The set of fixed points of f is denoted by
Fix(f). Similarly, a fixed point of fn,

fn(p) = p, (10.12)

is called a periodic point of period n. We will usually assume that n is
the prime period of p, that is, we have fm(p) 6= p for all 1 ≤ m < n. The
set of periodic points of f is denoted by Per(f).

The forward orbit of x is defined as

γ+(x) = {fn(x)|n ∈ N0}. (10.13)

It is clearly (positively) invariant. Here a set U ⊆ M is called (positively)
invariant, if f(U) ⊆ U . An orbit for x is a set of points

γ(x) = {xn|n ∈ Z such that x0 = x, xn+1 = f(xn)}. (10.14)

It is important to observe that the points x−n, n ∈ N, are not uniquely
defined unless f is one-to-one. Moreover, there might be no such points at
all (if f−1(x) = ∅ for some xn). An orbit is invariant, that is, f(γ(x)) = γ(x).
The points xn ∈ γ(x), n < 0, are also called a past history of x.

If p is periodic with period n, then γ+(p) is finite and consists of precisely
n points

γ+(p) = {p, f(p), . . . , fn−1(p)}. (10.15)

The converse is not true since a point might be eventually periodic (fixed),
that is, it might be that fk(x) is periodic (fixed) for some k. A (forward)
orbit of the form (10.15) will be called a periodic orbit.

Example. If M = R and f = 0, then p = 0 is the only fixed point and
every other point is eventually fixed. ⋄

A point x ∈ M is called forward asymptotic to a periodic point p of
period n if

lim
k→∞

fnk(x) = p. (10.16)
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The stable set W+(p) is the set of all x ∈ M for which (10.16) holds.
Clearly, if p1, p2 are distinct periodic points, their stable sets are disjoint.
In fact, if x ∈W+(p1)∩W+(p2) we would have limk→∞ fn1n2k(x) = p1 = p2,
a contradiction. We call p attracting if there is an open neighborhood U
of p such that U ⊆ W+(p). The set W+(γ(p)) =

⋃

q∈γ(p)W
+(q) is clearly

positively invariant (it is even invariant f(W+(γ(p))) = W+(γ(p)) if f is
invertible).

Similarly, a point x ∈ M is called backward asymptotic to a pe-
riodic point p of period n if there is a past history xk of x such that
limk→∞ x−nk(x) = p. The unstable set W−(p) is the set of all x ∈ M for
which this condition holds. Again unstable sets of distinct periodic points
are disjoint. We call p repelling if there is an open neighborhood U of p
such that U ⊆W−(p).

Note that if p is repelling, every x ∈ U will eventually leave U under
iterations. Nevertheless, x can still return to U (Problem 10.5).

Furthermore, note that if one point in the orbit γ+(p) of a periodic point
p is attracting (repelling), so are all the others (show this).

Now let us look at the logistic map Lµ(x) = µx(1− x) with M = [0, 1].
We have already seen that if µ = 0, then the only fixed point is 0 with
W+(0) = [0, 1] and all points in (0, 1] are eventually periodic.

So let us next turn to the case 0 < µ < 1. Then we have Lµ(x) ≤ µx
and hence Lnµ(x) ≤ µnx shows that every point converges exponentially to

0. In particular, we have W+(0) = [0, 1].

Note that locally this follows since L′
µ(0) = µ < 1. Hence Lµ is con-

tracting in a neighborhood of the fixed point and so all points in this neigh-
borhood converge to the fixed point.

This result can be easily generalized to differentiable maps f ∈ C1(U,U),
where U ⊂ R

n.

Theorem 10.1. Suppose f ∈ C1(U,U), U ⊆ R
n. Then a periodic point

p with period n is attracting if all eigenvalues of d(fn)p are inside the unit
circle and repelling if all eigenvalues are outside.

Proof. In the first case there is a suitable norm such that ‖d(fn)p‖ <
θ < 1 for any fixed θ which is larger than the modulus of all eigenvalues
(Problem 3.48). Moreover, since the norm is continuous, there is an open
ball B around p such that we have ‖d(fn)x‖ ≤ θ for all x ∈ B. Hence by the
mean value theorem (cf. Problem 2.5) we have |fn(x)−p| = |fn(x)−fn(p)| ≤
θ|x− p| and the first claim follows.

The second case can now be reduced to the first by considering the local
inverse of f near p. �
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If none of the eigenvalues of d(fn) at a periodic point p lies on the
unit circle, then p is called hyperbolic. Note that by the chain rule the
derivative is given by

d(fn)(p) =
∏

x∈γ+(p)

dfx = dffn−1(p) · · · dff(p)dfp. (10.17)

Finally, stability of a periodic point can be defined as in the case of
differential equations. A periodic orbit γ+(p) of f(x) is called stable if
for any given neighborhood U(γ+(p)) there exists another neighborhood
V (γ+(p)) ⊆ U(γ+(p)) such that any point in V (γ+(p)) remains in U(γ+(p))
under all iterations. Note that this is equivalent to the fact that for any
given neighborhood U(p) there exists another neighborhood V (p) ⊆ U(p)
such that any point in x ∈ V (p) satisfies fnm(x) ∈ U(p) for all m ∈ N0.

Similarly, a periodic orbit γ+(p) of f(x) is called asymptotically stable
if it is stable and attracting.

Pick a periodic point p of f , fn(p) = p, and an open neighborhood U(p)
of p. A Liapunov function is a continuous function

L : U(p) → R (10.18)

which is zero at p, positive for x 6= p, and satisfies

L(x) ≥ L(fn(x)), x, fn(x) ∈ U(p)\{p}. (10.19)

It is called a strict Liapunov function if equality in (10.19) never occurs.

As in the case of differential equations we have the following analog of
Liapunov’s theorem (Problem 10.6).

Theorem 10.2. Suppose p is a periodic point of f . If there is a Liapunov
function L, then p is stable. If, in addition, L is strict, then p is asymptot-
ically stable.

Problem 10.3. Consider the logistic map Lµ(x), x ∈ R, for µ = 1. Show
that W+(0) = [0, 1].

Problem 10.4. Determine the stability of all fixed points of the logistic map
Lµ(x), x ∈ [0, 1], via linearization for 0 ≤ µ ≤ 4.

Problem 10.5. Consider the logistic map Lµ for µ = 4. show that 0 is
a repelling fixed point. Find an orbit which is both forward and backward
asymptotic to 0.

Problem 10.6. Prove Theorem 10.2.

Problem 10.7. Define the set of recurrent points Rec(f) := {x ∈M | for
every neighborhood U(x) there is some n > 0 with fn(x) ∈ U(x)} and the
set of nonwandering points Nwa(f) := {x ∈ M | for every neighborhood
U(x) there are n > 0 and y ∈ U(x) with fn(y) ∈ U(x)}.
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Show:

(i) Per(f) ⊆ Rec(f) ⊆ Nwa(f).

(ii) Per(f), Rec(f), and Nwa(f) are (positively) invariant.

(iii) Rec(f) = {x ∈M | there is a sequence nk with fnk(x) → x}.
(iv) Nwa(f) is closed.

(See also Problem 11.9.)

10.3. Linear difference equations

As in the case of differential equations, the behavior of nonlinear maps near
fixed (periodic) points can be investigated by looking at the linearization.
We begin with the study of the homogeneous linear first-order difference
equations

x(m+ 1) = A(m)x(m), x(m0) = x0, (10.20)

where A(m) ∈ R
n × R

n. Clearly, the solution corresponding to x(m0) = x0
is given by

x(m,m0, x0) = Π(m,m0)x0, (10.21)

where Π(m,m0) is the principal matrix solution given by

Π(m,m0) =

m−1∏

j=m0

A(j), m ≥ m0. (10.22)

In particular, linear combinations of solutions are again solutions and the
set of all solutions forms an n-dimensional vector space.

The principal matrix solution solves the matrix valued initial value prob-
lem

Π(m+ 1,m0) = A(m)Π(m,m0), Π(m0,m0) = I (10.23)

and satisfies

Π(m,m1)Π(m1,m0) = Π(m,m0). (10.24)

Moreover, if A(m) is invertible for all m, we can set

Π(m,m0) =





m0−1∏

j=m

A(j)





−1

, m < m0 (10.25)

In this case, Π(m,m0) is an isomorphism with inverse given by Π(m,m0)
−1 =

Π(m0,m) and all formulas from above hold for all m.

The analog of Liouville’s formula is just the usual product rule for de-
terminants

det(Π(m,m0)) =
m−1∏

j=m0

det(A(j)). (10.26)
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Finally, let us turn to the inhomogeneous system

x(m+ 1) = A(m)x(m) + g(m), x(m0) = x0, (10.27)

where A(m) ∈ R
n×R

n and g(m) ∈ R
n. Since the difference of two solutions

of the inhomogeneous system (10.27) satisfies the corresponding homoge-
neous system (10.20), it suffices to find one particular solution. In fact, it is
straight forward to verify that the solution is given by the following formula.

Theorem 10.3. The solution of the inhomogeneous initial value problem is
given by

x(m) = Π(m,m0)x0 +

m−1∑

j=m0

Π(m, j)g(j), (10.28)

where Π(m,m0) is the principal matrix solution of the corresponding homo-
geneous system.

If A(m) is invertible, the above formula also holds for m < m0 if we set

x(m) = Π(m,m0)x0 −
m0∑

j=m−1

Π(m, j)g(j), m < m0. (10.29)

Problem 10.8. Find an explicit formula for the Fibonacci numbers de-
fined via

x(m) = x(m− 1) + x(m− 2), x(1) = x(2) = 1.

10.4. Local behavior near fixed points

In this section we want to investigate the local behavior of a differentiable
map f : Rn → R

n near a fixed point p. We will assume p = 0 without
restriction and write

f(x) = Ax+ g(x), (10.30)

where A = df0. The analogous results for periodic points are easily obtained
by replacing f with fn.

First we show the Hartman–Grobman theorem for maps (compare The-
orem 9.9).

Theorem 10.4 (Hartman–Grobman). Suppose f is a local diffeomorphism
with hyperbolic fixed point 0. Then there is a homeomorphism ϕ(x) = x +
h(x), with bounded h, such that

ϕ ◦ A = f ◦ ϕ, A = df0, (10.31)

in a sufficiently small neighborhood of 0.
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Proof. Let φδ be a smooth bump function such that φδ(x) = 0 for |x| ≤ δ
and φδ(x) = 1 for |x| ≥ 2δ. Then the function gδ = (1− φδ)(f −A) satisfies
the assumptions of Lemma 9.7 (show this) for δ sufficiently small. Since f
and fδ coincide for |x| ≤ δ the homeomorphism for fδ is also the right one
for f for x in the neighborhood ϕ−1({x| |x| ≤ δ}). �

Let me emphasize that the homeomorphism ϕ is in general not differen-
tiable! In particular, this shows that the stable and unstable setsW+(0) and
W−(0) (defined in Section 10.2) are given (locally) by homeomorphic images
of the corresponding linear ones E+(A) and E−(A), respectively. In fact,
it can even be shown that (in contradistinction to ϕ) they are differentiable
manifolds as we will see in a moment.

We will assume that f is a local diffeomorphism for the rest of this
section.

We define the stable respectively unstable manifolds of a fixed point p
to be the set of all points which converge exponentially to p under iterations
of f respectively f−1, that is,

M±(p) = {x ∈M | sup
±m∈N0

α∓m|fm(x)− p| <∞ for some α ∈ (0, 1)}.
(10.32)

Both sets are obviously invariant under the flow and are called the stable
and unstable manifold of p.

It is no restriction to assume that p = 0. In the linear case we clearly
have M±(0) = E±(A).

Our goal is to show, the sets M±(x0) are indeed manifolds (smooth)
tangent to E±(A). As in the continuous case, the key idea is to formulate
our problem as a fixed point equation which can then be solved by iteration.

Now writing
f(x) = Ax+ g(x) (10.33)

our difference equation can be rephrased as

x(m) = Amx0 +
m−1∑

j=0

Am−jg(x(j)) (10.34)

by Theorem 10.3.

Next denote by P± the projectors onto the stable, unstable subspaces
E±(A). Moreover, abbreviate x± = P±x0 and g±(x) = P±g(x).

What we need is a condition on x0 = x+ + x− such that x(m) remains
bounded. If we project out the unstable part of our summation equation

x− = A−mx−(m)−
m−1∑

j=0

Ajg−(x(j)). (10.35)
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and suppose |x(m)| bounded for m ≥ 0, we can let m→ ∞,

x− = −
∞∑

j=0

A−jg−(x(j)), (10.36)

where the sum converges since the summand decays exponentially. Plugging
this back into our equation and introducing P (m) = P+,m > 0, respectively
P (m) = −P−, m ≤ 0, we arrive at

x(m) = K(x)(m), K(x)(m) = Amx++
∞∑

j=0

Am−jP (m−j)g(x(j)). (10.37)

To solve this equation by iteration, suppose |x(m)| ≤ δ. Then, since the
Jacobian matrix of g at 0 vanishes, we have

sup
m≥0

|g(x(m)) − g(x̃(m))| ≤ ε sup
m≥0

|x(m)− x̃(m)|, (10.38)

where ε can be made arbitrarily small by choosing δ sufficiently small. Since
we have

‖Am−jP (m− j)‖ ≤ Cα|m−j|, α < 1. (10.39)

existence of a solution follows by Theorem 2.1. Proceeding as in the case of
differential equations we obtain

Theorem 10.5 (Stable manifold). Suppose f ∈ Ck has a fixed point p with
corresponding invertible Jacobian matrix A. Then, there is a neighborhood
U(p) and functions h± ∈ Ck(E±(A), E∓(A)) such that

M±(p) ∩ U(p) = {p+ a+ h±(a)|a ∈ E± ∩ U}. (10.40)

Both h± and their Jacobian matrices vanish at p, that is, M±(p) are tangent
to their respective linear counterpart E±(A) at p. Moreover,

|f±m(x)− p| ≤ Cα±m,m ∈ N0, x ∈M±(p) (10.41)

for any α < min{|α| |α ∈ σ(A+) ∪ σ(A−)−1} and some C > 0 depending on
α.

Proof. The proof is similar to the case of differential equations. The details
are left to the reader. �

In the hyperbolic case we can even say a little more.

Theorem 10.6. Suppose f ∈ Ck has a hyperbolic fixed point p with in-
vertible Jacobian matrix. Then there is a neighborhood U(p) such that
γ±(x) ⊂ U(p) if and only if x ∈M±(p). In particular,

W±(p) =M±(p). (10.42)

Proof. The proof again follows as in the case of differential equations. �
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It happens that an orbit starting in the unstable manifold of one fixed
point p0 ends up in the stable manifold of another fixed point p1. Such
an orbit is called heteroclinic orbit if p0 6= p1 and homoclinic orbit if
p0 = p1.

Note that the same considerations apply to fixed points if we replace f
by fn.
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Chapter 11

Discrete dynamical
systems in one
dimension

11.1. Period doubling

We now return to the logistic equation and the numerical investigation
started in Section 10.1. Let us try to get a more complete picture by it-
erating one given initial condition for different values of µ. Since we are
only interested in the asymptotic behavior we first iterate 200 times and
then plot the next 100 iterations.

In[1]:= BifurcationList[f , x0 , {µ , µ0 , µ1 }, opts ] :=
Block[{Nmin, Nmax, Steps},
Nmin, Nmax, Steps = {Nmin, Nmax, Steps} /. {opts} /.
{Nmin → 200, Nmax → 300, Steps → 300};
Flatten[
Table[Module[{x},
x = Nest[f, x0, Nmin];
Map[{µ,#}&, NestList[f, x, Nmax− Nmin]]],

{µ, µ0, µ1, (µ1 − µ0)/Steps}],
1]];

The result is shown below.

291
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292 11. Discrete dynamical systems in one dimension

In[2]:= ListPlot[
BifurcationList[µ#(1−#)&, 0.4, {µ, 2.95, 4}],
PlotStyle→ {PointSize[0.002]}, PlotRange→ All,
Axes → False]

Out[2]=

So we see that at certain values of the parameter µ the attracting set just
doubles its size and gets more and more complicated. I do not want to say
more about this picture right now, however, I hope that you are convinced
that the dynamics of this simple system is indeed quite complicated. Feel
free to experiment with the above code and try to plot some parts of the
above diagram in more detail.

In particular, we see that there are certain values of µ where there is a
qualitative change in the dynamics of a dynamical system. Such a point is
called a bifurcation point of the system.

The first point was µ = 1, where a second fixed point entered our interval
[0, 1]. Now when can such a situation happen? First of all, fixed points are
zeros of the function

g(x) = f(x)− x. (11.1)

If f is differentiable, so is g and by the implicit function theorem the number
of zeros can only change locally if g′(x) = 0 at a zero of g. In our case of
the logistic equation this yields the following system

Lµ(x) = x = µx(1− x),

L′
µ(x) = 1 = µ(1− 2x), (11.2)

which has the only solution x = 0 and µ = 1. So what precisely happens
at the value µ = 1? Obviously a second fixed point p = 1 − 1/µ enters our
interval. The fixed point 0 is no longer attracting since L′

µ(0) = µ > 1 but

p is for 1 < µ < 3 since L′
µ(p) = 2 − µ. Moreover, I claim W s(0) = {0, 1}

and W s(p) = (0, 1) for 1 < µ ≤ 3. To show this first observe that we have

Lµ(x)− p

x− p
= 1− µx. (11.3)
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11.1. Period doubling 293

If 1 < µ ≤ 2 the right-hand side is in (−1, 1) for x ∈ (0, 1). Hence x ∈ (0, 1)
converges to p. If 2 < µ ≤ 3 the right-hand side is in (−1, 1) only for
x ∈ (0, 2µ). If x stays in this region for all iterations, it will converge to p.

Otherwise, we have x ∈ [ 2µ , 1] after some iterations. After the next iteration

we are in [0, 2 − 4
µ ] and in particular below p. Next, we stay below p until

we reach [ 1µ , p]. For this case consider the second iterate which satisfies

L2
µ(x)− p

x− p
= (1− µx)(1− µLµ(x)). (11.4)

For x ∈ ( 1µ , p) the right-hand side is in (−1, 1) implying L2n
µ (x) → p. Thus

we also have L2n+1
µ (x) → Lµ(p) = p and hence Lnµ(x) → p for all x ∈ (0, 1).

Now what happens for µ > 3? Since we have L′
µ(p) = 2 − µ < −1 for

µ > 3 the fixed point p is no longer attracting. Moreover, a look at our
numeric investigation shows that there should be a periodic orbit of period
two. And indeed, solving the equation

L2
µ(x) = x (11.5)

shows that, in addition to the fixed points, there is a periodic orbit

p± =
1 + µ±

√

(µ+ 1)(µ − 3)

2µ
(11.6)

for µ > 3. Moreover, we have (L2
µ)

′(p±) = L′
µ(p+)L

′
µ(p−) = 4 + 2µ − µ2

which is in (−1, 1) for 3 < µ < 1 +
√
6. Hence, the attracting fixed point

p is replaced by the attracting periodic orbit p+, p−. This phenomenon is
known as period doubling. Our numerical bifurcation diagram shows
that this process continues. The attracting period two orbit is replaced by
an attracting period four orbit at µ = 1 +

√
6 (period doubling bifurcation

in f2) and so forth. Clearly it is no longer possible to analytically compute
all these points since the degrees of the arising polynomial equations get too
high.

So let us try to better understand the period doubling bifurcation. Sup-
pose we have a map f : I → I depending on a parameter µ. Suppose that
at µ0 the number of zeros of f2(x)− x changes locally at p, that is, suppose
there are two new zeros p±(µ) such that p±(µ0) = p and f(p±(µ)) = p∓(µ).
By continuity of f we must have f([p−(µ), p+(µ)]) ⊇ [p−(µ), p+(µ)] and
hence there must be a fixed point p(µ) ∈ [p−(µ), p+(µ)]. So the fixed point
p persists. That should only happen if f ′(p) 6= 1. But since we must have
(f2)′(p) = f ′(p)2 = 1 this implies f ′(p) = −1.

In summary, orbits of period two will appear in general only at fixed
points where f ′(p) = −1.
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294 11. Discrete dynamical systems in one dimension

Note that in the above argument we have shown that existence of an
orbit of period two implies existence of an orbit of period one. In fact, a
much stronger result is true which will be presented in the next section.

Problem 11.1. Show that for µ = 2 we have

xn = Ln2 (x0) =
1

2

(
1− (1− 2x0)

2n
)
.

11.2. Sarkovskii’s theorem

In this section we want to show that certain periods imply others for con-
tinuous maps f : I → I, where I ⊆ R is some compact interval. As our first
result we will show that period three implies all others.

Lemma 11.1. Suppose f : I → I is continuous and has an orbit of period
three. Then it also has orbits with (prime) period n for all n ∈ N.

Proof. The proof is based on the following two elementary facts (Prob-
lem 11.2):

(i) If I, J are two compact intervals satisfying f(J) ⊇ I, then there is
a subinterval J0 of J such that f(J0) = I.

(ii) If f(J) ⊇ J , there is a fixed point in J .

Let a < b < c be the period three orbit. And suppose f(a) = b, f(b) = c
(the case f(a) = c, f(b) = a is similar). Abbreviate I0 = [a, b], I1 = [b, c]
and observe f(I0) ⊇ I1, f(I1) ⊇ I0 ∪ I1.

Set J0 = I1 and recall f(J0) = f(I1) ⊇ I1 = J0. By (i) we can find a
subinterval J1 ⊆ J0 such that f(J1) = J0. Moreover, since f(J1) = J0 ⊇ J1
we can iterate this procedure to obtain a sequence of nesting sets Jk, k =
0, . . . , n, such that f(Jk) = Jk−1. In particular, we have fn(Jn) = J0 ⊇ Jn
and thus fn has a fixed point in Jn by (ii). The only problem is, is the
prime period of this point n? Unfortunately, since all iterations stay in I1,
we might always get the same fixed point of f . To ensure that this does not
happen we need to refine our analysis by going to I0 in the (n − 1)’th step
and then back to I1.

So let n > 1 and define J0 ⊇ · · · ⊇ Jn−2 as before. Now observe
fn−1(Jn−2) = f(fn−2(Jn−2)) = f(I1) ⊇ I0. Hence we can choose a subinter-
val Jn−1 ⊆ Jn−2 such that fn−1(Jn−1) = I0 and thus fn(Jn−1) = f(I0) ⊇ I1.
Again there is a subinterval Jn ⊆ Jn−1 such that fn(Jn) = I1. Hence there
is a fixed point x ∈ Jn of fn such that f j(x) ∈ I1 for j 6= n − 1 and
fn−1(x) ∈ I0. Moreover, note that x really leaves I1 in the (n − 1)-th step
since fn−1(x) ∈ I0 ∩ I1 = {b} contradicts a = fn+1(x) = f(x) ∈ I1. Con-
sequently the prime period of x cannot be n − 1 since fn−1(x) ∈ [a, b) and
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11.3. On the definition of chaos 295

if it were smaller than n − 1, all iterates would stay in the interior of I1, a
contradiction. So the prime period is n and we are done. �

So when does the first period three orbit appear for the logistic map Lµ?
For µ = 4 the equation L3

µ(x) = x can be solved using Mathematica showing
that there are two period three orbits. One of them is given by

{1
2
(1 + c), 1 − c2, 4c2(1− c2)}, c = cos(

π

9
), (11.7)

the other one is slightly more complicated. Since there are no period three
orbits for 0 ≤ µ ≤ 3, there must be a local change in the zero set of L3

µ(x)−x.
Hence we need to search for a solution of the system of equations L3

µ(x) =

x, (L3
µ)

′(x) = 1. Plugging this equation into Mathematica gives a rather

complicated solution for the orbit, but a simple one for µ = 1+2
√
2 = 3.828.

Since this is the only solution for µ ∈ R other than x = 0, µ = 1 we know
that the logistic equation has orbits of all periods for µ ≥ 1 + 2

√
2.

In fact, this result is only a special case of a much more general theorem
due to Sarkovskii. We first introduce a quite unusual ordering of the natural
numbers as follows. First note that all integers can be written as 2m(2n+1)
with m,n ∈ N0. Now for all m ∈ N0 and n ∈ N we first arrange them
by m and then, for equal m, by n in increasing order. Finally we add all
powers of two (n = 0) in decreasing order. That is, denoting the Sarkovskii
ordering by ≻ we have

3 ≻ 5 ≻ · · · ≻ 2 · 3 ≻ 2 · 5 ≻ · · · ≻ 2m(2n + 1) ≻ · · · ≻ 22 ≻ 2 ≻ 1. (11.8)

With this notation the following claim holds.

Theorem 11.2 (Sarkovskii). Suppose f : I → I is continuous and has an
orbit of period m. Then it also has orbits with prime period n for all m ≻ n.

The proof is in spirit similar to that of Lemma 11.1 but quite tedious.
Hence we omit it here. It can be found (e.g.) in [33].

Problem 11.2. Show items (i) and (ii) from the proof of Lemma 11.1.

11.3. On the definition of chaos

In this section we want to define when we consider a discrete dynamical
system to be chaotic. We return to our abstract setting and consider a
continuous map f :M →M on a metric space M .

It is quite clear from the outset, that defining chaos is a difficult task.
Hence it will not surprise you that different authors use different definitions.
But before giving you a definition, let us reflect on the problem for a moment.

First of all, you will certainly agree that a chaotic system should exhibit
sensitive dependence on initial conditions. That is, there should be
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a δ > 0 such that for any x ∈ M and any ε > 0 there is a y ∈ M and an
n ∈ N such that d(x, y) < ε and d(fn(x), fn(y)) > δ.

However, the example

M = (0,∞), f(x) = (1 + µ)x, µ > 0, (11.9)

exhibits sensitive dependence on initial conditions but should definitely not
be considered chaotic since all iterates in the above example converge to
infinity. To rule out such a situation we introduce another condition.

A map f as above is called topologically transitive if for any given
open sets U, V ⊆M there is an n ∈ N such that fn(U)∩V 6= ∅. Observe that
a system is transitive if it contains a dense forward orbit (Problem 11.3).

A system having both properties is called chaotic in the book by Robin-
son [33]. However, we will still consider another definition since this one
has one draw back. It involves the metric structure of M and hence is not
preserved under topological equivalence. Two dynamical systems (Mj , fj),
j = 1, 2, are called topological equivalent if there is a homeomorphism
ϕ :M1 →M2 such that the following diagram commutes.

M1
f1−→ M1

ϕ l l ϕ
M2

f2−→ M2

(11.10)

Clearly p2 = ϕ(p1) is a periodic point of period n for f2 if and only if p1 is for
f1. Moreover, we have W s(p2) = ϕ(W s(p1)) and all topological properties
(e.g., transitivity) hold for one system if and only if they hold for the other.

On the other hand, properties involving the metric structure might not
be preserved. For example, take ϕ = x−1. Then the above example is
mapped to the system

M = (0,∞), f(x) = (1 + µ)−1x, µ > 0, (11.11)

which no longer exhibits sensitive dependence on initial conditions. (Note
that the problem here is that M is not compact. If M is compact, f is
uniformly continuous and sensitive dependence on initial conditions is pre-
served.)

Hence we will use the following definition for chaos due to Devaney [7]. A
discrete dynamical system (M,f) with continuous f and infiniteM as above
is called chaotic if it is transitive and if the periodic points are dense. If M
is finite and the system is transitive, it is not hard to see that it consists of
one single periodic orbit.

The following lemma shows that chaotic dynamical systems exhibit sen-
sitive dependence on initial conditions.
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Lemma 11.3. Suppose f : M → M is chaotic. Then it exhibits sensitive
dependence on initial conditions.

Proof. First observe that there is a number δ such that for all x ∈M there
exists a periodic point q ∈ M whose orbit is of distance at least 4δ from x.
In fact, since M is not finite we can pick two periodic points q1 and q2 with
disjoint orbits. Let 8δ be the distance between the two orbits. Then, by the
triangle inequality the distance from at least one orbit to x must be larger
than 4δ.

Fix x ∈M and ε > 0 and let q be a periodic orbit with distance at least
4δ. Without restriction we assume ε < δ. Since periodic orbits are dense,
there is a periodic point p ∈ Bε(x) of period n.

Now the idea is as follows. By transitivity there is a y close to x which
gets close to q after k iterations. Now iterate another j times such that k+j
is a multiple of n. Since 0 ≤ j < n is small, fk+j(y) is still close to the
orbit of q. Hence fk+j(y) is far away from x and fk+j(p) = p is close to
x. Since fk+j(x) cannot be close to both, we have sensitive dependence on
initial conditions.

Now to the boring details. Let V =
⋂n−1
i=0 f

−i(Bδ(f i(q))) (i.e., z ∈ V
implies that f i(z) ∈ Bδ(f

i(q)) for 0 ≤ i < n). By transitivity there is a
y ∈ Bε(x) such that fk(y) ∈ V and hence fk+j(y) ∈ Bδ(f

j(q)). Now by the
triangle inequality and fk+j(p) = p we have

d(fk+j(p), fk+j(y)) ≥ d(x, f j(q))− d(f j(q), fk+j(y))− d(p, x)

> 4δ − δ − δ = 2δ.

Thus either d(fk+j(y), fk+j(x)) > δ or d(fk+j(p), fk+j(x)) > δ and we are
done. �

Now we have defined what a chaotic dynamical system is, but we haven’t
seen one yet! Well, in fact we have, I claim that the logistic map is chaotic
for µ = 4.

To show this we will take a detour via the tent map

M = [0, 1], Tµ(x) =
µ

2
(1− |2x− 1|) (11.12)

using topological equivalence. The tent map T2 is equivalent to the logistic
map L4 by virtue of the homeomorphism ϕ(x) = sin(πx2 )2 (Problem 11.4).
Hence it follows that L4 is chaotic once we have shown that T2 is.

The main advantage of T2 is that the iterates are easy to compute. Using

T2(x) =

{

2x, 0 ≤ x ≤ 1
2 ,

2− 2x, 1
2 ≤ x ≤ 1,

(11.13)
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it is not hard to verify that

T n2 (x) =

{

2nx− 2j, 2j
2n ≤ x ≤ 2j+1

2n

2(j + 1)− 2nx, 2j+1
2n ≤ x ≤ 2j+2

2n

}

0≤j≤2n−1−1

. (11.14)

Moreover, each of the intervals In,j = [ j2n ,
j+1
2n ] is mapped to [0, 1] under

T n2 . Hence each of the intervals In,j contains (precisely) one solution of
T n2 (x) = x implying that periodic points are dense. For given x ∈ [0, 1] and
ε > 0 we can find n, j such that In,j ⊂ Bε(x). Hence T n2 (Bε(x)) = [0, 1],
which shows that T2 is transitive. Hence the system is chaotic. It is also not
hard to show directly that T2 has sensitive dependence on initial conditions
(exercise).

Suppose f(0) = f(1) = 0, f(12) = 1, and suppose f is monotone increas-

ing, decreasing on [0, 12 ], [
1
2 , 1]. Does any such map have similar properties?

Is such a map always chaotic?

Problem 11.3. Show that a closed invariant set which has a dense forward
orbit is topologically transitive.

Problem 11.4. Show that T2 and L4 are topologically equivalent via the
map ϕ(x) = sin(πx2 )2 (i.e., show that ϕ : [0, 1] → [0, 1] is a homeomorphism
and that ϕ ◦ T2 = L4 ◦ ϕ).

Problem 11.5. Find a topological conjugation ϕ(x) = mx+ d which maps
f(x) = αx2 + βx+ γ to g(x) = x2 + c. Find m, d, and c in terms of α, β,
and γ.

11.4. Cantor sets and the tent map

Now let us further investigate the tent map Tµ for µ > 2. Unfortunately, in
this case Tµ does no longer map [0, 1] into itself. Hence we must consider it
as a map on R,

M = R, Tµ(x) =
µ

2
(1− |2x− 1|). (11.15)

It is not hard to show that T nµ (x) → −∞ if x ∈ R\[0, 1]. Hence most points
will escape to −∞. However, there are still some points in [0, 1] which stay
in [0, 1] for all iterations (e.g., 0 and 1). But how can we find these points?

Let Λ0 = [0, 1]. Then the points which are mapped to Λ0 under one
iteration are given by ( 1µΛ0) ∪ (1− 1

µΛ0). Denote this set by

Λ1 = [0,
1

µ
] ∪ [1− 1

µ
, 1]. (11.16)

All points in R\Λ1 escape to −∞ since the points in ( 1µ , 1− 1
µ) are mapped

to R\[0, 1] after one iteration.
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Similarly, the points which are mapped to Λ1 under one iteration are
given by ( 1µΛ1) ∪ (1− 1

µΛ1). Hence the corresponding set

Λ2 = [0,
1

µ2
] ∪ [

1

µ
− 1

µ2
,
1

µ
] ∪ [1− 1

µ
, 1− 1

µ
+

1

µ2
] ∪ [1− 1

µ2
, 1] (11.17)

has the property that points starting in this set stay in [0, 1] during two
iterations. Proceeding inductively we obtain sets Λn = ( 1µΛn−1) ∪ (1 −
1
µΛn−1) having the property that points starting in Λn stay in [0, 1] for at

least n iterations. Moreover, each set Λn consists of 2n closed subintervals
of length µ−n.

Now if we want to stay in [0, 1] we have to take the intersection of all
these sets, that is, we define

Λ =
⋂

n∈N
Λn ⊂ [0, 1]. (11.18)

Since the sets Λn form a nesting sequence of compact sets, the set Λ is also
compact and nonempty. By construction the set Λ is invariant since we have

Tµ(Λ) = Λ (11.19)

and all points in the open set R\Λ converge to −∞.

Moreover, since the endpoints of the subintervals of Λn are just given by
f−n({0, 1}), we see that these points are in Λ. Now the set Λ has two more
interesting properties. First of all it is totally disconnected, that is, it
contains no open subintervals. In fact, this easily follows since its Lebesgue
measure |Λ| ≤ limn→∞ |Λn| = limn→∞(2/µ)n = 0 vanishes. Secondly, it is
perfect, that is, every point is an accumulation point. This is also not hard
to see, since x ∈ Λ implies that x must lie in some subinterval of Λn for
every n. Since the endpoints of these subintervals are in Λ (as noted earlier)
and converge to x, the point x is an accumulation point.

Compact sets which are totally disconnected and perfect are called Can-
tor sets. Hence we have proven,

Lemma 11.4. The set Λ is a Cantor set.

This result is also not surprising since the construction very much re-
assembles the construction of the Cantor middle-thirds set you know from
your calculus course. Moreover, we obtain precisely the Cantor middle-
thirds set if we choose µ = 3. Maybe you also recall, that this case can
be conveniently described if one writes x in the base three number system.
Hence fix µ = 3 and let us write

x =
∑

n∈N

xn
3n
, xn ∈ {0, 1, 2}. (11.20)
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Recall that this expansion is not unique since we have, for example, 1
3 =

0.1 = 0.02 or 2
3 = 0.2 · · · = 0.12 · · · . Here the x implies that the corre-

sponding digit repeats infinitely many times. It will be convenient for us to
exclude the expansions which end in 1 or 12. Then we have Λn = {x|xj 6=
1, 1 ≤ j ≤ n} (Problem 11.7) and hence

Λ = {x|xj 6= 1, j ∈ N}. (11.21)

Moreover, the action of T3 can also be transparently described using this
notation







x1 = 0 ⇒ T3(x) =
∑

n∈N
xn+1

3n

x1 = 1 ⇒ T3(x) 6∈ [0, 1]

x1 = 2 ⇒ T3(x) =
∑

n∈N
x′n+1

3n

, (11.22)

where x′n = 2−xj (i.e., 0′ = 2, 1′ = 1, 2′ = 0). Unfortunately this description
still has a few draw backs. First of all, it is not possible to tell if two points
x, y are close by looking at the first n digits and the fact that T3 does not
simply shift the sequence xn is a little annoying. Finally, it only works for
µ = 3.

So let us return to arbitrary µ > 2 and let us see whether we can do
better. Let Σ2 = {0, 1}N0 be the set of sequences taking only the values 0
and 1.

Set I0 = [0, 1µ ], I1 = [1− 1
µ , 1] and define the itinerary map

ϕ : Λ → Σ2

x 7→ xn = j if T nµ (x) ∈ Ij
. (11.23)

Then ϕ is well defined and Tµ acts on xn just by a simple shift. That is,
if we introduce the shift map σ : Σ2 → Σ2, (x0, x1, . . . ) 7→ (x1, x2, . . . ),
we have σ ◦ ϕ = ϕ ◦ Tµ and it looks like we have a topological equivalence
between (Λ, Tµ) and (Σ2, σ). But before we can show this, we need some
further definitions first.

First of all we need to make sure that (Σ2, σ) is a dynamical system.
Hence we need a metric on Σ2. We will take the following one

d(x, y) =
∑

n∈N0

|xn − yn|
2n

(11.24)

(prove that this is indeed a metric). Moreover, we need to make sure that
σ is continuous. But since

d(σ(x), σ(y)) ≤ 2 d(x, y) (11.25)

it is immediate that σ is even uniformly continuous.

So it remains to show that ϕ is a homeomorphism.
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We start by returning to the construction of Λn. If we set I = [0, 1] we
have seen that Λ1 consists of two subintervals I0 = 1

µI and I1 = 1 − 1
µI.

Proceeding inductively we see that the set Λn consist of 2n subintervals
Is0,··· ,sn−1 , sj ∈ {0, 1}, defined recursively via I0,s0,··· ,sn = 1

µIs0,··· ,sn and

I1,s0,··· ,sn = 1− 1
µIs0,··· ,sn . Note that Tµ(Is0,··· ,sn) = Is1,··· ,sn .

By construction we have x ∈ Is0,··· ,sn if and only if ϕ(x)j = sj for
0 ≤ j ≤ n. Now pick a sequence s ∈ Σ2 and consider the intersection of
nesting intervals

Is =
⋂

n∈N0

Is0,··· ,sn . (11.26)

By the finite intersection property of compact sets it is a nonempty interval,
hence ϕ is onto. By |Is0,··· ,sn | = µ−n−1 its length is zero and thus it can
contain only one point, that is, ϕ is injective.

If x and y are close so are Tµ(x)
n and Tµ(y)

n by continuity of Tµ. Hence,
for y sufficiently close to x the first n iterates will stay sufficiently close such
that ϕ(x)j = ϕ(y)j for 0 ≤ j ≤ n. But this implies that ϕ(x) and ϕ(y)
are close and hence ϕ is continuous. Similarly, ϕ(x) and ϕ(y) close implies
that the first n terms are equal. Hence x, y ∈ Ix0,··· ,xn = Iy0,··· ,yn are close,
implying that ϕ−1 is continuous.

In summary,

Theorem 11.5. The two dynamical systems (Λ, Tµ), µ > 2, and (Σ2, σ) are
topologically equivalent via the homeomorphism ϕ : Λ → Σ2.

Hence in order to understand the tent map for µ > 2, all we have to do
is to study the shift map σ on Σ2. In fact, we will show that (Σ2, σ), and
hence (Λ, Tµ), µ > 2, is chaotic in the next section.

Problem 11.6. Show that two different ternary expansions define the same
number,

∑

n∈N xn3
−n =

∑

n∈N yn3
−n, if and only if there is some n0 ∈ N

such that xn = yn for n < n0, xn = yn ± 1 for n = n0, and xn = yn ∓ 2 for
n > n0. Show that every x ∈ [0, 1] has a unique expansions if the expansions
which end in 1 or 12 are excluded.

Problem 11.7. Show that for µ = 3 we have Λn = {x|xj 6= 1, 1 ≤ j ≤ n},
where xj are the digits in the ternary expansion as in the previous problem.

11.5. Symbolic dynamics

The considerations of the previous section have shown that the shift map on
a sequence space of finitely many symbols is hidden in the tent map. This
turns out to be true for other systems as well. Hence it deserves a thorough
investigation which will be done now.
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Let N ∈ N\{1} and define the space on N symbols

ΣN = {0, 1, . . . , N − 1}N0 (11.27)

to be the set of sequences taking only the values 0, . . . , N − 1. Note that
ΣN is not countable (why?).

Defining

d(x, y) =
∑

n∈N0

|xn − yn|
Nn

, (11.28)

ΣN becomes a metric space. Observe that two points x and y are close if
and only if their first n values coincide. More precisely,

Lemma 11.6. We have d(x, y) ≤ N−n if xj = yj for all j ≤ n and we have
d(x, y) ≥ N−n if xj 6= yj for at least one j ≤ n.

Proof. Suppose xj = yj for all j ≤ n. Then

d(x, y) =
∑

j>n

|xj − yj|
N j

≤ 1

Nn+1

∑

j≥0

N − 1

N j
=

1

Nn
.

Conversely, if xj 6= yj for at least one j ≤ n, we have

d(x, y) =
∑

k∈N

|xk − yk|
Nk

≥ 1

N j
≥ 1

Nn
.

�

We first show that ΣN is a Cantor set, that is, it is compact, perfect,
and totally disconnected. Here a topological space M is called totally
disconnected if for any two points x and y there are disjoint respective
open neighborhoods U and V such that U ∪V =M . I leave it as an exercise
to prove that this is equivalent to our previous definition for subsets of the
real line (Problem 11.8).

Lemma 11.7. The set ΣN is a Cantor set.

Proof. We first prove that ΣN is compact. We need to show that every
sequence xn contains a convergent subsequence. Given xn, we can find a
subsequence x0,n such that x0,n0 is the same for all n. Proceeding inductively,

we obtain subsequences xm,n such that xj,nk = xm,nk is the same for all n if
0 ≤ k ≤ j ≤ m. Now observe that xn,n is a subsequence which converges
since xn,nj = xm,mj for all j ≤ min(m,n).

To see that ΣN is perfect, fix x and define xn such that xnj = xj for
0 ≤ j ≤ n and xnn+1 6= xn+1. Then x 6= xn and xn converges to x.

To see that ΣN is totally disconnected, observe that the map δj0 : ΣN →
{0, . . . , N − 1}, x 7→ xj0 is continuous. Hence the set U = {x|xj0 = c} =
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δ−1
j0

(c) for fixed j0 and c is open and so is V = {x|xj0 6= c}. Now let
x, y ∈ ΣN , if x 6= y there is a j0 such that xj0 6= yj0 . Now take c = xj0 then
U and V from above are disjoint open sets whose union is ΣN and which
contain x and y respectively. �

On ΣN we have the shift map

σ : ΣN → ΣN
(x0, x1, . . . ) 7→ (x1, x2, . . . )

, (11.29)

which is uniformly continuous since we have

d(σ(x), σ(y)) ≤ Nd(x, y). (11.30)

Furthermore, it is chaotic as we will prove now. Observe that a point x is
periodic for σ if and only if it is a periodic sequence.

Lemma 11.8. The shift map has a countable number of periodic points
which are dense.

Proof. Since a sequence satisfying σn(x) = x is uniquely determined by
its first n coefficients, there are precisely Nn solutions to this equation.
Hence there are countably many periodic orbits. Moreover, if x is given,
we can define xn by taking the first n coefficients of x and then repeating
them periodically. Then xn is a sequence of periodic points converging to x.
Hence the periodic points are dense. �

Lemma 11.9. The shift map has a dense forward orbit.

Proof. Construct a forward orbit as follows: Start with the values 0, . . . , N−
1 as first coefficients. Now add all N2 two digit combinations of 0, . . . , N−1.
Next add all N3 three digit combinations. Proceeding inductively we obtain
a sequence x. For example for N = 2 we have to take 0, 1; 00, 01, 10, 11; . . . ,
that is, x = (0, 1, 0, 0, 0, 1, 1, 0, 1, 1, . . . ). I claim that the orbit of x is dense.
In fact, let y be given. The first n coefficients of y appear as a block some-
where in x by construction. Hence shifting x k times until this block reaches
the start, we have d(y, σk(x)) ≤ N−n. Hence the orbit is dense. �

Combining the two lemmas we see that (ΣN , σ) is chaotic. I leave it
as an exercise to show that σ has sensitive dependence on initial conditions
directly.

It turns out that, as we have already seen in the previous section, many
dynamical systems (or at least some subsystem) can be shown to be topo-
logically equivalent to the shift map. Hence it is the prototypical example
of a chaotic map.

However sometimes it is also necessary to consider only certain subsets
of ΣN since it might turn out that only certain transitions are admissible in
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a given problem. For example, consider the situation in the previous section.
There we had Σ2 and, for x ∈ Σ2, xn told us whether the n’th iterate is in
I0 or I1. Now for a different system it could be that a point starting in I1
could never return to I1 once it enters I0. In other words, a zero can never
be followed by a one. Such a situation can be conveniently described by
introducing a transition matrix.

A transition matrix A is an N ×N matrix all whose entries are zero
or one. Suppose the ordered pair j, k may only appear as adjacent entries
in the sequence x if Aj,k = 1. Then the corresponding subset is denoted by

ΣAN = {x ∈ ΣN |Axn,xn+1 = 1 for all n ∈ N0}. (11.31)

Clearly σ maps ΣAN into itself and the dynamical system (ΣAN , σ) is called a

subshift of finite type. It is not hard to see that ΣAN is a closed subset of
ΣN and thus compact. Moreover, σ is continuous on ΣAN as the restriction
of a continuous map. We will denote this restriction by σA.

Now let us return to our example. Here we have

A =

(
1 0
1 1

)

. (11.32)

A quick reflection shows that the only sequences which are admissible are
those which contain finitely many ones first (maybe none) and then only
zeroes. In particular, all points except x = (1, 1, 1, . . . ) are eventually fixed
and converge to the fixed point x = (0, 0, 0, . . . ). So the system is definitely
not chaotic. The same is true for all other possibilities except

A =

(
1 1
1 1

)

(11.33)

in which case we have ΣA2 = Σ2. Hence we need an additional condition to
ensure that the subshift is chaotic.

A transition matrix is called transitive if there is an integer l ∈ N such
that (Al)j,k 6= 0 for all 0 ≤ j, k ≤ N − 1.

Let A be a transition matrix. We will call (x1, . . . , xk) an admissible
block of length k if Axj ,xj+1 = 1 for 1 ≤ j ≤ k − 1. The following lemma

explains the importance of Al.

Lemma 11.10. The (j, k) entry of Al is equal to the number of admissible
blocks (x0, . . . , xl) of length l + 1 with x0 = j and xl = k.

In particular, the number of periodic orbits of length l is equal to tr(Al).

Proof. Just observe that the (j, k) entry of Al is given by

(Al)j,k =
∑

x1,...,xl−1

Aj,x1Ax1,x2 · · ·Axl−2,xl−1
Axl−1,k
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and that the above products are 1 if and only if the block (j, x1, . . . , xl−1, k)
is admissible. �

In particular, for A transitive we obtain the following simple consequence
which is the key ingredient for our proof that transitive subshifts are chaotic.

Corollary 11.11. If A is transitive and l is as above, there is an admissible
block (x1, . . . , xl−1) such that (j, x1, . . . , xl−1, k) is admissible for all 0 ≤
j, k ≤ N − 1.

This lemma ensures that, if A is transitive, there is an admissible block
of length l− 1 such that we can glue admissible blocks to both ends in such
a way that the resulting block is again admissible!

As a first application we prove

Lemma 11.12. Suppose A is transitive. Then ΣAN is a Cantor set.

Proof. As noted earlier, ΣAN is compact. Moreover, as the subset of a totally
disconnected set it is totally disconnected. Now let x ∈ ΣAN be given. To
show that there are points arbitrarily close to x start by taking the first n
coefficients and add an admissible block of length l−1 from Corollary 11.11
to the end. Next add a single coefficient to the end such that the resulting
block is different from the corresponding one of x. Finally, add an admissible
block of length l − 1 recursively to fill up the sequence. The constructed
point can be made arbitrarily close to x by choosing n large and so we are
done. �

As second application we show that (ΣAN , σ) is chaotic.

Lemma 11.13. Suppose A is transitive. Then the shift map on ΣAN has a
countable number of periodic points which are dense.

Proof. The proof is similar to the last part of the previous proof. We first
show that the periodic points are dense. Let x be given and take the first n
coefficients and add our admissible block of length l−1 from Corollary 11.11
to the end. Now take this entire block and repeat it periodically. The rest
is straightforward. �

Lemma 11.14. Suppose A is transitive. Then the shift map on ΣAN has a
dense orbit.

Proof. The proof is as in the case of the full shift. Take all admissible blocks
of length 1, 2, 3, . . . and glue them together using our admissible block of
length l − 1 from Corollary 11.11. �
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Finally, let me remark that similar results hold if we replace N0 by Z.
Let N ∈ N\{1} and define the

ΣN = {0, 1, . . . , N − 1}Z (11.34)

to be the set of doubly infinite sequences taking only the values 0, . . . , N−1.
Defining

d(x, y) =
1

2

∑

n∈N0

|xn − yn|+ |x−n − y−n|
Nn

, (11.35)

ΣN becomes a metric space. Again we have

Lemma 11.15. We have d(x, y) ≤ N−n if xj = yj for all |j| ≤ n and we
have d(x, y) ≥ N−n if xj 6= yj for at least one |j| ≤ n.

The shift map σ is defined as before. However, note that σ is invertible
in this case. All other results hold with no further modifications. The details
are left to the reader.

Problem 11.8. Show that the definition of a totally disconnected set given
in this section agrees with the one given in the previous section for subsets
of R. (Hint: If x, y ∈ M ⊂ R and M contains no open interval, then there
is a z 6∈M between x and y).

Problem 11.9. Show that for the shift on two symbols (cf. Problem 10.7):
All points are nonwandering, Nwa(σ) = Σ2. There are recurrent points
which are not periodic and there are nonwandering points which are not
recurrent.

Problem 11.10. The (Artin-Mazur) zeta function of a discrete dynamical
system f :M →M is defined to be

ζf (z) = exp

( ∞∑

n=1

zn

n
|Fix(fn)|

)

,

where |Fix(fn)| is the cardinality of the set of fixed points of fn (provided
this number is finite for every n). Equivalently, |Fix(fn)| is the number of
periodic orbits of period n.

Show that

ζσA(z) =
1

det(I− zA)
, |z| < ‖A‖.

(Hint: (3.23).)
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11.6. Strange attractors/repellors and fractal sets

A compact invariant set Λ, f(Λ) = Λ, is called attracting if there is a
neighborhood U of Λ such that d(fn(x),Λ) → 0 as n → ∞ for all x ∈ U .
A compact invariant set Λ, f(Λ) = Λ, is called repelling if there is a
neighborhood U of Λ such that for all x ∈ U\Λ there is an n such that
fn(x) 6∈ U .

For example, let f(x) = x3. Then {0} is an attracting set and [−1, 1]
is an repelling set. To exclude sets like [−1, 1] in the above example we
will introduce another condition. An attracting respectively repelling set is
called an attractor respectively repellor if it is topologically transitive.

If f is differentiable, there is a simple criterion when an invariant set is
attracting respectively repelling.

Theorem 11.16. Suppose f : I → I is continuously differentiable and Λ is
a compact invariant set. If there is an n0 ∈ N such that |d(fn0)x| < 1 for
all x ∈ Λ, then Λ is attracting. Similarly, if there is an n0 ∈ N such that
|d(fn0)x| > 1 for all x ∈ Λ, then Λ is repelling.

Proof. We only prove the first claim, the second is similar. Choose α such
that maxx∈Λ |d(fn0)x| < α < 1. For every y in Λ there is a (nonempty)
open interval Iy containing y such that |d(fn0)x| ≤ α for all x ∈ Iy. Now
let U be the union of all those intervals. Fix x ∈ U and let y ∈ Λ be such
that d(x,Λ) = |x − y|. Then, by the mean value theorem, d(fn0(x),Λ) ≤
|fn0(x) − fn0(y)| ≤ α|x − y| = αd(x,Λ). Hence d(fn0n(x),Λ) → 0 and by
continuity of f and invariance of Λ we also have d(fn0n+j(x),Λ) → 0 for
0 ≤ j ≤ n0. Thus the claim is proven. �

Repelling, attracting sets as above are called hyperbolic repelling,
attracting sets, respectively.

An attractor, repellor Λ is called strange if the dynamical system (Λ, f)
is chaotic and if Λ is fractal.

We have already learned what the first condition means, but you might
not know what fractal means. The short answer is that a set is called fractal
if its Hausdorff dimension is not an integer. However, since you might also
not know what the Hausdorff dimension is, let me give you the long answer
as well.

I will first explain what the Hausdorff measure is, omitting all technical
details (which can be found e.g. in [35]).

Recall that the diameter of a (nonempty) subset U of Rn is defined
by d(U) = supx,y∈U |x − y|. A cover {Vj} of U is called a δ-cover if it is
countable and if d(Vj) ≤ δ for all j.
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For U a subset of Rn and α ≥ 0, δ > 0 we define

hαδ (U) = inf
{∑

j

d(Vj)
α
∣
∣
∣{Vj} is a δ-cover of U

}

∈ [0,∞]. (11.36)

As δ decreases the number of admissible covers decreases and hence hαδ (U)
is increasing as a function of δ. Thus the limit

hα(U) = lim
δ↓0

hαδ (U) = sup
δ>0

hαδ (U) (11.37)

exists. Moreover, it is not hard to show that hα(U) ≤ hα(V ) if U ⊆ V and
that for countable unions we have

hα(
⋃

j

Uj) ≤
∑

j

hα(Uj). (11.38)

Hence hα is an outer measure and the resulting measure on the Borel
σ-algebra is called the α dimensional Hausdorff measure. As any measure
it satisfies

hα(∅) = 0,

hα(
⋃

j

Uj) =
∑

j

hα(Uj), (11.39)

for any countable union of disjoint sets Uj.

For example, consider the case α = 0. Suppose U = {x, y} consists of
two points. Then h0δ(U) = 1 for δ ≥ |x− y| and h0δ(U) = 2 for δ < |x− y|.
In particular, h0(U) = 2. Similarly, it is not hard to see that h0(U) is
just the number of points in U . On the other extreme, it can be shown
that hn(U) = cn/2

n|U |, where |U | denotes the Lebesgue measure of U and

cn = πn/2/Γ(n/2 + 1) is the volume of the unit ball in R
n.

Using the fact that for λ > 0 the map λ : x 7→ λx gives rise to a
bijection between δ-covers and (δ/λ)-covers, we easily obtain the following
scaling property of Hausdorff measures.

Lemma 11.17. Let λ > 0 and U be a Borel set of Rn. Then

hα(λU) = λαhα(U). (11.40)

Moreover, Hausdorff measures also behave nicely under uniformly Hölder
continuous maps.

Lemma 11.18. Suppose f : U → R
n is uniformly Hölder continuous with

exponent γ > 0, that is,

|f(x)− f(y)| ≤ c|x− y|γ for all x, y ∈ U, (11.41)

then

hα(f(U)) ≤ cαhαγ(U). (11.42)
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Proof. A simple consequence of the fact that for every δ-cover {Vj} of a
Borel set U , the set {f(U ∩ Vj)} is a (cδγ)-cover for the Borel set f(U). �

Now we are ready to define the Hausdorff dimension. First of all note
that hαδ is non increasing with respect to α for δ < 1 and hence the same is

true for hα. Moreover, for α ≤ β we have
∑

j d(Vj)
β ≤ δβ−α

∑

j d(Vj)
α and

hence

hβδ (U) ≤ δβ−α hαδ (U) ≤ δβ−α hα(U). (11.43)

Thus if hα(U) is finite, then hβ(U) = 0 for every β > α. Hence there must
be one value of α where the Hausdorff measure of a set jumps from ∞ to 0.
This value is called the Hausdorff dimension

dimH(U) = inf{α|hα(U) = 0} = sup{α|hα(U) = ∞}. (11.44)

It can be shown that the Hausdorff dimension of an m dimensional subman-
ifold of Rn is again m. Moreover, it is also not hard to see that we have
dimH(U) ≤ n (Problem 11.12).

The following observations are useful when computing Hausdorff dimen-
sions. First of all the Hausdorff dimension is monotone, that is, for U ⊆ V
we have dimH(U) ≤ dimH(V ). Furthermore, if Uj is a (countable) sequence
of Borel sets we have dimH(

⋃

j Uj) = supj dimH(Uj) (prove this).

Using Lemma 11.18 it is also straightforward to show

Lemma 11.19. Suppose f : U → R
n is uniformly Hölder continuous with

exponent γ > 0, that is,

|f(x)− f(y)| ≤ c|x− y|γ for all x, y ∈ U, (11.45)

then

dimH(f(U)) ≤ 1

γ
dimH(U). (11.46)

Similarly, if f is bi-Lipschitz, that is,

a|x− y| ≤ |f(x)− f(y)| ≤ b|x− y| for all x, y ∈ U, (11.47)

then

dimH(f(U)) = dimH(U). (11.48)

We end this section by computing the Hausdorff dimension of the repellor
Λ of the tent map.

Theorem 11.20. The Hausdorff dimension of the repellor Λ of the tent
map Tµ is

dimH(Λ) =
log(2)

log(µ)
, µ ≥ 2. (11.49)

In particular, it is a strange repellor.
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Proof. Let δ = µ−n. Using the δ-cover Is0,...,sn−1 we see hαδ (Λ) ≤ ( 2
µα )

n.

Hence for α = d = log(2)/ log(µ) we have hdδ(Λ) ≤ 1 implying dimH(Λ) ≤ d.

The reverse inequality is a little harder. Let {Vj} be a cover. We suppose
µ > 2 (since for µ = 2 we just have Λ = [0, 1]) and δ < 1−2µ−1. It is clearly
no restriction to assume that all Vj are open intervals. Moreover, finitely
many of these sets cover Λ by compactness. Drop all others and fix j.
Furthermore, increase each interval Vj by at most ε

For Vj there is a k such that

1− 2µ−1

µk
≤ |Vj | <

1− 2µ−1

µk−1
.

Since the distance of two intervals in Λk is at least 1−2µ−1

µk−1 we can intersect

at most one such interval. For n ≥ k we see that Vj intersects at most

2n−k = 2n(µ−k)d ≤ 2n(1− 2µ−1)−d|Vj |d intervals of Λn.

Now choose n larger than all k (for all Vj). Since {Vj} covers Λ, we must
intersect all 2n intervals in Λn. So we end up with

2n ≤
∑

j

2n

(1− 2µ−1)d
|Vj |d,

which together with our first estimate yields

(1− 2

µ
)d ≤ hd(Λ) ≤ 1.

�

Observe that this result can also formally be derived from the scaling
property of the Hausdorff measure by solving the identity

hα(Λ) = hα(Λ ∩ I0) + hα(Λ ∩ I1) = 2hα(Λ ∩ I0)

=
2

µα
hα(Tµ(Λ ∩ I0)) =

2

µα
hα(Λ) (11.50)

for α. However, this is only possible if we already know that 0 < hα(Λ) <∞
for some α.

Problem 11.11. Let C = [0, 1] × {0} ⊆ R
2. Show that h1(C) = 1.

Problem 11.12. Show that dimH(U) ≤ n for every U ⊆ R
n. (Hint: It

suffices to take for U the unit cube. Now split U into kn cubes of length
1/k.)
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11.7. Homoclinic orbits as source for chaos

In this section we want to show that similar considerations as for the tent
map can be made for other maps as well. We start with the logistic map for
µ > 4. As for the tent map, it is not hard to show that that Lnµ(x) → −∞
if x ∈ R\[0, 1]. Hence most points will escape to −∞ and we want to find
the points which stay in [0, 1] for all iterations.

Set Λ0 = [0, 1]. Then Λ1 = L−1
µ (Λ0) is given by

Λ1 = I0 ∪ I1 = [0, Gµ(1)] ∪ [1−Gµ(1), 1], (11.51)

where

Gµ(x) =
1

2
−
√

1

4
− x

µ
, Lµ(Gµ(x)) = x, 0 ≤ x ≤ 1. (11.52)

To make our life a little easier we will make the additional assumption that

L′
µ(x) = µ(1− 2x) ≥ α > 1 for x ∈ I0. (11.53)

Since we have
√

µ(µ− 4) = L′
µ(Gµ(1)) ≤ |L′

µ(x)| ≤ L′
µ(0) = µ, x ∈ I0 ∪ I1, (11.54)

this implies µ > 2 +
√
5 = 4.236. The general case µ > 4 can be found in

the book by Robinson [33].

Now proceeding as in the case of the tent map, we see that there
is a sequence of nesting sets Λn consisting of 2n subintervals Is0,··· ,sn−1 ,
sj ∈ {0, 1}, defined recursively via I0,s0,··· ,sn = Gµ(Is0,··· ,sn) and I1,s0,··· ,sn =
1 − Gµ(Is0,··· ,sn). The only difference is that, since Lµ is not (piecewise)
linear, we do not know the length of the interval Is0,··· ,sn. However, by our
assumption (11.53), we know G′

µ(x) ≤ α−1 and thus |Is0,··· ,sn | ≤ Gµ(1)α
−n.

But this is all we have used for the tent map and hence the same proof shows

Theorem 11.21. Suppose µ > 2+
√
5. Then the logistic map Lµ leaves the

set

Λ =
⋂

n∈N
Λn ⊂ [0, 1] (11.55)

invariant. All points x ∈ R\Λ satisfy limn→∞Lnµ(x) = −∞. The set Λ is
a Cantor set and the dynamical system (Λ, Lµ) is topologically equivalent to
the shift on two symbols (Σ2, σ) by virtue of the itinerary map

ϕ : Λ → Σ2

x 7→ xn = j if Lnµ(x) ∈ Ij
. (11.56)

In particular, (Λ, Lµ) is chaotic.

Clearly we also want to know whether the repellor Λ of the logistic map
is strange.
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Theorem 11.22. The Hausdorff dimension of the repellor Λ of the logistic
map satisfies

d(µ) ≤ dimH(Λ) ≤
{

1, µ ≤ 2 +
√
8,

d(
√

µ(4− µ)), µ > 2 +
√
8,

d(x) =
log(2)

log(x)
.

(11.57)

In particular, it is strange if µ > 2 +
√
8 = 4.828.

Proof. The proof is analogous to the one of Theorem 11.20. The only
difference is that we have to use different estimates for L′

µ from above and
below,

√

µ(4− µ) = α ≤ |L′
µ(x)| ≤ β = µ, x ∈ I0 ∪ I1.

Using the δ-cover Is0,...,sn−1 we see hd(α)(Λ) ≤ (a/α)d(α) where a = |I0| =
|I1| = Gµ(1).

Similarly, using that the distance of two intervals in Λk is at least b
βk−1 ,

where b = d(I0, I1) = 1− 2Gµ(1), we obtain

bd(β) ≤ hd(β)(Λ)

which finishes the proof. �

Well, if you look at the proof for a moment, you will see that only a few
properties of the logistic map have been used in the proof. And it is easy to
see that the same proof applies to the following more general situation.

Theorem 11.23. Let f : M → M be a continuously differentiable interval
map. Suppose there are two disjoint compact intervals I0, I1 such that I0 ∪
I1 ⊆ f(I0), I0 ∪ I1 ⊆ f(I1), and 1 < α ≤ |f ′(x)| ≤ β for all x ∈ I0 ∪ I1. Set

Λ = {x ∈ I0 ∪ I1|fn(x) ∈ I0 ∪ I1 for all n ∈ N} (11.58)

and define the itinerary map as

ϕ : Λ → Σ2

x 7→ xn = j if fn(x) ∈ Ij
. (11.59)

Then the set Λ is a Cantor set and the dynamical system (Λ, f) is topologi-
cally equivalent to the shift on two symbols (Σ2, σ). The Hausdorff dimension
of Λ satisfies

d(β) ≤ dimH(Λ) ≤ d(α), d(x) =
log(2)

log(x)
, (11.60)

and it is strange if α > 2.

Proof. By assumption, the restricted maps f : I0 → f(I0) and f : I1 →
f(I1) are invertible. Denote by g0 : f(I0) → I0 and g1 : f(I1) → I1 the
respective inverses. Now proceeding as usual, we see that there is a sequence
of nesting sets Λn consisting of 2n subintervals Is0,··· ,sn−1 , sj ∈ {0, 1}, defined
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11.7. Homoclinic orbits as source for chaos 313

recursively via I0,s0,··· ,sn = g0(Is0,··· ,sn) and I1,s0,··· ,sn = g1(Is0,··· ,sn). By
assumption we also know at least |Is0,··· ,sn | ≤ α−n|Is0 | and hence the proof
follows as before. �

You should try to draw a picture for f as in the above theorem. More-
over, it clearly suffices to assume that f is absolutely continuous on I0 ∪ I1.

Next, let f be as in Theorem 11.23 and note that I0 ⊆ f(I0) implies that
there is a (unique) fixed point p ∈ I0. Since I0 ⊆ f(I1) there is a point q ∈ I1
such that f(q) = p. Moreover, denoting by g0 : f(I0) → I0 the inverse of
f : I0 → f(I0), we see that there is a whole sequence gn0 (q) which converges
to p as n→ ∞. In the case of the logistic map we can take q = Gµ(1).

In[3]:= µ = 5;

x0 = Nest[

(

1

2
−
√

1

4
− #

µ

)

&, 1., 5];

ShowWeb[µ#(1−#)&, x0, 6]

Out[3]=

0.2 0.4 0.6 0.8 1.0

-0.5

0.5

1.0

The fact that x0 reaches the fixed point 0 after finitely many iterations (and
not only asymptotically) is related to dimension one. Since the fixed point
0 is repelling (L′

µ(0) = µ > 1) it cannot converge to 0 unless it reaches it
after finitely many steps.

In general, let f : I → I be continuously differentiable. A fixed point p is
called a hyperbolic repellor if |f ′(p)| > 1. Hence there is a closed interval
W containing p such that |f ′(x)| ≥ α > 1 for all x ∈ W . Moreover, by the
inverse function theorem there is a local inverse g : f(W ) → W such that
g(f(x)) = x, x ∈ W . Note that since f is expanding on W , we have W ⊆
f(W ) and that g is a contraction. A point q ∈ W is called a homoclinic
point if there exists an l ∈ N0 such that f l(q) = p. The set γ(q) = {f j(q)|j ∈
N0} ∪ {gj(q)|j ∈ N} is called the corresponding homoclinic orbit. It is
called nondegenerate if (f l)′(q) 6= 0 (which implies f ′(x) 6= 0 for all x ∈ γ(q).
A hyperbolic repellor with a homoclinic orbit is also called a snap back
repellor.

Theorem 11.24. Suppose f ∈ C1(I, I) has a repelling hyperbolic fixed point
p and a corresponding nondegenerate homoclinic point q.
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For every sufficiently small neighborhood U of p there is an n ∈ N and
an fn invariant Cantor set Λ ⊂ U (i.e., fn(Λ) = Λ) such that (Λ, fn) is
topologically equivalent to the shift on two symbols (Σ2, σ).

Proof. We will need to construct two disjoint intervals Ij ⊂ U∩W , j = 0, 1,
as in Theorem 11.23 for the map F = fn with n suitable. By shrinking W
it is no restriction to assume W ⊆ U .

The idea is to take compact intervals I0 containing p and I1 containing
q. Since f l(q) = p, the interval f l(I1) contains again p. Taking sufficiently
many iterations we can blow up both intervals such that the iterated im-
ages contain both original ones. The only tricky part is to ensure that the
derivative of the iterated map is larger than one.

So we start with an interval I1 ⊂ W containing q ∈ W . Since q is
nondegenerate we can choose I1 such that |(f l)′(x)| ≥ ε > 0 for all x ∈ I1.
Moreover, by shrinking I1 if necessary we can also assume f l(I1) ∩ I1 = ∅.
Next pick m so large that gm(I1) ⊆ f l(I1) (g being the local inverse of f

as above) and αmε > 1. Set n = m + l. Next, choose Ĩ1 ⊆ I1 such that

gm(I1) ⊆ f l(Ĩ1) but f l(Ĩ1) ⊆ gm(W ). Then we have gm(Ĩ1) ⊆ gm(I1) ⊆
f l(Ĩ1) and we can replace I1 by Ĩ1. By construction f l(I1) ⊆ gm(W ), that
is, fn(I1) ⊆W and thus |(fn)′(x)| ≥ εαm > 1 for x ∈ I1.

Next we will choose I0 = gl(f l(I1)). Then we have I0 ∩ I1 = ∅ and I0 ⊆
fn(I1) since I0 ⊆ f l(I1). Furthermore, by p ∈ I0 we have I0 ⊆ fn(I0) and
by gm(I1) ⊆ f l(I1) = f l(I0) we have I1 ⊆ fn(I0). Finally, since I0 ⊆ gn(W )
we have |(fn)′(x)| ≥ αn > 1 for x ∈ I0 and we are done. �

Problem 11.13. Why is the degeneracy condition in Theorem 11.24 nec-
essary? Can you give a counter example?
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Chapter 12

Periodic solutions

12.1. Stability of periodic solutions

In Section 6.5 we have defined stability for a fixed point. In this section we
want to extend this notation to periodic solutions.

An orbit γ(x0) is called stable if for any given neighborhood U(γ(x0))
there exists another neighborhood V (γ(x0)) ⊆ U(γ(x0)) such that any so-
lution starting in V (γ(x0)) remains in U(γ(x0)) for all t ≥ 0.

Similarly, an orbit γ(x0) is called asymptotically stable if it is stable
and if there is a neighborhood U(γ(x0)) such that

lim
t→∞

d(Φ(t, x), γ(x0)) = 0 for all x ∈ U(x0). (12.1)

Here d(x,A) = inf{|x − y| |y ∈ A} denotes the distance between x and
A ⊆ R

n (cf. Problem 6.11).

Note that this definition ignores the time parametrization of the orbit.
In particular, if x is close to x1 ∈ γ(x0), we do not require that Φ(t, x) stays
close to Φ(t, x1) (we only require that it stays close to γ(x0)). To see that
this definition is the right one, consider the mathematical pendulum (6.48).
There all orbits are periodic, but the period is not the same. Hence, if we
fix a point x0, any point x 6= x0 starting close will have a slightly larger
respectively smaller period and thus Φ(t, x) does not stay close to Φ(t, x0).
Nevertheless, it will still stay close to the orbit of x0.

But now let us turn to the investigation of the stability of periodic
solutions. Suppose the differential equation

ẋ = f(x) (12.2)

has a periodic solution Φ(t, x0) of period T = T (x0).

315
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316 12. Periodic solutions

Since linearizing the problem was so successful for fixed points, we will
try to use a similar approach for periodic points. Abbreviating the lineariza-
tion of f along the periodic orbit by

A(t) = dfΦ(t,x0), A(t+ T ) = A(t), (12.3)

or problem suggests to investigate the first variational equation

ẏ = A(t)y, (12.4)

which we already encountered in (2.49). Note that choosing a different point
of the periodic orbit x0 → Φ(s, x0) amounts to A(t) → A(t+ s).

Our goal is to show that stability of the periodic orbit γ(x0) is related
to stability of the first variational equation. As a first useful observation
we note that the corresponding principal matrix solution Π(t, t0) can be
obtained by linearizing the flow along the periodic orbit.

Lemma 12.1. The principal matrix solution of the first variational equation
is given by

Πx0(t, t0) =
∂Φt−t0
∂x

(Φ(t0, x0)). (12.5)

Moreover, f(Φ(t, x0)) is a solution of the first variational equation

f(Φ(t, x0)) = Πx0(t, t0)f(Φ(t0, x0)). (12.6)

Proof. Abbreviate J(t, x) = ∂Φt

∂x (x). Then J(0, x) = I and by interchanging

t and x derivatives it follows that J̇(t, x) = dfΦ(t,x)J(t, x). Hence J(t −
t0,Φ(t0, x0)) is the principal matrix solution of the first variational equation.
Finally, (12.6) follows from

0 =
∂

∂t0
Φ(t, x0) =

∂

∂t0
Φ(t− t0,Φ(t0, x0))

= −f(Φ(t− t0,Φ(t0, x0))) + Πx0(t, x0)f(Φ(t0, x0)).

�

Since A(t) is periodic, all considerations of Section 3.6 apply. In partic-
ular, the principal matrix solution is of the form

Πx0(t, t0) = Px0(t, t0) exp((t− t0)Qx0(t0)) (12.7)

and the monodromy matrix Mx0(t0) = exp(TQx0(t0)) =
∂ΦT−t0
∂x (Φ(t0, x0))

has eigenvalues independent of the point in the orbit chosen. Note that one
of the eigenvalues is one, since

Mx0(t0)f(Φ(t0, x0)) = f(Φ(t0, x0)). (12.8)
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12.2. The Poincaré map

Let Σ be a transversal submanifold of codimension one containing one value
x0 from our periodic orbit. Recall the Poincaré map

PΣ(y) = Φ(τ(y), y) (12.9)

introduced in Section 6.4. It is one of the major tools for investigating
periodic orbits. Stability of the periodic orbit γ(x0) is directly related to
stability of x0 as a fixed point of PΣ.

Lemma 12.2. The periodic orbit γ(x0) is an (asymptotically) stable orbit
of f if and only if x0 is an (asymptotically) stable fixed point of PΣ.

Proof. Suppose x0 is a stable fixed point of PΣ. Let U be a neighborhood of
γ(x0). Choose a neighborhood Ũ ⊆ U ∩Σ of x0 such that Φ([0, T ], Ũ ) ⊆ U .

If x0 is a stable fixed point of PΣ there is another neighborhood Ṽ ⊆ Σ of
x0 such that Pn(Ṽ ) ⊆ Ũ for all n. Now let V be a neighborhood of γ(x0)

such that V ⊆ Φ([0, T ], Ṽ ). Then if y ∈ V there is a smallest t0 ≥ 0 such

that y0 = Φ(t0, y) ∈ Ṽ . Hence yn = PnΣ(y0) ∈ Ũ and thus φ(t, V ) ⊆ U for
all t ≥ 0.

Moreover, if yn → x0 then Φ(t, y) → γ(x0) by continuity of Φ and
compactness of [0, T ]. Hence γ(x0) is asymptotically stable if x0 is. The
converse is trivial. �

As an immediate consequence of this result and Theorem 10.1 we obtain

Corollary 12.3. Suppose f ∈ Ck has a periodic orbit γ(x0). If all eigen-
values of the derivative of the Poincaré map dPΣ at x0 lie inside the unit
circle then the periodic orbit is asymptotically stable.

We next show how this approach is related to the first variational equa-
tion.

Theorem 12.4. The eigenvalues of the derivative of the Poincaré map dPΣ

at x0 plus the single value 1 coincide with the eigenvalues of the monodromy
matrix Mx0(t0).

In particular, the eigenvalues are independent of the base point x0 and
the transversal section Σ.

Proof. After a linear transform it is no restriction to assume f(x0) =
(0, . . . , 0, 1). Write x = (y, z) ∈ R

n−1 × R. Then Σ is locally the graph
of a function s : Rn−1 → R and we can take y as local coordinates for the
Poincaré map. Since

∂

∂x
Φ(τ(x), x)

∣
∣
∣
x=x0

= f(x0)dτx0 +
∂ΦT
∂x

(x0)
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we infer dPΣ(x0)j,k = Mx0(t0)j,k for 1 ≤ j, k ≤ n − 1 by Lemma 12.1.
Moreover, Mx0(0)f(x0) = f(x0) and thus

Mx0(0) =

(
dPΣ(x0) 0

m 1

)

from which the claim is obvious. �

Example. Consider the system

ẋ1 = −x2 + x1(1− x21 − x22), ẋ2 = x1 + x2(1− x21 − x22)

and observe that a periodic solution is given by Φ(t) = (cos(t), sin(t)). More-
over, we have

A(t) =

(
−2 cos(t)2 −1 + sin(2t)2

1− sin(2t) −2 sin(t)2

)

, f(Φ(t)) =

(
− sin(t)
cos(t)

)

Next,

Πx0(t, 0) =

(
e−2t cos(t) − sin(t)
e−2t sin(t) cos(t)

)

=

(
cos(t) − sin(t)
sin(t) cos(t)

)

exp

(

t

(
−2 0
0 0

))

since the second row follows from (12.6) and the first can be obtained using
d’Alambert reduction. In particular,

Mx0(0) =

(
e−4π 0
0 1

)

and the periodic orbit is stable. Note that the system can be explicitly
solved in polar coordinates. ⋄

As a consequence we obtain

Corollary 12.5. The determinants of the derivative of the Poincaré map
at x0 and of the monodromy matrix are equal

det(dPΣ(x0)) = det(Mx0(t0)). (12.10)

In particular, since the determinant of the monodromy matrix does not van-
ish, PΣ(y) is a local diffeomorphism at x0.

By Liouville’s formula (3.91) we have

det(Mx0(t0)) = exp

(∫ T

0
tr(A(t)) dt

)

= exp

(∫ T

0
div(f(Φ(t, x0)) dt

)

.

(12.11)
In two dimensions there is only one eigenvalue which is equal to the deter-
minant and hence we obtain
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Lemma 12.6. Suppose f is a planar vector field. Then a periodic point x0
is asymptotically stable if

∫ T

0
div(f(Φ(t, x0)) dt < 0 (12.12)

and unstable if the integral is positive.

Example. In our previous example we have div(f(Φ(t, x0)) = 2−4(sin(t)2+
cos(t)2) = −2 and we again get that the periodic solution is asymptotically
stable. ⋄

As another application of the use of the Poincaré map we will show that
hyperbolic periodic orbits persist under small perturbations.

Lemma 12.7. Let f(x, λ) be Ck and suppose f(x, 0) has a hyperbolic peri-
odic orbit γ(x0). Then, in a sufficiently small neighborhood of 0 there is a
Ck map λ 7→ x0(λ) such that x0(0) = x0 and γ(x0(λ)) is a periodic orbit of
f(x, λ).

Proof. Fix a transversal arc Σ for f(x, 0) at x0. That arc is also transversal
for f(x, λ) with λ sufficiently small. Hence there is a corresponding Poincaré
map PΣ(x, ε) (which is Ck). Since PΣ(x0, 0) = x0 and no eigenvalue of
PΣ(x, 0) lies on the unit circle the result follows from the implicit function
theorem. �

12.3. Stable and unstable manifolds

To show that the stability of a periodic point x0 can be read off from the
first variational equation, we will first simplify the problem by applying some
transformations.

Using y(t) = x(t)− Φ(t, x0) we can reduce it to the problem

ẏ = f̃(t, y), f̃(t, y) = f(y +Φ(t, x0))− f(Φ(t, x0)), (12.13)

where f̃(t, 0) = 0 and f̃(t+ T, x) = f̃(t, x). This equation can be rewritten
as

ẏ = A(t)y + g̃(t, y) (12.14)

with g̃ T -periodic, g̃(t, 0) = 0, and (∂g/∂y)(t, 0) = 0.

We will see that hyperbolic periodic orbits are quite similar to hyperbolic
fixed points. (You are invited to show that this definition coincides with our
previous one for fixed points in the special case T = 0.)

Moreover, by Corollary 3.18 the transformation z(t) = P (t)−1y(t) will
transform the system to

ż = Qz + g(t, z). (12.15)
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Hence we can proceed as in Section 9.2 to show the existence of stable and
unstable manifolds at x0 defined as

M±(x0) = {x ∈M | sup
±t≥0

e±γt|Φ(t, x)− Φ(t, x0)| <∞ for some γ > 0}.
(12.16)

Making this for different points Φ(t0, x0) in our periodic orbit we set

M±
t0 (x0) =M±(Φ(t0, x0)). (12.17)

Note that the linear counterparts are the linear subspaces

E±(t0) = Πx0(t1, 0)E
±(0) (12.18)

corresponding to the stable and unstable subspace of Mx0(t0) (compare
(3.127)).

Theorem 12.8 (Stable manifold for periodic orbits). Suppose f ∈ Ck has a
hyperbolic periodic orbit γ(x0) with corresponding monodromy matrixM(t0).

Then, there is a neighborhood U(γ(x0)) and functions h± ∈ Ck([0, T ] ×
E±, E∓) such that

M±
t0 (x0) ∩ U(γ(x0)) = {Φ(t0, x0) + a+ h±(t0, a)|a ∈ E±(t0) ∩ U}. (12.19)

Both h±(t0, .) and their Jacobian matrices vanish at x0, that is, M
±
t0 (x0) are

tangent to their respective linear counterpart E±(t0) at Φ(t0, x0). Moreover,

|Φ(t, x)− Φ(x0, t+ t0)| ≤ Ce∓tγ ,±t ≥ 0, x ∈M±
t0 (x0) (12.20)

for any γ < min{|Re(γj)|}mj=1 and some C > 0 depending on γ. Here γj are

the eigenvalues of Q(t0).

Proof. As already pointed out before, the same proof as in Section 9.2
applies. The only difference is that g now depends on t. However, since g
is periodic we can restrict t to the compact interval [0, T ] for all estimates
and no problems arise. Hence we get M±

t0 for each point in the orbit.

Parametrizing each point by t0 ∈ [0, T ] it is not hard to see that g is Ck

as a function of this parameter. Moreover, by (12.18), so are the stable and
unstable subspaces of the monodromy matrix M(t0). �

Now we can take the union over all t0 and define

M±(γ(x0)) =

= {x| sup
±t≥0

e±γt|Φ(t, x)−Φ(t+ t0, x0)| <∞ for some t0, γ > 0}

=
⋃

t0∈[0,T ]
M±
t0
(x0). (12.21)
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as the stable and unstable manifold, respectively. They are clearly
invariant under the flow and are locally given by

M±(γ(x0)) ∩ U(γ(x0)) =

{Φ(t0, x0) + Πx0(t0, 0)a + h±(t0,Πx0(t0, 0)a)|
a ∈ E±(0) ∩ U, t0 ∈ [0, T ]}. (12.22)

The points in M±(γ(x0)) are said to have an asymptotic phase, that is,
there is a t0 such that

Φ(t, x) → Φ(t+ t0, x0) as t→ ∞ or t→ −∞. (12.23)

As in the case of a fixed point, the (un)stable manifold coincides with
the (un)stable set

W±(γ(x0)) = {x| lim
t→±∞

d(Φ(t, x), γ(x0)) = 0} (12.24)

of γ(x0) if the orbit is hyperbolic.

Theorem 12.9. Suppose f ∈ Ck has a hyperbolic periodic orbit γ(x0).
Then there is a neighborhood U(x0) such that γ±(x) ⊂ U(γ(x0)) if and only
if x ∈M±(γ(x0)). In particular,

W±(γ(x0)) =M±(γ(x0)). (12.25)

Proof. Suppose d(Φ(t, x), γ(x0)) → 0 as t → ∞. Note that it is no restric-
tion to assume that x is sufficiently close to γ(x0). Choose a transversal
arc Σ containing x and consider the corresponding Poincaré map PΣ. Then
M±(γ(x0)) ∩ Σ must be the stable and unstable manifolds of the Poincaré
map. By the Hartman–Grobman theorem for flows, x must lie on the stable
manifold of the Poincaré map and hence it lies in M±(γ(x0)). �

Moreover, if f depends on a parameter λ, then we already know that
a hyperbolic periodic orbit persists under small perturbations and depends
smoothly on the parameter by Lemma 12.7. Moreover, the same is true for
the stable and unstable manifolds (which can be proven as in Theorem 9.6).

Theorem 12.10. Let f(x, λ) be Ck and suppose f(x, 0) has a hyperbolic
periodic orbit γ(x0). Then, in a sufficiently small neighborhood of 0 there is
a Ck map λ 7→ x0(λ) such that x0(0) = x0 and γ(x0(λ)) is a periodic orbit
of f(x, λ). Moreover, the corresponding stable and unstable manifolds are
locally given by

M±(γ(x0(λ))) ∩ U(γ(x0(λ))) = {Φ(t0, x0(λ), λ) + a(λ) + h±(t0, a(λ))|
a ∈ E±(0) ∩ U, t0 ∈ [0, T ]}, (12.26)

where a(λ) = Πx0(λ)(t0, 0, λ)P
±(λ)a, h± ∈ Ck.
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Problem 12.1 (Hopf bifurcation). Investigate the system

ẋ = −y + (µ+ σ(x2 + y2)x, ẏ = x+ (µ+ α(x2 + y2)y

as a function of the parameter µ for σ = 1 and σ = −1. Compute the stable
and unstable manifolds in each case. (Hint: Use polar coordinates.)

12.4. Melnikov’s method for autonomous perturbations

In Lemma 12.7 we have seen that hyperbolic periodic orbits are stable under
small perturbations. However, there is a quite frequent situations in appli-
cations where this result is not good enough! In Section 6.7 we have learned
that many physical models are given as Hamiltonian systems. Clearly such
systems are idealized and a more realistic model can be obtained by per-
turbing the original one a little. This will usually render the equation un-
solvable. The typical situation for a Hamiltonian system in two dimensions
is that there is a fixed point surrounded by periodic orbits. As we have seen
in Problem 6.27, adding an (arbitrarily small) friction term will render the
fixed point asymptotically stable and all periodic orbits disappear. In par-
ticular, the periodic orbits are unstable under small perturbations and hence
cannot be hyperbolic. On the other hand, van der Pol’s equation (7.32) is
also Hamiltonian for µ = 0 and in Theorem 7.8 we have shown that one of
the periodic orbits persists for µ > 0.

So let us consider a Hamiltonian system

H(p, q) =
p2

2
+ U(q), (12.27)

with corresponding equation of motions

ṗ = −U ′(q), q̇ = p. (12.28)

Moreover, let q0 be an equilibrium point surrounded by periodic orbits.
Without restriction we will choose q0 = 0. We are interested in the fate of
these periodic orbits under a small perturbation

ṗ = −U ′(q) + εf(p, q), q̇ = p+ εg(p, q), (12.29)

which is not necessarily Hamiltonian. Choosing the section Σ = {(0, q)|q >
0}, the corresponding Poincaré map is given by

PΣ((0, q), ε) = Φ(τ(q, ε), (0, q), ε), (12.30)

where τ(q, ε) is the first return time. The orbit starting at (0, q) will be
periodic if and only if q is a zero of the displacement function

∆(q, ε) = Φ1(τ(q, ε), (0, q), ε) − q. (12.31)

Since ∆(q, 0) vanishes identically, so does the derivative with respect to q
and hence we cannot apply the implicit function theorem. Of course this
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just reflects the fact that the periodic orbits are not hyperbolic and hence
was to be expected from the outset.

The way out of this dilemma is to consider the reduced displacement
function ∆̃(q, ε) = ε−1∆(q, ε) (which is as good as the original one for our

purpose). Now ∆̃(q, 0) = ∆ε(q, 0) and ∆̃q(q, 0) = ∆ε,q(q, 0). Thus, if we
find a simple zero of ∆ε(q, 0), then the implicit function theorem applied to

∆̃(q, ε) tells us that the corresponding periodic orbit persists under small
perturbations.

Well, whereas this might be a nice result, it is still of no use unless we
can compute ∆ε(q, 0) somehow. Abbreviate

(p(t, ε), q(t, ε)) = Φ(t, (0, q), ε), (12.32)

then

∂

∂ε
∆(q, ε)

∣
∣
∣
ε=0

=
∂

∂ε
q(τ(q, ε), ε)

∣
∣
∣
ε=0

= q̇(T (q), 0)τε(q, 0) + qε(T (q), 0)

= p(T (q), 0)τε(q, 0) + qε(T (q), 0) = qε(T (q), 0), (12.33)

where T (q) = τ(q, 0) is the period of the unperturbed orbit. Next, ob-
serve that (pε(t), qε(t)) = ∂

∂ε(p(t, ε), q(t, ε))|ε=0 is the solution of the first
variational equation

ṗε(t) = −U ′′(qε(t))qε(t)+f(p(t), q(t)), q̇ε(t) = pε(t)+g(p(t), q(t)) (12.34)

corresponding to the initial conditions (pε(t), qε(t)) = (0, 0). Here we have
abbreviated (p(t), q(t)) = (p(t, 0), q(t, 0)). By the variation of constants
formula the solution is given by

(
pε(t)
qε(t)

)

=

∫ t

0
Πq(t, s)

(
f(p(s), q(s))
g(p(s), q(s))

)

ds. (12.35)

We are only interested in the value at t = T (q), where

Πq(T (q), s) = Πq(T (q), 0)Πq(0, s) = Πq(T (q), 0)Πq(s, 0)
−1. (12.36)

Furthermore, using Lemma 12.1,

Πq(t, 0)

(
−U ′(q)

0

)

=

(
−U ′(q(t))
p(t)

)

(12.37)

and we infer

Πq(t, 0) =
1

U ′(q)

(
U ′(q(t)) −α(t)U ′(q(t)) + β(t)p(t)
−p(t) α(t)p(t) + β(t)U ′(q(t))

)

, (12.38)

where α(t) and β(t) are given by

Πq(t, 0)

(
0

U ′(q)

)

= α(t)

(
−U ′(q(t))
p(t)

)

+ β(t)

(
p(t)

U ′(q(t))

)

. (12.39)
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Moreover, by Liouville’s formula we have detΠq(t, s) = 1 and hence

β(t) =
U ′(q)2

U ′(q(t))2 + p(t)2
detΠq(t, 0) =

U ′(q)2

U ′(q(t))2 + p(t)2
. (12.40)

Now putting everything together we obtain

∆ε(q, 0) =
1

U ′(q)

∫ T (q)

0

(
p(s)f(p(s), q(s)) + U ′(q(s))g(p(s), q(s))

)
ds.

(12.41)
The integral on the right-hand side is known as the Melnikov integral for
periodic orbits.

For example, let me show how this applies to the van der Pol equation
(7.32). Here we have (q = x and p = y) the harmonic oscillator U(q) = q2/2
as unperturbed system and the unperturbed orbit is given by (p(t), q(t)) =
(q sin(t), q cos(t)). Hence, using f(p, q) = 0, g(p, q) = q − q3/3 we have

∆ε(q, 0) = q

∫ 2π

0
cos(s)2(

cos(s)2

3q2
− 1)ds =

πq

4
(q2 − 4) (12.42)

and q = 2 is a simple zero of ∆ε(q, 0).

This result is not specific to the Hamiltonian form of the vector field as
we will show next. In fact, consider the system

ẋ = f(x) + ε g(x, ε). (12.43)

Suppose that the unperturbed system ε = 0 has a period annulus, that is,
an annulus of periodic orbits. Denote the period of a point x in this annulus
by T (x).

Fix a periodic point x0 in this annulus and let us derive some facts
about the unperturbed system first. Let Φ(t, x, ε) be the flow of (12.43) and
abbreviate Φ(t, x) = Φ(t, x, 0). Using the orthogonal vector field

f⊥(x) = Jf(x), J =

(
0 −1
1 0

)

. (12.44)

we can make the following ansatz for the principal matrix solution of the
first variational equation of the unperturbed system

Πx0(t, 0)f(x0) = f(x(t)),

Πx0(t, 0)f
⊥(x0) = αx0(t)f(x(t)) + βx0(t)f

⊥(x(t)), (12.45)

where x(t) = Φ(t, x0).
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Lemma 12.11. The coefficients αx0(t) and βx0(t) are given by

βx0(t) =
|f(x0)|2
|f(x(t))|2 e

∫ t
0 div(f(x(s)))ds

αx0(t) =

∫ t

0

βx0(s)

|f(x(s))|2 f(x(s))[J,A(s)]f(x(s))ds, (12.46)

where x(t) = Φ(t, x0) and A(t) = dfx(t).

Proof. Since β(t) = |f(x0)|2
|f(x(t))|2 det(Πx0) the first equation follows from Liou-

ville’s formula. Next, differentiating (12.45) with respect to t shows

α̇(t)f(x(t)) + β̇(t)f⊥(x(t)) = β(t)(A(t)f⊥(x(t))− (A(t)f(x(t)))⊥)

since ḟ(x(t)) = A(t)f(x(t)). Multiplying both sides with f(x(t)) and inte-
grating with respect to t proves the claim since α(0) = 0. �

Now denote by Ψ(t, x) the flow of the orthogonal vector field f⊥(x) and
let us introduce the more suitable coordinates

x(u, v) = Φ(u,Ψ(v, x0)). (12.47)

Abbreviate T (v) = T (x(u, v)) and differentiate Φ(T (v), x(u, v))−x(u, v) = 0
with respect to v producing

Φ̇(T (v), x(u, v))
∂T

∂v
(v) +

∂Φ

∂x
(T (v), x(u, v))

∂x

∂v
(u, v) =

∂x

∂v
(u, v). (12.48)

Evaluating at (u, v) = (0, 0) gives

Πx0(T (x0), 0)f
⊥(x0) +

∂T

∂v
(0)f(x0) = f⊥(x0). (12.49)

Using (12.45) we obtain

(αx0(T (x0))−
∂T

∂v
(0))f(x0) = (1− βx0(T (x0)))f

⊥(x0) (12.50)

or equivalently

αx0(T (x0)) =
∂T

∂v
(0) =

∂T

∂x
(x0)f

⊥(x0), βx0(T (x0)) = 1. (12.51)

After these preparations, let us consider the Poincaré map

PΣ(x, ε) = Φ(τ(x, ε), x, ε), x ∈ Σ, (12.52)
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corresponding to some section Σ (to be specified later). Since we expect the
ε derivative to be of importance, we fix x0 ∈ Σ and compute

∂

∂ε
Φ(τ(x0, ε), x0, ε)− x0

∣
∣
∣
ε=0

= Φ̇(T (x0), x0)
∂τ

∂ε
(x0, 0) +

∂

∂ε
Φ(T (x0), x0, ε)

∣
∣
∣
ε=0

=
∂τ

∂ε
(x0, 0)f(x0) + xε(T (x0)), (12.53)

where xε(t) is the solution of the variational equation

ẋε(t) = A(t)xε(t) + g(x(t), 0) (12.54)

corresponding to the initial condition xε(0) = 0. Splitting g according to

g(x(s), 0) =
f(x(s))g(x(s), 0)

|f(x(s))|2 f(x(s)) +
f(x(s)) ∧ g(x(s), 0)

|f(x(s))|2 f⊥(x(s))

(12.55)
and invoking (12.45) we obtain after a little calculation

xε(T (x0)) =

∫ T (x0)

0
Πx0(T (x0), s)g(x(s), 0)ds

= (N(x0) + αx0(T (x0))M(x0))f(x0) +M(x0)f
⊥(x0), (12.56)

where

M(x0) =

∫ T (x0)

0

f(x(s)) ∧ g(x(s), 0)
βx0(s)|f(x(s))|2

ds (12.57)

and

N(x0) =

∫ T (x0)

0

f(x(s))g(x(s), 0)

|f(x(s))|2 ds

−
∫ T (x0)

0
αx0(s)

f(x(s)) ∧ g(x(s), 0)
βx0(s)|f(x(s))|2

ds. (12.58)

Putting everything together we have

∂

∂ε
Φ(τ(x, ε), x, ε) − x

∣
∣
∣
ε=0

= (
∂τ

∂ε
(x, 0) +N(x) + αx(T (x))M(x))f(x) +M(x)f⊥(x) (12.59)

at any point x ∈ Σ.

Now let us fix x0 and choose Σ = {x0 + f(x0)
⊥v|v ∈ R}. Then the

displacement function is

∆(v, ε) = (Φ(τ(x, ε), x, ε) − x)f⊥(x0), x = x0 + f(x0)
⊥v, (12.60)

and
∂∆

∂ε
(0, 0) = |f⊥(x0)|2M(x0). (12.61)
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Moreover, since Φ(τ(x0, ε), x0, ε) ∈ Σ we have

∂τ

∂ε
(x0, 0) +N(x0) + αx0(T (x0)) = 0 (12.62)

and, if M(x0) = 0,

∂2∆

∂ε∂v
(0, 0) = |f⊥(x0)|2

∂M

∂x
(x0)f

⊥(x0). (12.63)

Theorem 12.12. Suppose (12.43) for ε = 0 has a period annulus. If the
Melnikov integral M(x) has a zero x0 at which the derivative of M(x) in the
direction of f⊥(x0) does not vanish, then the periodic orbit at x0 persists for
small ε.

Note that we have

M(x(t)) = βx0(t)M(x0). (12.64)

Problem 12.2. Show

βx(s)(t) =
βx0(t+ s)

βx0(s)
,

αx(s)(t) =
1

βx0(s)
(αx0(t+ s)− αx0(s))

and

βx(s)(T (x0)) = 1, αx(s)(T (x0)) =
αx0(T (x0))

βx0(s)
.

12.5. Melnikov’s method for nonautonomous perturbations

Now let us consider the more general case of nonautonomous perturbations.
We consider the nonautonomous system

ẋ(t) = f(x(t)) + ε g(t, x(t), ε) (12.65)

ore equivalently the extended autonomous one

ẋ = f(x) + ε g(τ, x, ε), τ̇ = 1. (12.66)

We will assume that g(t, x, ε) is periodic with period T and that the unper-
turbed system ε = 0 has a period annulus.

To find a periodic orbit which persists we need of course require that
the extended unperturbed system has a periodic orbit. Hence we need to
suppose that the resonance condition

mT = nT (x0), n,m ∈ N, (12.67)

where T (x) denotes the period of x, holds for some periodic point x0 in this
annulus. It is no restriction to assume that m and n are relatively prime.
Note that we have βx0(nT (x0)) = 1 and αx0(nT (x0)) = nαx0(T (x0)).
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The Poincaré map corresponding to Σ = {τ = t0 mod mT} is given by

PΣ(x, ε) = Φ(mT, (x, t0), ε) (12.68)

and the displacement function is

∆(x, ε) = x(mT, ε)− x, (12.69)

where x(t, ε) is the solution corresponding to the initial condition x(t0, ε) =
x. Note that it is no restriction to assume t0 = 0 and replace g(s, x, ε) by
g(s+ t0, x, ε).

Again it is not possible to apply the implicit function theorem directly
to ∆(x, ε) since the derivative in the direction of f(x0) vanishes. We will
handle this problem as in the previous section by a regularization process.
However, since ∆(x, ε) is now two dimensional, two cases can occur.

One is if the derivative of ∆(x, ε) in the direction of f⊥(x0) also vanishes.
This is the case if, for example, the period in the annulus is constant and
hence ∆(x, 0) = 0. Here we can divide by ε and proceed as before.

The second case is if the derivative of ∆(x, ε) in the direction of f⊥(x0)
does not vanish. Here we have to use a Liapunov–Schmidt type reduction
and split R2 according to f(x0) and f

⊥(x0). One direction can be handled
by the implicit function theorem directly and the remaining one can be
treated as in the first case.

We will express ∆ in more suitable coordinates x(u, v) from (12.47).
Using the results from the previous section we have

∂∆

∂u
(x0, 0) = 0,

∂∆

∂v
(x0, 0) = nαx0(T (x0))f(x0) (12.70)

and

∂∆

∂ε
(x0, 0) = xε(mT ) =(N(t0, x0) + nαx0(T (x0))M(t0, x0))f(x0)

+M(t0, x0)f
⊥(x0), (12.71)

where

M(t0, x0) =

∫ nT (x0)

0

f(x(s)) ∧ g(s + t0, x(s), 0)

βx0(s)|f(x(s))|2
ds (12.72)

and

N(t0, x0) =

∫ nT (x0)

0

f(x(s))g(s + t0, x(s), 0)

|f(x(s))|2 ds

−
∫ nT (x0)

0
αx0(s)

f(x(s)) ∧ g(s+ t0, x(s), 0)

βx0(s)|f(x(s))|2
ds. (12.73)

Note that M(t0 + T, x0) =M(t0, x0) and N(t0 + T, x0) = N(t0, x0).
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With this notation we can now easily treat the case of an isochronous
period annulus, where T (x) = T (x0) is constant, respectively αx(T (x)) =
0. Since ∆(x, 0) = 0 we can proceed as before to obtain

Theorem 12.13. Suppose (12.65) for ε = 0 has an isochronous period an-
nulus. If the function x 7→ (M(t0, x), N(t0, x)) has a simple zero at (t0, x0),
then the periodic orbit at (t0, x0) persists for small ε.

The case αx(T (x)) 6= 0 will be considered next. We will call the period
annulus a regular period annulus in this case.

We split the displacement function according to (compare (12.47))

∆(x(u, v), ε) = ∆1(u, v, ε)f(x0) + ∆2(u, v, ε)f
⊥(x0). (12.74)

Then
∂∆1

∂v
(0, 0, 0) = nαx0(T (x0)) 6= 0 (12.75)

and hence there is a function v(u, ε) such that ∆1(u, v(u, ε), ε) = 0 by the
implicit function theorem. Moreover, by ∆(x(u, 0), 0) = 0 we even have
v(u, 0) = 0. Hence it remains to find a zero of

∆̃2(u, ε) = ∆2(u, v(u, ε), ε). (12.76)

Since ∆̃2(u, 0) = ∆2(u, 0, 0) = 0, we can divide by ε and apply the implicit
function theorem as before.

Now using
∂∆̃2

∂ε
(0, 0) =M(t0, x0). (12.77)

and, if M(t0, x0) = 0,

∂2∆̃2

∂ε∂u
(0, 0) =

∂M

∂x
(t0, x0)f(x0) (12.78)

we obtain the following result.

Theorem 12.14. Suppose (12.65) for ε = 0 has a regular period annulus.
If the function x 7→M(t0, x) has a zero at (t0, x0) at which the derivative of
M(t0, x) in the direction of f(x0) does not vanish, then the periodic orbit at
(t0, x0) persists for small ε.
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Chapter 13

Chaos in higher
dimensional systems

13.1. The Smale horseshoe

In this section we will consider a two dimensional analog of the tent map and
show that it has an invariant Cantor set on which the dynamics is chaotic.
We will see in the following section that it is a simple model for the behavior
of a map in the neighborhood of a hyperbolic fixed point with a homoclinic
orbit.

The Smale horseshoe map f : D → R
2, D = [0, 1]2, is defined by

contracting the x direction, expanding the y direction, and then twist the
result around as follows.

J0

J1

✲f

✛✘
.
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f(J0) f(J1)

Since we are only interested in the dynamics on D, we only describe this
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part of the map analytically. We fix λ ∈ (0, 12 ], µ ∈ [2,∞), set

J0 = [0, 1] × [0,
1

µ
], J1 = [0, 1] × [1− 1

µ
, 1], (13.1)

and define

f : J0 → f(J0), (x, y) 7→ (λx, µy), (13.2)

respectively

f : J1 → f(J1), (x, y) 7→ (1− λx, µ(1− y)). (13.3)

A look at the two coordinates shows that f1(x, y) ∈ [0, 1] whenever x ∈ [0, 1]
and that f2(x, y) = Tµ(y). Hence if we want to stay in D during the first
n iterations we need to start in Λ+,n = [0, 1] × Λn(Tµ), where Λn(Tµ) = Λn
is the same as for Tµ. In particular, if we want to stay in D for all positive
iterations we have to start in

Λ+ = [0, 1] × Λ(Tµ) =
⋂

n∈N0

fn(D). (13.4)

But note that f is invertible, with inverse given by

g = f−1 : K0 = f(J0) → J0, (x, y) 7→ (λ−1x, µ−1y), (13.5)

respectively

g = f−1 : K1 = f(J1) → J1, (x, y) 7→ (λ−1(1− x), 1 − µ−1y). (13.6)

Hence, by the same consideration, if we want to stay in D for all negative
iterations, we have to start in

Λ− = Λ(T1/λ)× [0, 1] =
⋂

n∈N0

f−n(D). (13.7)

Finally, if we want to stay in D for all (positive and negative) iterations we
have to start in

Λ = Λ− ∩ Λ+ = Λ(T1/λ)× Λ(Tµ). (13.8)

The set Λ is a Cantor set since any product of two Cantor sets is again a
Cantor set (prove this).

Now by our considerations for the tent map, the y coordinate of every
point in Λ can uniquely defined by a sequence yn, n ∈ N0. Similarly, the
x coordinate of every point in Λ can be uniquely defined by a sequence xn,
n ∈ N0. Hence defining sn = yn and s−n = xn−1 for n ∈ N0 we see that
there is a one-to-one correspondence between points in Λ and doubly infinite
sequences on two symbols. Hence we have found again an itinerary map

ϕ : Λ → Σ2

(x, y) 7→ sn =

{
yn n ≥ 0
x−n−1 n < 0

, (13.9)
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where yn is defined by fn(x, y) ∈ Jyn and xn is defined by gn(x, y) ∈ Kxn . As
in the case of the tent map it is easy to see ϕ is continuous (exercise). Now
what about the action of σ = ϕ◦f ◦ϕ−1? By construction, σ shifts yn to the
left, σ(s)n = yn+1, n ≥ 0, and σ−1 shifts xn to the left, σ−1(s)n = x−n−1,
n < 0. Hence σ shifts xn to the right, σ(s)n = x−n−2, n < −1, and we need
to figure out what the new first element σ(s)−1 is. Well, since (x, y) ∈ Jy0
is equivalent to f(x, y) ∈ Ky0 , we see that this element is σ(s)−1 = y0 and
hence σ just shifts sn to the left, σ(s)n = sn+1. In summary, we have shown

Theorem 13.1. The Smale horseshoe map has an invariant Cantor set Λ
on which the dynamics is equivalent to the double sided shift on two symbols.
In particular it is chaotic.

13.2. The Smale–Birkhoff homoclinic theorem

In this section I will present the higher dimensional analog of Theorem 11.24.

Let f be a diffeomorphism (C1) and suppose p is a hyperbolic fixed point.
A homoclinic point is a point q 6= p which is in the stable and unstable
manifold. If the stable and unstable manifold intersect transversally at q,
then q is called transverse. This implies that there is a homoclinic orbit
γ(q) = {qn} such that limn→∞ qn = limn→−∞ qn = p. Since the stable and
unstable manifolds are invariant, we have qn ∈W s(p)∩W u(p) for all n ∈ Z.
Moreover, if q is transversal, so are all qn since f is a diffeomorphism.

The typical situation is depicted below.
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334 13. Chaos in higher dimensional systems

This picture is known as homoclinic tangle.

Theorem 13.2 (Smale–Birkhoff). Suppose f is a diffeomorphism with a
hyperbolic fixed point p and a corresponding transversal homoclinic point
q. Then some iterate fn has a hyperbolic invariant set Λ on which it is
topologically equivalent to the bi-infinite shift on two symbols.

The idea of proof is to find a horseshoe map in some iterate of f . In-
tuitively, the above picture shows that this can be done by taking an open
set containing one peak of the unstable manifold between two successive
homoclinic points. Taking iterations of this set you will eventually end up
with a horseshoe like set around the stable manifold lying over our original
set. For details see [33].

13.3. Melnikov’s method for homoclinic orbits

Finally we want to combine the Smale–Birkhoff theorem from the previous
section with Melnikov’s method from Section 12.5 to obtain a criterion for
chaos in ordinary differential equations.

Again we will start with a planar system

ẋ = f(x) (13.10)

which has a homoclinic orbit γ(x0) at a fixed point p0. For example, we
could take Duffing’s equation from Problem 9.5 (with δ = 0). The typical
situation for the unperturbed system is depicted below.
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p0 rx0

Now we will perturb this system a little and consider

ẋ = f(x) + ε g(x). (13.11)

Since the original fixed point p0 is hyperbolic it will persist for ε small, lets
call it p0(ε). On the other hand, it is clear that in general the stable and
unstable manifold of p0(ε) will no longer coincide for ε 6= 0 and hence there
is no homoclinic orbit at p0(ε) for ε 6= 0. Again the typical situation is
displayed in the picture below
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However, it is clear that we will not be able to produce chaos with such a
perturbation since the Poincaré–Bendixson theorem implies that the motion
of a planar system must be quite regular. Hence we need at least another
dimension and hence we will take a nonautonomous perturbation and con-
sider

ẋ = f(x) + ε g(τ, x, ε), τ̇ = 1, (13.12)

where g(τ, x, ε) is periodic with respect to τ , say g(τ + 2π, x, ε) = g(τ, x, ε).
We will abbreviate z = (x, τ).

Of course our pictures from above do no longer show the entire system
but they can be viewed as a slice for some fixed τ = t0. Note that the first
picture will not change when τ varies but the second will. In particular,
p0(τ, ε) will now correspond to a hyperbolic periodic orbit and the manifolds
in our pictures are the intersection of the stable and unstable manifolds of
p0(τ, ε) with the plane Σ = {(x, τ)|τ = t0}. Moreover, taking Σ as the
section of a corresponding Poincaré map PΣ, these intersections are just the
stable and unstable manifold of the fixed point p0(ε) = p0(t0, ε) of PΣ. Hence
if we can find a transverse intersection point, the Smale–Birkhoff theorem
will tell us that there is an invariant Cantor set close to this point, where
the Poincaré map is chaotic.

Now it remains to find a good criterion for the existence of such a
transversal intersection. Replacing g(τ, x, ε) with g(τ − t0, x, ε) it is no re-
striction to assume t0 = 0. Denote the (un)stable manifold of the periodic
orbit (p0, τ) by W (p0) = {(Φ(x0, s), τ)|(s, τ) ∈ R× S1}. Then for any given
point z0 = (x0, t0) ∈W (p0) a good measure of the splitting of the perturbed
stable and unstable manifolds is the distance of the respective intersections
points with the line through z0 and orthogonal to the vector field. That
is, denote by z+0 (ε), z

−
0 (ε) the intersection of the stable, unstable manifold

with the line {(x0 + uf(x0)
⊥, 0)|u ∈ R}, respectively. Then the separation

of the manifolds is measured by

∆(z0, ε) = f(x0)
⊥(x−0 (ε) − x+0 (ε)) = f(x0) ∧ (x−0 (ε)− x+0 (ε)). (13.13)
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Since ∆(z0, 0) = 0 we can apply the same analysis as in Section 12.4 to
conclude that ∆(z0, ε) has a zero for small ε if ∂∆

∂ε (z0, 0) has a simple zero.

Moreover, if the zero of ∂∆∂ε (z0, 0) is simple, this is also equivalent to the fact
that the intersection of the stable and unstable manifolds is transversal.

It remains to compute ∂∆
∂ε (z0, 0) which can be done using the same ideas

as in Section 12.4. Let z±(t, ε) = (x±(t, ε), t) be the orbit in W±(γ(p0(ε)))
which satisfies z±(0, ε) = z±0 (ε). Then we have

∂∆

∂ε
(z0, 0) = f(x0) ∧ (x−ε (0)− x+ε (0)), (13.14)

where x±ε (t) =
∂
∂εx

±(t, ε)|ε=0 are solutions of the corresponding variational
equation. However, since we do not know the initial conditions (we know
only the asymptotic behavior), it is better to consider

y±(t) = f(x0(t)) ∧ x±ε (t), x0(t) = Φ(t, x0). (13.15)

Using the variational equation

ẋ±ε (z0, t) = A(t)x±ε (t) + g(t− t0, x0(t), 0), A(t) = dfx0(t), (13.16)

we obtain after a little calculation (Problem 13.1)

ẏ±(t) = tr(A(t))y±(t) + f(x0(t)) ∧ g(t− t0, x0(t), 0) (13.17)

and hence

ẏ±(t) = ẏ±(T±) +
∫ t

T±

e
∫ t
s
tr(A(r))drf(x0(s)) ∧ g(s − t0, x0(s), 0) ds. (13.18)

Next, we want to get rid of the boundary terms at T± by taking the limit
T± → ±∞. They will vanish provided x±ε (T±) remains bounded since
limt→±∞ f(x0(t)) = f(p0) = 0. In fact, this is shown in the next lemma.

Lemma 13.3. The stable and unstable manifolds of the perturbed periodic
orbit p0(ε) are locally given by

W±(γ(p0(ε))) = {(Φ(s, x0) + h±(τ, s)ε+ o(ε), τ)|(s, τ) ∈ S1 × R}, (13.19)

where x0 ∈W (p0) is fixed and h±(τ, s) is bounded as s→ ±∞.

Proof. By Theorem 12.10 a point in W±(γ(p0(ε))) can locally be written
as

(p0 + h±0 (τ, a) + h±1 (τ, a)ε + o(ε), τ).

Moreover, fixing x0 ∈W (p0) there is a unique s = s(τ, a) such that

p0 + h±0 (τ, a, 0) = Φ(s, x0)

and hence we can choose h±(τ, s) = h±1 (τ, a(τ, s)). �
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Hence we even have

y±(t) =
∫ t

±∞
e
∫ t

s
tr(A(r))drf(x0(s)) ∧ g(s− t0, x0(s), 0) ds (13.20)

and thus finally
∂∆

∂ε
(z0, 0) =Mx0(t0), (13.21)

where Mx0(t0) is the homoclinic Melnikov integral

Mx0(t) =

∫ ∞

−∞
e−

∫ s
0 div(f(Φ(r,x0)))drf(Φ(s, x0)) ∧ g(s− t,Φ(s, x0), 0) ds.

(13.22)

Note that the base point x0 on the homoclinic orbit is not essential since
we have (Problem 13.2)

MΦ(t,x0)(t0) = e
∫ t
0 div(f(Φ(r,x0)))drMx0(t+ t0). (13.23)

In summary we have proven

Theorem 13.4 (Melnikov). Suppose the homoclinic Melnikov integralMx0(t)
has a simple zero for some t ∈ R, then the Poincaré map PΣ has a transver-
sal homoclinic orbit for sufficiently small ε 6= 0.

For example, consider the forced Duffing equation (compare Problem 9.5)

q̇ = p, ṗ = q − q3 − ε(δp + γ cos(ωτ)), τ̇ = 1. (13.24)

The homoclinic orbit is given by

q0(t) =
√
2 sech(t), p0(t) = −

√
2 tanh(t)sech(t) (13.25)

and hence

M(t) =

∫ ∞

−∞
q0(s) (δp0(s) + γ cos(ω(s− t))) ds

=
4δ

3
−

√
2πγωsech(

πω

2
) sin(ωt) (13.26)

Thus the Duffing equation is chaotic for δ, γ sufficiently small provided
∣
∣
∣
∣

δ

γ

∣
∣
∣
∣
<

3
√
2π|ω|
4

sech(
πω

2
). (13.27)

Problem 13.1. Prove the following formula for x, y ∈ R
2 and A ∈ R

2⊗R
2,

Ax ∧ y + x ∧ Ay = tr(A)x ∧ y.
Problem 13.2. Show (13.23).

Problem 13.3. Apply the Melnikov method to the forced mathematical pen-
dulum (compare Section 6.7)

q̇ = p, q̇ = − sin(q) + ε sin(t).
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The End
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Bibliographical notes

The aim of this section is not to give a comprehensive guide to the literature,
but to document the sources from which I have learned the materials and
which I have used during the preparation of this text. In addition, I will
point out some standard references for further reading.

Chapter 2: Initial value problems

The material in this section is of course classical. Classical references are
Coddington and Levinson [6], Hartman [13], Hale [12], Ince [23], or Walter
[42]. More modern introductions are Arnold [3], Hirsch, Smale, and Devaney
[18], Robinson [34], Verhulst [41], or Wiggins [46].

Further uniqueness results can be found in the book by Walter [42] (see
the supplement to §12). There you can also find further technical improve-
ments, in particular, for the case alluded to in the remark after Corollary 2.6
(see the second supplement to §10).

More on Mathematica in general can be found in the standard docu-
mentation [47] and in connections with differential equations in [10], [37].

General purpose references are the handbooks by Kamke [24] and Zwill-
inger [48].

Chapter 3: Linear equations

Again this material is mostly standard and the same references as for the
previous chapter apply. More information in particular on n’th order equa-
tions can be found in Coddington and Levinson [6], Hartman [13], Ince
[23].

Chapter 4: Differential equations in the complex domain

339
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Classical references with more information on this topic include Coddington
and Levinson [6], Hille [17], or Ince [23]. For a more modern point of
view see Ilyashenko and Yakovenko [21]. The topics here are also closely
connected with the theory of special functions, see Beals and Wong [4] for
a modern introduction.

Chapter 5: Boundary value problems

Classical references include Coddington and Levinson [6], Hartman [13]. A
nice informal treatment (although in German) can be found in Jänich [22].
More on Hill’s equation can be found in Magnus and Winkler [27]. For
a modern introduction to singular Sturm–Liouville problems see the books
by Weidmann [43], [44], my textbook [40], or the book by Levitan and
Sargsjan [26]. A reference with more applications and numerical methods
is by Hastings and McLeod [16].

Chapter 6: Dynamical systems

Classical references include Chicone [5], Guckenheimer and Holmes [11],
Hasselblat and Katok [14],[15], Hirsch, Smale, and Devaney [18], Palis and
de Melo [31], Perko [32], Robinson [33], [34], Ruelle [36], Verhulst [41], and
Wiggins [45], [46]. In particular, [14], [15] has emphasis on ergodic theory
which is not covered here.

More on the connections with Lie groups and symmetries of differential
equations briefly mentioned in Problem 6.5 can be found in the monograph
by Olver [29].

Chapter 7: Planar dynamical systems

The proof of the Poincaré–Bendixson theorem follows Palis and de Melo
[31]. More on ecological models can be found in Hofbauer and Sigmund
[19]. Hirsch, Smale, and Devaney [18], Robinson [34] also cover these topics
nicely.

Chapter 8: Higher dimensional dynamical systems

More on the Lorenz equation can be found in the monograph by Sparrow
[38]. The classical reference for Hamiltonian systems is of course Arnold’s
book [2] (see also [3]) as well as the monograph by Abraham, Marsden, and
Ratiu [1], which also contains extensions to infinite dimensional systems.
Other references are and the notes by Moser [28] and the monograph by
Wiggins [45]. A brief overview can be found in Verhulst [41].

Chapter 9: Local behavior near fixed points

The classical reference here is Hartman [13]. See also Coddington and Levin-
son [6], Hale [12], Robinson [33], or Ruelle [36].

Chapter 10: Discrete dynamical systems
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One of the classical reference is the book by Devaney [7]. A nice introduction
is by Holmgren citehol. Furhter references are Hasselblat and Katok [14],
[15], Robinson [34].

Chapter 11: Discrete dynamical systems in one dimension

The classical reference here is Devaney [7]. More on the Hausdorff measure
can be found in Falconer [8]. See also Holmgren [20], Robinson [34].

Chapter 12: Periodic solutions

For more information see Chicone [5], Robinson [33], [34], Wiggins [45].

Chapter 13: Chaos in higher dimensional systems

A proof of the Smale–Birkhoff theorem can be found in Robinson [33]. See
also Chicone [5], Guckenheimer and Holmes [11], Wiggins [45].
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Glossary of notation

A± . . . matrix A restricted to E±(A)
Br(x) . . . open ball of radius r centered at x
C(U, V ) . . . set of continuous functions from U to V
Cb(U, V ) . . . set of bounded continuous functions from U to V
C(U) = C(U,R)
Ck(U, V ) . . . set of k times continuously differentiable functions
C . . . the set of complex numbers
χA . . . Characteristic polynomial of A, 103
d(U) . . . diameter of U , 307
d(x, y) . . . distance in a metric space
d(x,A) . . . distance between a point x and a set A, 196

dfx = ∂f
∂x Jacobian matrix of a differentiable mapping f at x

δj,k . . . Kronecker delta: δj,j = 1 and δj,k = 0 if j 6= k
E0(A) . . . center subspace of a matrix, 109
E±(A) . . . (un)stable subspace of a matrix, 109
Fix(f) = {x|f(x) = x} set of fixed points of f , 282
γ(x) . . . orbit of x, 192
γ±(x) . . . forward, backward orbit of x, 192
Γ(z) . . . Gamma function, 126
H0 . . . inner product space, 146
I . . . identity matrix
Ix = (T−(x), T+(x)) maximal interval of existence, 189
Ker(A) . . . kernel of a matrix
Lµ . . . logistic map, 280
Λ . . . a compact invariant set
M± . . . (un)stable manifold, 256, 320
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N = {1, 2, 3, . . . } the set of positive integers
N0 = N ∪ {0}
o(.) . . . Landau symbol
O(.) . . . Landau symbol
Ω(f) . . . set of nonwandering points, 196
PΣ(y) . . . Poincaré map, 197
Per(f) = {x|f(x) = x} set of periodic points of f , 282
Φ(t, x0) . . . flow of a dynamical system, 189
Π(t, t0) . . . principal matrix of a linear system, 81
R . . . the set of reals
Ran(A) . . . range of a matrix
σ . . . shift map on ΣN , 303
σ(A) . . . spectrum (set of eigenvalues) of a matrix
ΣN . . . sequence space over N symbols, 302
sign(x) . . . +1 for x > 0 and −1 for x < 0; sign function
T±(x) . . . positive, negative lifetime of x, 192
T (x) . . . period of x (if x is periodic), 192
Tµ . . . tent map, 297
ω±(x) . . . positive, negative ω-limit set of x, 193
W± . . . (un)stable set, 255, 231, 282
Z = {. . . ,−2,−1, 0, 1, 2, . . . } the set of integers
z . . . a complex number√
z . . . square root of z with branch cut along (−∞, 0)

z∗ . . . complex conjugation
‖.‖ . . . norm in a Banach space
|.| . . . Euclidean norm in R

n respectively C
n

〈., ..〉 . . . scalar product in H0, 146
(λ1, λ2) = {λ ∈ R |λ1 < λ < λ2}, open interval
[λ1, λ2] = {λ ∈ R |λ1 ≤ λ ≤ λ2}, closed interval
⌊x⌋ = max{n ∈ Z|n ≤ x}, floor function
⌈x⌉ = min{n ∈ Z|n ≥ x}, ceiling function
a ∧ b = cross product in R

3
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Abel’s identity, 83

action integral, 238

action variable, 244

adjoint matrix, 103

analytic, 111

angle variable, 244

angular momentum, 242, 248

arc, 220

Arzelà–Ascoli theorem, 55

asymptotic phase, 321

asymptotic stability, 71, 198, 284, 315

attracting set, 231

attractor, 233, 307

strange, 307

autonomous differential equation, 7

backward asymptotic, 283

Banach algebra, 66

Banach space, 34

basin of attraction, 231

basis

orthonormal, 149

Bendixson criterion, 227

Bernoulli equation, 15

Bessel

equation, 122

function, 123

inequality, 148

bifurcation, 21

diagram, 293

pitchfork, 200

Poincaré–Andronov–Hopf, 220

point, 292

saddle-node, 200

theory, 200

transcritical, 200

boundary condition, 144, 156

antiperiodic, 177

Dirichlet, 156

Neumann, 156

periodic, 177

Robin, 156

boundary value problem, 144

canonical transform, 242

Cantor set, 299

Carathéodory, 42

catenary, 19

Cauchy sequence, 33

Cauchy–Hadamard theorem, 112

Cauchy–Schwarz inequality, 147

center, 69

characteristic

exponents, 93, 118, 138

multipliers, 93

characteristic polynomial, 103

commutator, 61

competitive system, 213

complete, 34

completely integrable, 245

confluent hypergeometric equation, 128

conjugacy

topological, 266

constant of motion, 202, 240

contraction, 35

contraction principle, 35

cooperative system, 213

cover, 307

cyclic vector, 106

d’Alembert reduction, 84, 88

d’Alembert’s formula, 145
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damping

critical, 78

over, 78

under, 78

damping factor, 79

diameter, 307

difference equation, 126, 281

differential equation

order, 6

autonomous, 7

exact, 18

homogeneous, 7, 15

hyperbolic, 254

integrating factor, 18

linear, 7

ordinary, 6

partial, 7

separable, 11

solution, 6

system, 7

diophantine condition, 251

directional field, 16

Dirichlet boundary condition, 156

domain of attraction, 231

dominating function, 270

Duffing equation, 233, 261, 337

Duhamel’s formula, 72

Dulac criterion, 227

dynamical system, 187

chaotic, 296

continuous, 188

discrete, 187

invertible, 187

eigenfunction, see eigenvector

eigenspace, 103, 149

generalized, 105

eigenvalue, 103, 149

simple, 149

eigenvector, 103, 149

eigenvectors

generalized, 105

Einstein equation, 242

entire function, 153

equicontinuous, 55

equilibrium point, see fixed point

equivalence

topological, 296

error function, 89

Euler equation, 18, 116

Euler system, 131

Euler’s formula, 67

Euler’s reflection formula, 127

Euler–Lagrange equations, 238

Euler–Mascheroni constant, 124

exponential stability, 198

Fermi–Pasta–Ulam experiment, 247
Fibonacci numbers, 286
first integral, 240
first variational equation, 46

periodic, 316
fixed point, 35, 192, 282

asymptotically stable, 198, 284

exponentially stable, 198
hyperbolic, 255
stable, 198
unstable, 198

fixed-point theorem
contraction principle, 35
Weissinger, 39

Floquet
discriminant, 176
exponents, 93

multipliers, 93, 176
solutions, 176

flow, 189
forcing, 79
forward asymptotic, 282
Fourier cosine series, 165
Fourier sine series, 143, 164, 165
Frobenius method, 138
from domain, 161
Fuchs system, 138

fundamental matrix solution, 83

Gamma function, 126
Gauss error function, 89
geodesics, 241
global solution, 51
gradient systems, 203
Green function, 158
Grobman–Hartman theorem, 264
Gronwall inequality, 42
group, 187

Hamilton mechanics, 206, 239
Hamilton principle, 238

Hammerstein integral equation, 273
Hankel function, 125
harmonic numbers, 124
harmonic oscillator, 245
Hartman–Grobman theorem, 264

maps, 286
Hausdorff dimension, 309
Hausdorff measure, 308
heat equation, 145
Heun’s method, 57

Hilbert space, 146
Hilbert’s 16th problem, 226
Hilbert–Schmidt operator, 164
Hill equation, 93
homoclinic orbit, 313
homoclinic point, 313, 333
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transverse, 333
homoclinic tangle, 334
Hopf bifurcation, 220, 322
Hurwitz matrix, 71
hyperbolic, 254, 255
hypergeometric equation, 128

indicial equation, 118
inequality

Cauchy–Schwarz, 147
Gronwall, 42

initial value problem, 36
inner product, 146

space, 146
integral curve, 189

maximal, 189
integral equation, 36

Hammerstein, 273
Volterra, 271

integrating factor, 18
invariant

set, 193, 282
subspace, 103

isoclines, 24
itinerary map, 300, 311, 312

Jacobi identity, 242
Jacobian matrix, 39
Jordan block, 106

Jordan canonical form, 61, 107
real, 65

Jordan curve, 220

Kepler’s laws for planetary motion, 249
Kirchhoff’s laws, 76
Korteweg–de Vries equation, 207
Krasovskii–LaSalle principle, 202
Kronecker torus, 250
Kummer function, 128

Lagrange function, 238
Lagrange identity, 157
Laplace transform, 73
LaSalle principle, 202

Laurent series, 116
Lax equation, 247
Lax pair, 247
Legendre equation, 128
Legendre transform, 239
Leibniz’ rule, 242
Liénard equation, 216
Liapunov function, 200, 284

strict, 201, 284
Liapunov–Schmidt reduction, 328
Lie derivative, 202
Lie group, 191
Lie series, 191

lifetime, 192
limit cycle, 226
Liouville’s formula, 83, 236
Lipschitz continuous, 27, 37
logistic map, 280
Lorenz equation, 234

Lotka–Volterra equation, 209
lower solution, 24

manifold
(un)stable, fixed point, 256, 287
(un)stable, linear, 253

(un)stable, periodic point, 321
center, linear, 253
stable, 287
unstable, 287

mass spectrometry, 96
mathematical pendulum, 204
Mathieu equation, 95
matrix

adjoint, 103

exponential, 60
Hurwitz, 71
logarithm, 108
norm, 60
orthogonal, 104
symmetric, 104
symplectic, 239
unitary, 104

maximal solution, 51

measure
Hausdorff, 308
outer, 308

Melnikov integral
homoclinic, 337
periodic, 324

minimal polynomial, 105
monodromy matrix, 91, 176
movable singularity, 131

N-body problem, 249
Neumann boundary condition, 156
Neumann series, 268
Newton’s second law of motion, 3
nilpotent, 106

nonresonant, 250
nonwandering, 196, 284
norm, 33

matrix, 60
operator, 268

normalized, 146

Ohm’s law, 77
omega limit set, 193, 229
one-parameter Lie group, 191
operator

bounded, 150
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compact, 150
domain, 149
linear, 149
symmetric, 149

orbit, 192, 282
asymptotically stable, 315
closed, 192
heteroclinic, 260, 289
homoclinic, 260, 289

periodic, 192, 282
stable, 315

order
eigenvector, 105

orthogonal, 146
orthogonal matrix, 104
orthonormal basis, 104
oscillating, 173
Osgood uniqueness criterion, 58

Painlevé transcendents, 131
parallel, 146
parallelogram law, 152

Peano theorem, 56
pendulum, 204
perfect, 299
period anulus, 324

isochronous, 329
regular, 329

period doubling, 293
periodic orbit, 192, 282

stable, 284
periodic point, 192, 282

attracting, 283
hyperbolic, 284
period, 192

repelling, 283
periodic solution

stability, 315
perpendicular, 146
phase space, 203
Picard iteration, 38
Picard–Lindelöf theorem, 38
pitchfork bifurcation, 200
Pochhammer symbol, 123
Poincaré map, 29, 197, 317
Poincaré–Andronov–Hopf bifurcation, 220
point

fixed, 192
nonwandering, 196, 284

recurrent, 284
Poisson bracket, 240
power series, 112
Prüfer variables, 166

modified, 172
principal matrix solution, 82
projection, 109, 110
Pythagorean theorem, 147

quadratic form, 161
quadrupole mass spectrometry, 96
quasi-periodic, 250

radius of convergence, 112
Rayleigh–Ritz principle, 162
recurrent, 284
reduction of order, 84, 88
regular perturbation, 48

regular point, 192
relativistic mechanics, 242
repellor, 307

strange, 307
resolvent, 158
resonance catastrophy, 79
resonance frequency, 79
resonant, 250
Riccati equation, 15, 90, 154
Riemann equation, 129

Riemann symbol, 129
RLC circuit, 77
Robin boundary condition, 156
Rofe-Beketov formula, 154
Routh-Hurwitz criterion, 71
Runge–Kutta algorithm, 57

saddle, 68
saddle-node bifurcation, 200
Sarkovskii ordering, 295
scalar product, 104, 146
Schrödinger equation, 86

semigroup, 187
sensitive dependence, 295
separation of variables, 142
sesquilinear form, 146
set

attracting, 231, 307
hyperbolic attracting, 307
hyperbolic repelling, 307
invariant, 193, 282
repelling, 307

shift map, 300, 303
singular point, see fixed point
singularity

movable, 131
regular, 133
simple, 133
weak, 133

sink, 68
Smale horseshoe, 331
small divisor, 251

snap back repellor, 313
soliton, 207
solution

lower, 24
matrix, 83, 285
sub, 24
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super, 24
upper, 24

source, 68
spectral radius, 110
spectral theorem, 151
spectrum, 103
stability, 71, 198, 284, 315
stable set, 231, 255, 283
stationary point, see fixed point

strange attractor, 237
Sturm–Liouville problem, 144
sub solution, 24
submanifold, 197
subshift of finite type, 304
subspace

center, 109
invariant, 103
reducing, 103
stable, 109
unstable, 109

superposition principle, 81
symbol space, 302

symmetric matrix, 104
symplectic

gradient, 239
group, 242
map, 242
matrix, 239
two form, 243

tent map, 297
theorem

Arzelà–Ascoli, 55, 159
Cauchy–Hadamard, 112
Cayley–Hamilton, 107

dominated convergence, 270
Floquet, 92
Fuchs, 119, 121
Hartman–Grobman, 264, 286
Jordan curve, 220
KAM, 251
Kneser, 174
Krasovskii–LaSalle, 202
Liapunov, 201
Melnikov, 337
Noether, 240
Osgood, 58
Peano, 56
Picard–Lindelöf, 38

improved, 40
Poincaré’s recurrence, 241
Poincaré–Bendixson, 222, 223
Pythagorean, 147
Routh-Hurwitz, 71
Smale–Birkhoff homoclinic, 334
stable manifold, 259, 288, 320
Sturm’s comparison, 170

uniform contraction principle, 268
Weissinger, 39

time-one map, 237
totally disconnected, 299, 302
trajectory, 189
transcritical bifurcation, 200
transformation

fiber preserving, 14
transition matrix, 304

transitive, 304
transitive, 233, 296
trapping region, 232
traveling wave ansatz, 207
triangle inequality, 33

inverse, 33
two body problem, 247

uniform contraction principle, 268
unit vector, 146
unitary matrix, 104
unstable, 198
unstable set, 231, 255, 283
upper solution, 24

van der Pol equation, 219
variable

dependent, 6
independent, 6

variation of constants (parameters), 84
vector field, 188

complete, 193
vector space, 33

inner product space, 146
normed, 33

Volterra integral equation, 271

Volterra–Lotka equation, 209

wave equation, 141
Weierstraß elliptic function, 207
well-posed, 42
Weyl asymptotics, 173
Weyl–Titchmarsh m-functions, 176
Wronski determinant, 83, 88
Wronskian, 88

modified, 154

zeta function, 306
Zorn’s lemma, 51
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