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Abstract

The Korteweg–de Vries (KdV) equation is an integrable wave equation mod-
eling shallow water waves and is one of the most prominent soliton equations.
The corresponding Cauchy problem was solved by Gardner, Green, Kurskal,
and Miura by the inverse scattering transform. In the classical case the initial
data will vanish asymptotically and this case is well understood. Another
case, modeling shock and rarefaction waves, is when the initial conditions
asymptotically tend to different constants, known as steplike initial condi-
tions.

In the first part of this thesis we study the underlying direct and inverse
scattering problem for the one-dimensional Schrödinger equation with step-
like potentials. We give necessary and sufficient conditions for the scattering
data to correspond to a potential with prescribed smoothness and prescribed
spatial decay. This problem has been considered before but our results gen-
eralize all previous known results.

In the second part these results are then applied to the Cauchy problem
of the KdV equation with steplike initial data. More specifically, we look at
the case corresponding to rarefaction waves. For this case we formulate the
inverse scattering problem as an oscillatory Riemann–Hilbert factorization
problem and apply the nonlinear steepest descent method to determine the
long-time behaviour of solutions. To analyse the problem one needs to change
to a new phase function, the so-called g function, which will depend on a
slow variable ξ = x

12t
. After this change the problem can be deformed to

an explicitly solvable model problem. Depending on the value of ξ there are
three main regions as t → ∞: For ξ < −ξ0 the solution is close to the left
constant. For −ξ0 < ξ < 0 there is a rarefaction region where the solution
behaves like x

6t
. For 0 < ξ there is a soliton region where the solution is given

by a sum of solitons.
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Chapter 1

Introduction

1.1 Objective

The aim of the dissertation is to provide a rigorous treatment of the inverse
scattering transform (IST) for solving the Cauchy problem for the Korteweg–
de Vries equation

qt(x, t) = −qxxx(x, t) + 6q(x, t)qx(x, t), (1.1.1)

with steplike initial data q(x) := q(x, 0), such that

q(x)→ c±, as x→ ±∞, (1.1.2)

where c+, c− are different real valued constants. We assume that q ∈ L1
loc(R)

and tends to its background asymptotics c+ and c− with m ”moments” finite:∫ +∞

0

(1 + |x|m)(|q(x)− c+|+ |q(−x)− c−|)dx <∞, (1.1.3)

where m ≥ 1 is a fixed integer. We need the following definitions.

Definition 1.1.1. Let m ≥ 0 and n ≥ 0 be integers and f : R→ R be an n
times differentiable function. We say that f ∈ Lnm(R±) if f (n)(x)(1 + |x|m) ∈
L1(R±) for j = 0, 1, . . . , n.

Definition 1.1.2. Let c± be given real values and let m ≥ 1, n ≥ 0 be given
integers. We say that q ∈ Lnm(c+, c−) if q±(·) := q(·)− c± ∈ Lnm(R±).

The main concern is to investigate in the direct and inverse scattering for
the one–dimensional Schrödinger operator − d2

dx2 + q(x), which has left and
right Jost solutions φ+, φ− . We start with this transformation operators for
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Chapter 1. Introduction

the Schrödinger operator with steplike background and are giving estimates
for them and their kernels and its derivatives. Furthermore we describe the
analytical properties of underlying scattering data, e.g. we prove that the
Wronskian W (λ) := W (φ−(λ, ·), φ+(λ, ·)) (W (f, g) = fg′ − gf ′) of the Jost
solutions has a zero of the first order at the edge of continuous spectrum in
the resonance case W = 0 for q ∈ L0

1(c+, c−). This problem was solved for
the second moment only [17].

Furthermore we establish the Gelfand-Levitan-Marchenko equation for
potential of form (1.1.2) and get estimates for the kernel of the GLM equation
and its derivatives. This was done before for decaying initial data c+ = c− =
0 of first and second moment in [59] and [20], and steplike data of second
moment [17].

We finish our consideration of the scattering by proofing that the de-
scribed analytic properties of the scattering are necessary and sufficient for
the solution of the inverse problem.

Finally we use the nonlinear steepest descent method for oscillatory
Riemann–Hilbert problems from [22] and apply it to rigorously establish long-
time asymptotics in all principal regions for the rarefaction problem c+ = 0
, c− = c2. We assume here for some ε > 0∫ +∞

0

eεx(|q(x)|+ |q(−x)− c2|dx <∞,

∫ ∞
0

x4
(
|q(x)|+ |q(−x)− c2|+ |q(i)(x)|

)
dx <∞, i = 1, . . . , 8.

It is known (cf. [25], [30]), that this Cauchy problem has a unique solution
satisfying q(·, t) ∈ C3(R) and∫ +∞

0

|x|(|q(x, t)− c+|+ |q(−x, t)− c−|)dx <∞, t ∈ R.

If q(x, 0) is a Schwartz type perturbation, that is q ∈ Lnm(c+, c−) for all
m ≥ 1 and n ≥ 0, then the solution q(x, t) of the KdV equation behaves
asymptotically as t→∞ as follows:

(i) In the region x > ε the solution q(x, t) splits into classical solitons;

(ii) In the region (−6c2 + ε)t < x < −ε we have q(x, t) ∼ x

t
;

(iii) In the region x < (−6c2 − ε)t we obtain asymptotics q(x, t) = c2 plus
oscillatory term.

2



1.2. Literature

1.2 Literature

First we will describe the literature for the scattering problem. Among vari-
ous direct/inverse spectral problems the scattering problem on the whole axis
for one-dimensional Schrödinger operators with decaying potentials takes a
particular place as being one of the most rigorously investigated spectral
problems. Being considered first by Kay and Moses [47] on a physical level
of rigor, it was rigorously studied by Faddeev [31], and then revisited inde-
pendently by Marchenko [59] and by Deift and Trubowitz [20]. In particular,
Faddeev [31] considered the inverse problem in the class of potentials which
have a finite first moment (i.e., (1.1.3) with c− = c+ = 0 and m = 1) but the
importance of the behaviour of the scattering coefficients at the bottom of
the continuous spectrum was missed. A complete solution was independently
given by Marchenko [59] (see also Levitan [58]) for the first moment (m = 1)
and by Deift and Trubowitz [20] for the second moment (2) who also gave
an example showing that some condition on the aforementioned behaviour is
necessary to solve the inverse problem.

The next simplest case is the the so-called steplike case where the po-
tential tends to different constants one the left and right half axis. The
corresponding scattering problem was first considered on an informal level
by Buslaev and Fomin in [15] who studied mostly the direct scattering prob-
lem and derived the main equation of the inverse problem — the Gelfand–
Levitan–Marchenko (GLM) equation. A complete solution of the direct and
inverse scattering problem for steplike potentials with a finite second mo-
ment (i.e., (1.1.3) with m = 2) was solved rigorously by Cohen and Kappeler
[17] (see also [18] and [37]). While several aspects in the steplike case are
similar to the decaying case, there are also some distinctive differences due
to the presence of spectrum of multiplicity one. Moreover, there have also
been further generalizations to the case of periodic backgrounds by Firsova
[32, 34, 33] and to steplike finite-gap backgrounds by Ira Egorova, Boutet de
Monvel and Gerald Teschl [11] (see also [60]) and to steplike almost periodic
backgrounds by Grunert [38, 39]. We refer to these publications for further
information.

Our first aim is to use the Marchenko approach to generalize the results
of [17] for the case of steplike potentials with finite first moment which in
fact turns out to be much more delicate than the second moment and has
been done in [24]. In fact, we will also give a complete solution of the inverse
problem for potentials with any given number of moments m ≥ 1 and any
given number of derivatives n ≥ 0 which has important applications for the
solution of the Korteweg–de Vries (KdV) equation.

In fact, as is well known, the inverse scattering transform (IST) is the
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Chapter 1. Introduction

main ingredient for solving and understanding the solutions of the KdV (and
the associated modified KdV) equation. In fact, applications to KdV were
already considered in the work of the aforementioned authors [59], [20], [46],
[35], [28, 29, 30], [25] and we refer to these papers for further details. Con-
cerning the long-time asymptotics of solutions we refer to the review [40] and
to [49], [61], [53], [62],[23] for more recent developments.

For the asymptotic behaviour of q(x, t) as t → ∞ it is known from sev-
eral results ([6]–[10], [41], [42], [36], [64]), obtained on a physical level of
rigor, that the solution can be split into three main regions: In fact, the
long-time asymptotics for this problem were first studied by Gurevich and
Pitaevskii [41], [42]. These authors have used the Whitham multi-phase aver-
aging method and obtained the main term of the asymptotics of the solution
in terms the Jacobi elliptic function. Moreover, they gave a qualitative pic-
ture of the splitting of an initial step into solitons. Since the Schrödinger
operator with the Heaviside step function as potential has no discrete spec-
trum, this picture refuted the general idea that solitons arise only from the
discrete spectrum. This phenomenon was explained by Khruslov [48], [50]
with the help of the inverse scattering transform (IST) in the form of the
Marchenko equation. The IST not only made it possible to obtain an ex-
plicit form of these asymptotic solitons but also to give a rigorous proof that
the solitons are generated by a small vicinity of the edge of the continuous
spectrum. Further developments of this method can be found in [67] and
[51], while the Cauchy problem for the Heaviside functions and generaliza-
tions has been studied in [16] as well. The first finite-gap description of the
asymptotics for the steplike initial problem of the KdV equation was given by
Bikbaev and Novokshenov [8] only in 1987 (see also [6]–[7], [10], [9], and the
review [64]). The results are based on an analysis of the Whitham equations
and the theory of analytic functions on a hyperelliptic surface.

The aim here is to confirm the known leading asymptotics of the solu-
tion in these principal regions and rigorously justify them using the nonlin-
ear steepest descent method for oscillatory Riemann–Hilbert (RH) problems.
This approach is based on the inverse scattering transform for steplike initial
data. Scattering theory for the Schrödinger operator with step-like potential
was originally developed by Buslaev and Fomin [15] with later contributions
by Cohen and Kappeler [17]. The rarefaction problem has been solved by
us in [4]. It has been studied before in [56] using matched–asymptotic coor-
dinate expansion analysis. For the corresponding shock problem we refer to
[1, 6, 23, 41, 42, 51, 57, 67].

The IST with the steepest descent method is also used in several other
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1.3. Structure

papers for different equations like Toda in [45] or [27] together with a g-
function ansatz, or for Camassa–Holm [13] or very recently for the Ostrovsky–
Vakhnenko equation [14].

1.3 Structure

The thesis is based on two papers [24, 4], written during the Ph.D.. We
will investigate the direct and inverse scattering problem in chapter 2. We
start with transformation operators for the Schrödinger operator with step-
like background and are giving estimates for them and their kernels. Fur-
thermore we discuss analytical properties of the scattering data and establish
the Gelfand-Levitan-Marchenko equation for potential of form (1.1.2). We
finish our consideration of the scattering by proving uniqueness of the inverse
problem. In chapter 3 we formulate the inverse scattering problem in terms
of a Riemann–Hilbert problem and analyse it, using nonlinear steepest de-
scent to obtain the solution q(x, t). Thus we formulate the inverse step as a
Riemann–Hilbert problem, solving it by reduction to a model problem with
conjugation and deformation of the Phase Φ. The model problem gives the
solution and by transforming back we obtain the solution of our initial RHP.
Considering the long-time asymptotics we achieve the KdV solution.

5
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Chapter 2

Scattering problem for
Schrödinger operator with
steplike background and
uniqueness

For the following chapter we will need results for the direct and inverse
scattering. Therefore we will start to consider the Sturm–Liouville spectral
problem

(Lf)(x) := − d2

dx2
f(x) + q(x)f(x) = λf(x), x ∈ R, (2.0.1)

with a steplike potential q(x) satisfying (1.1.2) and (1.1.3). We will investi-
gate in the transformation operator and give estimates for them. The Jost
solutions are giving rise to scattering data. We repeat known analytical
properties and additionally give the behaviour of the scattering data in the
resonance case. Using properties and estimates for the transformation op-
erators we obtain the GLM equations and estimates for their kernels. We
proof that our properties of the scattering data is necessary and sufficient to
solve the inverse problem.

We will introduce some notations, before we start with the direct scatter-
ing. Note, that f ∈ L0

m(R±) means that
∫
R± |f(x)|(1+ |x|m)dx <∞. By this

definition L0
0(R±) = L1(R±)∩L1

loc(R) and Lj0(R±) = {f : f (i) ∈ L0
0(R±), 0 ≤

i ≤ j}.
Note that q ∈ L0

m(c+, c−) if condition (1.1.3) holds. If q ∈ Lnm(c+, c−)

7



Chapter 2. Scattering for Schrödinger operator with steplike background

with n ≥ 1 then in addition∫
R
(1 + |x|m)|q(i)(x)|dx <∞, i = 1, . . . , n. (2.0.2)

We will denote c := min{c+, c−}, c := max{c+, c−} to consider both steplike
initial data cases, namely shock with c− < c+ and rarefaction with c− > c+,
and abbreviate D := C \ [c,∞). We consider equation (2.0.1) with the
spectral parameter λ ∈ clos(D), where clos(A) denotes the closure of a set
A. Along with λ we use two more spectral parameters

k± :=
√
λ− c±,

which map the domains C \ [c±,∞) conformally onto C+. Thus there is a
one to one correspondence between the parameters k± and λ.

2.1 The Direct scattering problem

2.1.1 Properties of the Jost solutions

In this subsection we collect some well-known properties of the Jost solutions
for (2.0.1) with q ∈ L0

1(c+, c−) and establish additional properties of these
solutions for a potential from the class Lnm(c+, c−) with m ≥ 2 or n ≥ 1. All
the estimates below are one-sided and hence are generated by the behaviour
of the potential on one half axis. For q±(·) = q(·) − c± ∈ Lnm(R±), m ≥ 1,
n ≥ 0, introduce nonnegative, as x→ ±∞ nonincreasing functions

σ±,i(x) := ±
∫ ±∞
x

|q(i)
± (ξ)|dξ, σ̂±,i(x) := ±

∫ ±∞
x

σ±,i(ξ)dξ, i = 0, 1, . . . , n.

(2.1.1)
Evidently,

σ±,i(·) ∈ L1
m−1(R±), m ≥ 1, σ̂±,i(·) ∈ L2

m−2(R±), m ≥ 2, (2.1.2)

σ̂±,i(x) ↓ 0 as x→ ±∞, for q± ∈ Ln1 (R±), i = 0, 1, . . . , n. (2.1.3)

Lemma 2.1.1. ([59, Lemmas 3.1.1–3.1.3]). Let q±(·) = q(·)− c± ∈ L0
1(R±).

Then for all λ ∈ clos(D) equation (2.0.1) has a solution φ±(λ, x) which can
be represented as

φ±(λ, x) = e±ik±x ±
∫ ±∞
x

K±(x, y)e±ik±ydy, (2.1.4)

8



2.1. The Direct scattering problem

where the kernel K±(x, y) is real-valued and satisfies the inequality

|K±(x, y)| ≤ 1

2
σ±,0

(
x+ y

2

)
exp

{
σ̂±,0(x)− σ̂±,0

(
x+ y

2

)}
. (2.1.5)

Moreover,

K±(x, x) = ±1

2

∫ ±∞
x

q±(ξ)dξ.

The function K±(x, y) has first order partial derivatives which satisfy the
inequality ∣∣∣∣∂K±(x1, x2)

∂xj
± 1

4
q±

(
x1 + x2

2

)∣∣∣∣ ≤ (2.1.6)

≤ 1

2
σ±,0 (x)σ±,0

(
x1 + x2

2

)
exp

{
σ̂±,0(x1)− σ̂±,0

(
x1 + x2

2

)}
.

The solution φ±(λ, x) is an analytic function of k± in C+ and is continuous
up to R. For all λ ∈ clos(D) the following estimate is valid∣∣φ±(λ, x)− e±ik±x

∣∣ ≤ (σ̂±,0(x)− σ̂±,0
(
x± 1

|k±|

))
e− Im(k±)x+σ̂±,0(x).

(2.1.7)
For k± ∈ R \ {0} the functions φ±(λ, x) and φ(λ, x) are linearly independent
with

W (φ±(λ, ·), φ±(λ, ·)) = ∓2ik±, (2.1.8)

where W (f, g) = fg′ − gf ′ denotes the usual Wronski determinant.

Formulas (2.1.5) and (2.1.6) together with (2.1.4) and (2.1.2) imply

Corollary 2.1.2. Let q± ∈ L0
m(R±), m ≥ 1. Then

K±(x, ·), ∂K±(x, ·)
∂x

∈ L0
m−1(R±), m ≥ 1, (2.1.9)

and the function φ±(λ, x) is m−1 times differentiable with respect to k± ∈ R.

Note also that for m ≥ 2 Lemma 2.1.1 implies xK±(x, x)→ 0 and

∂lK±(x, ·)
∂xl

∈ L0
m−1(±∞), l = 0, 1.

It allows us to compute the following Wronskian W (φ±,
∂
∂k
φ)(0). Namely, if

∂
∂k±

φ±(k±, x) = φ̇±(k±, x) exists then it solves the Schrödinger equation for

k± = 0, and, therefore, the Wronskian W
(
φ±(0, ·), φ̇±(0, ·)

)
does not depend

9



Chapter 2. Scattering for Schrödinger operator with steplike background

on spatial variable and can be estimated for large values of x. Formula (2.1.4)
implies

φ±(0, x) = 1±
∫ ±∞
x

K±(x, y)dy, φ̇±(0, x) = ±ix+ i

∫ ±∞
x

yK±(x, y)dy,

φ̇′±(0, x) = i(1∓ xK±(x, x) +

∫ ±∞
x

∂K±(x, y)

∂x
ydy), φ′±(0, x)

= ±
∫ ±∞
x

∂

∂x
K±(x, y)dy

Thus, φ±(0, x)φ̇′±(0, x) = i+o(1) and |φ′±(0, x)φ̇±(0, x)| ≤ Cxσ
(0)
± (x)σ̂±(2x) =

o(1). We proved

Corollary 2.1.3. Let q± ∈ L0
2(±∞). Then

W (φ±, φ̇±)(0) = ±i.

Note, that the key ingredient for proving the estimates (2.1.5) and (2.1.6)
is a rigorous investigation of the following integral equation (formula (3.1.12)
of [59])

K±(x, y) = ±1

2

∫ ±∞
x+y

2

q±(ξ)dξ+

∫ ±∞
x+y

2

dα

∫ y−x
2

0

q±(α−β)K±(α−β, α+β)dβ.

(2.1.10)
To further study the properties of the Jost solution we represent (2.1.4) in
the form proposed in [20]:

φ±(λ, x) = eik±x

(
1±

∫ ±∞
0

B±(x, y)e±2ik±ydy

)
, (2.1.11)

where

B±(x, y) = 2K±(x, x+ 2y), B±(x, 0) = ±
∫ ±∞
x

q±(ξ)dξ, (2.1.12)

and equation (2.1.10) transforms into the following integral equation with
respect to ±y ≥ 0

B±(x, y) = ±
∫ ±∞
x+y

q±(s)ds+

∫ ±∞
x+y

dα

∫ y

0

dβq±(α−β)B±(α−β, β). (2.1.13)

This equation is the basis for proving the following

10



2.1. The Direct scattering problem

Lemma 2.1.4. Let n ≥ 1 and m ≥ 1 be fixed natural numbers and let
q± ∈ Lnm(R±). Then the functions B±(x, y) have n + 1 partial derivatives
and the following estimates are valid∣∣∣∣ ∂s

∂xl ∂ys−l
B±(x, y)± q(s−1)

± (x+ y)

∣∣∣∣ ≤ C±(x)ν±,s(x)ν±,s(x+y), l ≤ s ≤ n+1,

(2.1.14)
where

ν±,l(x) =
l−2∑
i=0

(
σ±,i(x) + |q(i)

± (x)|
)
, l ≥ 2, ν±,1(x) := σ±,0(x), (2.1.15)

and C±(x) = C±(x, n) ∈ C(R) are positive functions which are nonincreasing
as x→ ±∞.

Proof. Differentiating equation (2.1.13) with respect to each variable we get

∂B±(x, y)

∂x
= ∓q±(x+ y)−

∫ x+y

x

q±(s)B±(s, x+ y − s)ds; (2.1.16)

∂B±(x, y)

∂y
= ∓q±(x+y)−

∫ x+y

x

q±(s)B±(s, x+y−s)ds+
∫ ±∞
x

q±(α)B±(α, y)dα.

(2.1.17)
From these formulas and (2.1.12) we obtain

∂B±(x, 0)

∂x
= ∓q±(x);

∂B±(x, y)

∂y
|y=0 = ∓q±(x)± 1

2

(∫ ±∞
x

q±(α)dα

)2

,

∂B±(x, y)

∂y
=
∂B±(x, y)

∂x
+

∫ ±∞
x

q±(α)B±(α, y)dα. (2.1.18)

We observe that the partial derivatives of B± which contain at least one
differentiation with respect to x have the structure

∂p

∂xk∂yp−k
B±(x, y) = ∓q(p−1)

± (x+ y) +D±,p,k(x, y)+ (2.1.19)

+

∫ x

x+y

q±(ξ)
∂p−1

∂yp−1
B±(ξ, x+ y − ξ)dξ, p > k ≥ 1,

where D±,p,k(x, y) is the sum of all derivatives of all integrated terms which
appeared after p − 1 differentiation of the upper and lower limits of the

11



Chapter 2. Scattering for Schrödinger operator with steplike background

integral on the right hand side of (2.1.16). Since the integrand in (2.1.19) at
the lower limit of integration has value

q±(ξ)
∂p−1

∂yp−1
B±(ξ, x+ y − ξ)|ξ=x+y = q±(x+ y)B±,p−1(x+ y),

where

B±,r(ξ) =
∂r

∂tr
B±(ξ, t)|t=0. (2.1.20)

Thus, further derivatives of such a term do not depend on whether we differ-
entiate it with respect to x or y. The same integrand at the upper limit has
the value q±(x) ∂r−1

∂yr−1B±(x, y), and it will appear only after a differentiation

with respect to x. Taking all this into account we conclude that D±,p,k(x, y)
in (2.1.19) can be represented as

D±,p,k(x, y) = (1−δ(k, 1))
∂p−k

∂yp−k

k∑
s=2

∂k−s

∂xk−s

(
q±(x)

∂s−2

∂ys−2
B±(x, y)

)
−D±,p(x+y),

where δ(r, s) is the Kronecker delta (i.e. the first summand is absent for
k = 1) and

D±,p(ξ) :=

p−2∑
s=0

dp−s

dξp−s
(q±(ξ)B±,s(ξ)) , (2.1.21)

see (2.1.20). If we differentiate (2.1.17) with respect to y, we get for p ≥ 2

∂p

∂yp
B(x, y) = ∓q(p−1)

± (x+ y) +D±,p(x+ y)+

+

∫ x

x+y

q±(ξ)
∂p−1

∂yp−1
B±(ξ, x+ y − ξ)dξ +

∫ ±∞
x

q±(ξ)
∂p−1

∂yp−1
B±(ξ, y)dξ,

where D±,p(ξ) is defined by (2.1.21). We complete the proof by induction
taking into account (2.1.12) and the estimates (2.1.5), (2.1.6) in which the
exponent factors are replaced by the more crude estimate of type C±(x).

2.1.2 Analytical properties of the scattering data

The spectrum of L with steplike potential consists of an absolutely continuous
and a discrete part. Introduce the sets

Σ(2) := [c,+∞), Σ(1) = [c, c], Σ := Σ(2) ∪ Σ(1).

The set Σ is the (absolutely) continuous spectrum of operator L, and Σ(1),
respectively Σ(2), are the parts which are of multiplicity one, respectively two.
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2.1. The Direct scattering problem

We will distinguish two sides of the cuts along the spectrum, namely Σ =
Σu∪Σl with Σu = {λu = λ+i0, λ ∈ [c,∞)} and Σl = {λl = λ−i0, λ ∈ [c,∞)}.
Note that the set Σ is the preimage of the real axis R under the conformal
map k±(λ) : clos(D) → C+ when c± < c∓. For q ∈ Lnm(c+, c−) with m ≥ 1
and n ≥ 0 the operator L has a finite discrete spectrum (see [2]), which we
denote as Σd = {λ1, . . . , λp}, where λ1 < · · · < λp < c. Our next step is
to briefly describe some well-known analytical properties of the scattering
data ([15], [17]). Most of these properties follow from analytical properties
of the Wronskian of the Jost solutions W (λ) := W (φ−(λ, ·), φ+(λ, ·)). The
representations (2.1.4) imply that the Jost solutions, together with their
derivatives, decays exponentially fast as x→ ±∞ for Im(k±) > 0. Evidently,
the discrete spectrum Σd of L coincides with the set of points, where φ+ is
proportional to φ− and, correspondingly, their Wronskian vanishes. The Jost
solutions at these points are called the left and the right eigenfunctions. They
are real-valued and we denote the corresponding norming constants by

γ±j :=

(∫
R
φ2
±(λj, x)dx

)−1

.

Lemma 2.1.5. Let q ∈ Lnm(c+, c−) with m ≥ 1, n ≥ 0. Then the function
W (λ) possesses the following properties

(i) It is holomorphic in the domain D and continuous up to the boundary
Σ of this domain.

(ii) W (λ) 6= 0 as λ ∈ Σ \ c.

(iii) On the set Σ it satisfies the symmetry property, namely W (λu) =
W (λl). Moreover, W (λ) ∈ R as λ ∈ (−∞, c−).

(iv) It has simple zeros in the domain D only at the points λ1, . . . , λp, where(
dW

dλ
(λj)

)−2

= γ+
j γ
−
j . (2.1.22)

Proof. Properties (i) and (iii) follows immediately from Lemma 2.1.1. To
prove (ii) consider first λ = λ0 ∈ Σ(2). If W (λ0) = 0 for such a λ0 then
φ+(k+(λ0), x) = Cφ−(k−(λ0), x) with C = C(k0). But then φ+(k+(λ0), x) =
C φ−(k−(λ0), x) since W (λ0) = 0. From (2.1.8) then follows

−2ik+(λ0) = W
(
φ+, φ+

)
(λ0) = |C|2W

(
φ−, φ−

)
(λ0) = 2ik−(λ0)|C|2

which contradicts to the definition of k+ and k−. If W (λ0) = 0 for λ0 ∈ Σ(1)

then Cφ−(λ0, x) = C φ−(λ0, x) since φ(λ0, x) ∈ R. It means that φ−(λ0, x)

13



Chapter 2. Scattering for Schrödinger operator with steplike background

and φ−(λ0, x) are dependent solutions, which contradicts to (2.1.8). Thus
the only possible zero of function W (λ) on Σ is the point c. For proving (iv)
we use [11].

If W (c) = 0 we will refer to this as the resonant case.

Remark 2.1.6. Using iv and the inner derivation we have the important
identity

Ẇ (iκj) = 2iκj

∫
φ−φ+.

To study further spectral properties of L we consider the usual scattering
relations

T∓(λ)φ±(λ, x) = φ∓(λ, x) +R∓(λ)φ∓(λ, x), k± ∈ R, (2.1.23)

where the transmission and reflection coefficients are defined as usual,

T±(λ) :=
W (φ±(λ), φ±(λ))

W (φ∓(λ), φ±(λ))
, R±(λ) := −W (φ∓(λ), φ±(λ))

W (φ∓(λ), φ±(λ))
, k± ∈ R.

(2.1.24)
Their properties are given in the following

Lemma 2.1.7. Let q ∈ Lnm(c+, c−) with m ≥ 1, n ≥ 0. Then the entries of
the scattering matrix possess the following properties:

I. (a) T±(λ+ i0) = T±(λ− i0) and R±(λ+ i0) = R±(λ− i0) for k±(λ) ∈
R.

(b)
T±(λ)

T±(λ)
= R±(λ) for λ ∈ Σ(1) when c± = c.

(c) 1− |R±(λ)|2 =
k∓
k±
|T±(λ)|2 for λ ∈ Σ(2).

(d) R±(λ)T±(λ) +R∓(λ)T±(λ) = 0 for λ ∈ Σ(2).

(e) T±(λ) = 1 +O(λ−1/2) and R±(λ) = O(λ−1/2) for λ→∞.

II. (a) The functions T±(λ) can be analytically continued to the domain
D satisfying

2ik+(λ)T−1
+ (λ) = 2ik−(λ)T−1

− (λ) =: W (λ), (2.1.25)

where W (λ) possesses the properties (i)–(ii) from Lemma 2.1.5.

(b) If W (c) = 0 then W (λ) = iγ
√
λ− c (1 + o(1)), where γ ∈ R \ {0}.

14



2.1. The Direct scattering problem

III. R±(λ) is continuous for k±(λ) ∈ R.

Proof. Properties I. (a)–(e), II. (a) are proved in [11] for m = 2, and the
proof remains valid for m = 1. Property III is evidently valid for k± 6= 0 by
(2.1.24), continuity of the Jost solutions, and absence of resonances. Since
W (c) 6= 0 by Lemma 2.1.5 it remains to establish that in the case c = c±
the function R± is continuous as k± → 0. Since φ±(c±, x) = φ±(c±, x), the
property

R±(c±) = −1 if W (c±) 6= 0, (2.1.26)

follows immediately from (2.1.24). In the resonant case the proof of II. (b)
will be deferred to Subsection 2.1.4.

Since we have deferred the proof of II. (b) we will not use it until then.
However, we will need the following weakened version of property II. (b).

Lemma 2.1.8. If W (c) = 0 then, in a vicinity of point c, the Wronskian
admits the estimates

W−1(λ) =

{
O
(
(λ− c)−1/2

)
for λ ∈ Σ,

O
(
(λ− c)−1/2−δ) for λ ∈ C \ Σ,

(2.1.27)

where δ > 0 is an arbitrary small number.

Proof. We give the proof for the case c− = c, c+ = c. The other case is
analogous. In this case the point k− = 0 corresponds to the point λ = c. To
study the Wronskian we use (2.1.25) for T−(λ). First we prove that T− is
bounded on the set Vε : {λ(k−) : −ε < k− < ε}, for some ε > 0. In fact, due
to the continuity of φ−(λ, x) with respect to both variables we can choose a
point x0 such that φ−(c, x0) 6= 0 and |φ(λ, x0)| > C > 0 in Vε for sufficiently
small ε. Then by (2.1.23)

|T−(λ)| = |R−(λ)φ−(λ, x0) + φ−(λ, x0)|
|φ+(λ, x0)|

≤ C, λ ∈ Vε.

Thus, for real λ near c we have W−1(λ) = O((λ− c)−1/2). For nonreal λ we
use that the diagonal of the kernel of the resolvent (L− λI)−1

G(λ, x, x) =
φ+(λ, x)φ−(λ, x)

W (λ)
, λ ∈ D \ Σd,

is a Herglotz–Nevanlinna function. Hence it can be represented as

G(λ, x0, x0) =

∫ c+ε2

c

ImG(ξ + i0, x0, x0)

ξ − λ
dξ +G1(λ),

where G1(λ) is a bounded in a vicinity of c. But G(ξ + i0, x0, x0) = O((ξ −
c)−1/2) and by [63, Chap. 22] we get (2.1.27).
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Chapter 2. Scattering for Schrödinger operator with steplike background

In what follows we set κ±j :=
√
c± − λj, such that iκ±j is the image of the

eigenvalue λj under the map k±. Then we have the following

Remark 2.1.9. For the function T±(λ), regarded as a function of variable
k±,

Resiκ±j
T±(λ) = i(µj)

±1γ±j , where φ+(λj, x) = µjφ−(λj, x). (2.1.28)

Proof. Since T± = 2ik±
W

has a zero of order one in iκj we have

Res
iκj

T± = Res
iκj

1
1
T ±

=
1

Ṫ−1
±

(iκj) =
1

−T−2
± Ṫ±

(iκj) = −
T 2
±

Ṫ±
(iκj)

= −

(
2ik±
W

)2

−2ik±Ẇ

W 2

(iκj) =
(2ik±)2

2ik±Ẇ
(iκj) = 2i

k±

Ẇ
(iκj)

=
2iiκ±j

2iκ±j
∫
φ−φ+

= i

(∫
φ−φ+

)−1

= iγ±µ
±1
j .

Scattering data example

Before we will continue with the GLM equation, we give simple examples for
the scatterings data.
EXAMPLE 1
We start with considering rarefaction initial data of the form

q(x) =

{
1, as x < 0,
0, as x > 0.

In the end of the first chapter we will have proven, that it is necessary and
sufficient for the scattering data to have the form

Snm(c+, c−) :=
{
R+(λ), T+(λ),

√
λ− c+ ∈ R; R−(λ), T−(λ),

√
λ− c− ∈ R;

λ1, . . . , λp ∈ R \ σ, γ±1 , . . . , γ±p ∈ R+

}
and that it uniquely determines our solution. We will compute all of the
terms here.

On the right half-axis we have φ+(λ, x) = eik+x, on the left φ is given by
φ−(λ, x) = e−ik−x. Thus in zero both functions equals one. Computing the
Wronskian for x = 0 we have

W (λ, 0) = ik+ + ik− = i(k+ + k−).
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2.1. The Direct scattering problem

Since the eigenvalues are given by the zeros of the Wronskian, which means
k+ +

√
k2

+ − c2 = 0 there are no eigenvalues. Thus γ±j is not defined as
well. It remains to consider the reflection coefficients R± and transmission
coefficients T±. By 2.1.24

R±(λ) := −W (φ∓(λ), φ±(λ))

W (φ∓(λ), φ±(λ))
= −

φ±
′
φ∓ − φ±φ′∓

φ′±φ∓ − φ±φ′∓
, k± ∈ R.

This gives

R(λ) = − ik+ + ik−
ik+ + ik−

=
k+ − k−
k+ + k−

=
k+ −

√
k2

+ − 1

k+ +
√
k2

+ − 1
, λ ∈ Σ

R−(λ) = −−ik− − ik+

−ik− − ik+

= − ik− − ik+

−ik− − ik+

=

√
k2

+ − 1− k+√
k2

+ − 1 + k+

, λ ∈ Σ(2).

On the other hand the transmission coefficients are given by 2.1.25

T±(λ) =
2ik±
W (λ)

=
2ik±

ik+ + ik−
=

2k±

k+ +
√
k2

+ − 1
.

This finishes the computation of the scattering data.

Now we will change the perspective to find out, if we can find simple ex-
amples producing the resonance case.
EXAMPLE 2
As a second example we have a look at a potential being zero everywhere,
except from some gap from zero to a ∈ R+ with depth −b2. If we would have
+b2 there don’t exist discrete spectrum, with −b2 the discrete spectrum only
exists if ba = nπ.

In the gap we consider the spectral problem −y′′ + qy = (b2 + k2)y which
gives us the spectral variable k1 =

√
k2 + b2. For the left half-axis we have

φ−(λ, x) = e−ikx. We expand it to the gap by φ−(λ, x) = Aeik1x + Be−ik1x

on 0 < x < a. At point zero we have 1 = A + B, where the derivative gives

−ik = ik1(A − B) that means B =
1

2

(
1 +

k

k1

)
, A =

1

2

(
1− k

k1

)
. This

leads to

φ−(λ, x) =
1

2

(
1− k

k1

)
eik1x +

1

2

(
1 +

k

k1

)
e−ik1x

φ′−(λ, x) =
ik1

2

(
1− k

k1

)
eik1x − ik1

2

(
1 +

k

k1

)
e−ik1x.
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Chapter 2. Scattering for Schrödinger operator with steplike background

Evaluating it in a it is convenient to reformulate it as

φ−(λ, a) = cos k1a− ik
sin k1a

k1

φ′−(λ, a) = −k1 sin k1a− ik cos k1a.

Now we compute the Wronskian in point a using the function φ+(λ, a) = eika

from the right, so φ′+(λ, a) = ikeika. The Wronskian in point x = a has the
form

W (λ) = eika{2ik cos k1a+
k2

k1

sin k1a+ k1 sin k1a}.

The only possible zero of the real axis can occur on the edge of the spec-
trum so we consider this point. W (0) = 0 gives us k = 0, k1 = b and thus
sin k1a = sin ba = 0. So we have the resonant case if ba = nπ.

EXAMPLE 3
If the potential is steplike with −c2 on x < 0, −b2 up to a and zero for x > a

we have discrete spectrum for c < b if cot(
√
b2 − c2a) =

√
b2 − c2

c
and for

b < c if coth(
√
c2 − b2a) =

√
c2 − b2

c
.

Compared to the former example φ+ has not changed. On the left axis
we have now k1 =

√
k2 + c2 instead of k and the previous k1 we call now

k2 =
√
k2 + b2. Again we build the linear combination in x = 0 and compute

the Wronskian in a. The linear combination is exactly as before with the
only difference, that we have on the left side k1. For c < b this leads to

φ−(λ, x) =
1

2

(
1− k1

k2

)
eik2x +

1

2

(
1 +

k1

k2

)
e−ik2x

φ′−(λ, x) =
ik2

2

(
1− k1

k2

)
eik2x − ik2

2

(
1 +

k1

k2

)
e−ik2x

φ−(λ, a) = cos k2a− ik1
sin k2a

k2

φ′−(λ, a) = −k2 sin k2a− ik1 cos k2a.

Now we compute the Wronskian in point a, using the function φ+(λ, a) =
eika, φ′+(λ, a) = ikeika and φ−(−c2, a) = cos k2a, φ

′
−(−c2, a) = −k2 sin k2a.

The Wronskian in point x = a on the edge of the spectrum has the form
W (−c2) = eika{k2 sin k2a + ik cos k2a}. Here k = ic, k2 =

√
b2 − c2 and the

requirement to be zero leads to k2 sin k2a− c cos k2a = 0 e.g cot
√
b2 − c2a =

18



2.1. The Direct scattering problem

√
b2 − c2

c
.

For b < c we proceed analogous by writing k2 = ik3

φ−(λ, x) =
1

2
(1− k1

ik3

)e−k3x +
1

2
(1 +

k1

ik3

)ek3x

φ′−(λ, x) =
−k3

2
(1− k1

ik3

)e−k3x +
k3

2
(1 +

k1

ik3

)ek3x

φ−(λ, a) = cosh k3a+
ik1

k3

sinh k3a

φ′−(λ, a) = −ik1 cosh k3a+ k3 sinh k3a.

Now we compute the Wronskian in point a using again the function φ+(λ, a) =
eika, φ′+(λ, a) = ikeika and φ−(−c2, a) = cosh k3a, φ

′
−(−c2, a) = k3 sinh k3a.

The Wronskian in point x = a on the edge of the spectrum has the form

W (−c2) = eika{−k3 sinh k3a+ ik cosh k3a}

Considering k(−c2), k3(−c2) and the requirement to be zero we have

−k3 sinh k3a− c cosh k3a = 0 e.g coth
√
c2 − b2a = −

√
c2 − b2

c
.

2.1.3 The Gelfand–Levitan–Marchenko equations

Our next aim is to derive the Gelfand–Levitan–Marchenko equations, which
is crucial for the inverse scattering. In addition to to I. (e) we will need
another property of the reflection coefficients.

Lemma 2.1.10. Let q ∈ L0
1(c+, c−). Then the reflection coefficient R±(λ)

regarded as a function of k± ∈ R belongs to the space L1(R) = L1,{k±}(R).

Proof. Throughout this proof we will denote by fs,± := fs,±(k±), s = 1, 2, . . . ,
functions whose Fourier transforms are in L1(R)∩L2(R) (with respect to k±).
Note that fs,± are continuous. Moreover, a function fs,± is continuous with
respect to k∓ for k∓ = k∓(λ) with λ ∈ Σ(2) and fs,± ∈ L2

{k∓}(R \ (−a, a))

where the set R \ (−a, a) is the image of the spectrum Σ(2) under the map
k∓(λ).

Denote by a prime the derivative with respect to x. Then (2.1.4)–(2.1.6)
and (2.1.1) imply

φ±(λ, 0) = 1 + f1,±, φ′±(λ, 0) = ∓ik± φ±(λ, 0) + f2,±,

φ±(λ, 0) = 1 + f3,±, φ′±(λ, 0) = ±ik± φ±(λ, 0) + f4,±.
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Chapter 2. Scattering for Schrödinger operator with steplike background

Since

k± − k∓ =
c∓ − c±

2k±
(1 + o(1)) as |k±| → ∞, (2.1.29)

then W (φ∓(λ), φ±(λ)) = f5,± for large k±. By the same reason

W (λ) = 2i
√
λ(1 + o(1)) as λ→∞.

Remembering that the reflection coefficient is a bounded function with re-
spect to k± ∈ R by I. (b), (c) and that for |k±| � 1 it admits the represen-
tation R±(λ) = f6,±k

−1
± finishes the proof.

Lemma 2.1.11. Let q ∈ L0
1(c+, c−). Then the kernels of the transformation

operators K±(x, y) satisfy the integral equations

K±(x, y)+F±(x+y)±
∫ ±∞
x

K±(x, s)F±(s+y)ds = 0, ±y > ±x, (2.1.30)

where, if c+ > c−

F+(x) =
1

2π

∫
R
R+(λ)eik+xdk+ +

p∑
j=1

γ+
j e−κ

+
j x (2.1.31)

+
1

4π

∫ c+

c−

|T−(λ)|2

|k−|
eik+xdλ,

F−(x) =
1

2π

∫
R
R−(λ)e−ik−xdk− +

p∑
j=1

γ−j e−κ
−
j x (2.1.32)

and if c− > c+

F+(x) =
1

2π

∫
R
R+(λ)eik+xdk+ +

p∑
j=1

γ+
j e−κ

+
j x (2.1.33)

F−(x) =
1

2π

∫
R
R−(λ)e−ik−xdk− +

p∑
j=1

γ−j e−κ
−
j x (2.1.34)

+
1

4π

∫ c−

c+

|T+(λ)|2

|k+|
e−ik−xdλ,

Proof. We consider c+ > c− and mention the differences to c− > c+ when
they occur. To derive the GLM equations introduce two functions

G±(λ, x, y) =
(
T±(λ)φ∓(λ, x)− e∓ik±x

)
e±ik±y, ±y > ±x,

20



2.1. The Direct scattering problem

where x, y are considered as parameters. As a function of λ both functions
are meromorphic in the domain D, with simple poles at the points λj of the
discrete spectrum. By property II they are continuous up to the boundary
Σu ∪ Σl, except at the point c−, where G+(λ, x, y) can have a singularity of
order O((λ− c−)−1/2−δ) in the resonant case by Lemma 2.1.8.

By the scattering relations

T±(λ)φ∓(λ, x)− e∓ik±x = R±(λ)φ±(λ, x) + (φ±(λ, x)− e∓ik±x)

= S±,1(λ, x) + S±,2(λ, x)

it follows from (2.1.4) that

1

2π

∫
R
S±,2(λ, x)e±ik±ydk± = K±(x, y).

Next, according to Lemma 2.1.10 and (2.1.9), we get

R±(λ)K±(x, s)eik±(y+s) ∈ L1,{k±}(R)× L1,{s}([x,±∞)) for x, y fixed.

Using again (2.1.4) and Fubini’s theorem we get

1

2π

∫
R
S±,1(λ)e±ik±ydk± =

= Fr,±(x+ y)± 1

2π

∫
R

∫ ±∞
x

K±(x, s)R±(λ)e±ik±(y+s)ds dk±

= Fr,±(x+ y)±
∫ ±∞
x

K±(x, s)Fr,±(y + s)ds,

where we have set (r for ”reflection”)

Fr,±(x) :=
1

2π

∫
R
R±(λ)e±ik±xdk±. (2.1.35)

Thus, for ±y > ±x

1

2π

∫
R
G±(λ, x, y)dk± = K±(x, y) +Fr,±(x+y)±

∫ ±∞
x

K±(x, s)Fr,±(y+ s)ds.

(2.1.36)
Now let Cρ be a closed semicircle of radius ρ lying in the upper half plane
with the centre at the origin and set Γρ = Cρ ∪ [−ρ, ρ]. Estimates (2.1.3),
(2.1.7), (2.1.29), and I. (e) imply that the Jordan lemma is applicable to the
function G±(λ, x, y) as a function of k± when ±y ≥ ±x. Moreover, formula
(2.1.28) implies

φ∓(λj, x) Resiκ±j
T±(λ) = iγ±j φ±(λj, x),

21



Chapter 2. Scattering for Schrödinger operator with steplike background

and thus

p∑
j=1

Resiκ±j
G±(λ, x, y) = i

p∑
j=1

γ±j φ±(λj, x)e∓κ
±
j y

= i

(
Fd,±(x+ y)±

∫ ±∞
x

K±(x, s)Fd,±(s+ y)ds

)
,

(2.1.37)

where we denote (d for discrete spectrum)

Fd,±(x) :=

p∑
j=1

γ±j e∓κ
±
j x.

Consider first the left scattering data of L. In this case k− ∈ R covers the
whole continuous spectrum of L. The function G−(λ, x, y) as a function of k−
has a meromorphic continuation to the domain C+ with poles at the points
iκ−j . By use of the Cauchy theorem, of the Jordan lemma and (2.1.36) we
get for −x < −y

lim
ρ→∞

1

2π

∮
Γρ

G−(λ, x, y)dk− = i

p∑
j=1

Resiκ−j
G−(λ, x, y) = K−(x, y)

+ Fr,−(x+ y)−
∫ −∞
x

K−(x, s)Fr,−(y + s)ds.

Joining this with (2.1.37) we get equation (2.1.32). Unlike to this, the real
values of variable k+ corresponds to the spectrum of multiplicity two only.
In this case the function G+(λ, x, y) considered as a function of k+ in C+

has a jump along the interval [0, ib+] with b+ =
√
c+ − c− > 0. It does not

have a pole in b+ because by Lemma 2.1.8 the estimate is valid G+(λ, x, y) =
O((k+ − b+)α) with −1 < α ≤ −1/2.

For large ρ > 0 put bρ = b+ + ρ−1, introduce a union of three intervals

C ′ρ = [−ρ−1, ibρ − ρ−1] ∪ [ρ−1, ibρ + ρ−1] ∪ [ibρ − ρ−1, ibρ + ρ−1],

and consider a closed contour Γ′ρ = Cρ ∪ C ′ρ ∪ [−ρ,−ρ−1] ∪ [ρ−1, ρ] oriented
counterclockwise. The function G+(λ, x, y) is meromorphic inside the domain
bounded by Γ′ρ (we suppose that ρ is sufficiently large such that all poles are
inside this domain). Thus,
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2.1. The Direct scattering problem

lim
ρ→∞

1

2π

∮
Γ′ρ

G+(λ, x, y)dk+ = i

p∑
j=1

Resiκ+
j
G+(λ, x, y) = K+(x, y) (2.1.38)

+ Fr,+(x+ y) +

∫ ∞
x

K+(x, s)Fr,+(y + s)ds

+
1

2π

∫ 0

ib+

(G+(λ+ i0, x, y)−G+(λ− i0, x, y)) dk+.

In the case under consideration, the variable k+ = iκ, κ > 0, does not have
a jump along the spectrum of multiplicity one, and the same is true for the
solution φ+(λ, x). Thus the jump [G+] := G+(λ+ i0, x, y)−G+(λ− i0, x, y)
stems from the function T+(λ)φ−(λ, x). By (2.1.25) and I. (b) we have

T+T
−1
+ = −T−T−1

− = −R− on Σ(1). To simplify notations we omit the
dependence on λ and x. The scattering relations (2.1.24) then imply

T+φ− − T+φ− = −T+

(
φ− +R−φ−

)
= −T+T−φ+,

and therefore [G+] = −ek+yT+(λ+ i0)T−(λ+ i0)φ+(λ, x). Set

χ(λ) := −T+(λ+ i0)T−(λ+ i0), λ ∈ [c−, c+].

By use of (2.1.4) we get

1

2π

∫ 0

ib+

(G+(λ+ i0, x, y)−G+(λ− i0, x, y)) dk+

= Fχ,+(x+ y) +

∫ ∞
x

K+(x, s)Fχ,+(s+ y)ds,

where

Fχ,+(x) =
1

2π

∫ 0

ib+

χ(λ)e+ik+xdk+ =
1

4π

∫ c+

c−

χ(λ)e+ik+x
dλ√
λ− c+

.

Combining this with (2.1.38), (2.1.37), and (2.1.35) and taking into account
that by (2.1.25)

χ(λ)√
λ− c+

= |T−(λ)|2|k−|−1 > 0, λ ∈ (c−, c+),

gives (2.1.31).
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Chapter 2. Scattering for Schrödinger operator with steplike background

For the rarefaction case c− > c+ the proof is analogue. Now G− might
have a singularity of order O((λ − c+)−1/2−δ) in c+ in the resonant case.
Again we use scattering relation and Jordan lemma together with residuum
theorem. Here k+ ∈ R covers the whole continuous spectrum and k− be-
longs to the spectrum of multiplicity two, where G−(k−, x, y) has a jump on
[0, ib−], b− =

√
c− − c+. Suitable contours with residuum theorem together

with scatterings relations are giving the claim.

Corollary 2.1.12. Put F̂±(x) := 2F±(2x). Then equation (2.1.30) reads

F̂±(x+ y) +B±(x, y)±
∫ ±∞

0

B±(x, s)F̂±(x+ y + s)ds = 0, (2.1.39)

where B±(x, y) is the transformation operator from (2.1.11).

This equation and Lemma 2.1.4 allows us to establish the decay properties
of F±(x).

Lemma 2.1.13. Let q ∈ Lnm(c+, c−), m ≥ 1, n ≥ 0. Then the kernels of the
GLM equations (2.1.30) possess the property:

IV. The function F±(x) is n+ 1 times differentiable with F ′± ∈ Lnm(R±).

Proof. Differentiation of (2.1.39) j times with respect to y gives

F̂
(j)
± (x+ y) +B

(j)
±,y(x, y)±

∫ ±∞
0

B±(x, s)F̂
(j)
± (x+ y + s)ds = 0.

Set here y = 0 and abbreviateH±,j(x) = B
(j)
±,y(x, 0). Recall that the estimates

(2.1.14) and (2.1.15) imply H±,j ∈ Ln+1−j
m (R±), j = 1, . . . , n + 1. Changing

variables x+ s = ξ we get

F̂
(j)
± (x) +H±,j(x)±

∫ ±∞
x

B±(x, ξ − x)F̂
(j)
± (ξ)dξ = 0. (2.1.40)

Formula (2.1.12) and the estimate (2.1.5) imply

|B±(x, ξ − x)| ≤ σ±,0(ξ)eσ̂±,0(x)−σ̂±,0(ξ)

and from (2.1.40) it follows

|F̂ (j)
± (x)|e−σ̂±,0(x) ≤|H±,j(x)|e−σ̂±,0(x) (2.1.41)

±
∫ ±∞
x

σ±,0(s)e−σ̂±,0(s)|F̂ (j)
± (s)|ds

=|H±,j(x)|e−σ̂±,0(x) + Φ±,j(x),
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2.1. The Direct scattering problem

where Φ±,j(x) := ±
∫ ±∞
x
|F (j)
± (s)|e−σ̂±,0(s)σ±,0(s)ds. Multiplying the last in-

equality by σ±,0(x) and using (2.1.1) we get

∓ d

dx
(Φ±,j(x)e−σ̂±,0(x)) ≤ |H±,j(x)|σ±,0(x)e−2σ̂±,0(x).

By integration we have

Φ±,j(x) ≤ ±Ceσ̂±,j(x)

∫ ±∞
x

H±,j(s)σ±,0(s)ds.

This inequality implies Φ±(·) ∈ L1
m(R±) because H±,j ∈ Ln+1−j

m (R±), j ≥ 1,
σ±,0 ∈ L1

m−1(R±). Property IV now follows from (2.1.41).

2.1.4 The Marchenko and Deift–Trubowitz conditions

In this subsection we give the proof of property II. (b) and also prove the
continuity of the reflection coefficient R± at the edge of the spectrum c when
c± = c in the resonant case. As is known, these properties are crucial for
solving the inverse problem but were originally missed in the seminal work
of Faddeev [31] as pointed out by Deift and Trubowitz [20] who also gave a
counterexample which showed that some restrictions on the scattering coef-
ficients at the bottom of the continuous spectrum is necessary for solvability
of the inverse problem. The behaviour of the scattering coefficients at the
bottom of the continuous spectrum is easy to understand for m = 2, both
for decaying and steplike cases, because the Jost solutions are differentiable
with respect to the local parameters k± in this case. For m = 1 the situation
is more complicated. For the case q ∈ L0

1(0, 0) continuity of the scattering
coefficients was established independently by Guseinov [43] and Klaus [52]
(see also [3]). For the case q ∈ L0

1(c+, c−) property II. (b) is proved in [2].
We propose here another proof following the approach of Guseinov which will
give as some additional formulas which are of independent interest (e.g. when
tying to understand the dispersive decay of solutions to the time-dependent
Schrödinger equation, see e.g. [26]). Nevertheless, one has to emphasize that
the Marchenko approach does not require these properties of the scattering
data: In [59] the direct/inverse scattering problem for q ∈ L0

1(0, 0) was solved
under the following less restrictive conditions:

1) The transmission coefficient T (k), where k2 = λ, is bounded for k ∈ C+

in a vicinity of k = 0 (at the edge of the continuous spectrum);

2) limk→0 kT
−1(k)(R±(k) + 1) = 0.
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Chapter 2. Scattering for Schrödinger operator with steplike background

Our conditions I. (b) and II imply the Marchenko condition at point c.
Namely, if W (c) 6= 0 then property (i) of Lemma 2.1.5 implies W (c) ∈ R and
from I. (b) it follows that R±(c±) = −1 for c = c±. The other reflection
coefficient R∓(c−) is simply not defined at this point. Of course, it has the
property R∓(c) = −1 (cf. (2.1.26)), because W (c) 6= 0, but we do not use this
fact when solving the inverse problem. Our choice to give conditions I–III
as a part of necessary and sufficient ones is stipulated by the following. First
of all, getting an analogue of the Marchenko condition 1) directly, without
II. (b), requires additional efforts. The second reason is that in fact we
additionally justify here that the conditions proposed for m = 2 in [17] are
valid for the first finite moment of perturbation too. The proof is given for
the shock case c = c−, the rarefaction case c = c+ is analogous.

Denote by h±(λ, x) = φ±(λ, x)e∓ik±x for k± ∈ R, then (2.1.11) implies

h±(λ) = h±(λ, 0) = 1±
∫ ±∞

0

B±(0, y)e±2iyk±dy,

h′±(λ) = h′±(λ, 0) = ±
∫ ±∞

0

∂

∂x
B±(0, y)e±2iyk±dy.

We observe that for c = c− we have 2ik+(c) = −b = −2
√
c+ − c− < 0, and

therefore, in a vicinity of c

h+(λ) = 1 +

∫ ∞
0

B+(0, y)e−byeiτ(λ)ydy, τ(λ) = 2
λ− c

k+ − ib/2
,

where τ(λ) is differentiable in a vicinity of c and τ(c) = 0. SinceB+(0, y)e−by ∈
L1
s(R+) and B+,x(0, y)e−by ∈ L0

s(R+), s = 1, 2, . . . , then

−φ+(c, 0)φ′+(λ, 0)+φ+(λ, 0)φ′+(c, 0) = h+(λ)h′+(c)− h+(c)h′+(λ)

+(2ik+ + b)h+(c)h+(λ) = C(λ− c)(1 + o(1)), λ→ c.
(2.1.42)
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2.1. The Direct scattering problem

Now consider the function Φ(λ) = h−(λ)h′−(c)− h−(c)h′−(λ), where k− ∈ R.
One can show following (cf. [26]) that it has a representation

Φ(λ) =h−(λ)h′−(c)− h′−(λ)h−(c) =

(h−(0) + 2ik−

−∞∫
0

K(y)e−2ik−ydy)(D(0) + 2ik−

−∞∫
0

D(y)e−bydy)

(2.1.43)

− (D(0) + 2ik−

−∞∫
0

De−2ik−ydy)(h−(0) + 2ik−

−∞∫
0

K(y)e−bydy)

=2ik−

0∫
−∞

{
D(y)h−(c)−K(y)h′−(c)

}
e−2iyk−dy

=2ik−Ψ(k−), where Ψ(k−) =

∫
R−
H(y)e−2iyk−dy,

with H(x) := D(x)h−(c)−K(x)h′−(c),

K(x) =

∫ x

−∞
B−(0, y)dy, D(x) =

∫ x

−∞

∂

∂x
B−(0, y)dy.

Note that the integral in (2.1.43) has to be understood as an improper inte-
gral.

Lemma 2.1.14 (Sublemma). The function H(x) satisfies the following in-
tegral equation

H(x)−
∫
R−
H(y)F̂−(x+ y)dy = h−(c)

(∫
R−
B−(0, y)F̂−(x+ y)dy − F−(x)

)
.

Proof. We repeat the proof of [43]. Starting with the integral equation
(2.1.39)

F̂−(x+ y) +B−(x, y)−
∫ −∞

0

B−(x, s)F̂−(x+ y + s)ds = 0,

we take the derivative in x and set x to zero to obtain

F̂ ′−(y) +B′−(0, y)−
∫ −∞

0

B′−(0, z)F̂−(y + z) +B−(0, z)F̂ ′−(y + z)dz = 0.

(2.1.44)

27



Chapter 2. Scattering for Schrödinger operator with steplike background

Integrating in y from x to −∞ using partial integration we have

−
−∞∫
x

F̂ ′−(y) +B′−(0, y)−
∫ −∞

0

B′−(0, z)F̂−(y + z) +B−(0, z)F̂ ′−(y + z)dzdy

(2.1.45)

=− F̂−(x) +D(x) +

−∞∫
0

B′−(0, z)

−∞∫
x

F̂−(y + z)dydz−

−
−∞∫
0

B−(0, z)F̂−(x+ z)dz = 0.

On the other hand, we set for (2.1.39) first x = 0 and then integrate in y
from x to −∞

−
−∞∫
x

F̂−(y) +B−(0, y)−
∫ −∞

0

B−(0, z)F̂−(y + z)dzdy = 0.

We get rid of the double integration by our previous notations and further

more use ∂
∂z

−∞∫
x

F̂−(y + z)dy = F̂−(x + z) and partial integration. Thus

(2.1.44) becomes

F̂−(y) +D(0, y) +

{
−
∫ −∞
z

∂

∂x
B−(0, s)ds

∫ −∞
x

F̂−(y + z)dy

}
|−∞0

(2.1.46)

−
∫ −∞

0

−
∫ −∞
z

∂

∂x
B−(0, s)ds(−F̂−(x+ z))dz −

∫ −∞
0

B−(0, z)F̂−(z + x)dz

=F̂−(y) +D(0, y)− h′−(0)

∫ −∞
x

F̂−(y)dy +

∫ −∞
0

D(z)F̂−(x+ z)dz

−
∫ −∞

0

B−(0, z)F̂−(z + x)dz
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2.1. The Direct scattering problem

and for the second equation (2.1.45) we have

−
∫ −∞

0

F̂−(y)dy +K−(x) +

{
K−(z)

∫ −∞
x

F̂−(y + z)dy

}
|−∞0

−
∫ −∞

0

K−(z)(−F̂−(x+ z))dz

=− (1 +K(0))

∫ −∞
x

F̂−(y)dy +K(x) +

∫ −∞
0

K(z)F̂−(x+ z)dz

=K(x)− h−(0)

−∞∫
x

F̂−(y)dy +

−∞∫
0

K(z)F̂−(x+ z)dz = 0 (2.1.47)

Combining the results by multiplying (2.1.47) by h′−(0) and subtracting from
it (2.1.46) times h−(0)

0 =

K(x)− h−(0)

−∞∫
x

F̂−(y)dy +

−∞∫
0

K(z)F̂−(x+ z)dz

h′−(0)−

{
F̂−(y) +D(0, y)− h′−(0)

∫ −∞
x

F̂−(y)dy +

∫ −∞
0

D(z)F̂−(x+ z)dz

−
∫ −∞

0

B−(0, z)F̂−(z + x)dz

}
h−(0)

⇐⇒ D(x)h−(0)−K−(x)h′−(0) +

∫ {
D(y)h−(0)−K−(y)h′−(0)

}
F̂−(x+ y)dy

= h−(0)

{∫ −∞
0

B−(0, y)F̂−(x+ y)dy − F̂−(x)

}

⇐⇒ H− +

−∞∫
0

H−(y)F̂−(x+ y) = h−(0)

{∫ −∞
0

B−(0, y)F̂−(x+ y)dy − F̂−(x)

}
.

And this was the claim.

By property IV we have F̂ ′− ∈ L0
m(R−). Using this and (2.1.5) one can

prove that H ∈ L1(R−) and therefore Φ(λ) = 2ik−Ψ(0)(1 + o(1)), with
Ψ(0) ∈ R. Moreover,

φ−(λ, 0)φ′−(c, 0)−φ−(c, 0)φ′−(λ, 0) = −2ik−h−(λ)h−(c) + Φ(λ)

=2ik−(h−(c)2 + Ψ(0))(1 +O(1)), λ→ c,

where h−(c) ∈ R. Combining this with (2.1.42) we get the following
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Chapter 2. Scattering for Schrödinger operator with steplike background

Lemma 2.1.15 ([2]). Let c = c−. Then in a vicinity of c the following
asymptotics are valid:

(a) If φ−(c, 0)φ+(c, 0) 6= 0 then

φ′+(λ, 0)

φ+(λ, 0)
−
φ′+(c, 0)

φ+(c, 0)
= O(λ−c),

φ′−(λ, 0)

φ−(λ, 0)
−
φ′−(c, 0)

φ−(c, 0)
= iα

√
λ− c(1+o(1));

(b) If φ′−(c, 0)φ′+(c, 0) 6= 0 then

φ+(λ, 0)

φ′+(λ, 0)
−φ+(c, 0)

φ′+(c, 0)
= O(λ−c), φ−(λ, 0)

φ′−(λ, 0)
−φ−(c, 0)

φ′−(c, 0)
= iα̂

√
λ− c(1+o(1)),

where α, α̂ ∈ R.

Now suppose that W (c) = 0, that is, φ−(c, x) = Cφ+(c, x) with C ∈
R \ {0} some constant. Therefore at least one of two cases described in
Lemma 2.1.15 holds true. Since the functions φ+ and φ− are continuous in
a vicinity of c, then in the case (a) we have φ−(λ, 0)φ+(λ, 0) = β(1 + o(1))
with β ∈ R \ {0}. Thus

W (λ) =φ−(λ, 0)φ+(λ, 0)

(
φ′−(λ, 0)

φ−(λ, 0)
−
φ′−(c, 0)

φ−(c, 0)

−
φ′+(λ, 0)

φ+(λ, 0)
+
φ′+(c, 0)

φ+(c, 0)

)
= iαβ

√
λ− c(1 + o(1)),

where αβ ∈ R. In fact γ = αβ 6= 0 because of property (2.1.27). The case (b)
is analogous and II. (b) is proved. To prove the continuity of the reflection
coefficient R− at c when c = c+ it is sufficient to apply a ”conjugated”
version of Lemma 2.1.15, which is valid if we consider the asymptotics as
λ→ c, λ ∈ Σ(1), to formula (2.1.24).

We summarize our findings by listing those conditions of the scattering
data which haven shown to be necessary in the present section and will be
shown to be sufficient for solving the inverse problem in the next section:

Theorem 2.1.16 (necessary conditions for the scattering data). The scat-
tering data of a potential q ∈ Lnm(c+, c−)

Snm(c+, c−) :=
{
R+(λ), T+(λ),

√
λ− c+ ∈ R; R−(λ), T−(λ),

√
λ− c− ∈ R;

λ1, . . . , λp ∈ R \ σ, γ±1 , . . . , γ±p ∈ R+

}
(2.1.48)

possess the properties I–III listed in Lemma 2.1.7. The functions F±(x, y),
defined in (2.1.30), possess property IV from Lemma 2.1.13.
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2.2. The inverse scattering problem

2.2 The inverse scattering problem

Let Snm(c+, c−) be a given set of data as in (2.1.48) satisfying the properties
listed in Theorem 2.1.16.

We begin by showing that, given F±(x, y) (constructed from our data
via (2.1.31),(2.1.32) or (2.1.33),(2.1.34)) , the GLM equations (2.1.30) can
be solved for K±(x, y) uniquely. First of all we observe that condition IV
implies F± ∈ Ln+1

m−1(R±) (and therefore F± ∈ L1(R±)∩L1
loc(R)) as well as F±

absolutely continuous on R for m = 1. Introduce the operator

(F±,xf)(y) = ±
∫ ±∞

0

F±(t+ y + 2x)f(t)dt.

This operator is compact by [59, Lem. 3.3.1]. To prove that I + F±,x is
invertible for every x ∈ R it is hence sufficient to prove that the respective
homogeneous equation f(y) +

∫
R± F±(y + t + 2x)f(t)dt = 0 has only the

trivial solution in the space L1(R±). Consider first the case c = c− and the
equation

f(y) +

∫ ∞
0

F+(y + t+ 2x)f(t)dt = 0, f ∈ L1(R+). (2.2.1)

Suppose that f(y) is a nontrivial solution of (2.2.1). Since F+(x) is real-
valued we can assume f(y) being real-valued too. By property IV the func-
tion F+(t) is bounded as t ≥ x and hence the solution f(y) is bounded too.
Thus f ∈ L2(R±) and

0 =2π

(∫
R+

f(y)f(y)dy +

∫∫
R2

+

F+(y + t+ 2x)f(t)f(y)dydt

)

=

p∑
j=1

γ+
j (f̃(λj, x))2 +

∫ c+

c−

|T−(λ)|2

|λ− c−|1/2
(f̃(λ, x))2dλ

+

∫
R
R+(λ)e2ikxf̂(−k)f̂(k)dk +

∫
R
|f̂(k)|2dk,

where k := k+ =
√
λ− c+,

f̃(λ, x) =

∫
R+

e−
√
c+−λ (y+x)f(y)dy, and f̂(k) =

∫ ∞
x

eikyf(y)dy.

Since f̃(λ, x) is real-valued for λ < c+ the corresponding summands are non-
negative. Omitting them and taking into account that (cf. [59, Lem. 3.5.3])∫

R
R+(λ)e2ikxf̂(−k)f̂(k)dk ≤

∫
R
|R+(λ)||f̂(k)|2dk,
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Chapter 2. Scattering for Schrödinger operator with steplike background

we come to the inequality
∫
R(1− |R+(λ)|)|f̂(k)|2dk ≤ 0. By property I. (c)

|R+(λ)| < 1 for λ 6= c+, therefore, f̂(k) = 0, i.e. f is the trivial solution of
(2.2.1).

For the solution f of the homogeneous equation (I +F−,x)f = 0 we pro-

ceed in the same way and come to the inequality
∫
R(1−|R−(λ)|)|f̂(k−)|2dk− ≤

0, where |R−(λ)| < 1 for λ > c+. Thus f̂(k) is a holomorphic function

for k ∈ C+, continuous up to the boundary, and f̂(k) = 0 on the rays

k2 > c+− c−. Continuing f̂(k) analytically in the symmetric domain C+ via

these rays we come to the equality f̂(k) = 0 for k ∈ R. The case c = c+

can be studied similarly. These considerations show that condition IV can
in fact be weakened:

Theorem 2.2.1. Given Snm(c+, c−) satisfying conditions I–III, let the func-
tion F±(x) be defined by (2.1.31),(2.1.32) or (2.1.33),(2.1.34). Suppose it
satisfies the condition

IVweak. The function F±(x) is absolutely continuous with F ′± ∈ L1(R±) ∩
L1

loc(R). For any x0 ∈ R there exists a positive continuous function τ±(x, x0),
decreasing as x → ±∞, with τ±(·, x0) ∈ L1(R±) and such that |F±(x)| ≤
τ±(x, x0) for ±x ≥ x0.

Then

(i) For each x equation (2.1.30) has a unique solution K±(x, ·) ∈ L1[x,±∞).

(ii) This solution has first order partial derivatives satisfying

d

dx
K±(x, x) ∈ L1(R±) ∩ L1

loc(R).

(iii) The function

φ±(λ, x) = e±ik±x ±
∫ ±∞
x

K±(x, y)e±ik±ydy (2.2.2)

solves the equation

−y′′(x)∓ 2y(x)
d

dx
K±(x, x) = (k±)2y(x), x ∈ R.

(iv) If F± satisfies condition IV then q±(x) := ∓2 d
dx
K±(x, x) ∈ Lnm(R±).

Proof. If F± satisfies condition IV for any m ≥ 1 and n ≥ 0, then at least
F ′± ∈ L0

1(R±) and we can choose τ±(x, x0) = τ±(x) =
∫
R± |F

′(x+ t)|dt. Since
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2.2. The inverse scattering problem

|F±(x)| ≤ τ±(x), τ±(·) ∈ L1(R±), and since it is decreasing as x → ±∞,
condition IVweak is fulfilled.

Item (i) is already proved under the condition F± ∈ L1(R±) ∩ L1
loc(R)

and F ′ ∈ L1
loc(R), which is weaker than IVweak. Therefore, we have a so-

lution K±(x, y). To prove (ii) it is sufficient to prove B′±,x = ∂
∂x
B±(x, 0) ∈

L1[x0,±∞) for any x0 fixed, where B±(x, y) = 2K±(x, x+ 2y).
Let ±x ≥ ±x0. Consider the GLM equation in the form (2.1.39). By

(i) the operator I + F̂±,x generated by the kernel F̂± is also invertible and

admits estimate ‖{I+F̂x,±}−1‖ ≤ C±(x), where C±(x), x ∈ R is a continuous
function with C±(x)→ 1 as x→ ±∞. Introduce notations

τ±,1(x) =

∫
R±
|F̂ ′±(t+ x)|dt, τ±,0(x) =

∫
R±
|F̂±(t+ x)|dt.

Note that |F̂±(x)| ≤ τ±,1(x). From the other side, |F̂±(x)| ≤ 2τ±(2x, 2x0),
where τ±(x, x0) is the function from condition IVweak. From (2.1.39) we have

∫
R±
|B±(x, y)|dy ≤ ‖{I+F̂±,x}−1‖

∫
R±
|F̂±(y+x)|dy ≤ C±(x)τ±,0(x), (2.2.3)

and, therefore

|B±(x, y)| ≤|F̂ (x+ y)|+
∫
R±
|B±(x, s)F̂ (x+ y + s)|ds (2.2.4)

≤τ±(2x+ 2y, 2x0)(1 + C±(x)τ±,0(x)) ≤ C(x0)τ±(2x+ 2y, 2x0).

Being the solution of (2.1.39) with absolutely continuous kernel F̂±, the func-
tion B±(x, y) is also absolutely continuous with respect to x for every y.
Differentiate (2.1.39) with respect to x gives

F̂ ′±(y + x) +B′±(x, y)±
∫ ±∞

0

B′±(x, t)F̂±(t+ y + x)dt

±
∫ ±∞

0

B±(x, t)F̂ ′±(t+ y + x)dt = 0.

Proceeding as in (2.2.3) we get then∫
R±
|B′±,x(x, y)|dy ≤‖{I + F̂±,x}−1‖

(∫
R±

∫
R±
|B±(x, t)F̂ ′(t+ y + x)|dtdy

+

∫
R±
|F̂ ′±(y + x)|dy

)
≤C±(x) (τ±,1(x) + C±(x)τ±,1(x)τ±,0(x)) . (2.2.5)
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Chapter 2. Scattering for Schrödinger operator with steplike background

Now set y = 0 in the derivative of (2.1.39) with respect to x. By use of
(2.2.3), (2.2.5) and IVweak we have then

|F̂ ′±(x) +B′±,x(x, 0)| ≤
∫
R±
|B′±,x(x, t)F̂±(t+ x)|dt+

∫
R±
|B±(x, t)F̂ ′±(t+ x)|dt

≤C±(x)(1 + C±(x)τ±,0(x))τ±,1(x)τ±(2x, 2x0) +H±(x),

where H±(x) =
∫
R± |B±(x, t)F̂ ′±(x+ t)|dt. By (2.2.4)

H±(x) ≤ C(x0)

∫
R±
τ±(2x+ 2t, 2x0)|F̂ ′±(x+ t)|dt ≤ C(x0)τ±(2x, 2x0)τ±,1(x),

which implies

|B′±,x(x, 0)| ≤ |F̂ ′(x)|+ C(x0)τ±,1(x)τ±(2x, 2x0). (2.2.6)

Therefore, under condition IVweak we get q±(x) := B±,x(x, 0) ∈ L1(R±) ∩
L1

loc(R), which proves (ii).
Repeating the corresponding part of the proof for Theorem 3.3.1 from [59]

we start with the observation that K± is n− times differentiable since F± is
and by using the fundamental equation. Differentiating the GLM equation
in the form 2.1.30 two times in y we obtain

F ′′±(x+ y) +K±,yy(x, y)±
∫ ±∞
x

K±(x, t)F ′′±(t+ y)dt = 0

and by using partial integration two times

F ′′±(x+ y) +K±,yy(x, y)∓K±(x, x)F ′±(x+ y)±K±,t(x, t)F±(t+ y)|t=x±

±
∫ ±∞

0

K±,tt(x, t)F±(t+ y)dt = 0.

On the other hand, if we differentiate the GLM equation in x direction two
times

F ′′±(x+ y) +K±,xx(x, y)∓ d

dx
{K±(x, x)F±(x+ y)} ∓K±,x(x, t)F±(t+ y)|t=x

±
∫ ±∞
x

K±,xx(x, t)F±(t+ y)dt = 0.

Subtracting this one from the former one we have

K±,xx(x, y)−K±,yy(x, y) + q±(x)F±(x+ y)

±
∫ ±∞
x

{K±,xx(x, t)−K±,tt(x, t)}F±(t+ y)dt = 0.
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2.2. The inverse scattering problem

where q± = ∓2
d

dx
K±(x, x). From the GLM equation we have

q±(x)F±(x+ y) = −q±(x)K±(x, y)∓
∫ ±∞
x

q±(x)K±(x, t)F±(t+ y)dt.

Using this, the former equation becomes

K±,xx(x, y)−K±,yy(x, y)− q±(x)K±(x, y)

±
∫ ±∞
x

{K±,xx(x, t)−K±,tt(x, t)− q±(x)K(x, t)}F±(t+ y)dt = 0.

This means the function f(y) = K±,xx(x, y) − K±,yy(x, y) − q±(x)K±(x, y)

is a solution of the homogeneous equation f(y) ±
∫ ±∞
x

f(t)F±(t + y)dt =
0, (±x ≤ ±y < ∞). Using our previous considerations the equation has
only the zero solution for ±x > 0 and so f ≡ 0. This means K±(x, y) is a
solution of the equation K±,xx(x, y) − K±,yy(x, y) − q±(x)K±(x, y) = 0 and

q±(x) = ∓2
d

dx
K±(x, x) with limx+y→±∞K±,x(x, y) =

= limx+y→±∞K±,y(x, y) = 0. By this properties [59] remark to Lemma 3.1.2
gives us, that K±(x, y) is the kernel of the transformation operator. In the
end we have achieved, that φ±(λ, x) = e±iλx ±

∫ ±∞
x

K(x, t)e±iλtdt solves the
Sturm Liouville equation −y′′ + q±(x)y = λ2y, 0 < ±x < ∞. Since this
condition is too strong for IVweak, we have to weaken it and consider a
sequence Fn,±(x) of twice continuously differentiable functions such that, for
every ε > 0 on the one hand

lim
n→∞

±∞∫
ε

|Fn,±(x)− F±(x)|dx = 0

and on the other hand

lim
n→∞

±∞∫
ε

x|F ′n,±(x)− F ′±(x)|dx = 0.

For big enough n, all the equations

Fn,±(x+ y) +Kn,±(x, y)±
±∞∫
x

Kn,±(x, t)Fn,±(t+ y) = 0

have a unique solution and furthermore lim
n→∞

sup
±ε≤x≤±∞

±∞∫
x

|Kn,±(x, t)−K±(x, y)|

and lim
n→∞

∞∫
ε

|K ′n,±(x, x) − K ′±(x, x)|dx = 0 for all ε > 0. As we have proven
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Chapter 2. Scattering for Schrödinger operator with steplike background

before, all of the functions φn,±(λ, x) = e±ik±x ±
∫ ±∞
x

Kn,±(x, y)e±ik±ydy,
satisfying

−y′′ + qn,±y = λ2y.

Taking the limit we have proven the claim.
Now let F̂± satisfy condition IV for some m ≥ 1 and n ≥ 0. As we already
discussed, in this case one can replace τ±(x, x0) by τ±,1(x), and then formulas
(2.2.6) and (2.2.4) read

|B±(x, y)| ≤ C(x0)τ±,1(x+ y), |B′±,x(x, 0)| ≤ C(x0)τ 2
±,1(x).

Since τ±,1(x) ∈ L1
m−1(R±) and τ 2

±,1(x) ∈ L0
m(R±) for m ≥ 1 then q±(x) ∈

L0
m(R±). To prove the claim for higher derivatives, we proceed similarly.

Namely, in agreement with previous notations denote

τ±,i(x) :=

∫
R±
F̂

(i)
± (t+ x)dt, i = 0, . . . , n+ 1,

and also denote D
(i)
± (x, y) := ∂i

∂xi
B±(x, y). Let

(
i
j

)
be the binomial coeffi-

cients. Differentiating (2.1.39) i times with respect to x implies

F̂
(i)
± (x+ y) +D

(i)
± (x, y) = −

i∑
j=0

(
i

j

)∫
R±
F̂

(j)
± (x+ y + t)D

(i−j)
± (x, t)dt,

and therefore∫
R±
|D(i)
± (x, y)|dy ≤‖{I + F̂±,x}−1‖

{∫
R±
|F̂ (i)
± (x+ y)|dy

i∑
j=1

(
i

j

)∫
R±

∫
R±
|F̂ (j)
± (x+ y + t)D

(i−j)
± (x, t)|dtdy

}

≤C±,i(x)[τ±,i−1(x) +
i∑

j=1

τ±,j(x)ρ±,i−j(x)],

where C±,i(x) := Ki‖{I + F±,x}−1‖ = KiC±(x) with Ki = maxj≤i
(
i
j

)
, and

ρ±,j(x) is defined by the recurrence formula

ρ±,0(x) := C±(x)τ±,0(x), ρ±,s := C±,s(x)[τ±,s−1(x) +
s∑
j=1

τ±,j(x)ρ±,s−j(x)].

Thus for every i = 1, . . . , n+ 1∫
R±
|D(i)
± (x, y)|dy ≤ ρ±,i(x) ∈ L0

m−1(R±).
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2.2. The inverse scattering problem

Respectively

|q(i)
± (x)| = |D(i)

± (x, 0)| ≤ |F (i)(x)|+
i∑

j=1

(
i

j

)
τ±,j(x)ρ±,i−j(x) ∈ L0

m(R±),

which finishes the proof.

Our next aim is to prove that the two functions q+(x) and q−(x) from the
previous theorem do in fact coincide.

Theorem 2.2.2. Let the set Snm(c+, c−) defined by (2.1.48) satisfy conditions
I–III and IVweak. Then q−(x) ≡ q+(x) =: q(x) ∈ Lnm(c+, c−). Moreover,
Snm(c+, c−) are the scattering data for the Schrödinger operator with potential
q(x).

Proof. This proof is a slightly modified version of the proof proposed in [59].
We give it for the case c = c−. We continue to use the notation Σ(2) for the
two sides of the cut along the interval [c,∞) = [c+,∞) and D = C \ Σ, and
the notation Σ for the two sides of the cut along the interval [c,∞) = [c−,∞).

The main differences between the present proof and the one from [59]
concern the presence of the spectrum of multiplicity one and the use of
condition IVweak. Namely, recall that the kernels of the GLM equations
can be split naturally into the following summands (2.1.30) according to
F+ = Fχ,+ + Fd,+ + Fr,+ and F− = Fr,− + Fd,− (cf. (2.1.31), (2.1.32)).

We begin by considering the following part of the GLM equations

G±(x, y) := Fr,±(x+ y)±
∫ ±∞
x

K±(x, t)Fr,±(t+ y)dt,

where K±(x, y) are the solutions of GLM equations obtained in Theorem
2.2.1. By condition IVweak we have Fr,± ∈ L2(R), therefore for any fixed x∫

R
Fr,±(x+ y)e∓iyk±dy = R±(λ)e±ixk± ,

and consequently∫
R
G±(x+ y)e∓ik±ydy = R±(λ)φ±(λ, x), k± ∈ R, (2.2.7)

where φ± are the functions obtained in Theorem 2.2.1 and the integral is con-
sidered as a principal value. On the other hand, invoking the GLM equations
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Chapter 2. Scattering for Schrödinger operator with steplike background

and the same functions φ± we have

G+(x, y) = −K+(x, y)−
p∑
j=1

γ+
j e−κjyφ+(λj, x)

− 1

4π

∫ c

c

|T−(ξ)|2

k−(ξ)
eik+(ξ)yφ+(ξ, x)dξ, y > x,

and

G−(x, y) = −K−(x, y) +

p∑
j=1

γ−j eκjyφ−(λj, x), y < x.

Since for two points k′ 6= k′′∫ ±∞
x

e±i(k′−k′′)ydy = i
e±i(k′−k′′)x

k′ − k′′
,

then∫
R
G+(x, y)e−ik+ydy =

∫ x

−∞
G+(x, y)e−ik+ydy −

∫ +∞

x

K+(x, y)e−ik+ydy

(2.2.8)

+
1

4πi

∫ c

c

|T−(ξ)|2φ+(ξ, x)ei(k+(ξ)−k+(λ))x

(k+(ξ)− k+(λ))
√
ξ − c−

dξ −
p∑
j=1

γ+
j φ+(λj, x)

e(−ik+−κ+
j )x

κ+
j + ik+

,

and∫
R
G−(x, y)eik−ydy =

∫ +∞

x

G−(x, y)eik−ydy −
∫ x

−∞
K−(x, y)eik−ydy (2.2.9)

−
p∑
j=1

γ−j φ−(λj, x)
e(ik−+κ−j )x

κ−j + ik−
.

Since for k± ∈ R

±
∫ ±∞
x

K±(x, y)e∓ik±ydy = φ±(λ, x)− e∓ik±x,

then combining (2.2.8) and (2.2.9) with (2.2.7) we infer the relations

R±(λ)φ±(λ, x) + φ±(λ, x) = T±(λ)θ∓(λ, x), k± ∈ R, (2.2.10)
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2.2. The inverse scattering problem

where

θ−(λ, x) :=
1

T+(λ)

(
e−ik+x +

∫ x

−∞
G+(x, y)e−ik+ydy

−
∫ c+

c−

|T−(ξ)|2W+(ξ, λ, x)

4π(ξ − λ)
√
ξ − c−

dξ +

p∑
j=1

γ+
j

W+(λj, λ, x)

λ− λj

)
,

(2.2.11)

θ+(λ, x) :=
1

T−(λ)

(
eik−x +

∫ +∞

x

G−(x, y)eik−ydy +

p∑
j=1

γ−j
W−(λj, λ, x)

λ− λj

)
,

and

W±(ξ, λ, x) := iφ±(ξ, x)e±i(k±(ξ)−k±(λ))x(k±(ξ) + k±(λ)). (2.2.12)

It turns out that, in spite of the fact that θ±(λ, x) is defined via the back-
ground solutions corresponding to the opposite half-axis R∓, it shares a series
of properties with φ±(λ, x).

Lemma 2.2.3. The function θ±(λ, x) possesses the following properties:

(i) It admits an analytic continuation to the set D \ {c+, c−} and is con-
tinuous up to its boundary Σ.

(ii) It has no jump along the interval (−∞, c±], and it takes complex con-
jugated values on the two sides of the cut along [c±,∞).

(iii) For large λ ∈ clos(D) it has the asymptotic behaviour θ±(λ, x) = e±ik±x(1+
o(1)).

(iv) The formula W (θ±(λ, x), φ∓(λ, x)) = ∓W (λ) is valid for λ ∈ clos(D),
where W (λ) is defined by formula (2.1.25).

Proof. The function T−1
∓ (λ) admits an analytic continuation toD by property

II. (a). Moreover, we have G∓(x, ·) ∈ L1([x,±∞)). Since e±ik∓y does not
grow as ±y ≥ 0 then the respective integral (the second summand in the
representation for θ±) admits analytical continuation also. Function θ± has
not singularities at points {λ1, . . . , λp}, since T−1

∓ (λ) has simple zeros at λj.
The function W∓(ξ, λ, x) can be continued analytically with respect to λ for
ξ and x fixed. Next, consider the Cauchy type integral term in (2.2.11). The
only singularity of the integrand can appear at point c = c−, because in in the
resonance case T−(c−) 6= 0. Thus if W (c−) = 0 then the integrand in (2.2.11)
behaves as O(ξ − c−)−1/2. By [63] the integral is of order O(ξ − c−)−1/2−δ
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Chapter 2. Scattering for Schrödinger operator with steplike background

for arbitrary small positive delta, moreover, T−1
+ (λ) = C

√
λ− c−(1 + o(1)).

Therefore for λ→ c−

θ−(λ, x) =

{
O((λ− c−)−δ), if W (c−) = 0,

O(1), if W (c−) 6= 0.
(2.2.13)

Since W (c+) 6= 0 by II. (a) then T−1
+ (λ) = O(λ− c+)−1/2, respectively

θ−(λ, x) = O
(
(λ− c+)−1/2

)
, θ+(λ, x) = O(1), λ→ c+. (2.2.14)

Properties (i) of Lemma 2.1.5, and II. (a) together with (2.2.11) and (2.2.12)
imply that θ+ and θ− take complex conjugated values on the sides of cut along
[c,∞). Since W±(ξ, λ, x) ∈ R when λ, ξ ≤ c±, then θ±(λ, x) ∈ R as λ ≤ c−.

Due to property I. (b) we have T−1
− T− = R− on both sides of cut along [c, c],

and from (2.2.10) it follows that

θ+ = φ− T
−1
− + φ− T

−1
− ∈ R.

Therefore θ+ has no jump along the interval [c, c]. At the point c = c−
function θ+(x, λ) has an isolated nonessential singularity, i.e. a pole at most.
But at the vicinity of point c− θ+(λ, x) = O(T−1

− (λ)) = O(λ− c−)−1/2. Thus
this singularity is removable,

θ+(λ, x) = O(1), λ→ c−. (2.2.15)

Items (i) and (ii) are proved.
The main term of asymptotical behaviour for θ±(λ, x) as λ → ∞ is the

first summand in (2.2.11). Thus by I. (e) and (2.1.29)

θ±(λ, x) = T−1
∓ (λ)e±ik∓ x + o(1) = e±ik± x(1 + o(1)),

which proves (iii). Property (iv) follows from (2.2.10), (2.2.2), and (2.1.25)
by analytic continuation

W (θ±, φ∓) = φ′∓θ± − θ′±φ∓ = φ′∓
R∓φ∓ + φ∓

T∓
−
R∓φ

′
∓ + φ

′
∓

T∓
φ∓

=
R∓
T∓

(φ′∓φ∓ − φ′∓φ∓) +
1

T∓
(φ′∓φ∓ − φ

′
∓φ∓)

=
1

T∓
(φ′∓φ∓ − φ

′
∓φ∓) =

1

T∓
W (φ∓, φ∓)

=
∓2ik∓
T∓

= ∓W (λ).

.

40



2.2. The inverse scattering problem

Now conjugate equality (2.2.10) and eliminate φ± from the system{
R±φ± + φ± = θ∓T±,

R±φ± + φ± = θ∓T±,
k± ∈ R,

to obtain
φ±(1− |R±|2) = θ∓T± −R±θ∓T±.

Using I. (c), (d) and II shows for λ ∈ Σ(2), that is for k+ ∈ R, that

T∓φ± = θ∓ +R∓θ∓ λ ∈ Σ(2).

This equation together with (2.2.10) gives us a system from which we can
eliminate the reflection coefficients R±. We get

T±(φ±φ∓ − θ±θ∓) = φ±θ± − φ±θ±, λ ∈ Σ(2). (2.2.16)

Next introduce a function

Φ(λ) := Φ(λ, x) =
φ+(λ, x)φ−(λ, x)− θ+(λ, x)θ−(λ, x)

W (λ)
,

which is analytic in the domain clos(D) \ {λ1, . . . , λp, c, c}. Our aim is to
prove that this function has no jump along the real axis and has removable
singularities at the points {λ1, . . . , λp, c, c}. Indeed, from (2.2.16) and (2.1.25)
we see that

Φ(λ) = ±φ±(λ, x)θ±(λ, x)− φ±(λ, x)θ±(λ, x)

2ik±
, λ ∈ Σ(2).

By the symmetry property (cf. II. (a), (iii), Theorem 2.2.1 and (ii), Lemma
2.2.3) we observe that both the nominator and denominator are odd functions
of k+, therefore Φ(λ + i0) = Φ(λ − i0), as λ ≥ c, i.e., the function Φ(λ) has
no jump along this interval. By the same properties II. (a), (iii) of Theorem
2.2.1 and (ii) of Lemma 2.2.3 the function Φ(λ) has no jump on the interval
λ ≤ c as well. Let us check that it has no jump along the interval (c, c)
also. Lemma 2.2.3, (ii) shows that the function θ+(λ, x) has no jump here.
Abbreviate

[Φ] = Φ(λ+ i0)− Φ(λ− i0) = φ+

[
φ−
W

]
− θ+

[
θ−
W

]
, λ ∈ (c, c),

and drop some dependencies for notational simplicity. Using property I ,
(b) and formula (2.2.10) we get[

φ−
W

]
=
φ−T− + φ−T−

2ik−
=

(φ−R− + φ−)T−
2ik−

=
θ+T−T−

2ik−
,
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Chapter 2. Scattering for Schrödinger operator with steplike background

that is

φ+

[
φ−
W

]
=
θ+φ+|T−|2

2ik−
. (2.2.17)

On the other hand, since ik+ ∈ R as λ < c, we have[
θ−
W

]
=

[
θ−T+

2ik+

]
=

1

2ik+

[θ−T+] . (2.2.18)

By formula (2.2.11) the jump of this function appears from the Cauchy type
integral only. Represent this integral as

− 1

2πi

∫ c

c

φ+(x, ξ)(−i)(k+(λ) + k+(ξ))eix(k+(ξ)−k+(λ))|T−(ξ)|2

2ik−(ξ)

dξ

ξ − λ
,

and apply the Sokhotski–Plemejl formula. Then (2.2.18) implies

θ+

[
θ−
W

]
=
θ+φ+|T−|2

2ik−
.

Comparing this with (2.2.17) we conclude that the function Φ(λ) has no
jumps on C, but may have isolated singularities at the points E = λ1, . . . , λp, c−, c+

and∞. Since all these singularities are at most isolated poles it is sufficient to
check that Φ(λ) = o((λ− E)−1), from some direction in the complex plane,
to show that they are removable. First of all properties I. (e) and (iii),
Lemma 2.2.3 together with (2.1.25) and (2.2.2) imply Φ(λ)→ 0 as λ→∞.
The desired behaviour Φ(λ) = o((λ − c±)−1) for λ → c± is due to property
II and estimates (2.2.13), (2.2.14), (2.2.15). Next, to prove that there is no
singularities at the points of the discrete spectrum, we have to check that

φ+(x, λj)φ−(x, λj) = θ+(x, λj)θ−(x, λj). (2.2.19)

Passing to the limit in both formulas (2.2.11) and taking into account (2.1.25)
and (2.2.12) gives

θ∓(λk, x) =
dW

dλ
(λk)φ±(λk, x) γ±j ,

which together with (2.1.22) implies (2.2.19). Since Φ(λ) is analytic in C and
Φ(λ)→ 0 as λ→∞, Liouville’s theorem shows

Φ(x, λ) ≡ 0 for λ ∈ C, x ∈ R. (2.2.20)

Corollary 2.2.4. R±(c±) = −1 if W (c±) 6= 0.
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2.3. Additional properties of the scattering data

Proof. In the case c = c− discussed above we have W (c+) 6= 0. Formula
(2.2.20) implies that instead of (2.2.14) we have in fact θ−(x, λ) = O(1) as
λ → c+. Since T+(c+) = 0 and φ(x, c+) = φ(x, c+) then by (2.2.10) we
conclude R+(c+) = −1. Property R−(c−) = −1 in the nonresonant case is
due to I. (b), (2.1.25), and property W (c−) ∈ R \ {0}, which follows in turn
from the symmetry property (iii) of Lemma 2.1.5.

Formula (2.2.20) implies

φ+(λ, x)φ−(λ, x) = θ+(λ, x)θ−(λ, x), λ ∈ C, x ∈ R. (2.2.21)

Moreover,

φ±(λ, x)θ±(λ, x) = φ±(λ, x)θ±(λ, x), λ ∈ Σ(2). (2.2.22)

It remains to show that φ±(λ, x) = θ±(λ, x), or equivalently, that for all
λ ∈ C and x ∈ R

p(λ, x) :=
φ−(λ, x)

θ−(λ, x)
=
θ+(λ, x)

φ+(λ, x)
≡ 1.

We proceed as in [59], Section 3.5, or as in in [11], Section 5. We first
exclude from our consideration the discrete set O of parameters x ∈ R for
which at least one of the following equalities is fulfilled: φ(E, x) = 0 for
E ∈ {λ1, . . . , λp, c−, c+}. We begin by showing that for each x /∈ O the

equality φ+(λ̂, x) = 0 implies the equality θ+(λ̂, x) = 0. Indeed, since λ̂ /∈
{λ1, . . . , λp, c−, c+} we have W (λ̂) 6= 0 and therefore by (iv) of Lemma 2.2.3

that θ−(λ̂, x) 6= 0. But then from (2.2.21) the equality θ+(λ̂, x) = 0 follows.
Thus the function p(λ, x) is holomorphic in D. By (ii) of Lemma 2.2.3 it
has no jump along the set (c−, c+), and by (2.2.22) it has no jump along
λ ≥ c+. Since φ+(c±, x) 6= 0 then (2.2.14) and (2.2.15) imply that p(λ, x)
has removable singularities at c+ and c−. By (iii) of Lemma 2.2.3 p(λ) → 1
as λ → ∞, and by Liouville’s theorem p(λ, x) ≡ 1 for x /∈ O. But the set
O is discrete, therefore by continuity φ±(λ, x) = θ±(λ, x) for all λ ∈ C and
x ∈ R. In turn this implies that q−(x) = q+(x) and completes the proof of
Theorem 2.2.2.

2.3 Additional properties of the scattering data

In this section we study the behaviour of the reflection coefficients as λ→∞
and its connection to the smoothness of the potential. One should emphasize
that the rough estimate I. (e) is sufficient for solving the inverse scattering
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Chapter 2. Scattering for Schrödinger operator with steplike background

problem (independent of the number of derivatives n), because this informa-
tion is contained in property IV of the Fourier transforms of the reflection
coefficients. That is why we did not include the estimate from Theorem 2.3.1
proved below in the list of necessary and sufficient conditions. On the other
hand, this estimate plays an important role in application of the IST for
solving the Cauchy problem for KdV equation with steplike initial profile.
Lemma 2.3.3 and Theorem 2.3.1 clarify and improve corresponding results
of [11] and are of independent interest for the spectral analysis of L.

We introduce the following notation: We will say that a function g(λ),
defined on the set A := Σ ∩ {λ ≥ a � c}, belongs to the space L2(∞) if it
satisfies the symmetry property g(λ+ i0) = g(λ− i0) on A and∫ +∞

a

|g(λ)|2 dλ

|
√
λ|
<∞.

Note that this definition implies g(λ) ∈ L2
{k±}(R \ (−a, a)) for sufficiently

large a.

Theorem 2.3.1. Let q ∈ Lnm(c+, c−), m,n ≥ 1. Then for λ→∞

ds

dks±
R±(λ) = g±,s(λ)λ−

n+1
2 , s = 0, 1, . . . ,m− 1,

where g±,s(λ) ∈ L2(∞).

Note that the case n = 0 and m = 1 already follows Lemma 2.1.10 since
(using the notation of its proof) R±(λ) = f6,±k

−1
± admits m − 1 derivatives

with respect to k± for m > 1, and f
(s)
6,± ∈ L2

{k±}(R\(−a, a)). The general case
will be shown at the end of this section. Using Lemma 2.1.4 and formula
(2.1.18) we can specify an asymptotical expansion for the Jost solution of
equation (2.0.1) with a smooth potential.

Lemma 2.3.2. Let q ∈ Lnm(c+, c−) and q±(x) = q(x) − c±. Then for large
k± ∈ R the Jost solution φ±(λ, x) of the equation Lφ± = λφ± admits an
asymptotical expansion

φ±(λ, x) = e±ik±x

(
u±,0(x)± u±,1(x)

2ik±
+ · · ·+ u±,n(x)

(±2ik±)n
+

U±,n(λ, x)

(±2ik±)n+1

)
,

(2.3.1)
where

u0(x) = 1, u±,l+1(x) =

∫ ±∞
x

(u′′±,l(ξ)− q±(ξ)u±,l(ξ))dξ, l = 1, . . . , n.

(2.3.2)
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Moreover, the functions U±,n(λ, x) and ∂
∂x
U±,n(λ, x) are m − 1 times dif-

ferentiable with respect to k± with the following behaviour as λ → ∞ and
0 ≤ s ≤ m− 1:

∂s

∂ks±
U±,n(λ, x) ∈ L2(∞),

∂s

∂ks±

(
1

k±

∂

∂x
U±,n(λ, x)

)
∈ L2(∞). (2.3.3)

Proof. Formula (2.1.18) implies

∂sB±(x, y)

∂ys
=
∂sB±(x, y)

∂x∂ys−1
+

∫ ±∞
x

q±(α)
∂s−1B±(α, y)

∂ys−1
dα, s ≥ 1. (2.3.4)

Integrating (2.1.11) by parts and taking into account (2.3.4) with s = n+ 1
and Lemma 2.1.4 we get

φ±(k±, x)e∓ik±x =1∓ 1

2ik±
B±(x, 0)± · · ·+ (−1)n

(±2ik±)n
∂n−1B±(x, 0)

∂yn−1

+
(−1)n+1

(±2ik)n+1

{
∂nB±(x, 0)

∂yn
±
∫ ±∞

0

(
∂

∂x

∂n

∂yn
B±(x, y)

+

∫ ±∞
x

q±(α)
∂n

∂yn
B±(α, y)dα

)
e±2ik±ydy

}
. (2.3.5)

Set

u±,l(x) := (−1)l
∂l−1B±(x, 0)

∂yl−1
, l ≤ n+ 1.

Then (2.3.4) implies (2.3.2). Put

u±,l+1(x, y) = (−1)l+1∂
lB±(x, y)

∂yl
, l ≤ n. (2.3.6)

By (1.1.3), (2.0.2), (2.1.1), (2.1.15), and (2.1.14) we have ν±,l(·) ∈ L0
m−1(R±).

This implies

u±,n+1(x, ·), ∂

∂x
u±,n+1(x, ·) ∈ L0

m−1(R±). (2.3.7)

Comparing (2.3.1) with (2.3.5) gives

U±,n(λ, x) = u±,n+1(x) +

∫ ±∞
0

(
∂

∂x
u±,n+1(x, y) (2.3.8)

±
∫ ±∞
x

q±(α)u±,n+1(α, y)dα

)
e±2ik±ydy,

where the function u±,n+1(x, y), defined by (2.3.6), satisfies u±,n+1(x, 0) =
u±,n+1(x). From (2.3.2) it follows that the representation for ul,±(x) involves
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Chapter 2. Scattering for Schrödinger operator with steplike background

q
(l−2)
± (x) and lower order derivatives of the potential. Thus u±,n+1(x) can

be differentiated only one more time with respect to x. But we cannot
differentiate the right-hand side of (2.3.8) directly under the integral. To
avoid this let us first integrate by parts the first summand in this integral.
By (2.3.6) we have ∂

∂y
u±,n(x, y) = −u±,n+1(x, y). Taking the derivative with

respect to x outside the integral we get∫ ±∞
0

∂

∂x
u±,n+1(x, y)e±2ik±ydy =

d

dx

(
u±,n(x)∓ 2ik±

∫ ±∞
0

u±,n(x, y)e±2ik±ydy

)
.

According to (2.3.2) we have u′±,n+1(x) + u′′±,n(x) = q±(x)u±,n(x), therefore

∂

∂x
U±,n(λ, x) = 2ik±

(
q±(x)u±,n(x)

(2ik±)
∓
∫ ±∞

0

∂2

∂x2
u±,n(x, y)e±2ik±ydy

)
−

∓
∫ ±∞

0

u±,n+1(x, y)q±(x)e±2ik±ydy,

which together with (2.3.7) proves (2.3.3).

Our next step is to specify an asymptotic expansion for the Weyl functions

m±(λ, x) =
φ′±(λ, x)

φ±(λ, x)
(2.3.9)

for the Schrödinger equation. Note that due to estimate (2.1.7) and conti-
nuity of σ̂(x) for any b > 0 there exist some k0 > 0 such that for all real k±
with |k±| > k0 the function φ±(λ, x) does not have zeros for |x| < b. There-
fore m±(k±, x) is well-defined for all large real k± and x in any compact set
K ⊂ R.

Lemma 2.3.3. Let q ∈ Lnm(c+, c−). Then for large λ ∈ R+ the Weyl func-
tions (2.3.9) admit the asymptotic expansion

m±(k, x) = ±i
√
λ+

n∑
j=1

mj(x)

(±2i
√
λ)j

+
m±,n(λ, x)

(±2i
√
λ)n

, (2.3.10)

where

m1(x) = q(x), ml+1(x) = − d

dx
ml(x)−

l−1∑
j=1

ml−j(x)mj(x), (2.3.11)

and the functions m±,n(λ, x) are m−1 times differentiable with respect to k±
with

∂s

∂ks±
mn(λ, x) ∈ L2(∞), s ≤ m− 1, ∀x ∈ K. (2.3.12)

46



2.3. Additional properties of the scattering data

Remark 2.3.4. The recurrence relations (2.3.11) are well-known for the case
of the Schrödinger operator with smooth potentials and are usually proven via
the Riccati equation satisfied by the Weyl functions. Our point here is the
fact that (2.3.10) is m−1 times differentiable with respect to k± together with
(2.3.12).

Proof. We follow the proof of [59], Lemma 1.4.2, adapting it for the steplike
case. From (2.3.9) and (2.0.1) we have m±(λ, x) = ik± + κ±(λ, x), where
κ±(λ, x) satisfy the equations

κ′±(λ, x)± 2ik±κ±(λ, x) +κ2
±(λ, x)− q±(x) = 0, κ±(λ, x) = o(1), λ→∞.

Introduce notations φ±(λ, x) = e±ik±xQ±,n(λ, x), where (cf. Lemma 2.3.2)

Q±,n(λ, x) := P±,n(λ, x) +
U±,n(λ, x)

(±2ik±)n+1
, (2.3.13)

P±,n(λ, x) := 1 +
u±,1(x)

(±2ik)
+ · · ·+ u±,n(x)

(±2ik)n
. (2.3.14)

Then

κ±(λ, x) =
P ′±,n(λ, x)

P±,n(λ, x)
+
U ′±,n(λ, x)P±,n(λ, x)− U±,n(λ, x)P ′±,n(λ, x)

(±2ik±)n+1P±,n(λ, x)Q±,n(λ, x)
.

Decompose the first fraction in a series with respect to (2ik±)−1 using (2.3.14).
Since P±,n(λ, x) 6= 0 for x ∈ K and sufficiently large λ we get

P ′±,n(λ, x)

P±,n(λ, x)
=

n∑
j=1

κ±,j(x)

(±2ik±)j
+
f±,n(λ, x)

(±2ik±)n
,

where κ±,j(x) are polynomials of u±,l, l ≤ j, and the function f±,n(λ, x) is
infinitely many times differentiable with respect to k± for sufficiently big k±
and

∂l

∂kl±
f(λ, x) ∈ L2(∞), l = 0, 1, . . . (2.3.15)

Correspondingly,

κ±(λ, x) =
n∑
j=1

κ±,j(x)

(±2ik±)j
+
κ±,n(λ, x)

(2ik±)n
, (2.3.16)

where

κ±,n(λ, x) = f±,n(k, x) +
U ′±,n(λ, x)

2ik±Q±,n(λ, x)
−

U±,n(λ, x)P ′±,n(λ, x)

2ik±P±,n(λ, x)Q±,n(λ, x)
.
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Chapter 2. Scattering for Schrödinger operator with steplike background

Taking into account (2.3.2), (2.3.7), (2.3.3), (2.3.13), (2.3.14), and (2.3.15)
we get

∂s

∂ks±
κ±,n(λ, x) ∈ L2(∞), s ≤ m− 1, ∀x ∈ K.

Next, due to (2.3.2) the functions ul(x) depend on q(l−2)(x) and lower order
derivatives of the potential, and can be differentiated at least twice more
with respect to x for l ≤ n. Since the function φ±(λ, x) itself is also twice
differentiable with respect to x, the same is valid for U±,n(λ, x) and κ±(λ, x).
Hence each summand of (2.3.14) can be differentiated twice and we conclude
that all κ±,j(x), j ≤ n, in (2.3.16) are differentiable with respect to x, and
so is κ±,n(λ, x).

Next, for large λ we can expand k± with respect to
√
λ and represent

m±(λ, x) using (2.3.16) as m±(λ, x) = ±i
√
λ+ κ̃±(λ, x), where

κ̃±(λ, x) =
n∑
j=1

κ̃±,j(x)

(±2i
√
λ)j

+
m±,n(λ, x)

(2i
√
λ)n

.

Here κ̃±,j(x) are some other coefficients, but they also depend on the potential
and its derivatives up to order n − 1, i.e. one time differentiable together
with κ̃±,n(λ, x) with respect to x. Moreover, m±,n(λ, x) satisfies the same
estimates as in (2.3.12). But κ̃±(λ, x) satisfies the Riccati equation

κ̃′±(λ, x)± 2i
√
λκ±(λ, x) + κ2

±(λ, x)− q(x) = 0,

and therefore κ̃+,l(x) = κ̃−,l(x) = ml(x), where ml(x) satisfies (2.3.11).

Corollary 2.3.5. Let q ∈ Lnm(c+, c−) with n ≥ 1 and m ≥ 1. Then for any
K ⊂ R, x ∈ K and sufficiently large λ > c the function

f±,n(λ, x) := kn±

(
m±(λ, x)−m∓(λ, x)

)
is m− 1 times differentiable with respect to k± with

∂s

∂ks±
f±,n(λ, x) ∈ L2(∞), 0 ≤ s ≤ m− 1.

The claim of Theorem 2.3.1 follows immediately from (2.1.24), evaluated
for x ∈ K, (2.1.9), (2.3.9), Lemma 2.3.3, and Corollary 2.3.5.
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Chapter 3

Rarefaction Waves of the
Korteweg–de Vries Equation
via Nonlinear Steepest Descent

In this section we investigate the Cauchy problem for the Korteweg–de Vries
(KdV) equation with steplike initial data q(x, 0) = q(x) satisfying{

q(x)→ 0, as x→ +∞,
q(x)→ c2, as x→ −∞. (3.0.1)

This case is known as rarefaction problem. The corresponding long-time
asymptotics of q(x, t) as t → ∞ are well understood on a physical level of
rigour ([68, 56, 64]) and can be split into three main regions:

• In the region x < −6c2t the solution is asymptotically close to the
background c2.

• In the region −6c2t < x < 0 the solution can asymptotically be de-
scribed by − x

6t
.

• In the region 0 < x the solution is asymptotically given by a sum of
solitons.

This is illustrated in Figure 3.1. The application of the inverse scattering
transform to the problem (1.1.1),(3.0.1) (see [25], [30]) imply that the solution
q(x, t) of the Cauchy problem exists in the classical sense and is unique in
the class∫ +∞

0

|x|(|q(x, t)|+ |q(−x, t)− c2|)dx <∞, ∀t ∈ R, (3.0.2)
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Chapter 3. Rarefaction Waves of the KdV via Nonlinear Steepest Descent

Figure 3.1: Numerically computed solution q(x, t) of the KdV equation at
time t = 1.5, with initial condition q(x, 0) = 1

2
(1− erf(x))− 4 sech(x− 1).

provided the initial data satisfy the following conditions: q ∈ C8(R) and

∫ ∞
0

x4
(
|q(x)|+ |q(−x)− c2|+ |q(i)(x)|

)
dx <∞, i = 1, . . . , 8. (3.0.3)

To simplify considerations, we will additionally suppose that the initial con-
dition decays exponentially fast to the asymptotics:

∫ +∞

0

eεx(|q(x)|+ |q(−x)− c2|dx <∞, (3.0.4)

for some ε > 0. We remark that by [65] the solution will be even real analytic
under this assumption, but we will not need this fact.

The chapter is organized as follows: Section 3.1 provides some neces-
sary information about the inverse scattering transform with steplike back-
grounds and formulates the initial vector RH problems both on the plane
and on a Riemann surfaces. In Section 3.2 we study the soliton region. In
Section 3.3 the initial RH problem is reduced to a ”model” problem in the
domain −6c2t < x < 0 which is then solved. In Section 3.5 we establish the
asymptotics in the oscillatory/dispersive region −6c2t > x.

Finally, we should remark that our results do not cover the two tran-
sitional regions: 0 ≈ x near the leading wave front, and x ≈ −6c2t near
the back wave front. Since the error bounds obtained from the RH method
break down near the edges, a rigorous justification is beyond the scope of the
present thesis.
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3.1. Statement of the RH problem and the first conjugation step

3.1 Statement of the RH problem and the

first conjugation step

Let q(x, t) be the solution of the Cauchy problem (1.1.1), (3.0.4) and consider
the underlying spectral problem

(L(t)f)(x) := − d2

dx2
f(x) + q(x, t)f(x) = λf(x), x ∈ R.

In order to set up the respective Riemann–Hilbert (RH) problems we recall
some facts from scattering theory with steplike backgrounds. We refer to [24]
for proofs and further details and to [66] for general background.

Throughout this chapter we will use the following notations: Denote by
D := C \ Σ, where Σ = Σu ∪ Σl with Σu = {λu = λ + i0, λ ∈ [0,∞)} and
Σl = {λl = λ− i0, λ ∈ [0,∞)}. That is, we treat the boundary of the domain
D as consisting of the two sides of the cut along the interval [0,∞), with
different points λu and λl on different sides. In equation (2.0.1) the spectral
parameter λ belongs to the set clos(D), where clos(D) = D ∪Σ. Along with
λ we will use two more spectral parameters

k =
√
λ, k1 =

√
λ− c2, where k > 0 and k1 > 0, for λu > c2. (3.1.1)

The functions k1(λ) and k(λ) conformally map the domain D onto D1 :=
C+ \ (0, ic] and D := C+, respectively. Since there is a bijection between the
closed domains closD, closD = C+∪R and closD1 = D1∪R∪[0, ic]r∪[0, ic]l,
we will use the ambiguous notation f(k) or f(k1) or f(λ) as the same value
of an arbitrary function f(λ) in these respective coordinates. Here [0, ic]r,l
are the right and left sides of the respective cut. Thus, if k > 0 corresponds
to λu then −k corresponds to λl, and for functions defined on the set Σ we
will sometimes use the notation f(k) and f(−k) to indicate the values at
symmetric points λu and λl.

Since the potential q(x, t) satisfies (3.0.2) the following facts are valid for
the operator L(t) ([24]):

• The spectrum of L(t) consists of an absolutely continuous part R+,
plus a finite number of negative eigenvalues λ1 < ... < λN < 0. More-
over, the (absolutely) continuous spectrum consists of a part [0, c2] of
multiplicity one and a part [c2,∞) of multiplicity two. In terms of k, k1

the continuous spectrum corresponds to k ∈ R and the spectrum of
multiplicity two to k1 ∈ R.
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• Equation (2.0.1) has two Jost solutions φ(λ) = φ(λ, x, t) and φ1(λ) =
φ1(λ, x, t), satisfying the conditions

lim
x→+∞

e−ikxφ(λ, x, t) = lim
x→−∞

eik1xφ1(λ, x, t) = 1, for λ ∈ closD.

• The Jost solutions satisfy the scattering relations

T (λ, t)φ1(λ, x, t) = φ(λ, x, t) +R(λ, t)φ(λ, x, t), k ∈ R, (3.1.2)

T1(λ, t)φ(λ, x, t) = φ1(λ, x, t) +R1(λ, t)φ1(λ, x, t), k1 ∈ R, (3.1.3)

where T (λ, t), R(λ, t) (resp., T1(λ, t), R1(λ, t)) are the right (resp., the
left) transmission and reflection coefficients. The right coefficients are
given by formulas

T (λ, t) =
2ik

W (λ, t)
, R(λ, t) = −W̃ (λ, t)

W (λ, t)
,

where

W̃ (λ, t) =φ1(λ, x, t)φ′(λ, x, t)− φ′1(λ, x, t)φ(λ, x, t),

W (λ, t) =φ1(λ, x, t)φ′(λ, x, t)− φ′1(λ, x, t)φ(λ, x, t).

• The Wronskian of the Jost solutions W (λ, t) has simple zeros at the
points of the discrete spectrum and the only other possible zero is 0,
which is known as the resonant case. In this case W (λ) = iγk(1+o(1)),
γ > 0.

• The solutions φ(λj, x, t) and φ1(λj, x, t) are the corresponding (linearly
dependent) eigenfunctions of L(t). We use the notations

φ(λj, x, t) = µj(t)φ1(λj, x, t), γj(t) =

(∫
R
φ2(λj, x, t)dx

)−1

.

• There is a symmetry T (λu, t) = T (λl, t), R(λu, t) = R(λl, t) for k ∈ R,
i.e. λ ∈ Σ. The same is valid for φ(λ, x, t) and φ1(λ, x, t). Moreover,
φ1(λ, x, t) = φ1(λ, x, t) for k ∈ [−c, c].

• The following identities are valid on the continuous spectrum1:

T (k, t)

T (k, t)
= R(k, t), for k ∈ [−c, c], and (3.1.4)

1Recall that according to our agreement everywhere in this dissertation the notation
f(k) means f(λ(k))
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3.1. Statement of the RH problem and the first conjugation step

1− |R(k, t)|2 = T1(k, t)T (k, t), (3.1.5)

R1(k, t)T (k, t) +R(k, t)T (k, t) = 0, k1 ∈ R.

• The time evolution of the right reflection coefficient and the right norm-
ing constant is given by ([30, 48, 50])

R(λ, t) = R(λ)e8ik3t, k ∈ R, γj(t) = γje
8κ3
j t, (3.1.6)

where R(λ) = R(λ, 0), γj = γj(0), and 0 < κj =
√
−λj.

• Under condition (3.0.4) the solution φ(λ, x, 0) has an analytical contin-
uation to a subdomain Dε ⊆ D, which is the image under the map λ(k)
of the strip 0 ≤ Im k < ε. Correspondingly, the function R(λ) also has
an analytical continuation to this domain. Since the transmission co-
efficient always has an analytical continuation identity (3.1.2) remains
valid for this analytical continuation.

• The potential q(x) can be uniquely recovered from the right scattering
data

{R(k), k ∈ R; λj = −κ2
j , γj > 0, j = 1, . . . , N}. (3.1.7)

The properties, listed above, allow us to introduce a vector RH problem.
To this end we introduce a vector-function

m(λ, x, t) =
(
T (λ, t)φ1(λ, x, t)eikx, φ(λ, x, t)e−ikx

)
(3.1.8)

on closD. Evidently, this function is meromorphic in D with simple poles at
the points iκj, and continuous up to the boundary Σ. We treat this function
as a function of k ∈ D, keeping x and t as parameters, m(k) := m(λ(k), x, t).
It has the following asymptotical behaviour as k →∞ (cf. [23]):

m(k) = (1, 1)− 1

2ik

∫ +∞

x

q(y, t)dy(−1, 1) +O

(
1

k2

)
. (3.1.9)

Moreover, we extend the definition of m(k) to C− using the symmetry con-
dition

m(k) = m(−k)

(
0 1
1 0

)
. (3.1.10)

Evidently this vector function has a jump along the real axis. We consider
the real axis as a contour with the natural orientation from minus to plus
infinity and denote by m+(k) (resp. m−(k) ) the (nontangential) limiting
values of m(k) from the upper (resp. lower) half-plane.
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Theorem 3.1.1. Let (3.1.7) be the right scattering data for a potential q(x)
satisfying condition (3.0.4). Let q(x, t) be the unique solution of the Cauchy
problem (1.1.1), (3.0.3). Then the vector-valued function m(k) defined by
(3.1.8) and (3.1.10) is the unique solution of the following vector Riemann–
Hilbert problem:

Find a vector-valued function m(k) =
(
m1(k),m2(k)

)
, which is meromor-

phic away from the contour R and satisfies:

I. The jump condition m+(k) = m−(k)v(k), where

v(k) := v(λ(k), x, t) =

(
1− |R(k)|2 −R(k)e−2tΦ(k)

R(k)e2tΦ(k) 1

)
, k ∈ R;

(3.1.11)

II. the pole conditions

Resiκj m(k) = lim
k→iκj

m(k)

(
0 0

iγje
2tΦ(iκj) 0

)
,

Res−iκj m(k) = lim
k→−iκj

m(k)

(
0 −iγje

2tΦ(iκj)

0 0

)
,

(3.1.12)

III. the symmetry condition (3.1.10);

IV. the normalization condition

m(k) = (1, 1) +O(k−1), k →∞; (3.1.13)

V. m2(k) ∈ R for k ∈ iR+.

The phase Φ(k) = Φ(λ(k), x, t) in (3.1.11) is given by

Φ(k) = (4λ+
x

t
)
√
−λ = 4ik3 + ik

x

t
. (3.1.14)

Remark 3.1.2. By property (3.1.4) |R(k)| = 1 for k ∈ [−c, c] and hence

v(k) =

(
0 −R(k)e−2tΦ(k)

R(k)e2tΦ(k) 1

)
, k ∈ [−c, c].

Proof of Theorem 3.1.1. We will omit the variables x, t in our notation below
whenever possible. Let m(k) be defined by (3.1.8). It is a meromorphic
function the upper half-plane, its first component m1(k) has simple poles
at the points iκj while the second component m2(k) is holomorphic. Both
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3.1. Statement of the RH problem and the first conjugation step

components have continuous limits up to the boundary R. Moreover, for
k ∈ R we have m+(−k) = m+(k). To compute the jump we observe that if
m+ = (Tφ1z, φz

−1), where z = eikx, k ∈ R, then by the symmetry condition

m− = (φz, Tφ1z
−1) at the same point k ∈ R. Let

( α(k) β(k)
γ(k) δ(k)

)
be the unknown

jump matrix. Then

Tφ1z = φ zα + Tφ1z
−1γ, φ z−1 = φ zβ + Tφ1z

−1δ.

Multiply the first equality by z−1, the second one by z, and then conjugate
both of them. We finally get

αφ = Tφ1 − Tγφ1z
2, T δφ1 = φ− βφz−2. (3.1.15)

Now divide the first of these equalities by T and compare it with (3.1.3)
for k1 ∈ R. From (3.1.5) it follows that α = T 1T = 1 − |R|2, γz−2 = R
for k1 ∈ R. For k ∈ [−c, c] we use the first equality of (3.1.15) taking into
account that φ1 = φ1. Then by (3.1.4) αφ = φ1T (1 − γz2R) and therefore
α = 0, γz−2 = R as k ∈ [−c, c]. Taking into account (3.1.6) and z = eikx we
finally establish the 11 and 21 entries of the jump matrix (3.1.11). Comparing
now the second equality of (3.1.15) with (3.1.2) gives δ = 1 and −βz−2 = R.
This establishes the 12 and 22 entries.

The pole condition (3.1.12) is proved in [40] or in Appendix A of [23].
The symmetry condition holds by definition and the normalization condition
follows from (3.1.9).

Finally we turn to uniqueness. Let m̃(k) be another solution. Then
m̂(k) = m(k)−m̃(k) satisfies I–III. Note, that condition II does not guarantee
that m̂ is a holomorphic solution! Condition IV for m̂ reads m̂(k) = O(k−1)
and therefore the function

F (k) := m̂1(k)m̂1(k) + m̂2(k)m̂2(k), Im k > 0,

is a meromorphic function in C+ with simple poles at the points iκj and
asymptotical behaviour F (k) = O(k−2) at infinity. Since −k = k for k ∈ iR
conditions II and V imply

Resiκj F (k) = 2iγj (m̂2(iκj))
2 e2tΦ(iκj) ∈ iR+. (3.1.16)

Moreover, F (k) has continuous limiting values F+(k) on R, which can be rep-
resented due to condition III as F+(k) = m̂1,+(k)m̂1,−(k) + m̂2,+(k)m̂2,−(k).
From condition I we then get

F+(k) = (Sm̂1,− +Rm̂2,−)m̂1,− + (m̂2,− −Rm̂1,−)m̂2,−,
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where S(k) = 1− |R(k)|2 ≥ 0, R(k) = R(k)e2tΦ(k). Thus

F+(k) = G1(k) + iG2(k), G1(k) ≥ 0, G2(k) ∈ R, (3.1.17)

with G1(k) = (1− |R(k)|2)|m̂1,−(k)|2 + |m̂2,−(k)|2. Let now ρ > κ1 > κN be
an arbitrary large number. Consider the semicircle

Cρ = {k : k ∈ [−ρ, ρ], or k = ρeiθ, 0 < θ < π}

as a contour, oriented counterclockwise. By the Cauchy theorem and (3.1.16)∮
Cρ
F (k)dk = 2πi

N∑
j=1

Resiκ F (k) = −4π
N∑
j=1

γj (m̂2(iκj))
2 e2tΦ(iκj).

Since F (k) = O(k−2) as k → ∞ then limρ→∞
∫ π

0
F (ρeiθ)ρeiθdθ = 0. There-

fore, ∫
R
F+(k)dk + 4π

N∑
j=1

γj (m̂2(iκj))
2 e2tΦ(iκj) = 0.

By (3.1.17) and (3.1.16) the real part of this expression is positive and van-
ishes if

m̂2,−(k) = 0 for k ∈ (R ∪j {iκj}), and m̂1,−(k) = 0 for k1 ∈ R.

Thus F (k) is holomorphic and due to (3.1.17) has no jump on the real axis.
Taking into account its behaviour at infinity we conclude that it is zero. This
proves uniqueness for the RH problem under consideration.

For our further analysis we rewrite the pole condition as a jump condition
and hence turn our meromorphic Riemann–Hilbert problem into a holomor-
phic Riemann–Hilbert problem following literally [40]. Choose δ > 0 so small
that the discs |k − iκj| < δ lie inside the upper half-plane and do not inter-
sect any of the other contours, moreover κ1− δ > ε, where ε is from estimate
(3.0.4). Redefine m(k) in a neighborhood of iκj( respectively −iκj) according
to

m(k) =



m(k)

(
1 0

− iγje
2tΦ(iκj)

k−iκj
1

)
, |k − iκj| < δ,

m(k)

(
1

iγje
2tΦ(iκj)

k+iκj

0 1

)
, |k + iκj| < δ,

m(k), else.

(3.1.18)
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3.1. Statement of the RH problem and the first conjugation step

Denote the boundaries of these small discs as Tj,U and Tj,L (U and L for
”upper” and ”lower”). Set also

hU(k, j) := − iγje
2tΦ(iκj)

k − iκj
, hL(k, j) := − iγje

2tΦ(iκj)

k + iκj
. (3.1.19)

Then a straightforward calculation using Resiκm(k) = limk→iκ(k − iκ)m(k)
shows the following well-known result:

Lemma 3.1.3 ([40]). Suppose m(k) is redefined as in (3.1.18). Then m(k)
is holomorphic in C \

(
R ∪ ∪Nj=1(Tj,U ∪ Tj,L)

)
. Furthermore it satisfies con-

ditions I, III, IV and

m+(k) = m−(k)



(
1 0

hU(k, j) 1

)
, k ∈ Tj,U(

1 hL(k, j)

0 1

)
, k ∈ Tj,L,

(3.1.20)

where the small circles Tj,U around the points iκj are oriented counterclock-
wise, and the circles Tj,L around −iκj are oriented clockwise.

This holomorphic RH problem is equivalent to the initial one, given by
conditions I–V and hence also has a unique solution. We use it everywhere
except in the vicinities of the rays x = 4κ2

j t along which the solitons travel.
In what follows we will denote this RH problem as RH-k problem since it
is formulated in the k variable. This problem is convenient for investigating
the soliton region x > 0. In the other regions it will be more convenient to
use other two formulations of this RH problem, which we denote as RH-k1

problem and as RH-λ problem. In particular, let D1 = C+ \ (0, ic] be the
domain corresponding to the k1 variable, which is the one-to-one image of the
domain D with respect to λ and the upper half-plane with respect to k. We
consider the same vector function m(λ), defined by (3.1.8), as a function of
k1 with poles at points iκ1,j =

√
c2 − λj. Extend this definition to the lower

half-plane using the same symmetry condition (the point −k1 corresponds to
the point −k in D1). Then m will satisfy condition V for k1 ∈ [ic,+i∞) and
conditions III and IV. On the k1 plane introduce the contour consisting of:
(1) the real axis, oriented naturally from the left to the right; (2) the interval
[−ic, ic], oriented from top to bottom; (3) the images of circles Tj,U and Tj,L,
which we denote as Tj,U1 and Tj,L1 , with the orientation induced from their
preimages.

To make a statement about the RH-k1 problem we will need the following
notation: Let k ∈ [0, c] be the point which corresponds to a point k1 on the
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Chapter 3. Rarefaction Waves of the KdV via Nonlinear Steepest Descent

+ (right) side of the cut along the interval [ic, 0]. Set

χ(k1) = χ(k1, x, t) =: R(k)e2tΦ(k), k ∈ [0, c], χ(−k1) := χ−1(k1).

Lemma 3.1.4. The function m(k1), defined by (3.1.8) and (3.1.10), is the
unique solution of the following RH problem: to find a vector-function m

holomorphic in the domain C\
(
R ∪ [−ic, ic] ∪j (Tj,U1 ∪ Tj,L1 )

)
and satisfying:

1. The jump condition m+(k1) = m−(k1)v(k1), where

v(k1) :=



(
1− |R(k)|2 −R(k)e−2tΦ(k)

R(k)e2tΦ(k) 1

)
, k1 ∈ R;(

χ(k1) 1

0 −χ−1(k1)

)
, k1 ∈ [ic, 0](

−χ−1(k1) 0

1 χ(k1)

)
, k1 ∈ [0,−ic]

v(k1) =



(
1 0

hU(k, j) 1

)
, k1 ∈ Tj,U1 ,(

1 hL(k, j)

0 1

)
, k ∈ Tj,L1 ,

2. the symmetry condition (3.1.10);

3. the normalization condition m(k1) = (1, 1) +O(k−1
1 ), k1 →∞.

Proof. We have to verify the jump condition over the interval [−ic, ic] only.
Let z = eikx and T = T (k, t), φ = φ(k, x, t) and φ1 = φ1(k, x, t) are taken in
this point k, and so does the reflection coefficient R = R(k, t) and the phase
function Φ(k) = Φ(k, x, t). Then m+(k1) = (Tφ1z, φz

−1) and m−(k1) =

(Tφ1z
−1, φz). Let

( α(k1) β(k1)
γ(k1) δ(k1)

)
be the unknown jump matrix. Then

Tφ1z = αTφ1z
−1 + γφz, φz−1 = βTφ1z

−1 + δφz.

Multiplying the first formula on z−1, the second one on z and taking into
account (3.1.4) we get

φ1T
(
R− αz−2

)
= γφ, −βT

δz2
φ1 = − 1

δz2
φ+ φ.
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3.1. Statement of the RH problem and the first conjugation step

The first formula gives

α = Rz2 = R(k)e8ik3t+2ikx = R(k)e2tΦ(k), γ = 0.

Comparing the second formula with (3.1.2) we get − 1
δz2 = R, that is −δz2 =

R = T
T

. Respectively, T = − βT
δz2 = βTT

T
, i.e.

β = 1, δ = −R(k)e2tΦ(k).

This justifies the jump along the contour [ic, 0]. To get the jump over the
contour [0,−ic] we use the symmetry condition. Namely, since the contour
[0,−ic] oriented in the same way as contour [ic, 0], i.e. from in top to down,
then by symmetry condition m±(−k1) = m∓(k1)σ1, where σ1 =

(
0 1
1 0

)
is the

first Pauli matrix. If v(k1) is the jump matrix on [ic, 0] then

m+(−k1) = m+(k1)v−1(k1)σ1 = m−(−k1)σ1v
−1(k1)]σ1,

that is v(−k1) = σ1v
−1(k1)σ1.

This RH-k1 problem is convenient for studying in the domain behind the
back wave front, i.e. when x < −6c2t. In the middle region −6c2t < x < 0 we
use the RH-λ problem, formulated on the Riemann surface of the function√
−λ. For this square root we keep the same meaning as in (3.1.1), that is√
−λ = ik for λ ∈ Σu and k > 0. Let M be the Riemann surface associated

with
√
−λ, with two sheets, upper ΠU , and lower ΠL, glued via the sides

of cut along R+. A point on M is denoted by p = (λ,±), λ ∈ closD. We
associate the domain D (or C+ in the variable k), with the upper sheet of M.
Thus, all functions which we introduced above, can be considered as function
of point p on clos ΠU . In particular, the vector function m(λ, x, t) given by
(3.1.8), is naturally defined on clos ΠU and we keep for it the notation m(p).
The sheet exchange map on M is given by p∗ = (λ,∓) for p = (λ,±), and if
p corresponds to k, then p∗ corresponds to −k. Therefore, we use without
confusion the symmetry condition on M

m(p∗) = m(p)

(
0 1
1 0

)
to continuem(p) on ΠU , and we havem(−k) = m(p∗) in our formal notations.
Correspondingly, the lower sheet ΠL of M is associated with the half-plane
C− of the k- plane. Using the same notations as above for

Σu = {p = (λ+ i0,+)|λ ∈ R+}, Σ` = {p = (λ− i0,+)|λ ∈ R+},
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Chapter 3. Rarefaction Waves of the KdV via Nonlinear Steepest Descent

and Σ = Σu ∪Σ`,we consider Σ as clockwise oriented contour, and associate
its points with points of contour R from RH-k problem. Then the jump
matrix v(k) from RH-k problem has evident values on Σ. Let also Tj,U{λ} and

Tj,L{λ} be the images of circles Tj,U and Tj,L from the k plane on the upper and
lower sheets of M. Let us replace also on these contours the jump matrices
from (3.1.20).

Lemma 3.1.5. The function m(p) is the unique solution of the following
problem: Find a vector-valued function m(p) which is holomorphic away from
the contour Σ on M and satisfies:

I. The jump condition m+(p, x, t) = m−(p, x, t)v(p, x, t), where

v(p) =



(
1− |R(p)|2 −R(p)e−2tΦ(p)

R(p)e2tΦ(p) 1

)
, p ∈ Σ,

(
1 0

hU(k, j) 1

)
, p ∈ Tj,U{λ}(

1 hL(k, j)

0 1

)
, p ∈ Tj,L{λ},

II. the symmetry condition

m(p∗) = m(p)

(
0 1
1 0

)
, p ∈M, (3.1.21)

III. the normalization condition

lim
p∈ΠU→∞+

m(p) = (1, 1). (3.1.22)

Here the phase Φ(p) = Φ(p, ξ) is given by

Φ(p) = (4λ+ 12ξ)
√
−λ, ξ =

x

12t
.

Our aim is to reduce these RH problems to model problems which can be
solved explicitly. To this end we record the following well-known result for
easy reference.

Lemma 3.1.6 (Conjugation). Let m be the solution of the RH problem
m+(p) = m−(p)v(p), p ∈ Σ̂, on a Riemann surface M̂ which satisfies the
symmetry and normalization conditions. Let Σ̃ be a contour on M̂ with the
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3.1. Statement of the RH problem and the first conjugation step

same orientation as Σ̂ on the common part of these contours and suppose
that Σ̂ and Σ̃ contain with each point p also p∗. Let D be a matrix of the
form

D(p) =

(
d(p)−1 0

0 d(p)

)
, (3.1.23)

where d : M̂ \ Σ̃ → C is a sectionally analytic function with d(p) 6= 0 except
for a finite number of points on Σ̂. Set

m̃(p) = m(p)D(p), (3.1.24)

then the jump matrix of the problem m̃+ = m̃−ṽ is

ṽ =



(
v11 v12d

2

v21d
−2 v22

)
, p ∈ Σ̂\(Σ̃ ∩ Σ̂),

(
v11d

−1
+ d− v12d+d−

v21d
−1
+ d−1

− v22d
−1
− d+

)
, p ∈ Σ̃ ∩ Σ̂,

(
d−1

+ d− 0

0 d−1
− d+

)
, p ∈ Σ̃ \ (Σ̃ ∩ Σ̂).

(3.1.25)

If d satisfies d(p∗) = d(p)−1 for p ∈ M̂ \ Σ̃, then the transformation (3.1.24)
respects the symmetry condition (3.1.21).

Note that in general, for an oriented contour Σ̂, the value f+(p0) (resp.
f−(p0)) will denote the nontangential limit of the function f(p) as p→ p0 ∈ Σ̂
from the positive (resp. negative) side of Σ̂, where the positive side is the
one which lies to the left as one traverses the contour in the direction of its
orientation.

In addition to this lemma in Sections 3.3 and 3.5 we will apply the so
called g-function technique [21] in a form proposed in [53]. This method is
very successful and has been used in [12] and several other papers. These
g-functions are in fact Abel integrals on modified Riemann surfaces which are
“slightly truncated” with respect to the initial one and depend on a parameter
ξ. These Abel integrals approximate the phase functions at infinity and
transform the jump matrices in a way that allows us to factorize them such
that one gets asymptotically constant jump matrices. These RH problems
with constant jumps are the corresponding model problems which will be
solved explicitly. In the next section we briefly discuss the soliton region,
where we work with the RH-k problem and do not require a g-function.
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Figure 3.2: Signature table for Φ(k) in the soliton region.

3.2 Asymptotics in the soliton domain x > 0

Here we use the holomorphic RH-k problem with jump given by (3.1.11),
(3.1.20), and (3.1.19). We consider x and t as parameters, which change in
a way that the value ξ = x

12t
evolves slowly when x and t are sufficiently

large in the region ξ > 0 under consideration. To reduce the RH-k problem
to a model problem that can be solved explicitly, we will use the well-known
conjugation and deformation techniques (see e.g. [40], [23]).

The signature table of the phase function Φ(k) = 4ik3 + 12iξk in this
region is shown in Figure 3.2. Namely, Re Φ(k) = 0 if Im k = 0 or (Im k)2 −
3(Re k)2 = 3ξ. The second curve consists of two hyperbolas which cross the
imaginary axis at the points ±i

√
3ξ. Set

κ0 =

√
x

4t
> 0.

Then we have Re(Φ(iκj)) > 0 for all κj > κ0 and Re(Φ(iκj)) < 0 for all
κj < κ0. Hence, in the first case the off-diagonal entries of our jump ma-
trices (3.1.20) are exponentially growing, and we need to turn them into
exponentially decaying ones. We set

Λ(k, ξ) := Λ(k) =
∏
κj>κ0

k + iκj
k − iκj

,
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and introduce the matrix

D(k) =



(
1

(
hU(k, j)

)−1

−hU(k, j) 0

)
D0(k), |k − iκj| < δ, j = 1, . . . , N,(

0 hL(k, j)

−
(
hL(k, j)

)−1
1

)
D0(k), |k + iκj| < δ, j = 1, . . . , N,

D0(k), else,
(3.2.1)

where

D0(k) =

(
Λ(k)−1 0

0 Λ(k)

)
. (3.2.2)

Observe that by Λ(−k) = Λ−1(k) we have

D(−k) =

(
0 1
1 0

)
D(k)

(
0 1
1 0

)
. (3.2.3)

Now we set
m̃(k) = m(k)D(k). (3.2.4)

Note that by (3.2.3) this conjugation preserves the properties III and IV.
Then (for details see Lemma 4.2 of [40]) the jump corresponding to κ0 <

κj is given by

ṽ(k) =

(
1 Λ2(k)

hU (k,j)

0 1

)
, k ∈ Tj,U ,

ṽ(k) =

(
1 0

− 1
hL(k,j)Λ2(k)

1

)
, k ∈ Tj,L,

and the jumps corresponding to κ0 > κj (if any) by

ṽ(k) =

(
1 0

hU(k, j)Λ−2(k) 1

)
, k ∈ Tj,U ,

ṽ(k) =

(
1 hL(k, j)Λ2(k)
0 1

)
, k ∈ Tj,L.

In particular, all jumps corresponding to poles, except for possibly one if
κj = κ0, are exponentially close to the identity for t→∞. In the latter case
we will keep the pole condition for κj = κ0 which now reads

Resiκj m̃(k) = lim
k→iκj

m̃(k)

(
0 0

iγje
2tΦ(iκj)Λ(iκj)

−2 0

)
,

Res−iκj m̃(k) = lim
k→−iκj

m̃(k)

(
0 −iγje

2tΦ(iκj)Λ(iκj)
−2

0 0

)
.
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Figure 3.3: Contour deformation in the soliton region.

Furthermore, the jump along R now reads

ṽ(k) =

(
1− |R(k)|2 −Λ2(k)R(k)e−2tΦ(k)

Λ−2(k)R(k)e2tΦ(k) 1

)
, k ∈ R.

The new Riemann–Hilbert problem

m̃+(k) = m̃−(k)ṽ(k)

for the vector m̃ preserves its asymptotics (3.1.13) as well as the symmetry
condition (3.1.10). In particular, after conjugation all jumps corresponding
to poles are now exponentially close to the identity as t → ∞. To turn
the remaining jump along R into this form as well, we chose two contours
Σ± = R± iε/2, where ε = min{ε, κ1−δ} and ε is from (3.0.4). This condition
guarantees that the reflection coefficient can be continued analytically to the
domain 0 < Im k < ε and that Σ+ does not intersect with T1,U . Since by
definition R(k) = R(−k), the function R is analytic in the domain −ε <
Im k < 0 and thus up to Σ−.

Now we factorize the jump matrix along R according to

ṽ = b−1
L bU =

(
1 −Λ2(k)R(k)e−2tΦ(k)

0 1

)(
1 0

Λ−2(k)R(k)e2tΦ(k) 1

)
and set

m̂(k) =


m̃(k)b−1

U (k), 0 < Im k < ε/2,
m̃(k)b−1

L (k), −ε/2 < Im k < 0,
m̃(k), else,
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such that the jump along R is moved 3.3 to Σ+ ∪ Σ− and is given by

v̂(k) =



(
1 0

Λ−2(k)R(k)e2tΦ(k) 1

)
, k ∈ Σ+,

(
1 −Λ2(k)R(k)e−2tΦ(k)

0 1

)
, k ∈ Σ−.

Hence, all jumps v̂ are exponentially close to the identity as t →∞ and
one can use Theorem A.6 from [54] or Theorem B.6 [55] to obtain (repeating
literally the proof of Theorem 4.4 in [40]) the following result:

Theorem 3.2.1. Assume (3.0.4)–(3.0.3) and abbreviate by cj = 4κ2
j the ve-

locity of the j’th soliton determined by Re(Φ(iκj)) = 0. Then the asymptotics
in the soliton region, x/t ≥ ε for some small ε > 0, are as follows:

Let δ > 0 be sufficiently small such that the intervals [cj − δ, cj + δ],
1 ≤ j ≤ N , are disjoint and c1 − δ > 0.

If |x
t
− cj| < δ for some j, one has

q(x, t) =
−4κjγj(x, t)

(1 + (2κj)−1γj(x, t))2
+O(t−l)

for any l ∈ N, where

γj(x, t) = γje
−2κjx+8κ3

j t
N∏

i=j+1

(
κi − κj
κi + κj

)2

.

If |x
t
− cj| ≥ δ, for all j, one has

q(x, t) = O(t−l)

for any l ∈ N.

3.3 Asymptotics in the domain −6c2t < x < 0

In this section we work with RH-λ problem. We suppose that the circles
Tj,U , which are the preimages of the curves Tj,U{λ}, have radii δ satisfying the
inequalities

(κ1 − δ)3 > 3δ

(
(κN + δ)2 +

c2

2

)
(3.3.1)

and δ < κ1 − ε, where ε is from (1.1.3).
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On ΠU :
+
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...............................
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−ξ
r
c2

r
Re Φ = 0

0
r

Figure 3.4: Signature table of Re Φ(p) for ξ < 0

We start by collecting some properties of the phase function Φ(p) =
(4p + 12ξ)

√
−p for − c2

2
< ξ < 0. First let p = (λ,+), λ ∈ closD. The

curves which describe the set Re Φ(p) = 0 consist of the contour Σ and
the hyperbola (Im k)2 − 3(Re k)2 = 3ξ. This curve intersect the contour Σ
at the point −ξ. For the signature table of Φ(p) on the upper sheet see
Figure 3.4. The signature table on the lower sheet follows from symmetry
Φ(p∗) = −Φ(p). Since now all the contours Tj,U{λ} are situated in the domain

Re Φ > 0, i.e. the functions (3.1.19) grow exponentially with respect to t, then
our first step consists in the transformations, which are the direct analogues
on M of (3.2.4), (3.2.1), and (3.2.2) with

Λ(p) =
N∏
j=1

√
−λ+

√
−λj√

−λ−
√
−λj

, p = (λ,+), Λ(p∗) = Λ(p)−1. (3.3.2)

STEP 1. Denote by

h̃U(p, j) = γ−1
j Λ2(p)(

√
−p−

√
−pj)e−2tΦ(pj),

h̃L(p, j) = γ−1
j Λ−2(p)(

√
−p+

√
−pj)e−2tΦ(pj),

where pj = (λj,+). Performing the same transformation as in (3.2.4), (3.2.1)
we get the following RH-λ problem for the function m̃ = m1, obtained as
above: m1(p) is a holomorphic function in M\ (Σ∪∪Nj=1(Tj,U{λ}∪T

j,L
{λ})), which

satisfies the jump condition m1
+(p) = m1

−(p)v1(p), with

v1(p) =



(
1− |R(p)|2 −R(p)Λ2(p)e−2tΦ(p)

Λ−2(p)R(p)e2tΦ(p) 1

)
, p ∈ Σ,(

1 h̃U(p, j)

0 1

)
, p ∈ Tj,U{λ},(

1 0

−h̃L(p, j) 1

)
, p ∈ Tj,L{λ},

(3.3.3)
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as well as conditions (3.1.21) and (3.1.22).

STEP 2. Introduce the function

g(p) := g(p, x, t) = 4(λ+ 2ξ)
√
−λ− 2ξ, p = (λ,+), g(p∗) = −g(p).

(3.3.4)
We observe that this function is real-valued for λ < −2ξ, and has equal
limiting values from the upper sheet to symmetric points of Σu

1(ξ) = [0,−2ξ]+
i0 and Σ`

1(ξ) = [0,−2ξ]− i0. Here we choose the same orientation as on the
contour Σ. Hence the function g has a jump from ΠU to ΠL in this part of
the contour, namely

g+(p) + g−(p) = 0, p ∈ Σ1(ξ). (3.3.5)

We also observe that for k2 = p ∈ ΠU , k →∞,

Φ(p)− g(p) = 4i

(
k3 + 3ξk − (k3 + 2ξk)

√
1 +

2ξ

k2

)
=

12ξ2

2ik
(1 +O(k−1)).

(3.3.6)
The signature table for g is given in Figure 3.5.
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................................................................................................................. ..................................................................................................................................................................................................................

.

................................................................................................................. ..................................................................................................................................................................................................................

Figure 3.5: Signature table for the function g(p).

Set

d(p) := et(Φ(p)−g(p)), D(p) =

(
d(p)−1 0

0 d(p)

)
, m2(p) = m1(p)D(p).

(3.3.7)
Due to the oddness of Φ(p) and g(p) we have d(p∗) = d−1(p). From (3.3.6)
it follows that d(p) → 1 as p → ∞. Therefore one can apply Lemma 3.1.6.
In doing so note that the function d(p) has no jump on Σ2(ξ) = Σ \ Σ1(ξ),
that it has a jump on Σ1(ξ) because of the jump of g and that using (3.3.5)
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we have d+ = d−1
− on Σ1(ξ). Thus, the jump matrix for m2

+ = m2
−v

2 is

v2(p) =



(
0 −R(p)Λ2(p)

R(p)Λ−2(p) e−2tg+(p)

)
, p ∈ Σ1(ξ),(

1− |R(p)|2 −R(p)Λ2(p)e−2tg(p)

R(p)Λ−2(p)e2tg(p) 1

)
, p ∈ Σ2(ξ),(

1 h̃U(p, j)e2t(Φ(p)−g(p))

0 1

)
, p ∈ Tj,U{λ},(

1 0

−h̃L(p, j)e−2t(Φ(p)−g(p)) 1

)
, p ∈ Tj,L{λ},

One has to check that this transformation does not chance the exponential
decay of the off diagonal entries of the jump matrix on Tj,U{λ}. To this end

have to estimate the value of e2t(Φ(k)−g(k)−Φ(iκj)) on the circles Tj,U in the
k variable plane. It suffices to check that for sufficiently small δ we have
Re(Φ(k)− g(k)− Φ(iκj)) < 0 as |k − iκj| = δ. The rough estimates

|Φ(k)− Φ(iκj)| ≤ 12
(
(κN + δ)2 + |ξ|

)
δ ≤ 12δ

(
(κN + δ)2 +

c2

2

)
,

and Re g(k) ≥ 4(κ1 − δ)3, show that it is sufficient to choose δ for Step 1
satisfying (3.3.1). Denote by

Tδ = ∪Nj=1

(
Tj,U{λ} ∪ Tj,L{λ}

)
and let I be the unit matrix. We observe that the matrix v2 admits the
following representation on Tδ:

v2(p, x, t) = I + A(p, ξ, t), ‖A(p, ξ, t)‖ ≤ C1(δ)e−C(δ)t, C(δ), C1(δ) > 0,
(3.3.8)

where the estimate for A is uniform with respect to p ∈ Tδ and ξ ∈ [0,− c2

2
].

Next, the function Λ(p) possesses the property

Λ(p) = Λ−1(p), |Λ(p)| = 1, p ∈ Σ.

Abbreviating R(p) := R(p)Λ−2(p) we finally represent v2 as

v2(p) =



(
0 −R(p)

R(p) e−2tg+(p)

)
, p ∈ Σ1(ξ),(

1− |R(p)|2 −R(p)e−2tg(p)

R(p)e2tg(p) 1

)
, p ∈ Σ2(ξ),

I + A(p, ξ, t), p ∈ Tδ.

(3.3.9)
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STEP 3. It is convenient to treat this jump problem as an RH problem
on the Riemann surface M(ξ) associated with the function

√
−λ− 2ξ (see

figure 3.6). The sheets ΠU(ξ) and ΠL(ξ) are glued along the contour Σ2(ξ).
To take into account the influence of the remaining part of the jump contour
we introduce two contours IU(ξ) and IL(ξ) on the upper and lower sheets,
respectively. These contours project onto the interval [0,−2ξ]. The upper
contour is oriented from 0 to −2ξ and the lower one is orientated from −2ξ
to 0. Set m3(p̂) = m2(p) for p̂ ∈ M(ξ) \

(
(IU(ξ) ∪ IL(ξ) ∪ Σ2(ξ) ∪ Tδ

)
. Here

ΠU(ξ) 0
r
0
r

-
IU(ξ)r

−2ξ
-�

ΠL
�

IL(ξ)r -�

.

................................................................................................................. ..................................................................................................................................................................................................................

.

................................................................................................................. ..................................................................................................................................................................................................................

Figure 3.6: Riemann surface M(ξ) with cuts

the points p̂ ∈M(ξ) and p ∈M have the same projections λ, and have to be
distinguished only along the intervals IU(ξ) and IL(ξ). We will use the same
symbol p for both surfaces for notational simplicity. Obviously the jumps of
m3 along Σ2(ξ) and Tδ remain the same as for m2. To compute the jumps
along IU(ξ) and IL(ξ) we identify the + side of Σu

1(ξ) with the + side of IU(ξ)
and the − side of IL(ξ) with the − side of Σ`

1(ξ). Thus m3
+(p) = m2

+(p) for
p ∈ IU(ξ) and by the symmetry condition we have m3

−(p) = m2
−(p∗)σ1, where

σ1 = ( 0 1
1 0 ) is the first Pauli matrix.

Since the function g, considered as a function on M(ξ), has no jump along
IU(ξ), we have g+(p) = g(p) on IU(ξ). On the other hand, the function R(p)
was continuous in a vicinity of Σu

1 on the Riemann surface M, but it has a
jump along I(ξ) on the Riemann surface M(ξ). Set

R̃(p) := R((λ+ i0,+)), p = (λ,+) ∈ IU(ξ); R̃(p∗) := R̃(p). (3.3.10)

Note, that this function has the values of R from the jump matrix v2 along
Σu

1(ξ). Thus

v3(p) =

(
R̃(p) e−2tg(p)

0 −R̃(p)

)
, p ∈ IU(ξ). (3.3.11)

Now, by the symmetry condition, we have m3
±(p) = m3

∓(p∗)σ1. Therefore,
for p ∈ IL(ξ)

m3
+(p) = m3

−(p∗)σ1 = m3
+(p∗)

(
v3(p∗)

)−1
σ1 = m3

−(p)σ1

(
v3(p∗)

)−1
σ1.
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Thus

v3(p) = σ1

(
v3(p∗)

)−1
σ1 =

(
−R̃(p∗) 0

e−2t(g(p∗)) R̃(p∗)

)
, p ∈ IL(ξ).

Recall that by (3.3.10) we have R̃(p∗) = R̃(p) on IU(ξ)∪ IL(ξ) and that g is
an odd function, g(p∗) = −g(p). Therefore

v3(p) =

(
−R̃(p) 0

e2t(g(p)) R̃(p)

)
, p ∈ IL(ξ). (3.3.12)

Note, that to get this jump we could also be obtained as (3.3.11), that is by
comparing the limiting values of m2 and m3. We will get the same result
because on the contour Σ`

1(ξ) the entries of v2 are connected with R̃(p) by
the relation R̃(p) = R(p), where p = (λ− i0,+) ∈ IU(ξ).

Thus the new RH problem is equivalent to the previous one and consists
of finding a holomorphic function on M(ξ) \

(
IU(ξ) ∪ IL(ξ) ∪ Σ2(ξ) ∪ Tδ

)
,

which satisfies the jump condition m3
+(p) = m3

−(p)v3(p), where v3(p) = v2(p)
for p ∈ Σ2(ξ) ∪ Tδ, and v3(p) is defined by formulas (3.3.11), (3.3.12), and
(3.3.10) for p ∈ IU(ξ)∪ IL(ξ). The vector function m3 also satisfy conditions
II–III of Lemma 3.1.5, and therefore this RH problem also has a unique
solution.

STEP 4. Now we perform the upper-lower factorization of the jump matrix
v3 on Σ2(ξ):

v3(p) = BL(BU)−1, p ∈ Σ2(ξ),

with

BL(p) =

(
1 −R(p)e−2tg(p)

0 1

)
, (BU)−1(p) =

(
1 0

R(p)e2tg(p) 1

)
. (3.3.13)

Introduce two contours CU and CL surrounding the contour Σ2(ξ) (remaining

ΠU

0
r -�-

�

- CU
ΩU

......
.....
......
.............
..........
...........
........ .......
......

...................
..........
...
.......... ................... ....... ......

IU(ξ)
−2ξ r c2r

ΠL

......
.....
......
.............
..........
...........
........ .......
......

...................
..........
...
.......... ................... ....... ......

�-rrr�

-

�

0
r CL

ΩL

IL(ξ)

.

................................................................................................................. ..................................................................................................................................................................................................................

.

................................................................................................................. ..................................................................................................................................................................................................................

Figure 3.7: Riemann surface M(ξ), contour deformations
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close to it), and redefine m3 in the enclosed domains ΩU and ΩL (see Figure
3.7) by

m4(p) =


m3(p)BU(p), p ∈ ΩU ,

m3(p)BL(p), p ∈ ΩL,

m3(p), else.

This leads to an equivalent RH problem with the jump matrix

v4(p) =


(BU(p))−1, p ∈ CU ,
BL(p), p ∈ CL,
v3(p), p ∈ IU(ξ) ∪ IL(ξ) ∪ Tδ,

where the oscillatory jump along the contour Σ2(ξ) disappeared and the jump
matrices along the contours CU and CL are close to the identity matrix with
the exponentially small errors except for a small vicinity of the point −2ξ.
STEP 5. This step will allow us to simplify jump the matrices on I(ξ) and
I(ξ)∗ by conjugating them with diagonal matrices. To this end consider the
following scalar conjugation problem:
Find a holomorphic function d(p) on M(ξ)\IU(ξ)∪IL(ξ) satisfying the jump
condition

d+(p) = i d−(p)R̃(p) as p ∈ IU(ξ), (3.3.14)

the symmetry condition d(p∗) = d−1(p), and the normalization d(p) → 1 as
p→∞.

Note that by definition |R̃(p)| = |R(p)Λ(p)| = 1 for p ∈ Σ1(ξ). Therefore,

R̃(p) = R̃−1(p) which, together with our symmetry d±(p∗) = d∓(p)−1 and
(3.3.10), implies

d+(p) = d−1
− (p∗) = iR̃(p∗)d−1

+ (p∗) = iR̃(p)d−(p), p ∈ IL(ξ). (3.3.15)

Lemma 3.3.1. The solution of this scalar RH problem is given by

d(p) = exp

(
− 1

2π

∫
IU (ξ)

(arg T (λ) + arg T1(λ)− 2 arg Λ(λ) + π)
√
−p− 2ξ dλ

(λ− π(p))
√
−λ− 2ξ

)
(3.3.16)

with Λ from (3.3.2).

Proof. Formula (3.1.4) implies that on the spectrum of multiplicity one we
have logR = i argR = 2i arg T . Hence (3.3.14) is equivalent to

log d+ − log d− = log(i) + logR = i
(π

2
+ argR− 2 arg Λ

)
= i
(π

2
+ 2 arg T − 2 arg Λ

)
= i
(

arg T + arg T1 − 2 arg Λ + π
)
,
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since arg T1 + π
2

= arg T on I1 according to T = T1

√
−λ√
c2 − λ

. The rest

follows from the Sokhotski–Plemelj formula. Note that the representation
(3.3.16) satisfies the symmetry condition d(p∗) = d−1(p) since

√
−p∗ − 2ξ =

−
√
−p− 2ξ. The normalization condition is evident.

Now consider the matrix D(p) constructed from (3.3.16) as in (3.1.23) and
set m5(p) = m4(p)D(p). Applying(3.1.25) and taking into account (3.3.14),
(3.3.15), (3.3.11), (3.3.12), and (3.3.13) we get the jump problem m5

+(p) =
m5
−(p)v5(p) with

v5(p) =



(
−i d+(p)d−(p)e−2tg(p)

0 −i

)
, p ∈ IU(ξ),(

i 0
d−1

+ (p)d−1
− (p)e2tg(p) i

)
, p ∈ IL(ξ),(

1 0
d2(p)R(p)e2tg(p) 1

)
, p ∈ CU(ξ),(

1 −d−2(p)R(p)e−2tg(p)

0 1

)
, p ∈ CL(ξ),

I +D−1(p)A(p, ξ, t)D(p), p ∈ Tδ.

Of course m5(p) also satisfies the standard symmetry and normalization con-
ditions. m5(p) also satisfy the standard symmetry and normalization condi-
tions. We observe that our jump matrix has the structure

v5(p) = −i I +O(e−2tg(p)), p ∈ IU(ξ), v5(p) = I +O(e−2tg(p)), p ∈ CL(ξ),

on the contours in the domain Re g > 0, neglecting the small contribution of
the point p = −2ξ where Re g = 0;

v5(p) = i I +O(e2tg(p)), p ∈ IL(ξ); v5(p) = I +O(e2tg(p)), p ∈ CU(ξ),

for Re g < 0. For p ∈ Tδ the matrix D−1AD − I is uniformly exponentially
small. Hence we may suppose, that the solution of the RH problem for m5

can be approximated by the solution of the following model RH problem:
Find an holomorphic function mmod(p) in M(ξ) \

(
IU(ξ) ∪ IL(ξ)

)
satisfying

the jump condition
mmod

+ (p) = mmod
− (p)vmod(p)

with

vmod(p) =


(
−i 0
0 −i

)
, p ∈ IU(ξ),(

i 0
0 i

)
, p ∈ IL(ξ),
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the symmetry condition

mmod(p∗) = mmod(p)

(
0 1
1 0

)
, p ∈M(ξ),

and the normalization condition

lim
p→∞

mmod(p) = (1, 1).

To describe the solution of this model problem on ΠU(ξ) introduce the
function

∆(p) = 4

√
π(p)

π(p) + 2ξ
,

where 4
√
. is chosen with positive values for λ > −2ξ. This function solves

the jump problem ∆+(p) = −i∆−(p) for p ∈ IU(ξ). Extend this function
to ΠL(ξ) via ∆(p∗) = ∆(p). Since this function does not have jumps on the
sets λ < 0 and λ > −2ξ for p = (λ,+), the function ∆(p) is holomorphic
as a function on M(ξ) \ (IU(ξ) ∪ IL(ξ)). Thus the solution of the model
problem can be given by mmod(p) = (∆(p), ∆(p∗)), p ∈M(ξ). Evidently, the
normalization and symmetry conditions are fulfilled.

Now we discuss how to get the asymptotics for q(x, t) from this model
solution assuming that m5(p, ξ, t) = mmod(p, ξ)(1 + o(1)) with respect to
large t. Since ∆(p) = 1 + O(p−1) as p → ∞, this function does not
contribute to the term of order p−1/2. Reversing our chain of transforma-
tions we observe, that the only transformations which changed this asymp-
totics were the multiplication by the diagonal matrices (3.1.23), constructed
from (3.3.16), (3.3.7), and (3.3.2), respectively. Therefore, m1(p, ξ, t) =
Λ(p, ξ)d(p, ξ)et(Φ(p,ξ)−g(pξ))(1 +O(p−1) as p→∞. But

q(x, t) = − ∂

∂x
lim
p→∞

2
√
−p (m1(p, ξ, t)− 1),

and ∂ξ
∂x

= O(t−1). That is why the multiplier Λ(p, ξ)d(p, ξ) does not con-
tribute to the leading term for q(x, t) too. From (3.1.9) and (3.3.6) we see
that

−q(x, t) = t · ∂
∂x

(12ξ2)(1 + o(1)) =
x

6t
(1 + o(1)).

Theorem 3.3.2. In the domain (−6c2 +ε)t < x < −ε1t the following asymp-
totics is valid:

q(x, t) = − x
6t

(1 + o(1)), as t→ +∞.

Note that this asymptotics matches the leading asymptotics 0 of the right
background along x = 0 (near the leading front) as well as the leading asymp-
totics c2 of the left background along x = −6c2t (near the back front).
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3.4 Asymptotics in the domain x < −6c2t via

the left scattering data

It turns out that in this region a formulation of our RH problem in terms
of the left scattering data will be more convenient. We will outline how to
solve the original RH problem in the next section. Again we will work in the
k1 plane.

Now the discrete spectrum of L(t) is located at the points iκ1,j, κ1,j =√
κ2
j + c2. Denote the squares of norms of the left eigenfunctions by γ1,j

and let R1(k1, t), T1(k1, t) be the left reflection and transmission coefficients.
Abbreviate

T (k1) = −T1(k1, 0)T (k1, 0), for k1 ∈ [0, ic]r, i.e. k ∈ [0, c]; (3.4.1)

T (−k1) : = −T (k1).

Introduce the vector-valued function

m(k1, x, t) =
(
T1(k1, t)φ(k1, x, t)e

−ik1x, φ1(k1, x, t)e
ik1x
)
, k1 ∈ C+ \ (0, ic],

(3.4.2)

m(−k1) = m(k1)

(
0 1
1 0

)
. (3.4.3)

This function has the following asymptotical behavior as k1 → +i∞.

m(k1, x, t) = (1, 1) +
1

2ik1

(∫ x

−∞
(q(y, t)− c2)dy

)
(1,−1) +O

(
1

k2
1

)
. (3.4.4)

Theorem 3.4.1. Let {R1(k1), k1 ∈ R; T (k1), k1 ∈ [0, ic]; (κ1,j, γ1,j), 1 ≤
j ≤ N} be the left scattering data of the operator L(0). Let TUj (resp. TLj ) be

circles with centers in iκ1,j (resp., −iκ1,j) and radii 0 < ε < 1
4

minNj=1 |κ1,j −
κ1,j−1|, κ1,0 = 0. Then m(k1) = m(k1, x, t) defined in (3.4.2) is the unique
solution of the following vector RH problem: Find a function m(k1) which is
holomorphic away from the contour ∪Nj=1(TUj ∪TLj )∪R∪ [−ic, ic] and satisfies:
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3.4. Asymptotics in the domain x < −6c2t via the left scattering data

(i) The jump condition m+(k1) = m−(k1)v(k1)

v(k1) =



(
1− |R1(k1)|2 −R1(k1)e−2tΦ1(k1)

R1(k1)e2tΦ1(k1) 1

)
, k1 ∈ R,

(
1 0

T (k1)e2tΦ1(k1) 1

)
, k1 ∈ [ic, 0],

(
1 T (k1)e−2tΦ1(k1)

0 1

)
, k1 ∈ [0,−ic],

(
1 0

− iγ1,je
tΦ1(iκ1,j)

k1−iκ1,j
1

)
, k1 ∈ TUj ,

(
1 − iγ1,je

−tΦ1(−iκ1,j)

k1+iκ1,j

0 1

)
, k1 ∈ TLj ,

(ii) the symmetry condition (3.4.3),

(iii) and the normalization condition limκ→∞m(iκ) = (1, 1).

Here the phase Φ1(k) = Φ1(k1, x, t) is given by

Φ1(k1) = −4ik3
1 − 6ic2k1 − 12iξk1, ξ =

x

12t
,

and the function T (k1) is defined by (3.4.1). The contours are oriented in
the same way as in Lemma 3.1.4.

Proof. The proof is analogous to Theorem 3.1.1 and Lemma 3.1.3 using the
scattering relations (3.1.2), (3.1.3), formula (3.4.1), and oddness of the phase
Φ1. Also one has to take into account that φ1(k1, t) ∈ R has no jump along
k1 ∈ [0, ic] and use the relation (cf. [24])

R(k, t) = −T1(k, t)

T1(k, t)
, as k ∈ [−c, c] (that is k1 ∈ [0, ic]r and k1 ∈ [0, ic]l),

as well as the time evolution (cf. [25])

T1(k1, t)T (k1, t) = T1(k1, 0)T (k1, 0)e−8itk3
1−12itk1c2 , k ∈ [−c, c],

R1(k1, t) = R1(k1, 0)e−8itk2
1−12itk1c2 , k1 ∈ R,

γ1,j(t) = γ1,j(0)e−8κ3
1,jt+12c2κ1,jt.
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Chapter 3. Rarefaction Waves of the KdV via Nonlinear Steepest Descent

Let k±1 = ±
√
− c2

2
− ξ be the stationary phase points of Φ1. The signa-

ture table for Re Φ1 in the present domain ξ < − c2

2
is shown in Figure 3.8.

Therefore the jump matrix v(k1) is exponentially close to the identity matrix
as t→∞ except for k1 ∈ R. Now, following the usual procedure [22], [40], we
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Figure 3.8: Sign of Re(Φ1(k1))

let d(k1) be an analytic function in the domain C \
(
R \ [k−1 , k

+
1 ]
)

satisfying

d̃+(k1) = d̃−(k1)(1−|R1(k1)|2) for k1 ∈ R\ [k−1 , k
+
1 ] and d(k1)→ 1, k1 →∞.

Then by the Sokhotski–Plemelj formulas

d̃(k1) = exp

(
1

2πi

∫
(−∞,k−1 )∪(k+

1 ,∞)

log(1− |R1(s)|2)

s− k1

ds

)
. (3.4.5)

Note that this integral is well defined since R1(k1) = O(k−1
1 ) and |R1(k1)| < 1

for k1 6= 0 (cf. [24]). As the domain of integration is even and the function
log(1− |R1|2) is also even, we obtain d̃(−k1) = d̃−1(k1) and the matrix

D(k1) =

(
d̃−1(k1) 0

0 d̃(k1)

)
satisfies the symmetry conditions of Lemma 3.1.6. Now set m̃(k1) = m(k1)D(k1)
and the new RH problem will read m̃+(k1) = m̃−(k1)ṽ(k1), where m̃(k1) →
(1, 1) as k →∞, m̃(−k) = m̃(k) ( 0 1

1 0 ), and

ṽ(k) =


AL(k1)AU(k1), k1 ∈ R \ [k−1 , k

+
1 ]

BL(k1)BU(k1), k1 ∈ [k−1 , k
+
1 ]

D−1(k1)v(k1)D(k1), k1 ∈ [ic,−ic] ∪j (TUj ∪ TLj ),

where

AL(k1) =

(
1 0

R1(k1)etΦ1(k1)

(1−|R1(k1)|2)d̃2(k1)
1

)
, k ∈ ΩU

l ∪ ΩL
r ,
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3.4. Asymptotics in the domain x < −6c2t via the left scattering data

AU(k1) =

(
1 − d̃2(k1)R1(k1)e−tΦ1(k1)

(1−|R1(k1)|2)

0 1

)
, k1 ∈ ΩL

l ∪ ΩU
r ,

BL(k1) =

(
1 −d̃2(k1)R1(k1)e−tΦ1(k1)

0 1

)
, k1 ∈ ΩL

c ,

BU(k1) =

(
1 0

d̃−2(k1)R1(k1)etΦ1(k1) 1

)
, k1 ∈ ΩU

c .

Here the domains ΩL
l , ΩU

l , ΩL
r , ΩU

r , ΩL
c and ΩU

c together with their boundaries
CLl , CUl , CLr , CUr , CLc and CUc are shown in Figure 3.9. Evidently, the matrix BU
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Figure 3.9: Contour deformation in the domain x < −6c2t

(resp. BL) has a jump along the contour [ic, 0] (resp. [0,−ic]). All contours
are oriented from left to right. They are chosen to respect the symmetry
k1 7→ −k1 and are inside a set, where R1(k1) has an analytic continuation.
We also set R1(k1) = R1(−k1) in these domains.

Lemma 3.4.2. The following formula is valid

(BU)− ṽ (BU)−1
+ = I, k1 ∈ [ic, 0]; (BL)−1

− ṽ (BL)+ = I, k1 ∈ [0,−ic].

Proof. By virtue of the Plücker identity (cf. [66], [23]).

Now redefine m̃(k1) according to

m̂(k1) =


m̃(k1)AL(k1), k1 ∈ ΩL

l ∪ ΩL
r ,

m̃(k1)AU(k1)−1, k1 ∈ ΩU
l ∪ ΩU

r ,
m̃(k1)BL(k1), k1 ∈ ΩL

c ,
m̃(k1)BU(k1)−1, k1 ∈ ΩU

c ,
m̃(k1), else.
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Chapter 3. Rarefaction Waves of the KdV via Nonlinear Steepest Descent

Then the vector function m̂(k1) has no jump for k1 ∈ R and (by Lemma 3.4.2)
also for k1 ∈ [ic,−ic]. All remaining jumps on the contours CLl , CUl , CLc , CUc ,
CLr , CUr , and ∪Nj=1(TUj ∪ TLj ) are close to identity matrix up to exponentially
small errors except for small vicinities of the stationary phase points k−1
and k+

1 . Thus, the model problem has the trivial solution m̂(k1) = (1, 1).
For large imaginary k1 with |k1| > κ1,N + 1 we have m̃(k1) = m̂(k1) and
consequently

m(k1) = m̃(k1)D−1(k1) = (d̃(k1), d̃−1(k1))

for sufficiently large k1. By (3.4.5)

d(k1) = 1 +
1

2ik1

(
− 1

π

∫
(−∞,k−1 )∪(k+

1 ,∞)

log(1− |R1(s)|2)ds

)
+O

(
1

k2
1

)
and comparing this formula with formula (3.4.4) we conclude the expected
leading asymptotics in the region x < −c2t:

q(x, t) = c2(1 +O(t−1/2)).

Moreover, the contribution from the small crosses at k±1 can be computed
using the usual techniques [22], [40] giving our final result:

Theorem 3.4.3. In the domain x < (−6c2 − ε)t the following asymptotics
is valid:

q(x, t) = c2+

√
4ν(k+

1 )k+
1

3t
sin(16t(k+

1 )3−ν(k+
1 ) log(192t(k+

1 )3)+δ(k+
1 ))+o(t−α)

for any 1/2 < α < 1. Here k+
1 =

√
− c2

2
− ξ and

ν(k+
1 ) =− 1

2π
log
(
1− |R1(k+

1 )|2
)
,

δ(k+
1 ) =

π

4
− arg(R1(k+

1 )) + arg(Γ(iν(k+
1 )))

− 1

π

∫
(−∞,−k+

1 )∪(k+
1 ,∞)

log

(
log(1− |R1(s)|2)

log(1− |R1(k+
1 )|2)

)
1

s− k+
1

ds.

3.5 Asymptotics in the domain x < −6c2t

In this section we provide an alternate approach for the region x < −6c2t. We
start again from the holomorphic RH problem formulated in Lemma 3.1.5.
In the region x < −6c2t the curves separating the domains with different
sign of Re Φ(p) cross the real axis at the point −ξ > c2/2 > 0.
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3.5. Asymptotics in the domain x < −6c2t

STEP 1 is identical as in the rarefaction section after which we arrived at
the RH problem with jump (3.3.3). We use the same notation m1 for its
solution.
STEP 2. In the rarefaction section, when the point ξ moved from 0 to
−c2/2, the crossing points of the lines Re g(p) = 0 moved from 0 to c2 where
they eventually reached the lower edge of the spectrum of multiplicity two.
Here the g function from Section 3.3 is not helpful more. As a new proper
g function we choose the phase, which corresponds to the evolution of the
left scattering data, but with the opposite sign. Recall that the left phase,
considered as a function of k1, is given by

Φ1(k1) = −4ik3
1 − 6ic2k1 − 12iξk1,

with ξ = x
12t

as before. For ξ < −c2/2 the hyperbola Re Φ1 = 0 cross the line
Im k1 = 0 at the points

k±1 = ±
√
−ξ − c2/2. (3.5.1)

Since λ = k2
1 − c2 the images of the lines Re Φ1 = 0 cross the real line at the

point η = c2/2− ξ. Therefore, in the domain under consideration, the point
η satisfies η > c2 and increases as ξ → −∞. Now set

g(p) := g(p, x, t) = (4λ+ 2c2 + 12ξ)
√
c2 − λ, p = (λ,+), g(p∗) = −g(p)

(3.5.2)
and giving us signature table 3.10. First of all, we observe that

g(p) = 4λ
√
−p+ 12ξ

√
−p+

12ξc2 + c4

2
√
−p

+O(p−1),

that is

Φ(p)− g(p) =
12ξc2 + c4

2
√
−p

(1 + o(1)).

Next split the contour Σ into two pieces: Σ1 with its projection on the
interval [0, c2] and Σ2 = Σ \ Σ1. On the contour Σ1 (3.5.2) possesses the
same property (3.3.5) as (3.3.4) on Σ1(ξ). Set m2(p) = m1(p)D(p), where
D(p) is the matrix (3.1.23) constructed from d(p) = et(Φ(p)−g(p)). Abbreviate
R(p) := R(p)Λ−2(p) and apply Lemma 3.1.6 plus the same arguments as in
Step 2 of Section 3.3. Then we obtain

v2(p) =



(
0 −R(p)

R(p) e−2tg+(p)

)
, p ∈ Σ1,(

1− |R(p)|2 −R(p)e−2tg(p)

R(p)e2tg(p) 1

)
, p ∈ Σ2,

I + A(p, ξ, t), p ∈ Tδ.
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On ΠU :
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Figure 3.10: Signature table of Re g(p) for ξ < −c2/2

Here the matrix A(p, ξ, t) has the same form as in (3.3.9) and its norm will
satisfy the estimate (3.3.8) provided that we choose a δ > 0 such that the
estimate Re(Φ(p)−Φ(pj)−g(p)) < −C(δ) < 0 is valid uniformly with respect

to ξ > c2 when p ∈ Tj,U{λ}. To get this estimate, consider Φ(p)− Φ(pj)− g(p)

as a function of ξ. We observe that the difference Φ(k) − Φ(iκj) grows like
|ξδ| when ξ → −∞ with k ∈ Tj,U . On the other hand, Re g grows on
this contour approximately like |ξ

√
(κj + δ)2 + c2| as ξ → −∞. A rough

elementary estimate shows that it suffices to choose (starting from the very
beginning, when formulating the initial holomorphic RH problem)

δ = min
{κ1

2
,

κ2
1c

3(κN + κ1)2

}
.

STEP 3 will be a reformulation of the problem for m2 on the k1 plane. Let
R∪[−ic, ic]∪j (Tj,U1 ∪T

j,L
1 ) be the contour on this plane, oriented as in Lemma

3.1.4. We denote by m3(k1) = m2(p) and keep the notations R(k1) = R(p)
and g(k1) = g(p) for p ∈ Σ2, i.e., k1(p) = k1 ∈ R. Moreover, let A(k1, ξ, t) be
the values of A(p, ξ, t) on the contours Tj,U1 ∪ Tj,L1 . Since the + side of the
contour [ic, 0] is the image of Σu

1 , we again use R̃(k1), analogous to (3.3.10),
for the entries of the jump matrix on [ic, 0]. Extend this function to [0,−ic]

by R̃(−k1) = R̃(k1) = R̃−1(k1). Now proceeding analogous to Step 3 of
the rarefaction section, and taking into account that the function (3.5.2)
has no jump on [ic,−ic], we conclude that m3 is holomorphic in the domain

C \
(
R ∪ [−ic, ic] ∪j (Tj,U1 ∪ Tj,L1 )

)
and solves the RH problem m3

+ = m3
−v

3
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with

v3(p) =



(
1− |R(k1)|2 −R(k1)e−2tg(k1)

R(k1)e2tg(k1) 1

)
, k1 ∈ R,(

R̃(k1) e−2tg(k1)

0 −R̃(k1)

)
, k1 ∈ [ic, 0],(

−R̃(k1) 0

e2t(g(k1)) R̃(k1)

)
, k1 ∈ [0,−ic],

I + A(k1, ξ, t), k1 ∈ ∪j(Tj,U1 ∪ Tj,L1 ).

STEP 4. Let k±1 be defined by (3.5.1). Consider a part of the contour R by
restricting to the interval [k−1 , k

+
1 ]. This interval divides the domains Re g > 0

for Im k1 > 0 and Re g < 0 for Im k1 < 0. In this case the usual lower-upper
factorization of the jump matrix will be used. We combine steps 4 and 5 from
the rarefaction section, following the standard procedure [22], [40] together
with the use of the jump problems (3.3.14), (3.3.15).
Namely, let d(k1) be an analytic function in the domain C\

(
[ic,−ic] ∪ [k−1 , k

+
1 ]
)

satisfying the jump

d+(k1) = d−(k1)


(1− |R(k1)|2) k1 ∈ [k−1 , k

+
1 ],

i ˜R(k1) k1 ∈ [ic, 0],

i ˜R(k1) k1 ∈ [0,−ic],

and the normalization condition d(k1)→ 1, k1 →∞. It can be expressed by
the Sokhotski–Plemelj formula as

d(k1) = exp

{
1

2πi

(∫ k+
1

k−1

log(1− |R(s)|2)

s− k1

ds−
∫ ic

−ic

f(s) ds

s− k1

)}
, (3.5.3)

where f(s) = i argR(s) as s ∈ [0, ic] and f(−s) = f(s). Note that since
the function log(1 − |R(s)|2) is even, the function d(k1) possesses the re-
quired symmetry property d(−k1) = d(k1)−1. Also the required normaliza-
tion d(k1)→ 1 as k1 →∞ is evident. Now let D(k1) be the matrix (3.1.23)
generated by this function d(k1). Set m4(k1) = m3(k1)D(k1), and the new
RH problem will read m4

+(k1) = m4
−(k1)v4(k1), where m4(k) → (1, 1) as
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k1 →∞, m4(−k1) = m4(k1)σ1 and

v4(k) =



AL(k1)AU(k1), k1 ∈ [k−1 , k
+
1 ]

BL(k1)BU(k1), k1 ∈ R \ [k−1 , k
+
1 ](

−i d+(k1)d−(k1)e−2tg(k1)

0 −i

)
, k1 ∈ [ic, 0],(

i 0
d−1

+ (k1)d−1
− (k1)e2tg(k1) i

)
, k1 ∈ [0,−ic],

I +D−1(k1)A(k1ξ, t)D(k1), k1 ∈ ∪j(Tj,U1 ∪ Tj,L1 ),

(3.5.4)

where

AL(k1) =

(
1 0

R(k1)etg(k1)

(1−|R(k1)|2)d2(k1)
1

)
, k1 ∈ ΩL

c ,

AU(k1) =

(
1 −d2(k1)R(k1)e−tg(k1)

(1−|R(k1)|2)

0 1

)
, k1 ∈ ΩU

c ,

BL(k1) =

(
1 −d2(k1)R(k1)e−tg(k1)

0 1

)
, k1 ∈ ΩU

l ∪ ΩL
r ,

BU(k) =

(
1 0

d−2(k1)R(k1)etg(k1) 1

)
, k1 ∈ ΩL

l ∪ ΩU
r .

Here the domains ΩL
l , ΩU

l , ΩL
c , ΩU

c , ΩL
r , ΩU

r together with their boundaries

CLl , CUl , CLc , CUc , CLr , CUr are shown in Figure 3.11. We set R(k1) = R(−k1) in
these domains. These functions have an analytical continuation as we choose
our contours sufficiently close to the real axis, avoiding the loops the discrete
spectrum.

Now redefine m4(k1) according to

m5(k) =



m4(k1)AL(k1), k1 ∈ ΩL
c ,

m4(k1)AU(k1)−1, k1 ∈ ΩU
c ,

m4(k1)BL(k1), k1 ∈ ΩL
l ∪ ΩL

r ,

m4(k1)BU(k1)−1, k1 ∈ ΩU
l ∪ ΩU

r ,

m4(k1), else.
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Figure 3.11: Contour deformation in the domain x < −6c2t

Introduce the matrix

∆(k1) =



(
0 d+(k1)d−(k1)e−2tg(k1)

0 0

)
, k1 ∈ [ic, 0];(

0 0

d−1
+ (k1)d−1

− (k1)e2tg(k1) 0

)
, k1 ∈ [0,−ic],

AU(k1)− I, k1 ∈ CUc ;

AL(k1)− I, k1 ∈ CLc ,

BU(k1)− I, k1 ∈ CUl ∪ CUr ;

BL(k1)− I, k1 ∈ CLl ∪ CLr ,

D−1(k1)A(k1, ξ, t)D(k1), k1 ∈ ∪j(Tj,U1 ∪ Tj,L1 ),

(3.5.5)

where the last matrix is defined in (3.5.4). Abbreviate also

C := CUl ∪ CUc ∪ CUr ∪ CLl ∪ CLc ∪ CLr ∪j (Tj,U1 ∪ Tj,L1 ).

Lemma 3.5.1. In the domain ξ < −c2/2 the initial RH problem, formulated
in Lemma
3.1.5, is equivalent to the following RH problem formulated in k1: Find a
function m5(k1) holomorphic in C \ (C ∪ [ic,−ic]) and satisfying 1) the jump
condition m5

+ = m5
−v

5 with

v5(k1) =


−iI + ∆(k1) k1 ∈ [ic, 0],

iI + ∆(k1), k1 ∈ [0,−ic],

I + ∆(k1), k1 ∈ C;
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2) the symmetry condition m5(−k1) = m5(k1)σ1; 3) normalization condition
m5(k1)→ (1, 1) as k →∞.

Here the matrix ∆(k1) is defined by (3.5.5) and admits an estimate |∆(k1)| ≤
C(ε)e−C(ε)t outside of ε vicinities of the points k±1 = ±

√
−ξ − c2/2 and the

point k1 = 0.
In the domain (Im k1)2 > κ2

n + c2 + 1 we have

m5(k1) = d−1(k1)Λ−1(k1))e−(Φ(k1)−g(k1))tm(k1),

where the functions g(k1), d(k1), and Φ(k1) are defined by formulas (3.5.2),
(3.5.3), and (3.1.14) respectively.

Thus one can expect that the solution of the following model problem
mmod

+ (k1) = mmod
− (k1)vmod(k1) where

vmod(p) =


(
−i 0
0 −i

)
, k1 ∈ [ic, 0],(

i 0
0 i

)
, k1 ∈ [0,−ic],

satisfying mmod(−k1) = mmod(k1)

(
0 1
1 0

)
, k1 ∈ C and limk1→∞m

mod(k1) =

(1, 1), will be asymptotically close to solution m5(k1) as t → ∞ , at least
outside of the aforementioned vicinities of k±1 and 0. The model problem has
the unique solution, given by formula

mmod(k1) =

(
4

√
k2

1 + c2

k2
1

, 4

√
k2

1 + c2

k2
1

)
, k1 ∈ C, where 4

√
∞ = 1.

As this solution has square root singularities at the edge of spectrum of
multiplicity two, which corresponds to the point k1 = 0 it requires a more
delicate analysis for the approximation step and hence we will not provide
further details here. We expect this problem to be solvable by using a method
described in [44].
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Chapter 4

Numerics for the steplike KdV
Cauchy problem

We close the thesis by giving some known information about the numerics
for the KdV equation. For solving nonlinear evolution equations there are
pseudospectral methods and difference methods. Regarding the difference
methods there are different versions of the standard Euler method. We will
discus here the leap–frog method which has been developed by Zabusky and
Kruskal [69].

We discretize the space and time by x = mh and t = nk with m =
0, 1 . . . ,M and n = 0, 1, . . .. h and k are the step sizes in space and time.
Since the domain is of finite length the step size is chosen to be h = 2π/M .
The discretization of space and time leads to an approximation of the contin-
uous solution q(x, t) for each step by qnm(x, t). The difference of the various
Euler methods comes from the formulation of the derivative. The studied
leap–frog method for the KdV equation

qt − 6qqx + qxxx = 0

is given by

qn+1
m =qn−1

m +
6k

3h
(qnm+1 + qnm + qnm−1)(qnm+1 − qnm−1) (4.0.1)

− k

h3
(qnm+2 − 2qnm+1 + 2qnm−1 − qnm−2).

On the right handside the first summand depends to the time derivative,
the second summand represents the nonlinearity and the last term approxi-
mates the dispersion e.g. the third derivative in x. This representations has
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two advantages: On the one hand the mass of
∑M−1

m=0 is conserved, on the
other hand the special form of the nonlinear term 1

3
(qnm+1 + qnm + qnm−1) gives

conservation of energy up to the second order

1

2

M−1∑
m=0

(qmn )2 − 1

2

M−1∑
m=0

(qn−1
m )2 = O(k3) for k → 0,

if q is periodic or decays fast enough at the end of the interval. Since the
method is of second order and uses not only qmn but also qmn−1 we need another
method for the first step, an Euler method

qn+1
m =qnm +

6k

3h
(qnm+1 + qnm + qnm−1)(qnm+1 − qnm−1) (4.0.2)

− k

h3
(qnm+2 − 2qnm+1 + 2qnm−1 − qnm−2).

Thus the procedure is the following

• Produce the initial condition.

• Use method (4.0.2) for the first step.

• Iterate by using (4.0.1).

By this method we created the picture 3.1. Therefore we implemented
the described method into Mathematica,using Code from [5].

Code Mathematica 4.1: Mathematica Sourcecode

KdVNIntegrate[initial_ , dx_ , dt_ , M_, T_] := Block[

{uPresent , uPast , uFuture , initialh , h = dx, k = dt , m, n, out = {}},

(* --- stability condition --- *)

Print[k, "\[ LessEqual]", h^3/(4 + h^2 10), " is ",

If[k <= h^3/(4 + h^2 10),

"OK", "NOT OK"]];

Print["x \[ Element ](", dx*M/2, ",", -dx*M/2, ") and tmax=", dt*T];

(* --- transform the initial conditions on the grid --- *)

initialh = initial /. x -> (m - M/2) dx;

(* --- calculate the initial solutions on the grid --- *)

uPast = Table[initialh , {m, 1, M}];

(* --- initialization of the lists containing the grid points

uPresent = present (m)

uFuture = future (m+1)

uPast = past (m-1) --- *)

uPresent = uPast;

uFuture = uPresent;

out = Table [{{(m - M/2) dx , 0 }, uPresent [[m]]}, {m, 3, M - 2}];

(* --- iterate the time --- *)

Do[

(* --- iterate the space points --- *)

Do[

uFuture [[m]] = uPast [[m]] + 6 k (uPresent [[m + 1]] +uPresent [[m]]
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+ uPresent [[m - 1]])( uPresent [[m + 1]]

- uPresent [[m - 1]])/(3 h)

- k (uPresent [[m + 2]] - 2 uPresent [[m + 1]]

+ 2 uPresent [[m - 1]] -uPresent [[m - 2]])/h^3,

{m, 3, M - 2}];

(* --- exchange lists --- *)

uPast = uPresent;

uPresent = uFuture;

out = Join[out , Table [{{(m - M/2) dx, n dt}, uPresent [[m]]},

{m, 3, M - 2}]],

{n, T}];

Interpolation[out]

];

u = KdVNIntegrate [-((Erf[x] - 1)/2) - 5 Sech[x - 1], 0.1, 0.0002 , 512 ,5000];
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Appendix A

Zusammenfassung

Die Korteweg–de Vries Gleichung ist eine Wellengleichung, die Flachwasser
Wellen modelliert und eine der bekanntesten Solitonen Gleichungen ist. Das
dazugehörige Cauchy–Problem wurde von Gardner, Green, Kruskal und Miura
mit Hilfe der Inversen Streutheorie gelöst. Im klassischen Fall verschwindet
der Anfangswert asymptotisch und ist gut ausgearbeitet. Ein weiterer Fall,
mit dem Schock und Verdünnung der Wellen modelliert wird, ist wenn die
Anfangsbedingungen asymptotisch gegen verschiedene Konstanten konvergieren
und wird stufenartige Anfangsbedingung genannt.

Im ersten Teil der Arbeit untersuchen wir das zu Grunde liegende direkte
und inverse Streuproblem für die eindimensionale Schrödinger Gleichung mit
stufenartigem Potential. Wir geben notwendige und hinreichende Bedingun-
gen für die Streudaten an, um zu einem Potential mit vorgegebener Glattheit
und räumlichen Zerfall zu gehören. Dieses Problem wurde zuvor betrachtet,
allerdings verallgemeinert unser Ergebnis alle vorherigen Ergebnisse. Im
zweiten Teil wenden wir die Ergebnisse auf das Cauchy–Problem der KdV
Gleichung mit stufenartigen, genauer gesagt Verdünnungswellen produzieren-
den Anfangsbedingungen, an. Dazu formulieren wir das inverse Problem
als ein oszillatorisches Riemann–Hilbert Problem und wenden die Methode
des nichtlinearen schnellsten Abstieges an, um das Langzeitverhalten der
Lösung zu erhalten. Um das Problem untersuchen zu können, muss eine
neue Phasenfunktion, die sogenannte g− Funktion, eingeführt werden, die
von einer langsamen Variable ξ = x

t
abhängt. Danach kann das Problem zu

einem explizit lösbaren Modellproblem umgeformt werden. In Abhängigkeit
von dem Wert von ξ gibt es drei Hauptregionen, wenn t gegen unendlich geht:
Für ξ < −ξ0 ist die Lösung nahezu die linke Konstante. Für −ξ0 < ξ < 0 gibt
es eine Verdünnungsregion, wo die Lösung sich wie x

t
verhält. Für 0 < ξ gibt

es die Solitonenregion, in der die Lösung durch eine Summe von Solitonen
gegeben ist.
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Appendix A. Zusammenfassung

Abschließend vergleichen wir die analytisch erlangte Lösung mit einer
numerisch errechneten.
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